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Existence positive periodic solution of functional differential equation 
 
 
                                                       Strictly as per the compliance and regulations of :  

 

x′(t) = a(t)g(x(h1(t)))x(t)− f
(
t, x(h2(t)),

∫ 0

−ς
k(v)x(t− v)dv, x′(h3(t)),∫ 0

−ς̂
k̂(v)x′(t− v)dv

)
x(t),

where x(t) = (x1(t), . . . , xn(t))
T , g(x(h1(t))) = diag

(
g1(x1(h11(t))), . . . , gn(xn(h1n(t)))

)
,

a(t) = diag(a1(t), . . . , an(t)), f
(
t, x(h2(t)),

∫ 0
−ς k(v)x(t − v)dv, x′(h3(t)),

∫ 0
−ς̂ k̂(v)x

′(t −
v)dv

)
= diag

(
f1(t, x(h2(t)),

∫ 0
−ς k(v)x(t− v)dv, x′(h3(t)),

∫ 0
−ς̂ k̂(v)x

′(t− v)dv), . . . ,

fn(t, x(h2(t)),
∫ 0
−ς k(v)x(t−v)dv, x′(h3(t)),

∫ 0
−ς̂ k̂(v)x

′(t−v)dv)
)T
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Existence positive periodic solution of 
functional differential equation
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Author : Department of Mathematics Qingdao Qiushi College Qingdao, Shandong 266111People's Republic of China.
E-mail : fanxuanlong@126.com

AAbstract - The paper is concerned with functional differential equation

Keywords : Periodic solution; Functional differential equation; Fixed point; Cone.

I. INTRODUCTION

x′(t) = a(t)g(x(h1(t)))x(t)− f
(
t, x(h2(t)),

∫ 0

−ς
k(v)x(t− v)dv, x′(h3(t)),∫ 0

−ς̂
k̂(v)x′(t− v)dv

)
x(t),

where x(t) = (x1(t), . . . , xn(t))
T , g(x(h1(t))) = diag

(
g1(x1(h11(t))), . . . , gn(xn(h1n(t)))

)
,

a(t) = diag(a1(t), . . . , an(t)), f
(
t, x(h2(t)),

∫ 0
−ς k(v)x(t − v)dv, x′(h3(t)),

∫ 0
−ς̂ k̂(v)x

′(t −
v)dv

)
= diag

(
f1(t, x(h2(t)),

∫ 0
−ς k(v)x(t− v)dv, x′(h3(t)),

∫ 0
−ς̂ k̂(v)x

′(t− v)dv), . . . ,

fn(t, x(h2(t)),
∫ 0
−ς k(v)x(t−v)dv, x′(h3(t)),

∫ 0
−ς̂ k̂(v)x

′(t−v)dv)
)T

are periodic functions.

The theory of differential systems have developed by mathematicians (see [1-5]). In this
paper, we consider the following system

x′(t) = a(t)g(x(h1(t)))x(t)− f
(
t, x(h2(t)),

∫ 0

−ς

k(v)x(t− v)dv, x′(h3(t)),∫ 0

−ς̂

k̂(v)x′(t− v)dv
)
x(t), (1.1)

where

(H1) ai (i = 1, . . . , n) ∈ C(R, [0,+∞)) are T -periodic and there exists t1 ∈ (0, T ) such that
ai(t1) > 0;

(H2) h1i (i = 1, . . . , n) ∈ C(R,R) are p1T -periodic, h2i (i = 1, . . . , n) ∈ C(R,R) are p2T -
periodic and h3i (i = 1, . . . , n) ∈ C(R,R) are p3T -periodic;

(H3) gi ∈ C([0,∞), [0,∞)) are continuous, 0 < li ≤ gi(ui) < Li <∞ for all ui > 0, li, Li are
two positive constants. There exist positive constant Li such that

∣∣gi(ui) − gi(vi)
∣∣ ≤

Li|ui − vi|.
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Existence positive periodic solution of functional differential equation

(H4) fi ∈ C(R × [0,∞) × [0,∞) × [0,∞) × R × R, [0,∞)) are continuous functions. There
exist positive functions αij(t) < +∞, βij(t) < +∞, such that

fi

(
t, u,

∫ 0

−ς

k(v)u(t− v)dv, u′,
∫ 0

−ς̂

k̂(v)u′(t− v)dv
)

−fi
(
t, v,

∫ 0

−ς

k(v)v(t− v)dv, v′,
∫ 0

−ς̂

k̂(v)v′(t− v)dv
)

≤
n∑

j=1

αij(t)|ui − vi|+
n∑

j=1

βij(t)|u′
i − v′i|.

Throughout this paper, a function is called ω-periodic(ω > 0)meaning ω is the least
positive periodic of the function. Since p is the least positive rational number such that p

p0
,

p
p1
, p

p2
and p

p3
are the positive integers, pT = ω is the least positive period of the periodic

solutions of Eq.(1.1). System (1.1) contains many mathematical population models of delay

differential equations [see(1-3,5,8-12)].

In order to obtain the existence of a periodic solution of system (1.1), we then make the
following preparations:

Let E be a Banach space and K be a cone in E. The semi-order induced by the cone K
is denoted by ”≤”. That is, x ≤ y if and only if y − x ∈ K.

Let E, F be two Banach spaces and D ⊂ E, a continuous and bounded map Φ : Ω̄→ F is
called k-set contractive if for any bounded set S ⊂ D we have

αF(Φ(S)) ≤ kαE(S).

Φ is called strict-set-contractive if it is k-set-contractive for some 0 ≤ k < 1.
The following lemma cited from Ref. [10,11] which is useful for the proof of our main

results of this paper.

Lemma 2.1. [6, 7] Let K be a cone of the real Banach space X and Kr,R = {x ∈ K|r ≤
||x|| ≤ R} with R > r > 0. Suppose that Φ : Kr,R → K is strict-set-contractive such that one
of the following two conditions is satisfied:

(i) Φx � x, ∀x ∈ K, ||x|| = r and Φx � x, ∀x ∈ K, ||x|| = R.

(ii) Φx � x, ∀x ∈ K, ||x|| = r and Φx � x, ∀x ∈ K, ||x|| = R.

Then Φ has at least one fixed point in Kr,R.

II. PRELIMINARIES

Remark 2.1. Completely continuous operators are 0-set-contractive.

In order to apply Lemma 2.1 to system (1.1), we consider the Banach space

C 0
ω = {x(t) = (x1(t), . . . , xn(t))|x(t) ∈ C 0(R,Rn), x(t+ ω) = x(t), t ∈ R}

with the norm defined by ‖x‖ =
n∑

i=1

|xi|0, where |xi|0 = max
t∈[0,ω]

{xi(t)}, i = 1, . . . , n and

C1
ω = {x(t) = (x1(t), . . . , xn(t))|x(t) ∈ C1(R,Rn), x(t+ ω) = x(t), t ∈ R}

[8]
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with the norm defined by‖x‖1 =
n∑

i=1

|xi|1,, where |xi|1 = max{|xi|0, |x′
i|0},i = 1, . . . , n . Then

C0
ω, C

1
ω are all Banach space.

Let the map Φ = (Φ1, . . . ,Φn) be defined by

(Φx)(t) =

∫ t+ω

t

G(t, s)f
(
s, x(h2(s)),

∫ 0

−ς

k(v)x(s− v)dv, x′(h3(s)),∫ 0

−ς̂

k̂(v)x′(s− v)dv
)
x(s) ds (2.1)

for x ∈ C1
ω, t ∈ R, where

G(t, s) = diag
(
G1(t, s), . . . , Gn(t, s)

)
,

Gi(t, s) =
e−

∫ s
t ai(θ)gi(xi(h1i(θ)) dθ

1− e−
∫ ω
0 ai(θ)gi(xi(h1i(θ)) dθ

, s ∈ [t, t+ ω], i = 1, . . . , n.

It is easy to see that G(t+ ω, s+ ω) = G(t, s) and

∂G(t, s)

∂t
= a(t)g(x(h1(t)))G(t, s),

G(t+ ω, s+ ω) = G(t, s),

G(t, t+ ω)−G(t, t) = −I,
σLi
i

1− σLi
i

≤ Gi(t, s) ≤ 1

1− σli
i

, s ∈ [t, t+ ω],

where σi = e−
∫ ω
0 ai(θ) dθ.

Define the cone K in X by

K =
{
x
∣∣∣x ∈ C1

ω, xi(t) ≥ δi|xi|1, t ∈ [0, ω], i = 1, . . . , n
}
,

where 0 < δ < I, δ = diag(δ1, . . . , δn), δi =
σLi
i (1− σli

i )

1− σLi
i

.

Let

ξ1i = min

{
inf
t∈R

{
(σli

i − 1) + ai(t)gi(xi(h1i(t)))
}
, inf
t∈R

{1− σLi
i

σLi
i

− ai(t)gi(xi(h1i(t)))
}}

;

ξ2i = max

{
sup
t∈R

{
(σli

i − 1) + ai(t)gi(xi(h1i(t)))
}
, sup

t∈R

{1− σLi
i

σLi
i

− ai(t)gi(xi(h1i(t)))
}}

.

(H5) 0 < ξ1i ≤ ξ2i ≤ 1, i = 1, . . . , n.

Lemma 2.2. Assume that (H1)− (H5) hold, then Φ maps K into K.

Proof. For any x ∈ K, it is clear that Φx ∈ C(R,R), we have

(Φx)(t+ ω) =

∫ t+ω

t

G(t, s)f
(
s, x(h2(s)),

∫ 0

−ς

k(v)x(s− v)dv, x′(h3(s)),∫ 0

−ς̂

k̂(v)x′(s− v)dv
)
x(s) ds

Existence positive periodic solution of functional differential equation
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=

∫ t+ω

t

G(t+ ω, u+ ω)f
(
u+ ω, x(h2(u+ ω)),

∫ 0

−ς

k(v)x(u+ ω − v)dv,

x′(h3(u+ ω)),

∫ 0

−ς̂

k̂(v)x′(u+ ω − v)dv
)
x(u+ ω) ds

=

∫ t+ω

t

G(t, u)f
(
u, x(h2(u)),

∫ 0

−ς

k(v)x(u− v)dv,

x′(h3(u)),

∫ 0

−ς̂

k̂(v)x′(u− v)dv
)
x(u) ds

= (Φx)(t).

Thus, (Φx)(t+ ω) = (Φx)(t), t ∈ R. So Φx ∈ X. For x ∈ K, t ∈ [0, ω], we have

|Φixi|0 ≤ 1

1− σli
i

(∫ t+ω

t

fi

(
s, x(h2(s)),

∫ 0

−ς

k(v)x(s− v)dv, x′(h3(s)),∫ 0

−ς̂

k̂(v)x′(s− v)dv
)
xi(s)ds

)
, i = 1, . . . , n

and

(Φixi)(t) ≥ σLi
i

1− σLi
i

(∫ t+ω

t

fi

(
s, x(h2(s)),

∫ 0

−ς

k(v)x(s− v)dv, x′(h3(s)),∫ 0

−ς̂

k̂(v)x′(s− v)dv
)
xi(s)ds

)
, i = 1, . . . , n.

So we have (Φixi)(t) ≥ δi|Φixi|0.
If (Φixi)

′(t) ≥ 0, then

(Φixi)
′(t) = Gi(t, t+ ω)fi

(
t+ ω, x(h2(t+ ω)),

∫ 0

−ς

k(v)x(t+ ω − v)dv,

x′(h3(t+ ω)),

∫ 0

−ς̂

k̂(v)x′(t+ ω − v)dv
)
xi(t+ ω)−Gi(t, t)fi

(
t, x(h2(t)),∫ 0

−ς

k(v)x(t− v)dv, x′(h3(t)),

∫ 0

−ς̂

k̂(v)x′(t− v)dv
)
xi(t)

+ai(t)gi(xi(h1i(t)))(Φixi)(t)

= −fi
(
t, x(h2(t)),

∫ 0

−ς

k(v)x(t− v)dv, x′(h3(t)),

∫ 0

−ς̂

k̂(v)x′(t− v)dv
)
xi(t)

+ai(t)gi(xi(h1i(t)))(Φixi)(t)

≤
(
(σli

i − 1) + ai(t)gi(xi(h1i(t)))
)
(Φxi)(t) ≤ (Φixi)(t), i = 1, . . . , n. (2.2)

On the other hand, from (2.2), if (Φix)
′(t) < 0, then

−(Φixi)
′(t) = fi

(
t, x(h2(t)),

∫ 0

−ς

k(v)x(t− v)dv, x′(h3(t)),

∫ 0

−ς̂

k̂(v)x′(t− v)dv
)
xi(t)

−ai(t)gi(xi(h1i(t)))(Φixi)(t)

≤
(1− σLi

i

σLi
i

− ai(t)gi(xi(h1i(t)))
)
(Φixi)(t) ≤ (Φixi)(t), i = 1, . . . , n. (2.3)

Hence, Φx ∈ K. The proof of Lemma 2.2 is complete.

Existence positive periodic solution of functional differential equation
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For convenience in the following discussion, we introduce the following notations:

max
t∈[0,ω]

{ai(t)} := aMi ,

max
t∈[0,ω]u∈B(0,R)

fi

(
s, u,

∫ 0

−ς

k(v)u(s− v)dv, u′,
∫ 0

−ς̂

k̂(v)u′(s− v)dv
)
:= θi.

Lemma 2.3. Assume that (H1) − (H5), and

(
R max

t∈[0,ω]

{ n∑
i=1

βi(t)

})
< 1 hold, then Φ :

K
⋂

Ω̄R → K is strict-set-contractive, where ΩR = {x ∈ C1
ω : |x|1 < R}.

Proof. It is easy to see that Φ is continuous and bounded. Now we prove that αC1
ω
(Φ(S)) ≤(

R max
t∈[0,ω]

{ n∑
i=1

βi(t)

})
αC1

ω
(S) for any bounded set S ⊂ Ω̄R. Let η = αC1

ω
(S). Then, for

any positive number ε <

(
R max

t∈[0,ω]

{ n∑
i=1

βi(t)

})
η, there is a finite family of subsets {Si}

satisfying S =
⋃

i Si with diam(Si) ≤ η + ε. Therefore

‖xi − y‖1 ≤ η + ε for any x, y ∈ Si. (2.4)

As S and Si are precompact in C 0
ω, it follows that there is a finite family of subsets {Sij} of

Si such that Si =
⋃

j Sij and

‖x− y‖ ≤ ε for any x, y ∈ Sij. (2.5)

Let S ⊂ K be an arbitrary open bounded set in K, then there exists a number R > 0
such that ‖x‖ < R for any x = (x1, . . . , xn)

T ∈ S. In fact, for any x ∈ S and t ∈ [0, ω], we

have

|(Φixi)(t)| =

∣∣∣∣ ∫ t+ω

t

Gi(t, s)xi(s)fi

(
s, x(h2(s)),

∫ 0

−ς

k(v)x(s− v)dv, x′(h3(s)),∫ 0

−ς̂

k̂(v)x′(s− v)dv
)
ds

∣∣∣∣
≤ 1

1− σli
i

∫ t+ω

t

xi(s)fi

(
s, x(h2(s)),

∫ 0

−ς

k(v)x(s− v)dv, x′(h3(s)),∫ 0

̂
k̂(v)x′(s− v)dv

)
ds

ς

≤ Rω

1− σli
i

max
t∈[0,ω]ui∈B(0,R)

fi

(
s, u,

∫ 0

−ς

k(v)u(s− v)dv, u′,∫ 0

−ς̂

k̂(v)u′(s− v)dv
))

=
θiRω

1− σli
i

, i = 1, . . . , n

   

and

|(Φixi)
′(t)| =

∣∣∣∣− fi

(
t, x(h2(t)),

∫ 0

−ς

k(v)x(t− v)dv, x′(h3(t)),

∫ 0

−ς̂

k̂(v)x′(t− v)dv
)
xi(t)

Existence positive periodic solution of functional differential equation
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+ai(t)gi(xi(h1i(t)))(Φixi)(t)

∣∣∣∣
≤ ξ2i

θiRω

1− σli
i

, i = 1, . . . , n.

Hence

‖Φx‖ ≤
n∑

i=1

Hi

and

‖(Φx)′‖ ≤
n∑

i=1

ξ2iHi.

Applying the Arzela-Ascoli Theorem, we know that Φ(S) is precompact in C0
ω. Then, there

is a finite family of subsets {Sijk} of Sij such that Sij =
⋃

k Sijk and

|(Φx)− (Φy)|0 ≤ ε for any x, y ∈ Sijk. (2.6)

From (2.4), (2.5), (2.6), (H3) and (H4), for any x, y ∈ Sijk, we obtain

|(Φixi)
′ − (Φiyi)

′|0

= max
t∈[0,ω]

{∣∣∣∣ai(t)gi(xi(h1i(t)))(Φixi)(t)− ai(t)gi(yi(h1i(t)))(Φiyi)(t)

+fi

(
t, y(h2(t)),

∫ 0

−ς

k(v)y(t− v)dv, y′(h3(t)),

∫ 0

−ς̂

k̂(v)y′(t− v)dv
)
y(t)

−fi
(
t, x(h2(t)),

∫ 0

−ς

k(v)x(t− v)dv, x′(h3(t)),

∫ 0

−ς̂

k̂(v)x′(t− v)dv
)
xi(t)

∣∣∣∣}
≤ max

t∈[0,ω]
{ai(t)L|(Φixi)(t)− (Φiyi)(t)|+ ai(t)Li|(Φixi(t)|

∣∣xi(t)− yi(t)
∣∣}

+ max
t∈[0,ω]

{∣∣∣∣xi(t)

[
fi

(
t, y(h2(t)),

∫ 0

−ς

k(v)y(t− v)dv, y′(h3(t)),

∫ 0

−ς̂

k̂(v)y′(t− v)dv
)

−fi
(
t, x(h2(t)),

∫ 0

−ς

k(v)x(t− v)dv, x′(h3(t)),

∫ 0

−ς̂

k̂(v)x′(t− v)dv
)]∣∣∣∣

+
∣∣xi(t)− yi(t)

∣∣fi(t, y(h2(t)),

∫ 0

−ς

k(v)y(t− v)dv, y′(h3(t)),

∫ 0

−ς̂

k̂(v)y′(t− v)dv
)}

≤ aMi L|(Φixi)− (Φiyi)|0 + aMi Li
θi|xi|0ω
1− σli

i

∣∣xi(t)− yi(t)
∣∣+ max

t∈[0,ω]

{
θi
∣∣xi(t)− yi(t)

∣∣}
+|xi|0

( n∑
i=1

αi(t)
∣∣xi − yi

∣∣
0
+

n∑
i=1

βi(t)
∣∣x′

i − y′i
∣∣
1

)

≤
(
aMi L+ aMi Li

θi|xi|0ω
1− σli

i

+ θi + |xi|0αi(t)

)
ε+ |xi|0βi(t)

(
η + ε

)

Existence positive periodic solution of functional differential equation
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≤
(
aMi L+ aMi Li

θi|xi|0ω
1− σli

i

+ θi + |xi|0αi(t) + |xi|0βi(t)

)
ε+ |xi|0βi(t)η, i = 1, . . . , n. (2.7)

From (2.6) and (2.7), for any x, y ∈ Sijk, we have

‖Φx− Φy‖1
≤

(
aMi L+ max

1≤i≤n

{ n∑
i=1

aMi Li
θ1ω

1− σli
i

}
+

n∑
i=1

θi +R max
t∈[0,ω]

{ n∑
i=1

αi(t)

}

+R max
t∈[0,ω]

{ n∑
i=1

βi(t)

})
ε+R max

t∈[0,ω]

{ n∑
i=1

βi(t)

}
η.

As ε is arbitrary small, it follows that

αC1
ω
(Φ(S)) ≤

(
R max

t∈[0,ω]

{ n∑
i=1

βi(t)

})
αC1

ω
(S).

Therefore, Φ is strict-set-contractive. The proof of Lemma 2.3 is complete.

For convenience in the following discussion, we introduce the following notations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
lim
u→0

supmaxt∈[0,ω]
fi

(
t,u,

∫ 0
−ς k(v)u(t−v)dv,u′,

∫ 0
−ς̂ k̂(v)u

′(t−v)dv

)
∑n

i=1 ui+
∑n

i=1 u
′
i

= f 0
i ,

lim
u→∞

inf mint∈[0,ω]
fi

(
t,u,

∫ 0
−ς k(v)u(t−v)dv,u′,

∫ 0
−ς̂ k̂(v)u

′(t−v)dv

)
∑n

i=1 ui+
∑n

i=1 u
′
i

= f∞
i .

(2.8)

III. MAIN RESULT

Our main result of this paper is as follows:

Theorem 3.1. Assume that (H1) − (H5) hold, then system (1.3) has at least one positive
ω-periodic solution.

Proof. According (2.8), for any

0 < ε < min

{
1

2
,
1

4
min
1≤i≤n

f∞
i

}
,

there exist positive numbers r0 < R0 such that for i = 1, . . . , n,

fi

(
t, u,

∫ 0

−ς

k(v)u(t− v)dv, u′,
∫ 0

−ς̂

k̂(v)u′(t− v)dv
)

<
(
f 0
i + ε

)( n∑
i=1

ui +
n∑

i=1

u′
i

)
for 0 <

n∑
i=1

|ui|1 < r0

and

fi

(
t, u,

∫ 0

−ς

k(v)u(t− v)dv, u′,
∫ 0

−ς̂

k̂(v)u′(t− v)dv
)

Existence positive periodic solution of functional differential equation
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>
(
f∞
i − ε

)( n∑
i=1

ui +
n∑

i=1

u′
i

)
for

n∑
i=1

|ui|1 > R0

Let

R = max

{(
min
1≤i≤n

{2σLi
i ω

(
f∞
i − ε

)
1− σLi

i

δ2i

})−1

, min
1≤i≤n

{
δ−1
i

}
R0

}
and

0 < r < min
1≤i≤n

{
1− σli

i

2ω
(
f 0
i + ε

)δi, r0}.
Then we have 0 < r < R. From Lemmas 2.2 and 2.3, we know that Φ is strict-set-contractive
on Kr,R. In view of Lemma 2.1, we see that if there exists x∗ ∈ K such that Φx∗ = x∗, then
x∗ is one positive ω-periodic solution of system (1.1).

First, we prove that Φx � x, ∀x ∈ K, ‖x‖1 = r. Otherwise, there exists x ∈ K, ‖x‖1 = r
such that Φx ≥ x. So ‖x‖ > 0 and Φx− x ∈ K, which implies that

(Φixi)(t)− xi(t) ≥ δi|Φixi − xi|1 ≥ 0 for any t ∈ [0, ω]. (3.1)

Moreover, for t ∈ [0, ω], we have

(Φixi)(t) =

∫ t+ω

t

Gi(t, s)xi(s)fi

(
s, x(h2(s)),

∫ 0

−ς

k(v)x(s− v)dv,

x′(h3(s)),

∫ 0

−ς̂

k̂(v)x′(s− v)dv
)
ds

≤ 1

1− σli
i

|xi|0
[
2ω

(
f 0
i + ε

) n∑
i=1

|xi|1
]

=
2ω

(
f 0
i + ε

)
1− σli

i

|xi|0r
< δi|xi|0, i = 1, . . . , n. (3.2)

In view of (3.1) and (3.2), we have

‖x‖ ≤ ‖Φx‖ =
n∑

i=1

(Φixi)|0 < max
1≤i≤n

{
δi
}‖x‖ < ‖x‖,

which is a contradiction. Finally, we prove that Φx � x, ∀x ∈ K, ‖x‖1 = R also holds. For
this case, we only need to prove that

Φx ≮ x x ∈ K, ‖x‖1 = R.

Suppose, for the sake of contradiction, that there exists x ∈ K and ‖x‖1 = R such that
Φx < x. Thus x− Φx ∈ K \ {0}. Furthermore, for any t ∈ [0, ω], we have

x(t)− (Φx)(t) ≥ δ|x− Φx|1 > 0. (3.3)

In addition, for any t ∈ [0, ω], we find

(Φixi)(t) =

∫ t+ω

t

Gi(t, s)xi(s)fi

(
s, x(h2(s)),

∫ 0

−ς

k(v)x(s− v)dv,

Existence positive periodic solution of functional differential equation
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x′(h3(s)),

∫ 0

−ς̂

k̂(v)x′(s− v)dv
)
ds

≥ σLi
i

1− σLi
i

δi|xi|1
[
2ω

(
f∞
i − ε

) n∑
i=1

δi|xi|1
]

≥
2σLi

i ω
(
f∞
i − ε

)
1− σLi

i

δi|xi|1 min
1≤i≤n

{
δi
} n∑

i=1

|xi|1, i = 1, . . . , n. (3.4)

Thus,

‖Φx‖0 =
n∑

i=1

|(Φixi)|0 ≥
2σLi

i ω
(
f∞
i − ε

)
1− σLi

i

δi|xi|1
n∑

i=1

|xi|1

≥ min
1≤i≤n

{2σLi
i ω

(
f∞
i − ε

)
1− σLi

i

δ2i

} n∑
i=1

|xi|1
n∑

i=1

|xi|1

≥ min
1≤i≤n

{2σLi
i ω

(
f∞
i − ε

)
1− σLi

i

δ2i

}
R2 = R. (3.5)

From (3.3)− (3.5), we obtain
‖x‖ > ‖Φx‖ ≥ R,

which is a contradiction. Therefore, conditions (i) and (ii) hold. By Lemma 2.2, we see that
Φ has at least one nonzero fixed point in K. Therefore, system (1.3) has at least one positive
ω-periodic solution. The proof of Theorem 3.1 is complete.

IV. EXAMPLES

Consider the following system [8]

x′
i(t) = xi(t)

[
ai(t)−

n∑
j=1

αij(t)xj(t− τij)−
n∑

j=1

βij(t)x
′
j(t− σij)

]
, (4.1)

where ai, αij, βij (i = 1, . . . , n, j = 1, . . . , n) ∈ (
R, (0,+∞)

)
are functions with periodic ω,

τij, σij (i = 1, . . . , n, j = 1, . . . , n) ∈ [0,+∞) are constants.

Corollary 4.1. Assumed (H1)− (H5) and max1≤i≤n

{
R
∑n

j=1 βij(t)
}
< 1 hold, Eq.(4.1) has

at least one ω-periodic solution.

   

  

Proof. In this case

fi

(
t, x(h2(t)),

∫ 0

−ς

k(v)x(t− v)dv, x′(h3(t)),

∫ 0

−ς̂

k̂(v)x′(t− v)dv
)

=
n∑

j=1

αij(t)xj(t− τij) +
n∑

j=1

βij(t)x
′
j(t− σij),

gi(xi(h1(t))) = 1,

f 0
i ≤ max

1≤i≤n

{
max
t∈[0,ω]

{
αij(t)

}
+ max

t∈[0,ω]

{
βij(t)

}}
<∞, i = 1, . . . , n

Existence positive periodic solution of functional differential equation
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and

f∞
i ≤ min

1≤i≤n

{
min
t∈[0,ω]

{
αij(t)

}
+ min

t∈[0,ω]

{
βij(t)

}}
> 0, i = 1, . . . , n.

It follows from Theorem 3.1 that system (4.1) has at least one positive periodic solution. The
proof of Theorem 4.1 is complete.

Consider the following system [9]

x′
i(t) = xi(t)

[
ai(t)−

n∑
j=1

bij(t)

∫ 0

−Tij

Kij(θ)xj(t+ θ)dθ −
n∑

j=1

cij(t)

∫ 0

−T̂ij

K̂ij(θ)x
′
j(t+ θ)dθ

]
,(4.2)

where ai, bij, cij (i = 1, . . . , n, j = 1, . . . , n) ∈ (
R, (0,+∞)

)
are functions with periodic ω,

Tij, T̂ij (i = 1, . . . , n, j = 1, . . . , n) ∈ [0,+∞), Kij, K̂ij ∈ (R,R+) satisfying
∫ 0

−Tij
Kij(θ)xj(t+

θ)dθ = 1,
∫ 0

−T̂ij
K̂ij(θ)dθ = 1, i, j = 1, . . . , n.

Corollary 4.2. Assumed (H1) − (H5) and max1≤i≤n

{
R
∑n

j=1 cij(t)
}
< 1 hold, Eq.(4.1) has

at least one ω-periodic solution.

Proof. In this case

fi

(
t, x(h2(t)),

∫ 0

−ς

k(v)x(t− v)dv, x′(h3(t)),

∫ 0

−ς̂

k̂(v)x′(t− v)dv
)

=
n∑

j=1

bij(t)

∫ 0

−Tij

Kij(θ)xj(t+ θ)dθ +
n∑

j=1

cij(t)

∫ 0

−T̂ij

K̂ij(θ)x
′
j(t+ θ)dθ,

gi(xi(h1(t))) = 1,

f 0
i ≤ max

1≤i≤n

{
max
t∈[0,ω]

{
bij(t)

}
+ max

t∈[0,ω]

{
cij(t)

}}
<∞, i = 1, . . . , n

and

f∞
i ≤ min

1≤i≤n

{
min
t∈[0,ω]

{
bij(t)

}
+ min

t∈[0,ω]

{
cij(t)

}}
> 0, i = 1, . . . , n.

It follows from Theorem 3.1 that system (4.1) has at least one positive periodic solution. The
proof of Theorem 4.1 is complete.
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The Existence of Solution in H 1(R N ) for 
Nonclassical Diffusion Equations

LIU Yong-feng   &    MA Qiao-zhen

Author   : College of Mathematics and Information Science, Northwest Normal University, Lanzhou, Gansu 730070, China. 
E-mail : liuyongfeng1982@126.com

AAbstract - In this paper, we prove the existence of weak solution for a nonclassical diffusion equations in H 1(R N ). The 
result in this part are new.
Keywords : Nonclassical diffusion equations; Weak solution; Absorbing set.

I. INTRODUCTION

In this paper, we investigate the following nonclassical diffusion equations

ut −Δut −Δu+ f(x, u) = g(x), x ∈ RN , (1.1)

with the initial data

u(x, 0) = u0, x ∈ RN . (1.2)

This equation is a special form of the nonclassical diffusion equation used in fluid mechanics, solid

mechanics and heat conduction theory(see [1, 2]). On bounded domains, the long-time behavior have

been discussed by many authors in [3-11].

To our best knowledge, the existence of weak solution in RN for the nonclassical diffusion equation

have not been considered by predecessors.

Foundation term: This paper is supported in part by the Natural Sciences Foundation of Gansu province (3ZS061-A25-016),

in part by the Education Department Foundation of Gansu Province(0801-02) and NWNU-KJCXGC-03-40.

In this paper, we consider the existence of weak solution in H1(RN ) if g(x) ∈ L2(RN ), and the

nonlinearity f(x, u) = f1(u) + a(x)f2(u) satisfies:

(F1) α1 | u |p −β1 | u |2≤ f1(u)(u) ≤ γ1 | u |p +δ1 | u |2, f1(u)u ≥ 0, p ≥ 2, and f ′
1(u) ≥ −c;

(F2) α2 | u |p −β2 ≤ f2(u)(u) ≤ γ2 | u |p +δ2, p ≥ 2, and f ′
2(u) ≥ −c;

and

(A) a ∈ L1(RN ) ∩ L∞(RN ), a(x) > 0.

where αi, βi, γi, δi, i = 1, 2, and c are all positive constants.
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1
(R

N
) for Nonclassical Diffusion Equations

Lemma 2.1 ([11]) Let X ⊂⊂ H ⊂ Y be Banach spaces, with X reflexive. Suppose that un is a sequence

that is uniformly bounded in L2(0, T ;X), and dun/dt is uniformly bounded in Lp(0, T ;Y ), for some p > 1.

Then there is a subsequence that converges strongly in L2(0, T ;H).

Theorem 2.1 Assume (F1), (F2) and (A) are satisfied. Then for any T > 0 and u0 ∈ H1(RN ), there is

a unique solution u of (1.1)− (1.2) such that

u ∈ C1([0, T ];H1(RN )) ∩ Lp(0, T ;Lp(RN )).

Moreover, the solution continuously depends on the initial data.

Proof We divide into three steps:

Step 1 For any n ∈ N , we consider the existence of the weak solution for the following problem in

B(0, n) � Bn ⊂ RN ,

ut −Δut −Δu+ f(x, u) = g(x), x ∈ Bn, (2.1)

u(x, 0) = u0 ∈ H1(Bn). (2.2)

u |∂Ω= 0. (2.3)

Choose a smooth function χn(x) satisfy

χn(x) =

⎧⎪⎪⎨⎪⎪⎩
1, x ∈ Bn−1,

0, x /∈ Bn.

(2.4)

Since Bn is a bounded domain, so the existence and uniqueness of solutions can be obtained by the

standard Faedo-Galerkin methods, see [3,5,8,11], we have the unique weak solution

un ∈ C1([0, T ];H1(Bn)) ∩ Lp(0, T ;Lp(Bn)) and un(x, 0) = χn(x)u0(x).

Step 2 According to Step 1, and we denote d
dtun = unt, then un satisfy

unt −Δunt −Δun + f(x, un) = g(x), x ∈ Bn, (2.5)

un(x, 0) = χn(x)u0(x), (2.6)

un |∂Bn= 0. (2.7)

For the mathematical setting of the problem, we denote ‖ · ‖L2(Bn)�‖ · ‖Bn
, ‖ · ‖L1(RN )�‖ · ‖1,

‖ · ‖L2(RN )�‖ · ‖, ‖ · ‖L∞(RN )�‖ · ‖∞.

Multiply (2.5) by un in Bn, using f1(u)u ≥ 0, (F2) and (A), we have

1

2

d

dt
(‖ ∇un ‖2Bn

+‖un‖2Bn
)+ ‖ ∇un ‖2Bn

≤
∫
Bn

a(x)(β2 − α2 | u |p)dx+

∫
Bn

gundx

II. UNIQUE WEAK SOLUTION

≤ β2 ‖ a(x) ‖1 −
∫
Bn

α2a(x) | u |p dx+
‖ g ‖2
2λ

+
λ

2
‖ un ‖2Bn

By the Poincaré inequality, for some ν > 0, we have

1

2

d

dt
(‖ ∇un ‖2Bn

+‖un‖2Bn
) + ν(‖ ∇un ‖2Bn

+‖un‖2Bn
) +

∫
Bn

α2a(x) | u |p dx
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≤ β2 ‖ a(x) ‖1 +
‖ g ‖2
2λ

. (2.8)

Hence, we have

‖ ∇un(T ) ‖2Bn
+‖un(T )‖2Bn

+ 2ν

∫ T

0

(‖ ∇un(T ) ‖2Bn
+ ‖un(T )‖2Bn

) + 2

∫ T

0

∫
Bn

α2a(x) | u |p dx

≤ (2β2 ‖ a(x) ‖1 +
‖ g ‖2
λ

)T. (2.9)

We get the following estimate:

sup
t∈[0,T ]

‖ ∇un(t) ‖2Bn
+‖un(t)‖2Bn

≤ C, (2.10)

∫ T

0

(‖ ∇un(t) ‖2Bn
+‖un(t)‖2Bn

) ≤ C, (2.11)∫ T

0

∫
Bn

α2a(x) | u(t) |p dx ≤ C, (2.12)

Similar to (2.8), using (F1), (F2) and (A), we have

∫ T

0

∫
Bn

| u(t) |p dx ≤ C. (2.13)

where C is independent on n.

According to (F1) and (F2), we have

| f1(un) |≤ C(| un |p−1 + | un |). (2.14)

| f2(un) |≤ C(| un |p−1 +1). (2.15)

We choose q such that 1
p + 1

q = 1, then (p− 1)q = p. Noting that p ≥ 2, then 1 < q ≤ 2, and we have the

embedding Lp(Bn) ↪→ Lq(Bn). According to (2.13)− (2.15), we get∫ T

0

∫
Bn

| f1(u) |q ≤ C

∫ T

0

∫
Bn

(| un |p−1 + | un |)qdxdt

≤ C

∫ T

0

∫
Bn

| un |(p−1)q dxdt+ C

∫ T

0

∫
Bn

| un |q dxdt

≤ C

∫ T

0

∫
Bn

| un |p +C

∫ T

0

∫
Bn

| un |p dxdt

≤ C. (2.16)∫ T

0

∫
Bn

| f2(u) |q ≤ C

∫ T

0

∫
Bn

| a(x) |q (| un |p−1 +1)qdxdt

≤ C | a(x) |q−1
∞

∫ T

0

∫
Bn

a(x)(| un |(p−1)q +1)dxdt

≤ C | a(x) |q−1
∞ (C | a(x) |1 +

∫ T

0

∫
Bn

a(x) | un |p dxdt)

≤ C. (2.17)
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where C is independent on n.

Thanks to (2.16)−(2.17), f1(un) is bounded in Lp(0, T ;Lq(Bn)), and af2(un) is bounded in Lp(0, T ;Lq(Bn)).

For ∀ v ∈ L2(0, T ;H1
0 (Bn)),

∫ T

0

∫
Bn

−Δunv =

∫ T

0

∫
Bn

∇un∇v

≤ (

∫ T

0

‖ ∇un ‖2Bn
)

1
2 (

∫ T

0

‖ ∇v ‖2Bn
)

1
2

≤ (

∫ T

0

‖ ∇un ‖2) 1
2 (

∫ T

0

‖ ∇v ‖2Bn
)

1
2

≤ C ‖ ∇v ‖H1
0 (Bn) . (2.18)

where C is independent on n. We can obtain −Δun is bounded in L2(0, T ;H−1(Bn)).

Since g(x) ∈ L2(RN ), so

g(x) ∈ L2(0, T ;RN ). (2.19)

Hence there exists s > 0, such that L2(0, T ;H−1(Bn)), L
2(0, T ;H1

0 (Bn)), L
q(0, T ;Lq(Bn)),L

2(0, T ;L2(Bn))

are continuous embedding to Lq(0, T ;H−s(Bn)).

According to (2.5), (2.16)− (2.19), we obtain

unt −Δunt ∈ Lq(0, T ;H−s(Bn)). (2.20)

Hence un has a subsequence (we also denote un) weak* convergence to u in L2(0, T ;H−1(Bn)) and

L2(0, T ;L2(Bn)), unt − Δunt has a subsequence (we also denote unt − Δunt) weak* convergence to

ut −Δut. Let un = 0 outside of Bn, we can extend un to RN .

As introduced in [3,11], C∞
c (RN ) is dense in the dual space of H−1(Bn)), L2(Bn), Lq(Bn) and

H−s(Bn), so we can choose ∀ φ ∈ L2(0, T ;C∞
c (RN )) ∩ Lq(0, T ;C∞

c (RN )) as a test function such that

〈Δun, φ〉 → 〈Δu, φ〉 (2.21)

〈unt −Δunt, φ〉 → 〈ut −Δut, φ〉 (2.22)

Since ∀ φ ∈ C∞
c (RN ), there exists bounded domain Ω ⊂ RN such that φ = 0, x /∈ Ω. Hence un is

uniformly bounded in L2(0, T ;H1
0 (Ω)), and unt −Δunt ∈ Lq(0, T ;H−s(Ω)). Since H1

0 (Ω) ⊂⊂ L2(Ω) ⊂
H−s(Ω), according to lemma 2.1, there is a subsequence un (we also denote un) that converges strongly

to u in L2(0, T ;L2(Ω)).

Using the continuity of f1 and f2, we have

〈f1(un), φ〉 → 〈f1(u), φ〉 (2.23)

〈a(x)f2(un), φ〉 → 〈a(x)f2(u), φ〉 (2.24)

According to (2.21)− (2.24), and let n→∞, we get : ∀ φ ∈ L2(0, T ;C∞
c (RN )) ∩ Lq(0, T ;C∞

c (RN )),

〈ut −Δut −Δu+ f1(u) + a(x)f2(u), φ〉 = 〈g(x), φ〉 (2.25)
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Hence u is the weak solution of (2.1)− (2.3) and satisfy

u ∈ C1([0, T ];H1(RN )) ∩ Lp(0, T ;Lp(RN )).

Step 3 Uniqueness and continuous dependence.

Let u0, v0 be in H1(RN ), and setting w(t) = u(t)− v(t), we see that w(t) satisfies

wt −Δwt −Δw + f1(u)− f1(v) + a(x)(f2(u)− f2(v)) = 0, x ∈ RN . (2.26)

Taking the inner product with w of (2.26), using (F1), (F2) and (A), we obtain

1

2

d

dt
(‖ ∇w ‖2 +‖w‖2)+ ‖ ∇w ‖2 ≤ |

∫
(f1(u)− f1(v))wdx | + |

∫
a(x)(f2(u)− f2(v))wdx |

≤ C(1+ ‖ a ‖∞) ‖ w ‖2 (2.27)

By the Gronwall Lemma, we get

‖ ∇w(t) ‖2 +‖w(t)‖2 ≤ eCt(‖ ∇w(0) ‖2 +‖w(0)‖2). (2.28)

This is uniqueness and is continuous dependence on initial conditions.
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On a Sturm - Liouville like four point 
boundary value problem

Svetlin Georgiev Georgiev

AAbstract - In this article we propose new approach for investigating of Sturm - Liouville like four point boundary 
value problem. It gives new results.
Keywords and phrases : Sturm - Liouville problem, existence.

I. INTRODUCTION

In this article we consider the problem

x′′(t) + h(t)f(t, x(t), x′(t)) = 0, t ∈ [0, 1],

x′(0)− α1x(ξ) = 0, x′(1) + α2x(η) = 0,
(1.1)

where α1, α2 ∈ R, α1 �= 0, α2 �= 0, ξ ∈ (0, 1), η ∈ (0, 1), ξ �= η, h(t) ∈ C(R), f(·, ·, ·) ∈
C(R× R× R) are fixed, x(t) is unknown..

Our aim is to investigate the problem (1.1) for existence of solutions. For this purpose
we propose new approach for investigation. This approach gives new results.

Our main result is as follows.

Theorem 1.1. Let α1, α2 ∈ R, α1 �= 0, α2 �= 0, ξ ∈ (0, 1), η ∈ (0, 1), ξ �= η, h(t) ∈ C(R),
f(·, ·, ·) ∈ C(R× R× R) be fixed. Then

1) the problem (1.1) has a bounded solution x(t) ∈ C2([0, 1]);
2) if for the bounded solution x(t) of 1) we have∫ t

η

∫ s

0
h(τ)f(τ, x(τ), x′(τ))dτds �= 0 some t ∈ [0, 1],

then it doesn’t coincide with zero on [0, 1],
3) if for the bounded solution x(t) of 1) we have

h(t)f(t, x(t), x′(t)) �= 0 for some t ∈ [0, 1],

then it doesn’t coincide with a constant.

We will compare our result with well known result.
In [1] the problem (1.1) is considered under conditions 0 < α1 < 1

ξ , 0 < α2 < 1
1−η ,

0 < ξ < η < 1, α1α2η−α1α2ξ+α1+α2 > 0, h(t) : [0, 1] −→ [0,∞) is a continuous function,

Author : University of Sofia, Faculty of Mathematics and Informatics, Department of Differential Equations, Blvd \Tzar Osvoboditel" 
15, Sofia 1000, Bulgaria. E-mail : sgg2000bg@yahoo.com
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II. PROOF OF MAIN RESULT

a.e. t ∈ [0, 1], f(t, x, y) ≤ a(t) + b(t)x+ c(t)y for suitable functions a, b, c ∈ L1([0, 1]) and it
is proved that (1.1) has a nontrivial solution. Evidently our result is better than the result
in [1].

1) Let D1 be fixed positive constant and let also

M1 = max
{
max
t∈[0,1]

|h(t)|, max
[0,1]×[−D1,D1]×[−D1,D1]

|f(·, ·, ·)|
}
.

Let a1 ∈ (0, 1) is enough closed to 1 and ε ∈ (0, 1) are chosen so that a1 + ε1 > 1 and

ε1D1 + (1− a1)
D1
|α2| + (1− a1)|α1|D1 + (1− a1)M1 ≤ D1,

ε1D1 + (1− a1)|α1|D1 + (1− a1)M1 ≤ D1.

(2.1)

We define the sets

N1 =
{
x(t) ∈ C1([0, 1]) : |x(t)| ≤ D1, |x′(t)| ≤ D1 ∀t ∈ [0, 1]

}
,

N∗
1 =

{
x(t) ∈ C1([0, 1]) : |x(t)| ≤ (a1 + ε1)D1, |x′(t)| ≤ (a1 + ε1)D1 ∀t ∈ [0, 1]

}
.

In these sets we define a norm as follows ||x|| = max{maxt∈[0,1] |x(t)|,maxt∈[0,1] |x′(t)|}.
With this norm the sets N1 and N∗

1 are completely normed spaces. Also since for x ∈ N1

we have |x(t)| ≤ D1, |x′(t)| ≤ D1 for every t ∈ [0, 1] we have that N1 is a compact subset

and closed convex subset of N
∗
1 .

Under these sets we define the operators

P1(x) = (a1 + ε1)x,

K1(x) = −ε1x− (1− a1)
x′(1)
α2

+ (1− a1)α1(t− η)x(ξ)− (1− a1)
∫ t
η

∫ s
0 h(τ)f(τ, x(τ).x′(τ))dτds,

L1(x) = P1(x) +K1(x).

Our first observation is

Lemma 2.1. Let x(t) be a fixed point of the operator L1. Then x(t) is a solution to the
problem (1.1).

Proof. Since x(t) is a fixed point of the operator L1 then

x(t) = L1(x) = P1(x) +K1(x)

= (a1 + ε1)x(t)− ε1x(t)− (1− a1)
x′(1)
α2

+ (1− a1)α1(t− η)x(ξ)

−(1− a1)
∫ t
η

∫ s
0 h(τ)f(τ, x(τ), x′(τ))dτ

= a1x(t)− (1− a1)
x′(1)
α2

+ (1− a1)α1(t− η)x(ξ)

−(1− a1)
∫ t
η

∫ s
0 h(τ)f(τ, x(τ), x′(τ))dτ,

from here

(1−a1)x(t) = −(1−a1)
x′(1)
α2

+(1−a1)α1(t−η)x(ξ)−(1−a1)

∫ t

η

∫ s

0
h(τ)f(τ, x(τ), x′(τ))dτ

On a Sturm - Liouville like four point boundary value problem
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and

x(t) = −x′(1)
α2

+ α1(t− η)x(ξ)−
∫ t

η

∫ s

0
h(τ)f(τ, x(τ), x′(τ))dτ (2.2)

Now we differentiate the last equality with respect t and we obtain

x′(t) = α1x(ξ)−
∫ t

0
h(τ)f(τ, x(τ), x′(τ))dτ, (2.3)

again we differentiate the last equality with respect t and we have

x′′(t) = −h(t)f(t, x(t), x′(t)).

We put t = 0 in (2.3) and we obtain

x′(0) = α1x(ξ),

after we put t = η in (2.2) we get

x(η) = −x′(1)
α2

,

therefore x(t) satisfies the problem (1.1).

The above Lemma motivate us to search fixed points of the operator L1. For this
purpose we will use the following fixed point theorem.

Theorem 2.2. (see [2], Corrolary 2.4, pp. 3231) Let X be a nonempty closed convex subset
of a Banach space Y . Suppose that T and S map X into Y such that

(i) S is continuous, S(X) resides in a compact subset of Y ;
(ii) T : X −→ Y is expansive and onto.
Then there exists a point x� ∈ X with Sx� + Tx� = x�.

Here we will use the following definition for expansive operator.
Definition. (see [2], pp. 3230) Let (X, d) be a metric space and M be a subset of X.

The mapping T : M −→ X is said to be expansive, if there exists a constant h > 1 such
that

d(Tx, Ty) ≥ hd(x, y) ∀x, y ∈M.

Lemma 2.3. The operator P1 : N1 −→ N∗
1 is an expansive operator and onto.

Proof. Let x(t) ∈ N1. Then x(t) ∈ C1([0, 1]), |x(t)| ≤ D1, |x′(t)| ≤ D1, from here P1(x) ∈
C1([0, 1]) and |P1(x)| ≤ (a1 + ε1)D1,

∣∣∣ ddtP1(x)
∣∣∣ ≤ (a1 + ε1)D1, i.e. P1(x) ∈ N∗

1 and P1 :

N1 −→ N∗
1 .

Let x, y ∈ N1. Then

||P1(x)− P1(y)|| = (a1 + ε1)||x− y||,
consequently P1 : N1 −→ N∗

1 is an expansive operator with a constant h = a1 + ε1 > 1.

Let now y ∈ N∗
1 , y �= 0. Then x = y

a1+ε1
∈ N1 and P1(x) = y, then P1 : N1 −→ N∗

1 is
onto.

Lemma 2.4. The operator K1 : N1 −→ N1 is a continuous operator.

Proof. Let x(t) ∈ N1. Then K1(x) ∈ C1([0, 1]) and

|K1(x)| ≤ ε1|x|+ (1− a1)
|x′(1)|
|α2| + (1− a1)|α1||x(ξ)|+ (1− a1)

∫ t
η

∫ s
0 |h(τ)||f(τ, x(τ), x′(τ)|dτ
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Notes

≤ ε1D1 + (1− a1)
D1
|α2| + (1− a1)|α1|D1 + (1− a1)M1 ≤ D1,

in the last inequality we use the first inequality of (2.1), also∣∣∣ ddtK1(x)
∣∣∣ ≤ ε1|x′(t)|+ (1− a1)|α1||x(ξ)|+ (1− a1)

∫ t
0 |h(τ)||f(τ, x(τ), x′(τ)|dτ

≤ ε1D1 + (1− a1)|α1|D1 + (1− a1)M1 ≤ D1,

in the last inequality we use the second inequality of (2.1). Therefore

K1 : N1 −→ N1.

Since h and f are continuous functions from xn −→n−→∞ x, xn, x ∈ N1, in the sense of the
topology of the set N1 we have K1(xn) −→n−→∞ K1(x) in the sense of the topology of the
set N1, in other words the operator K1 : N1 −→ N1 is a continuous operator.

From Lemma 2.1, Theorem 2.2, Lemma 2.3 and Lemma 2.4 follows that the operator
L1 has a fixed point x1 ∈ N∗

1 which is a solution to the problem (1.1). From (2.3), since f
and h are continuous functions, follows that x1(t) ∈ C2([0, 1]).

2) If we suppose that the bounded solution x1(t) ≡ 0. Then, from (2.2), we have∫ t

η

∫ s

0
h(τ)f(τ, x(τ), x1

′
(τ))dτds = 0 ∀t ∈ [0, 1],

which is a contradiction.
3) If we suppose that the bounded solution x(t) coincides with a constant, then from

the equation of the problem (1.1) we conclude that

h(t)f(t, x1(t), x1
′
(t)) = 0 ∀t ∈ [0, 1],

which is a contradiction.

[1] Zhao, J., F. Geng, J. Zhao, W. Ge. Positive solutions for a new kind Sturm - Liouville
like foour point boundary value problem, Applied Mathematics and Computations,
2010, pp.811-819.

[2] Xiang, T., Rong Yuan. A class of expansive - type Krasnosel’skii fixed point theorems.
Nonlinear Analysis, 71(2009), 3229-3239.
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Global Dynamics of Classical Solutions to
a Model of Mixing Flow

Kun Zhao

AAbstract - We study the long-time dynamics of classical solutions to an initial-boundary value problem for modeling 
equations of a two-component mixture. Time asymptotically, it is shown that classical solutions converge 
exponentially to constant equilibrium states as time goes to infinity for large initial data, due to diffusion and 
boundary effects.
Keywords and phrases : Mixing Flow, Classical Solution, Large-Time Asymptotic Behavior.

I. INTRODUCTION

As one of the core questions in mathematical fluid dynamics, the large-time asymptotic

behavior of solutions to Cauchy problem or initial-boundary value problems for model-

ing equations is of central interest to researchers. Not only is the question physically

important, it is also mathematically challenging. Positive answer to this question will

undoubtedly benefit mathematicians, physicists and engineers. As is well known, the

Navier-Stokes equations (NSE) have been one of the most important modeling systems

in mathematical fluid dynamics for more than one hundred years. The comprehension of

quantitative and qualitative behavior of the NSE plays an important role in understanding

core problems in fluid mechanics, such as the onset of turbulence.

In this paper, we consider the following system of equations:

(MF)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ρU)t + ∇ · (ρU ⊗ U) + ∇P = ∇ · (μ∇U − λρ[(∇U) + (∇U)T] + ∇(λρU)
)
+

∇(∇ · (λρU)
)

+ ρ�f,

ρt + ∇ · (ρU) = λΔρ,

∇ · U = 0,

which describes the motion of an incompressible two-component mixture under the in-

fluence of external forces, with a diffusive mass exchange among the medium particles

of various density accounted for [2]. Here, ρ is the density of the mixture, U = (u, v) is

the mean velocity, the constants μ > 0 and λ > 0 model viscous dissipation and mass

exchange, respectively, and �f stands for external forces. For classical solutions, using the

Author : Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210. E-mail : kzhao@mbi.ohio-state.edu

second and third equations, (MF) can be simplified to
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(1.1)

⎧⎪⎪⎨⎪⎪⎩
ρ(Ut + U · ∇U) + ∇P = λ

(∇ρ · ∇U + U · ∇(∇ρ)
)

+ μΔU + ρ�f,

ρt + U · ∇ρ = λΔρ,

∇ · U = 0.

System (1.1) generalizes the standard density-dependent incompressible Navier-Stokes

equations for non-homogeneous fluid flows:

(NS)

⎧⎪⎪⎨⎪⎪⎩
ρ(Ut + U · ∇U) + ∇P = μΔU + ρ�f,

ρt + U · ∇ρ = 0,

∇ · U = 0,

which are important in applied fields of fluid dynamics such as oceanology and hydrology,

and have been well-studied. We refer the reader to [2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and

references therein for details. It should be pointed out that a characteristic mathematical

feature of (1.1) is its non-diagonality in its main part, which significantly distinguishes

itself from (NS).

In real world, flows often move in bounded domains with constraints from boundaries,

where initial-boundary value problems appear. Solutions to initial-boundary value prob-

lems usually exhibit different behaviors and much richer phenomena comparing with the

Cauchy problem. In this paper, we consider (1.1) on a bounded domain in R2, and the

system is supplemented by the following initial and boundary conditions:

(1.2)

{
(U, ρ)(x, 0) = (U0, ρ0)(x), m ≤ ρ0(x) ≤ M ;

U |∂Ω = 0, ∇ρ · n|∂Ω = 0,

where Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω, n is the unit outward

normal to ∂Ω and m, M are positive constants.

It is well-known that classical solutions to (1.1)–(1.2) exist globally (locally resp.) in

time in 2D (3D resp.) (c.f. [2]). However, to the best of the author’s knowledge, the

large-time asymptotic behavior of the solutions is not well-understood in the literature.

In particular, the dynamics of the higher order modes of the solutions is not known. The

purpose of this paper is to show that, under certain conditions on the external forcing

term �f , the constant equilibrium state (ρ̄,0) is a global attractor of (1.1)–(1.2), for large

initial data. Additionally, it is shown that the total Sobolev norm of the perturbation

(ρ − ρ̄, U − 0) up to the highest oder of derivatives converges exponentially in time due

to the boundary effects. Here, ρ̄ is the spatial average of ρ over Ω, which is a constant

due to the conservation of total mass. The proof requires intensive applications of classi-

cal inequalities (Sobolev, Gagliardo-Nirenberg type) and tremendous amount of accurate

energy estimates.

Throughout this paper, ‖ · ‖Lp , ‖ · ‖L∞ and ‖ · ‖W s,p denote the norms of the usual

Lebesgue measurable function spaces Lp (1 ≤ p < ∞), L∞ and the usual Sobolev space

Global Dynamics of Classical Solutions to a Model of Mixing Flow

W s,p, respectively. For p = 2, we denote the norm ‖ · ‖L2 by ‖ · ‖ and ‖ · ‖W s,2 by ‖ · ‖Hs .

For simplicity, we will use the following notation: ‖(f1, f2, ..., fm)‖X ≡ ∑m
i=1 ‖fi‖X . The
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function spaces under consideration are C([0, T ]; H3(Ω)) and L2([0, T ]; H4(Ω)), equipped

with norms sup0≤t≤T ‖Ψ(·, t)‖H3 and
( ∫ T

0
‖Ψ(·, t)‖2

H4dt
)1/2

, respectively. Unless specified,

ci will denote generic constants which are independent of ρ, U and t, but may depend on

Ω, λ, μ, M, m, ρ0 and U0.

Our main results are summarized in the following theorem.

Theorem 1.1. Let Ω ⊂ R2 be a bounded domain with smooth boundary and suppose

that the constant μ1 = 2μ − λ(M − m) > 0. Suppose that the external force �f is

a potential flow, i.e., �f = ∇φ for some scalar function φ : Ω × [0,∞) → R. Fur-

thermore, suppose that there exists a constant F1 > 0 independent of t ≥ 0 such that

‖�f‖2
C([0,t];H1(Ω)) + ‖�f‖2

L2([0,t];H2(Ω)) + ‖�ft‖2
C([0,t];L2(Ω)) ≤ F1 for any t ≥ 0. If the initial

data (ρ0(x), U0(x)) ∈ H3(Ω) are compatible with the boundary conditions, then there

exists a unique solution (ρ, U) to (1.1)–(1.2) globally in time such that (ρ, U)(x, t) ∈
C([0, T ); H3(Ω)) ∩ L2([0, T ); H4(Ω)) for any T ≥ 0. Moreover, there exist positive con-

stants α, β and γ independent of t such that the solution satisfies

‖(ρ − ρ̄, U)(·, t)‖2
H3 ≤αe−βt, and

∫ t

0

‖(ρ − ρ̄, U)(·, τ)‖2
H4dτ ≤ γ, ∀ t ≥ 0;

m ≤ ρ(x, t) ≤ M, ∀ t ≥ 0, x ∈ Ω,

where m and M are given in (1.2).

Remark 1.1. The external forcing term �f includes important applications such as �f =

e2 = (0, 1)T, which stands for the effect of gravitational force. Physically speaking, the re-

sults indicate that, when the viscous dissipation dominates the mass exchange rate, as time

goes on, the velocity of the flow will slow down and the mixture tends to be homogeneous.

Remark 1.2. The condition on the diffusion coefficients and the upper-lower bounds of the

density can be roughly understood by looking at the stress tensor in the momentum equation

in (MF), where competition between viscous dissipation and mass exchange occurs.

Remark 1.3. One can generalize the results by manipulating on various boundary con-

ditions for ρ and U . For example, one can work on the Dirichlet boundary condition

ρ|∂Ω = ρ̃, for some constant m ≤ ρ̃ ≤ M . In this case, the lower and upper bounds of ρ

are direct consequences of maximum principle for parabolic equations, and the equilibrium

state of ρ is ρ̃. On the other hand, the results may also be generalized to the Navier type

slip boundary condition U · n|∂Ω = 0, ω|∂Ω = 0, where ω is the 2D vorticity. Since the

underlying analysis is in the similar fashion, we shall not go through the details in this

paper.

The main difficulties of the proof of Theorem 1.1 come from the estimation of the higher

order derivatives of the solution, due to the coupling between the velocity and density

equations by convection, diffusion, external force and boundary effects. With the density

function and the additional nonlinear terms ∇ρ · ∇U and U · ∇(∇ρ) standing in the

velocity equation, the decay of the higher order derivatives of U is an substantial barrier

to overcome. Great efforts have been made to simplify the proof. Current proof involves
intensive applications of fundamental inequalities, together with exhaustive combinations

Global Dynamics of Classical Solutions to a Model of Mixing Flow
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of energy inequalities. The results on Stokes equation by Temam [17], see lemma 2.1, are

important in our energy framework. Roughly speaking, because of the lack of the spatial

derivatives of the solution at the boundary, our energy framework proceeds as follows:

We first apply the standard energy estimate on the solution and the temporal derivatives

of the solution. We then apply Temam’s results on Stokes equation to recover the spatial

derivatives. Such a process will be repeated up to the third order, and then the carefully

coupled estimates will be composed into a desired one leading to global regularity and

exponential decay of the solution. The condition �f = ∇φ is crucial in our analysis due

to the fact that, by combining ρ̄∇φ with ∇P , the density perturbation on the right hand

side of the velocity equation will be dominated by the diffusion in the density equation,

by virtue of Poincaré inequality. This enables us to combine various energy estimates

which eventually lead to the exponential decay of the solution. The result suggests that

the diffusions are strong enough to compensate the effects of external force and nonlinear

convection in order to prevent the development of singularity of the system and to force

the solution to converge to the equilibrium state.

The rest of this paper is organized as follows. In Section 2, we give some basic facts

that will be used in this paper. We then prove Theorem 1.1 in Section 3.

In this section, we will list several facts which will be used in the proof of Theorem 1.1.

First we recall some useful results from [17].

II. PRELIMINARIES

Lemma 2.1. Let Ω be any open bounded domain in R2 with smooth boundary ∂Ω. Con-

sider the Stokes problem ⎧⎪⎪⎨⎪⎪⎩
− μΔU + ∇P = F in Ω,

∇ · U = 0 in Ω,

U = 0 on ∂Ω.

If F ∈ Wm,p, then U ∈ Wm+2,p, P ∈ Wm+1,p and there exists a constant c1 = c1(μ, m, p, Ω)

such that
‖U‖2

W m+2,p + ‖P‖2
W m+1,p ≤ c1‖F‖2

W m,p

for any p ∈ (1,∞) and the integer m ≥ −1.

The next lemma will be used in the estimation of higher order spatial derivatives of ρ

(c.f. [3]).

Lemma 2.2. Let Ω ⊂ R2 be any open bounded domain with smooth boundary ∂Ω, and let

G ∈ W s,p(Ω) be a vector-valued function satisfying ∇× G = 0 and G · n|∂Ω = 0, where n

is the unit outward normal to ∂Ω. Then there exists a constant c2 = c2(s, p, Ω) such that

‖G‖2
W s,p ≤ c2(‖∇ · G‖2

W s−1,p + ‖G‖2
Lp)

for any s ≥ 1 and p ∈ (1,∞).

As a consequence of Poincaré inequality and Lemma 2.2 we have

Lemma 2.3. Let Ω ⊂ R2 be any open bounded domain with smooth boundary ∂Ω. For

any function Hs(Ω) � f : Ω → R satisfying ∇f · n|∂Ω = 0, let f̄ = 1
|Ω|

∫
Ω

fdx, where the

[17]
R

.
T
em

am
,
N

avier-Stokes
E
quations.

N
orth

H
olland,

1977.
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integer s ≥ 2. Then there exists a constant c3 = c3(Ω, s) such that

‖f − f̄‖2
Hs ≤ c3‖Δf‖2

Hs−2 .

We also need the following Sobolev and Ladyzhenskaya type inequalities which are

well-known and standard (c.f. [1, 4, 16]).

Lemma 2.4. Let Ω ⊂ R2 be any open bounded domain with smooth boundary ∂Ω. Then

the following embeddings and inequalities hold:

(i) ‖f‖2
Lp ≤ c4‖f‖2

H1 , ∀ 1 < p < ∞;

(ii) ‖f‖2
L∞ ≤ c5‖f‖2

W 1,p , ∀ 2 < p < ∞;

(iii) ‖f‖2
L4 ≤ c6‖f‖‖∇f‖, ∀ f ∈ H1

0 (Ω);

(iv) ‖f‖2
L4 ≤ c7

(‖f‖‖∇f‖ + ‖f‖2
)
, ∀ f ∈ H1(Ω),

for some constants ci = ci(p, Ω), i = 4, ..., 7.

III. LARGE-TIME BEHAVIOR

a) Reformulation

In this section we prove Theorem 1.1. Since the global existence has been established

in [2], we only show the large-time behavior of the solution. The proof is based on several

steps of careful energy estimates which are stated as a sequence of lemmas. First of all,

the L∞ estimate of ρ is a direct consequence of the maximum principle:

Lemma 3.1. Under the assumptions of Theorem 1.1, it holds that

m ≤ ρ(x, t) ≤ M, ∀ t ≥ 0, x ∈ Ω.

In order to perform the asymptotic analysis, we first reformulate the original problem

(1.1)–(1.2) to get a new one for the perturbation (ρ − ρ̄, U). Letting θ = ρ − ρ̄ and

Q = P − ρ̄φ we have

(3.1)

⎧⎪⎪⎨⎪⎪⎩
ρ(Ut + U · ∇U) + ∇Q = λ

(∇θ · ∇U + U · ∇(∇θ)
)

+ μΔU + �fθ,

θt + U · ∇θ = λΔθ,

∇ · U = 0.

The initial and boundary conditions turn out to be

(3.2)

{
(U, θ)(x, 0) = (U0, θ0)(x) ≡ (U0, ρ0 − ρ̄)(x);

U |∂Ω = 0, ∇θ · n|∂Ω = 0.

Lemma 3.2. Under the assumptions of Theorem 1.1, there exist positive constants α1, β1

and γ1 independent of t such that for any t ≥ 0 it holds that

‖(U, θ)(·, t)‖2 ≤ α1e
−β1t, and

∫ t

0

‖(U, θ)(·, τ)‖2
H1dτ ≤ γ1.

b) Decay of ‖(U, θ)‖

[2
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Proof. The lemma is proved through careful exploration of the structure of the system.

First of all, by taking L2 inner product of (3.1)1 with U we have∫
Ω

ρ

( |U |2
2

)
t

dx +

∫
Ω

ρU · ∇
( |U |2

2

)
dx + μ

∫
Ω

|∇U |2dx

=λ

∫
Ω

∇θ · ∇
( |U |2

2

)
dx + λ

∫
Ω

(
U · ∇(∇θ)

) · Udx +

∫
Ω

θ �f · Udx.

After integration by parts and using the incompressibility condition we have

1

2

d

dt

∫
Ω

ρ|U |2dx − 1

2

∫
Ω

θt|U |2dx − 1

2

∫
Ω

∇ · (θU)|U |2dx + μ

∫
Ω

|∇U |2dx

= − λ

2

∫
Ω

Δθ|U |2dx + λ

∫
Ω

(
U · ∇(∇θ)

) · Udx +

∫
Ω

θ �f · Udx.

Using (3.1)2 we simplify the above equation as

(3.3)
1

2

d

dt

∫
Ω

ρ|U |2dx + μ

∫
Ω

|∇U |2dx = λ

∫
Ω

[
U · ∇(∇θ)

] · Udx +

∫
Ω

θ �f · Udx.

For the first term on the RHS of (3.3), by direct calculations we have

(3.4)
[
U · ∇(∇θ)

] · U = ∇ · [U(U · ∇θ) − (θU · ∇U)
]
+ θ(u2

x + 2uyvx + v2
y).

Therefore, integrating (3.4) over Ω using the boundary condition we get

(3.5)

∫
Ω

[
U · ∇(∇θ)

] · Udx =

∫
Ω

θ(u2
x + 2uyvx + v2

y)dx.

Using (3.5) we update (3.3) as

(3.6)
1

2

d

dt
‖√ρU‖2 + μ‖∇U‖2 = λ

∫
Ω

θ(u2
x + 2uyvx + v2

y)dx +

∫
Ω

θ �f · Udx.

Since ∇ · U = 0, we have

u2
x + 2uyvx + v2

y = ∇ · (U · ∇U) − U · ∇(∇ · U) = ∇ · (U · ∇U),

which implies that ∫
Ω

(u2
x + 2uyvx + v2

y)dx = 0.

Since ρ̄ is a constant, it follows from (3.6) and the above identity that

(3.7)
1

2

d

dt
‖√ρU‖2 + μ‖∇U‖2 = λ

∫
Ω

(
ρ − M + m

2

)
(u2

x + 2uyvx + v2
y)dx +

∫
Ω

θ �f · Udx.

∣∣∣∣λ ∫
Ω

(
ρ − M + m

2

)
(u2

x + 2uyvx + v2
y)dx +

∫
Ω

θ �f · Udx

∣∣∣∣
≤λ

M − m

2
‖∇U‖2 +

∫
Ω

|θ �f · U |dx.

Using Lemma 3.1 we estimate the RHS of (3.7) as follows:

Global Dynamics of Classical Solutions to a Model of Mixing Flow
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We remark that the coefficient of ‖∇U‖2 on the RHS of the above estimate is optimal.

So we update (3.7) as

(3.8)
d

dt
‖√ρU‖2 + μ1‖∇U‖2 ≤ 2

∫
Ω

|θ �f · U |dx,

where μ1 = 2μ − λ(M − m) > 0. Using Cauchy-Schwarz and Poincaré inequalities we

estimate the RHS of (3.8) as:

(3.9)

2

∫
Ω

|θ �f · U |dx ≤ μ1

2c0

‖U‖2 +
2c0

μ1

‖�fθ‖2

≤ μ1

2
‖∇U‖2 +

2c0

μ1

‖�fθ‖2.

Since ‖�f‖2
C([0,t];H1(Ω)) ≤ F1, by Lemma 2.4 (i) we have

(3.10)

c0

2μ1

‖�fθ‖2 ≤ c0

2μ1

‖�f‖2
L4‖θ‖2

L4

≤ c0c
2
4

2μ1

‖�f‖2
H1‖θ‖2

H1

≤ c0c
2
4F1

2μ1

(1 + c0)‖∇θ‖2.

Let c8 = c0c
2
4F1(1 + c0)/(2μ1). Combining (3.8)–(3.10) we have

(3.11)
d

dt
‖√ρU‖2 +

μ1

2
‖∇U‖2 ≤ c8‖∇θ‖2.

The RHS of (3.11) will be compensated by the diffusion in the temperature equation.

Taking L2 inner product of (3.1)2 with θ we have

(3.12)
d

dt
‖θ‖2 + 2λ‖∇θ‖2 = 0.

Then the operation (3.12) × c8/λ + (3.11) yields

(3.13)
d

dt

(
c8

λ
‖θ‖2 + ‖√ρU‖2

)
+ c8‖∇θ‖2 +

μ1

2
‖∇U‖2 ≤ 0.

Since ρ ≤ M , we have

‖√ρU‖2 ≤ M‖U‖2 ≤ c0M‖∇U‖2.

It follows from (3.13) that

(3.14)
d

dt

(
c8

λ
‖θ‖2 + ‖√ρU‖2

)
+ β1

(
c8

λ
‖θ‖2 + ‖√ρU‖2

)
≤ 0,

where

Solving the differential inequality (3.14) we have

(3.16)

(
c8

λ
‖θ‖2 + ‖√ρU‖2

)
≤
(

c8

λ
‖θ0‖2 + ‖√ρ0U0‖2

)
e−β1t.

(3.15)β1 = min

{
λ

c0

,
μ1

2c0M

}
.

Global Dynamics of Classical Solutions to a Model of Mixing Flow
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c) Decay of

Since ρ ≥ m, we get from (3.16) that

(3.17)‖(U, θ)(·, t)‖2 ≤ α1e
−β1t, ∀ t ≥ 0,

where

(3.18)α1 =

(
min

{
c8

λ
, m

})−1(
c8

λ
‖θ0‖2 + ‖√ρ0U0‖2

)
.

Next, upon integrating (3.13) in time and dropping the positive term from the LHS we

have ∫ t

0

c8‖∇θ(·, τ)‖2 +
μ1

2
‖∇U(·, τ)‖2dτ ≤ c8

λ
‖θ0‖2 + ‖√ρ0U0‖2, ∀ t ≥ 0,

which, together with (3.17), yields

(3.19)

∫ t

0

‖(U, θ)(·, τ)‖2
H1dτ ≤ γ1, ∀ t ≥ 0,

where

(3.20)γ1 =
α1

β1

+

(
c8

λ
‖θ0‖2 + ‖√ρ0U0‖2

)(
min{c8, μ1/2})−1

.

This completes the proof.

Remark 3.1. The idea of the above proof will be appplied to prove the exponential decay

of higher order derivatives of the solution. From (3.15) we see clearly that, the decay rate

β1 tends to zero, as either λ or μ1 = 2μ−λ(M −m) tends to zero. Furthermore, by (3.18)

we have α1 → ∞, as λ → 0 or μ1 → 0. Therefore, as the value of λ either decreases or

approaches the threshold value 2μ
M−m

, the decay of the solution will slow down. By direct

calculation we know that the decay rate reaches its maximum when λ = 2μ
3M−m

.

Remark 3.2. In what follows, since tremendous amount of combinations of energy es-

timates will be involved when we deal with the decay of higher order derivatives of the

solution, the expressions of the constants appearing in the proofs will become lengthy and

hard to read. Therefore, to simplify the presentation, we shall not specify ci, αi, βi, γi in

terms of the other time-independent constants.

‖θ‖H1

Lemma 3.3. Under the assumptions of Theorem 1.1, there exist positive constants α2, β2

and γ2 independent of t such that for any t ≥ 0 it holds that

‖∇θ(·, t)‖2 ≤ α2e
−β2t, and

∫ t

0

‖Δθ(·, τ)‖2 + ‖θt(·, τ)‖2dτ ≤ γ2.

(3.21)
1

2

d

dt
‖∇θ‖2 + λ‖Δθ‖2 =

∫
Ω

(U · ∇θ)Δθ dx.

Using Cauchy-Schwarz and Hölder inequalities we estimate the RHS of (3.21) as∣∣∣∣ ∫
Ω

(U · ∇θ)Δθdx

∣∣∣∣ ≤ 1

λ
‖U · ∇θ‖2 +

λ

4
‖Δθ‖2

≤ 1

λ
‖U‖2

L4‖∇θ‖2
L4 +

λ

4
‖Δθ‖2.

Proof. Taking L2 inner product of (3.1)2 with Δθ we have

Global Dynamics of Classical Solutions to a Model of Mixing Flow
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So we update (3.21) as

(3.22)
1

2

d

dt
‖∇θ‖2 +

3

4
λ‖Δθ‖2 ≤ 1

λ
‖U‖2

L4‖∇θ‖2
L4 .

Applying Lemma 2.4 (iii) to the RHS of (3.22) we have

(3.23)
1

λ
‖U‖2

L4‖∇θ‖2
L4 ≤ c9‖U‖‖∇U‖‖∇θ‖‖D2θ‖ + c9‖U‖‖∇U‖‖∇θ‖2.

For the first term on the RHS of (3.23), using Lemma 2.3 for ‖D2θ‖2 and Lemma 3.2 for

‖U‖2 we have

(3.24)

c9‖U‖‖∇U‖‖∇θ‖‖D2θ‖ ≤ c10‖∇U‖‖∇θ‖‖Δθ‖

≤ c11‖∇U‖2‖∇θ‖2 +
λ

4
‖Δθ‖2.

Applying Poincaré inequality to the second term on the RHS of (3.23) we have

(3.25)c9‖U‖‖∇U‖‖∇θ‖2 ≤ c12‖∇U‖2‖∇θ‖2.

Combining (3.23)–(3.25) we have

(3.26)
1

λ
‖U‖2

L4‖∇θ‖2
L4 ≤ c13‖∇U‖2‖∇θ‖2 +

λ

4
‖Δθ‖2.

Plugging (3.26) into (3.22) we have

(3.27)
1

2

d

dt
‖∇θ‖2 +

λ

2
‖Δθ‖2 ≤ c13‖∇U‖2‖∇θ‖2.

Gronwall inequality and Lemma 3.2 then yield (by dropping λ
2
‖Δθ‖2)

(3.28)‖∇θ(·, t)‖2 ≤ exp

{
2c13

∫ t

0

‖∇U‖2dτ

}
‖∇θ0‖2 ≤ e2c13γ1‖∇θ0‖2 ≡ c14.

Plugging (3.28) into (3.27) we have

(3.29)
1

2

d

dt
‖∇θ‖2 +

λ

2
‖Δθ‖2 ≤ c15‖∇U‖2.

To deal with the RHS of (3.29), we consider the estimate (3.13). The combination

(3.13) × 4c15
μ1

+ (3.29) gives

(3.30)
d

dt

(
E1(t)

)
+

4c8c15

μ1

‖∇θ‖2 + c15‖∇U‖2 +
λ

2
‖Δθ‖2 ≤ 0,

where

(3.31)E1(t) =
4c15

μ1

(
c8

λ
‖θ‖2 + ‖√ρU‖2

)
+

1

2
‖∇θ‖2.

Using Poincaré inequality one easily checks that there exists a constant β2 > 0 independent

of t such that

(3.32)β2E1(t) ≤
(

4c8c15

μ1

‖∇θ‖2 + c15‖∇U‖2

)
,

Using (3.32) we update (3.30) as

(3.33)
d

dt

(
E1(t)

)
+ β2E1(t) +

λ

2
‖Δθ‖2 ≤ 0,

Global Dynamics of Classical Solutions to a Model of Mixing Flow
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which implies that

(3.34)E1(t) ≤ e−β2tE1(0), and
λ

2

∫ t

0

‖Δθ(·, τ)‖2dτ ≤ E1(0), ∀ t ≥ 0.

By (3.31) and (3.34) we see that

(3.35)‖∇θ(·, t)‖2 ≤ α2e
−β2t, and

∫ t

0

‖Δθ(·, τ)‖2dτ ≤ 2E1(0)/λ, ∀ t ≥ 0,

where α2 = 2E1(0).

To estimate θt, we consider (3.1)2. Using (3.26) and (3.35) we have

(3.36)

‖θt‖2 ≤ 2‖U · ∇θ‖2 + 2‖λΔθ‖2

≤ 2‖U‖2
L4‖∇θ‖2

L4 + 2λ2‖Δθ‖2

≤ c16

(‖Δθ‖2 + ‖∇U‖2‖∇θ‖2
)

+ 2λ2‖Δθ‖2

≤ c17

(‖Δθ‖2 + ‖∇U‖2
)
.

Integrating (3.36) in time over [0, t] and using Lemma 3.2 and (3.35) we have

(3.37)

∫ t

0

‖θt(·, τ)‖2dτ ≤ c18, ∀ t ≥ 0.

We conclude the proof by combining (3.35) and (3.37).

d) Estimate of kUkH2
Now we turn to higher order estimates of the solution. The next lemma gives the control

of ‖U‖H2 by ‖∇U‖, ‖Ut‖ and estimates of θ. The proof involves intensive applications of

Sobolev and Ladyzhenskaya type inequalities.

Lemma 3.4. Under the assumptions of Theorem 1.1, for any positive numbers ε and δ,

there exists a constant d(ε, δ) independent of t and dependent on ε and δ such that

‖U‖2
H2 ≤ δ‖∇θt‖2 + ε‖U‖2

H2 + d(ε, δ)
(‖∇U‖2‖θ‖2

H2 + ‖∇U‖4 + ‖Ut‖2 + ‖θ‖2
H1

)
.

Proof. We rewrite the velocity equation (3.1)1 as the 2D Stokes equation:

−μΔU + ∇P = �F ,

where

�F = −ρUt − ρU · ∇U + λ∇θ · ∇U + λU · ∇(∇θ) + �fθ ≡
5∑

i=1

Fi.

Since U |∂Ω = 0, it follows from Lemma 2.1 that

(3.38)‖U‖2
H2 ≤ 16c1

5∑
i=1

‖Fi‖2.

Now we estimate the summand on the RHS of (3.38) as follows: Using Lemma 3.1 we

have

(3.39)‖F1‖2 = ‖ρUt‖2 ≤ M2‖Ut‖2.

Global Dynamics of Classical Solutions to a Model of Mixing Flow
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Using Lemma 2.4 (iii), Lemma 3.1 and Lemma 3.3, we have, for any ε > 0:

(3.40)

‖F2‖2 = ‖ρU · ∇U‖2

≤ M2‖U‖2
L4‖∇U‖2

L4

≤ c19‖U‖‖∇U‖(‖∇U‖‖D2U‖ + ‖∇U‖2
)

≤ c20‖∇U‖2‖U‖H2

≤ c21

ε
‖∇U‖4 +

ε

48c1

‖U‖2
H2 .

For F3, it follows from Lemma 3.3 that

(3.41)

‖F3‖2 = λ2‖∇θ · ∇U‖2

≤ c22

(‖∇θ‖‖D2θ‖ + ‖∇θ‖2
)(‖∇U‖‖D2U‖ + ‖∇U‖2

)
≤ c23

(‖D2θ‖ + ‖∇θ‖)(‖D2U‖ + ‖∇U‖)‖∇U‖
≤ c24

ε
‖θ‖2

H2‖∇U‖2 +
ε

48c1

‖U‖2
H2 .

For the estimate of F4, by Lemma 2.3 and Lemma 2.4 we have

(3.42)
‖F4‖2 = λ2‖U · ∇(∇θ)‖2

≤ c25‖U‖‖∇U‖‖D2θ‖(‖D3θ‖ + ‖D2θ‖).
To estimate ‖D3θ‖, by Lemma 2.2 we have

(3.43)

‖D3θ‖ ≤ √
c3‖Δθ‖H1

≤ c26

(‖∇θt‖ + ‖∇(U · ∇θ)‖ + ‖Δθ‖)
≤ c27

(‖∇θt‖ + ‖∇U · (∇θ)T‖ + ‖U · ∇(∇θ)‖ + ‖Δθ‖).
Plugging (3.43) into (3.42) we have

(3.44)
λ2‖U · ∇(∇θ)‖2

≤c28‖U‖‖∇U‖‖D2θ‖(‖∇θt‖ + ‖∇U · (∇θ)T‖ + ‖U · ∇(∇θ)‖ + ‖θ‖H2

)
.

Using Lemma 3.2 and Poincaré inequality we estimate the RHS of (3.44) as follows:

c28‖U‖‖∇U‖‖D2θ‖(‖∇θt‖ + ‖∇U · (∇θ)T‖ + ‖U · ∇(∇θ)‖ + ‖θ‖H2

)
≤c29‖∇U‖‖θ‖H2

(‖∇θt‖ + ‖∇U · (∇θ)T‖ + ‖U · ∇(∇θ)‖) + c30‖∇U‖2‖θ‖2
H2

≤ δ

32c1

‖∇θt‖2 +
λ2

2
‖U · ∇(∇θ)‖2 +

c31(δ)

2δ
‖∇U‖2‖θ‖2

H2 +
1

2
‖∇U · (∇θ)T‖2.

Combining the preceding estimate with (3.44) we have

(3.45)‖F4‖2 ≤ δ

16c1

‖∇θt‖2 +
c31(δ)

δ
‖∇U‖2‖θ‖2

H2 + ‖∇U · (∇θ)T‖2.

In a similar fashion as deriving (3.41) we have

‖∇U · (∇θ)T‖2 ≤ c32

ε
‖∇U‖2‖θ‖2

H2 +
ε

48c1

‖U‖2
H2 ,
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which, together with (3.45), yields

(3.46)‖F4‖2 ≤ δ

16c1

‖∇θt‖2 +
ε

48c1

‖U‖2
H2 +

(
c31(δ)

δ
+

c32

ε

)
‖∇U‖2‖θ‖2

H2 .

Finally, using Lemma 2.4 (i) and the condition on �f we have

(3.47)‖F5‖2 = ‖�fθ‖2 ≤ ‖�f‖2
L4‖θ‖2

L4 ≤ c2
4F1‖θ‖2

H1 .

Collecting (3.39)–(3.41) and (3.46)–(3.47) and using (3.38) we complete the proof.

‖U‖H1

With the help of Lemma 3.4 we show the decay of ‖∇U‖ and ‖θt‖.

Lemma 3.5. Under the assumptions of Theorem 1.1, there exist positive constants α3, β3

and γ3 independent of t such that for any t ≥ 0 it holds that

‖(∇U, θt)(·, t)‖2 ≤ α3e
−β3t, and

∫ t

0

‖(∇θt, Ut)(·, τ)‖2dτ ≤ γ3.

Proof. Taking L2 inner product of (3.1)1 with Ut we have

(3.48)

μ

2

d

dt
‖∇U‖2 +

∫
Ω

ρ|Ut|2dx = −
∫

Ω

ρ(U · ∇U)Utdx+

λ

∫
Ω

[∇θ · ∇U + U · ∇(∇θ)
]
Utdx +

∫
Ω

θ �f · Utdx.

We estimate the RHS of (3.48) as follows: By Cauchy-Schwarz inequality we have

(3.49)

∣∣∣∣ − ∫
Ω

ρ(U · ∇U)Utdx + λ

∫
Ω

[∇θ · ∇U + U · ∇(∇θ)
]
Utdx +

∫
Ω

θ �f · Utdx

∣∣∣∣
≤m

8
‖Ut‖2 +

2

m

∥∥(ρU · ∇U + λ∇θ · ∇U + λU · ∇(∇θ) + �fθ
)∥∥2

.

e) Decay of

For the second term on the RHS of (3.49), it follows from the proof of Lemma 3.4 that

2

m

∥∥(ρU · ∇U + λ∇θ · ∇U + λU · ∇(∇θ) + �fθ
)∥∥2

≤λ

8
‖∇θt‖2 + ε1‖U‖2

H2 + c33(ε1)
(‖∇U‖2‖θ‖2

H2 + ‖∇U‖4 + ‖θ‖2
H1

)
,

(3.50)

μ

2

d

dt
‖∇U‖2 +

∫
Ω

ρ|Ut|2dx ≤m

8
‖Ut‖2 +

λ

8
‖∇θt‖2 + ε1‖U‖2

H2

+ c33(ε1)
(‖∇U‖2‖θ‖2

H2 + ‖∇U‖4 + ‖θ‖2
H1

)
.

Letting ε = 1/2 and δ = 1 in Lemma 3.4 we have

(3.51)‖U‖2
H2 ≤ c34

(‖∇U‖2‖θ‖2
H2 + ‖∇U‖4 + ‖Ut‖2 + ‖θ‖2

H1 + ‖∇θt‖2
)
.

where ε1 > 0 is a constant to be determined. So we update (3.48) as

Global Dynamics of Classical Solutions to a Model of Mixing Flow
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Plugging (3.51) into (3.50) we have

μ

2

d

dt
‖∇U‖2 +

∫
Ω

ρ|Ut|2dx ≤m

8
‖Ut‖2 +

λ

8
‖∇θt‖2 + ε1c34

(‖Ut‖2 + ‖∇θt‖2
)

+
(
c33(ε1) + c34

)(‖∇U‖2‖θ‖2
H2 + ‖∇U‖4 + ‖θ‖2

H1

)
.

Choosing ε1 = min{m/(8c34), λ/(8c34)} and using the fact that ρ ≥ m we have

(3.52)
μ

2

d

dt
‖∇U‖2 +

3m

4
‖Ut‖2 ≤ λ

4
‖∇θt‖2 + c35

(‖∇U‖2‖θ‖2
H2 + ‖∇U‖4 + ‖θ‖2

H1

)
.

Next, by taking the temporal derivative of (3.1)2 we have

(3.53)θtt + Ut · ∇θ + U · ∇θt = λΔθt.

Taking L2 inner product of (3.53) with θt we have

(3.54)
1

2

d

dt
‖θt‖2 + λ‖∇θt‖2 = −

∫
Ω

(Ut · ∇θ)θtdx.

Using Cauchy-Schwarz inequality we have

(3.55)

∣∣∣∣ − ∫
Ω

(Ut · ∇θ)θtdx

∣∣∣∣ ≤ m

4
‖Ut‖2 +

1

m
‖(∇θ)θt‖2

≤ m

4
‖Ut‖2 +

1

m
‖∇θ‖2

L4‖θt‖2
L4 .

For the RHS of (3.55), by Lemma 2.4 (iii) and Lemma 3.3 we have

(3.56)

1

m
‖∇θ‖2

L4‖θt‖2
L4 ≤ c36(‖∇θ‖‖D2θ‖ + ‖∇θ‖2)(‖θt‖‖∇θt‖ + ‖θt‖2)

≤ c37

(‖D2θ‖ + ‖∇θ‖)‖θt‖‖∇θt‖ + c36‖θ‖2
H2‖θt‖2

≤ λ

4
‖∇θt‖2 + c38‖θ‖2

H2‖θt‖2.

Combining (3.54)–(3.56) we have

(3.57)
1

2

d

dt
‖θt‖2 +

3λ

4
‖∇θt‖2 ≤ m

4
‖Ut‖2 + +c38‖θ‖2

H2‖θt‖2.

Coupling (3.52) and (3.57) we have

d

dt

(
μ‖∇U‖2 + ‖θt‖2

)
+ m‖Ut‖2 + λ‖∇θt‖2

(3.58)≤ c39

(‖∇U‖2‖θ‖2
H2 + ‖∇U‖4 + ‖θ‖2

H1 + ‖θ‖2
H2‖θt‖2

)
≤ c40

(‖θ‖2
H2 + ‖∇U‖2

)(
μ‖∇U‖2 + ‖θt‖2

)
+ c39‖θ‖2

H1 .

Applying Gronwall inequality to (3.58) and using Lemma 3.2 and Lemma 3.3 we have

(3.59)μ‖∇U‖2 + ‖θt‖2 ≤ c41, and

∫ t

0

m‖Ut‖2 + λ‖∇θt‖2dτ ≤ c42.

Plugging the first part of (3.59) into (3.58) we have

(3.60)
d

dt

(
μ‖∇U‖2 + ‖θt‖2

)
+ m‖Ut‖2 + λ‖∇θt‖2 ≤ c43

(‖θ‖2
H2 + ‖∇U‖2

)
.
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To show the exponential decay of ‖∇U‖ and ‖θt‖, we consider the estimate (3.30). By

absorbing the RHS of (3.60) into the LHS of (3.30) we have

(3.61)
d

dt

(
E2(t)

)
+ c44D2(t) ≤ 0,

for some constant c44 > 0 independent of t, where, by virtue of Poincaré inequality,

E2(t) ∼= ‖(U, θ)(·, t)‖2
H1 + ‖θt(·, t)‖2,

D2(t) ∼= ‖(U, θt)(·, t)‖2
H1 + ‖θ(·, t)‖2

H2 + ‖Ut(·, t)‖2.

Here ∼= denotes the equivalence of quantities. Then the lemma follows immediately from

(3.61) and (3.59). This completes the proof.

‖θ‖H2

Lemma 3.6. Under the assumptions of Theorem 1.1, there exist constants α4, β4, γ4 > 0

independent of t such that for any t ≥ 0 it holds that

‖θ(·, t)‖2
H2 ≤ α4e

−β4t, and

∫ t

0

‖U(·, τ)‖2
H2dτ ≤ γ4.

Proof. We note that, by Lemma 2.3, Lemma 2.4 and Lemma 3.5 it holds that

‖θ‖2
H2 ≤ c3‖Δθ‖2 ≤ c45

(‖θt‖2 + ‖U · ∇θ‖2
)

≤ c46

(‖θt‖2 + ‖U‖2
H1(‖∇θ‖‖θ‖H2 + ‖∇θ‖2)

)
≤ c47

(‖θt‖2 + ‖∇θ‖2
)

+
1

2
‖θ‖2

H2 ,

which implies that

(3.62)‖θ‖2
H2 ≤ c48

(‖θt‖2 + ‖∇θ‖2
)
.

Then the exponential decay of ‖θ‖2
H2 follows from Lemma 3.3 and Lemma 3.5.

Next, by (3.51) and Lemma 3.5 we have

(3.63)
‖U‖2

H2 ≤ c34

(‖∇U‖2‖θ‖2
H2 + ‖∇U‖4 + ‖Ut‖2 + ‖θ‖2

H1 + ‖∇θt‖2
)

≤ c49

(‖θ‖2
H2 + ‖∇U‖2 + ‖Ut‖2 + ‖∇θt‖2

)
,

which, together with Lemmas 3.2, 3.3 and 3.5, implies that∫ t

0

‖U(·, τ)‖2
H2dτ ≤ c50.

This completes the proof.

f) Decay of

g) Decay of and‖θ‖H3 ‖U‖H2

Lemma 3.7. Under the assumptions of Theorem 1.1, there exist positive constants α5, β5

and γ5 independent of t such that for any t ≥ 0 it holds that

‖U(·, t)‖2
H2 + ‖(∇θt, Ut)(·, t)‖2 ≤ α5e

−β5t, and

∫ t

0

‖(∇Ut, Δθt)(·, τ)‖2
H2dτ ≤ γ5.

Proof. Taking the temporal derivative of (3.1)1 we have

(3.64)θt(Ut + U · ∇U) + ρ(Utt + Ut · ∇U + U · ∇Ut) + ∇Pt

Global Dynamics of Classical Solutions to a Model of Mixing Flow
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=μΔUt + λ
(∇θt · ∇U + ∇θ · ∇Ut + Ut · ∇(∇θ) + U · ∇(∇θt)

)
+ �fθt + �ftθ.

Taking L2 inner product of (3.64) with Ut, after integration by parts, we have

1

2

d

dt
‖√ρUt‖2 + μ‖∇Ut‖2 +

1

2

∫
Ω

(θt − U · ∇θ)|Ut|2dx =
7∑

i=1

Ri + λ

∫
Ω

(∇θ · ∇Ut) · Utdx,

where

R1 = −
∫

Ω

(θtU · ∇U) · Utdx, R2 = −
∫

Ω

(ρUt · ∇U) · Utdx;

R3 = λ

∫
Ω

(∇θt · ∇U) · Utdx, R4 = λ

∫
Ω

(Ut · ∇(∇θ)) · Utdx,

R5 = −λ

∫
Ω

∇θt · (U · ∇Ut)dx;

R6 = λ

∫
Ω

θt
�f · Utdx, R7 = λ

∫
Ω

θ �ft · Utdx.

Using the boundary condition we have

λ

∫
Ω

(∇θ · ∇Ut) · Utdx = −λ

2

∫
Ω

Δθ|Ut|2dx.

Moreover, since θt = λΔθ − U · ∇θ, we have

(3.65)
1

2

d

dt
‖√ρUt‖2 + μ‖∇Ut‖2 =

9∑
i=1

Ri,

where

R8 =

∫
Ω

(U · ∇θ)|Ut|2dx, R9 = −λ

∫
Ω

Δθ|Ut|2dx.

We estimate Ri, i = 1, ..., 9 as follows: By Lemma 2.4, Lemma 3.5 and Poincaré inequality

we have
|R1| ≤ ‖θt‖L4‖U‖L4‖∇U‖L4‖Ut‖L4

≤ c51‖θt‖H1‖∇U‖H1‖Ut‖H1

≤ c52‖θt‖H1‖U‖H2‖∇Ut‖
≤ ε‖∇Ut‖2 +

c53

ε

(‖θt‖2 + ‖∇θt‖2
)‖U‖2

H2

≤ ε‖∇Ut‖2 +
c54

ε
‖U‖2

H2 +
c53

ε
‖∇θt‖2‖U‖2

H2 ,

where ε > 0 is a constant to be determined. Similarly, we have

|R2| ≤ ‖ρ‖L∞‖∇U‖‖Ut‖2
L4

≤ c55‖Ut‖‖∇Ut‖
≤ ε‖∇Ut‖2 +

c56

ε
‖Ut‖2.

Using Lemma 3.1 and Lemma 3.5 we have

|R3| ≤ λ

2
‖∇θt‖2 +

λ

2
‖∇U‖2

L4‖Ut‖2
L4
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≤ λ

2
‖∇θt‖2 + c57

(‖∇U‖‖∇2U‖ + ‖∇U‖2
)‖Ut‖‖∇Ut‖

≤ λ

2
‖∇θt‖2 + c58‖∇2U‖‖Ut‖‖∇Ut‖ + c59‖Ut‖‖∇Ut‖

≤ ε‖∇Ut‖2 + c60(ε)
(‖U‖2

H2‖√ρUt‖2 + ‖∇θt‖2 + ‖Ut‖2
)
;

and
|R4| ≤ λ‖θ‖H2‖Ut‖2

L4

≤ c61‖θ‖H2‖Ut‖‖∇Ut‖
≤ ε‖∇Ut‖2 +

c62

ε
‖θ‖2

H2‖√ρUt‖2.

By Sobolev embedding we have

|R5| ≤ ε‖∇Ut‖2 +
c63

ε
‖U‖2

L∞‖∇θt‖2

≤ ε‖∇Ut‖2 +
c64

ε
‖U‖2

H2‖∇θt‖2.

Since ‖�ft‖2
C([0,t];H1(Ω)) + ‖�ft‖2

C([0,t];L2(Ω)) ≤ F1, using Poincaré inequality we have

|R6| ≤ ε

c0

‖Ut‖2 +
c65

ε
‖�f‖2

L4‖θt‖2
L4

≤ ε‖∇Ut‖2 +
c66

ε
‖θt‖2

H1 ,

and

|R7| ≤ ε

c0

‖Ut‖2 +
c67

ε
‖�ft‖2‖θ‖2

L∞

≤ ε‖∇Ut‖2 +
c68

ε
‖θ‖2

H2 .

The last two terms are treated as

|R8| ≤ ‖U · ∇θ‖‖Ut‖2
L4

≤ c69‖U‖L4‖∇θ‖L4‖Ut‖‖∇Ut‖
≤ c70‖θ‖H2‖Ut‖‖∇Ut‖
≤ ε‖∇Ut‖2 +

c71

ε
‖θ‖2

H2‖√ρUt‖2;

and
|R9| ≤ λ‖Δθ‖‖Ut‖2

L4

≤ c72‖θ‖H2‖Ut‖‖∇Ut‖
≤ ε‖∇Ut‖2 +

c73

ε
‖θ‖2

H2‖√ρUt‖2.

Plugging above estimates into (3.65) we have

1

2

d

dt
‖√ρUt‖2 + μ‖∇Ut‖2 ≤ 9ε‖∇Ut‖2 + K(t)(‖√ρUt‖2 + ‖∇θt‖2) + Z(t),

where

K(t) = c74(ε)
(‖U‖2

H2 + ‖θ‖2
H2

)
,

(3.66)
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Z(t) = c75(ε)
(‖Ut‖2 + ‖U‖2

H2 + ‖θt‖2
H1 + ‖θ‖2

H2

)
.

Next, taking L2 inner product of (3.53) with Δθt we have

1

2

d

dt
‖∇θt‖2 + λ‖Δθt‖2 =

∫
Ω

(Ut · ∇θ + U · ∇θt)Δθtdx

≤ λ

2
‖Δθt‖2 + λ

(‖Ut · ∇θ‖2 + ‖U · ∇θt‖2
)
.

The second term on the RHS of (3.67) is estimated as

λ
(‖Ut · ∇θ‖2 + ‖U · ∇θt‖2

)
≤ c76‖Ut‖2

L4

(‖∇θ‖‖D2θ‖ + ‖∇θ‖2
)

+ λ‖U‖2
L∞‖∇θt‖2

≤ c77‖Ut‖‖∇Ut‖‖θ‖H2 + c78‖U‖2
H2‖∇θt‖2

≤ ε‖∇Ut‖2 +
c79

ε
‖θ‖2

H2‖√ρUt‖2 + c78‖U‖2
H2‖∇θt‖2.

It follows that

1

2

d

dt
‖∇θt‖2 +

λ

2
‖Δθt‖2 ≤ ε‖∇Ut‖2 +

c79

ε
‖θ‖2

H2‖√ρUt‖2 + c78‖U‖2
H2‖∇θt‖2.

Combining (3.66) and (3.68) we have

1

2

d

dt

(‖√ρUt‖2 + ‖∇θt‖2
)

+ μ‖∇Ut‖2 +
λ

2
‖Δθt‖2

≤ 10ε‖∇Ut‖2 + K̃(t)
(‖√ρUt‖2 + ‖∇θt‖2

)
+ Z̃(t),

where K̃(t) and Z̃(t) are equivalent to K(t) and Z(t) respectively. Choosing ε = μ/20 in

(3.69) we have

d

dt

(‖√ρUt‖2+‖∇θt‖2
)
+μ‖∇Ut‖2+λ‖Δθt‖2 ≤ 2K̃(t)(‖√ρUt‖2+‖∇θt‖2)+2Z̃(t).

By virtue of Lemmas 3.5–3.6 we know that K̃(t), Z̃(t) are uniformly integrable in time

for any t ≥ 0. Applying Gronwall inequality to (3.70) we have

‖(√ρUt,∇θt)(·, t)‖2 ≤ c79, and

∫ t

0

‖(∇Ut, Δθt)(·, τ)‖2dτ ≤ c80, ∀ t ≥ 0.

Plugging the first part of (3.71) into (3.70) we have

d

dt

(‖√ρUt‖2 + ‖∇θt‖2
)

+ μ‖∇Ut‖2 + λ‖Δθt‖2 ≤ c81Y (t),

where

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

Y (t) = ‖Ut‖2 + ‖U‖2
H2 + ‖θt‖2

H1 + ‖θ‖2
H2 .

By virtue of (3.63), Poincaré inequality and Lemma 2.3 we have

(3.73)Y (t) ≤ c82

(‖Ut‖2 + ‖∇U‖2 + ‖∇θt‖2 + ‖Δθ‖2
)
.

Plugging (3.73) into (3.72) we have

(3.74)
d

dt

(‖√ρUt‖2 + ‖∇θt‖2
)

+ μ‖∇Ut‖2 + λ‖Δθt‖2 ≤ c83‖(Ut,∇U,∇θt, Δθ)‖2.
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where
E3(t) ∼= ‖(θ, θt, U)‖2

H1 + ‖Ut‖2,

D3(t) ∼= ‖(θ, θt)‖2
H2 + ‖(U,Ut)‖2

H1 .

Then the lemma follows directly from (3.63), (3.71), (3.75) and Lemma 3.6. This com-

pletes the proof.

As a consequence of Lemma 3.7 we have

Lemma 3.8. Under the assumptions of Theorem 1.1, there exist positive constants α6

and β6 independent of t such that for any t ≥ 0 it holds that

‖θ(·, t)‖2
H3 ≤ α6e

−β6t.

Proof. By virtue of Lemma 2.3 we have

‖θ‖2
H3 ≤ c3‖Δθ‖2

H1 ≤ c85

(‖Δθ‖2 + ‖∇θt‖2 + ‖∇(U · ∇θ)‖2
)

≤ c86

(‖Δθ‖2 + ‖∇θt‖2 + ‖U‖2
H2‖θ‖2

H2

)
.

Then the lemma follows from Lemma 3.6 and Lemma 3.7. This completes the proof.

‖U‖H3h) Decay of

Lemma 3.9. Under the assumptions of Theorem 1.1, there exist positive constants α7, β7

and γ6 independent of t such that for any t ≥ 0 it holds that

‖U(·, t)‖2
H3 ≤ α7e

−β7t, and

∫ t

0

(‖θt(·, τ)‖2
H2 + ‖Utt(·, τ)‖2

)
dτ ≤ γ6.

Proof. Taking L2 inner product of (3.64) with Utt we have

(3.76)

μ

2

d

dt
‖∇Ut‖2 + ‖√ρUtt‖2

=

∫
Ω

[− ρtUt − ρtU · ∇U − ρUt · ∇U − ρU · ∇Ut

+λ
(∇ρt · ∇U + ∇ρ · ∇Ut + Ut · ∇(∇ρ) + U · ∇(∇ρt)

)
+ �fρt + �ftρ

] · Uttdx.

Using previously established estimates and Lemma 2.4, we can show that (since there is

no essential difficulties, we omit the details)

(3.77)
μ

2

d

dt
‖∇Ut‖2 +

1

2
‖√ρUtt‖2 ≤ c87

(‖∇Ut‖2 + ‖θt‖2
H2 + ‖θ‖2

H2

)
.

By absorbing the RHS of (3.77) into the LHS of (3.75) we have

(3.78)
d

dt
E4(t) + c88D4(t) ≤ 0, ∀ t ≥ 0,

where
E4(t) ∼= ‖(U,Ut, θ, θt)‖2

H1 ,

D4(t) ∼= ‖(θ, θt)‖2
H2 + ‖(U,Ut)‖2

H1 + ‖Utt‖2.

So that, for any t ≥ 0 it holds that

(3.79)‖Ut(·, t)‖2
H1 ≤ c89e

−c90t, and

∫ t

0

(‖θt(·, τ)‖2
H2 + ‖Utt(·, τ)‖2

)
dτ ≤ c91.
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With the help of previous estimates and Lemma 2.1, by direct calculations, we have

‖U‖2
H3 ≤ c92

(‖U‖2
H2 + ‖θ‖2

H3 + ‖Ut‖2
H1

)
.

Then the lemma follows from Lemma 3.7, Lemma 3.8 and (3.79). This completes the

proof.

‖(θ, U)‖H4

We now prove the uniform estimates of ‖(θ, U)‖H4 in order to complete the proof of

Theorem 1.1.

Lemma 3.10. Under the assumptions of Theorem 1.1, there exists a positive constant γ7

independent of t such that for any t ≥ 0 it holds that∫ t

0

‖(U, θ)(·, t)‖2
H4dτ ≤ γ7, ∀ t ≥ 0.

Proof. By Lemma 2.3, Lemma 2.1 and Lemma 3.9, it is straightforward to show that

(3.80)
‖θ‖2

H4 ≤ c93

(‖θt‖2
H2 + ‖θ‖2

H3

)
,

‖U‖2
H4 ≤ c94

(‖Ut‖2
H2 + ‖θ‖2

H4

)
.

Since Ut|∂Ω = 0, by Lemma 2.1 and (3.64) we have

(3.81)‖Ut‖2
H2 ≤ c95

(‖Utt‖2 + ‖ρt‖2
H2 + ‖U‖2

H3‖ρ‖2
H3

)
.

Then the lemma follows from Lemma 3.9, (3.80) and (3.81). This completes the proof.

Lemmas 3.8–3.10 conclude our main result, Theorem 1.1.

i) Uniform estimate of
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On Some Classes of Analytic
Functions Defined by Subordination

A. El -Sayed Ahmed

AAbstract - In this paper , we  define  some  general  classes  of analytic functions by subordination . Our  new  results 
extend and improve a lot of known results (see [6]).
Keywords and phrases : Convex functions, univalent functions, subordination.

I. INTRODUCTION

Let A be the class of functions f which are analytic in the unit disk Δ = {z : |z| < 1}
and are given by

(1.1)f(z) = 1 +
∞∑

n=k

akzk, n ∈ N.

A function f analytic in Δ is said to be univalent in a domain D if

f(z1) = f(z2) =⇒ z1 = z2 z1, z2 ∈ D.

The class of all univalent functions f in Δ and have form (1.1) will be denoted by S.

A domain D is called convex if for every pair of points w1 and w2 in the interior of D,
the line-segment joining w1 to w2 lies wholly in D. A function f which maps Δ onto
a convex domain is called a convex function.The necessary and sufficient condition for

f ∈ S to be convex in Δ is that Re (zf ′(z))′

f ′(z) > 0, z ∈ Δ. The class off all functions
convex and univalent in Δ is denoted by C.
A domain D is said to be starlike with respect to w = 0 if the linear segment joining
w = 0 to any other point of D lies wholly in D. If a function f
domain with respect to w = 0, then f is said to be starlike. The necessary and sufficient
condition for f ∈ S to be starlike is that

Re
zf ′(z)
f(z)

> 0, z ∈ Δ.

This class is denoted by S∗, and it was studied first by Alexander [3].
Let f(z) and g(z) be analytic in Δ. We say that f(z) is subordinate to g(z) if there

exists a function φ(z) analytic (not necessarily univalent) in Δ satisfying φ(0) = 0 and
|φ(z)| < 1 such that

[6
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(1.2)f(z) = g(φ(z)) (|z| < 1).

Subordination is denoted by f(z) ≺ g(z). For more details on univalent functions by
subordination, we refer to [1,2,5,7-16].

Let B be the class of functions, analytic in Δ and of the form

(1.3)w(z) =
∞∑

n=1

bnzn, n ∈ N,

and satisfying the conditions w(0) = 0 and |w(z)| < 1 for all z ∈ Δ. Based on the class
B Janowski [4] defined the class P [A,B], as follows:

Let p be analytic function in Δ, given by

(1.4)p(z) = 1 +
∞∑

n=1

pnzn.

Then p(z) is said to be in the class P [A,B] ; −1 ≤ B < A ≤ 1 ; if and only if, for z ∈ Δ

(1.5)p(z) =
1 + Aw(z)
1 + Bw(z)

; w ∈ B.

Concerning the class P [A,B] Janowski [4] proved the following lemma:

Lemma 1.1 [4]. Let p ∈ P [A,B], and given by (1.4). Then

(i) − |pn| ≤ A − B,

(ii) − 1−Ar
1−Br ≤ Re p(z) ≤ 1+Ar

1+Br ,

(iii) − | arg p(z)| ≤ sin−1 (A−B)r
1−ABr2

These results are sharp.
Let N and D be analytic in Δ, D maps Δ onto a many -sheeted starlike region, N(0) =
D(0), and

N ′(z)
D′(z)

∈ P [A,B], then
N(z)
D(z)

∈ P [A,B].

In [14], Ravichandran et.al defined the class Pn[A,B] as follows:
For −1 ≤ B < A ≤ 1 and

p(z) = 1 + cnzn + cn+1z
n+1 + ..., n ∈ N,

we say that p ∈ Pn[A,B] if

p(z) ≺ 1 + Az

1 + Bz
, z ∈ Δ.

The class with the property that zf ′(z)
f(z) ∈ Pn[A,B] is denoted by STn[A,B]. If n = 1, we

drop the subscript. Also, Ravichandran et.al [14] obtained the following lemma:

Lemma 1.2 [14]. If p ∈ Pn[A,B], then

(1.6)
∣∣∣∣p(z) − 1 − ABr2n

1 − B2r2n

∣∣∣∣ ≤ (A − B)rn

1 − B2r2n
, |z| = r < 1.

For the special case p ∈ Pn(α) = Pn[1 − 2α,−1], we get
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.M

.
J
a
h
a
n
g
iri

a
n
d

S
.R

.
K

a
rn

i,
S
ta

rlik
en

ess
a
n
d

co
n
v
ex

ity
co

n
d
itio

n
s

fo
r

cla
sses

o
f

fu
n
ctio

n
s

d
efi

n
ed

b
y

su
b
o
rd

in
a
tio

n
,
J
.
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P
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A
p
p
l.

M
a
th

.
5
,
N

o
.2

,
P
a
p
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N
o
.3

1
,
1
1

p
.
(2

0
0
4
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On Some Classes of Analytic Functions Defined by Subordination∣∣∣∣p(z) − 1 + (1 − 2α)r2n

1 − r2n

∣∣∣∣ ≤ 2(1 − α)rn

1 − r2n
, |z| = r < 1.

In this paper, we define the classes:

P = Pα1,α2,α3,...,αN

k1,k2,k3,...,kN
[n;A1, B1, A2, B2, A3, B3, ..., AN , BN ],

Pn = P ′α1,α2,α3,...,αN

k1,k2,k3,...,kN
[n; A1, B1, A2, B2, A3, B3, ..., AN , BN ];

of analytic functions of the single complex variable z in the unit disk Δ = {z : |z| < 1}.
Moreover we study some of their basic properties. Besides we study the behavior of
functions of these classes under some differential and integral operators. Concerning the
class:

P α1,α2,α3,...,αN

k1,k2,k3,...,kN
[A1, B1, A2, B2, A3, B3, ..., AN , BN ],

which denotes the class of functions q that are analytic in Δ and are represented by

q(z) =
N∑

j=1

αj

[kj + 2
4

pj(z) − kj − 2
4

uj(z)
]
,

where pj , uj ∈ P [Aj , Bj ], αj are non-negative real numbers ;
∑∞

j=1 αj = 1 ; −1 ≤ Bj <
Aj ≤ 1, kj ≥ 2 and j = 1, 2, 3, ..., N.

The following lemma is useful in the sequel.

Lemma 1.3 [6]. If ψ(z) =
∑∞

n=0 bnzn is regular in Δ, φ1(z) and h(z) are convex
univalent in Δ such that ψ(z) ≺ φ1(z), then ψ(z) ∗ h(z) ≺ φ1(z) ∗ h(z), z ∈ Δ, where

φ1(z) =
∞∑

n=0

anzn and ψ(z) ∗ φ1(z) =
∞∑

n=0

bnanzn.

Suppose that

P = Pα1,α2,α3,...,αN

k1,k2,k3,...,kN
[n; A1, B1, A2, B2, A3, B3, ..., AN , BN ]

denotes the class of functions qn that are analytic in Δ and are represented by

(2.1) q(z) =
N∑

j=1

αj

[kj + 2
4

pj(z) − kj − 2
4

uj(z)
]
,

where pj , uj ∈ Pn[Aj , Bj ], αj are non-negative real numbers ;
∑∞

j=1 αj = 1 ; −1 ≤ Bj <
Aj ≤ 1, kj ≥ 2 and j = 1, 2, 3, ..., N . Since, for

p(z) = 1 +
∞∑

k=n

akzk, n ∈ N,

we say that p ∈ Pn[Aj , Bj ] if p(z) ≺ 1+Ajz
1+Bjz , z ∈ Δ.

Lemma 2.1. The class P is a convex set.

Proof. We want to prove that for α, β ≥ 0, α + β = 1 and for

q1, q2 ∈ Pα1,α2,α3,...,αN

k1,k2,k3,...,kN
[n; A1, B1, A2, B2, A3, B3, ..., AN , BN ],

that q(z) = 1
α+β [αq1(z) + βq2(z)], belongs to the class

II. THE CLASS P
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we say that p ∈ Pn[Aj , Bj ] if p(z) ≺ 1+Ajz
1+Bjz , z ∈ Δ.

Lemma 2.1. The class P is a convex set.

Proof. We want to prove that for α, β ≥ 0, α + β = 1 and for

q1, q2 ∈ Pα1,α2,α3,...,αN

k1,k2,k3,...,kN
[n; A1, B1, A2, B2, A3, B3, ..., AN , BN ],

that q(z) = 1
α+β [αq1(z) + βq2(z)], belongs to the class

Pα1,α2,α3,...,αN

k1,k2,k3,...,kN
[n; A1, B1, A2, B2, A3, B3, ..., AN , BN ].

This can simply seen by letting

q1(z) =
N∑

j=1

αj

[kj + 2
4

fj(z) − kj − 2
4

f∗
j (z)

]
,

where fj , f
∗
j ∈ Pn[Aj , Bj ], αj are non-negative real numbers ;

∑N
j=1 αj = 1 ; −1 ≤ Bj <

Aj ≤ 1, kj ≥ 2.
Also, let

q2(z) =
N∑

j=1

αj

[kj + 2
4

gj(z) − kj − 2
4

g∗j (z)
]
,

where gj , g
∗
j ∈ Pn[Aj , Bj ]. Then, we see that

1
α + β

[αq1(z) + βq2(z)] =
N∑

j=1

αj

α + β

[kj + 2
4

[αfj + βgj ] − kj − 2
4

[αf∗
j + βg∗j ]

]
=

N∑
j=1

αj

[kj + 2
4

pj(z) − kj − 2
4

uj(z)
]
.

Then we arrive at the proof of our Lemma, since the class Pn[Aj , Bj ] is convex.

Lemma 2.2. Let

q ∈ Pα1,α2,α3,...,αN

k1,k2,k3,...,kN
[n; A1, B1, A2, B2, A3, B3, ..., AN , BN ].

Then for

p(z) = 1 +
∞∑

k=n

akzk;

we have
(i) |an| ≤

∑N
j=1

αjkj

2 (Aj − Bj) for all n.

(ii)
{ N∑

s=1

αs

N∏
j=1;
j �=s

(1 − B2
j r2n)

(
1 − ks

2
(As − Bs)rn − AsBsr

2n
)}/ N∏

j=1;
j �=s

(1 − B2
j r2n)

≤ Rep(z)

≤
{ N∑

s=1

αs

N∏
j=1;
j �=s

(1 − B2
j r2n)

(
1 +

ks

2
(As − Bs)rn − AsBsr

2n
)}/ N∏

j=1;
j �=s

(1 − B2
j r2n)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes

  
G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
II

Is
su

e 
  
  
er

sio
n

I
V 

II
  

 F
)

)

© 2012 Global Journals Inc.  (US)

47

        

20
12

  
eb
ru
ar
y

F

On Some Classes of Analytic Functions Defined by Subordination

(iii) q ∈ Pn for |z| < r0, where r0 is the least positive root of the equation

(2.2)
N∑

s=1

αs

N∏
j=1;
j �=s

(1 − B2
j r2n)

(
1 − ks

2
(As − Bs)rn − AsBsr

2n
)

= 0,

and Pn = Pn[1,−1] is the class of functions of positive real part. These results are sharp.

Proof. The proof of the assertion (i) is very similar to the proof of the assertion (i) of
Lemma 1.1 [4]. To prove assertion (ii) of Lemma 2.2, let pj , uj ∈ Pn[Aj , Bj ]; −1 ≤ Bj <
Aj ≤ 1, n ∈ N and j = 1, 2, 3, ..., N . Now, let

p(z) = 1 +
∞∑

k=n

akzk ≺ 1 + Ajz

1 + Bjz
.

Then, we can write p(z) = 1+Ajφ(z)
1+Bjφ(z) , where φ(z) is analytic in Δ, φ(0) = 0 and |φ(z)| < 1.

Expressing φ(z) in terms of p(z), we get that φ(z) = p(z)−1
Aj−Bjp(z) = an

Aj−Bj
zn+... = znΨ(z),

where |Ψ(z)| ≤ 1. Therefore |φ(z)| ≤ zn, and hence from the subordination principle, we

have that
∣∣∣∣ 1−Ajφ(z)
1−Bjφ(z)

∣∣∣∣ ≤ Rep(z) ≤ |p(z)| ≤ 1+Ajφ(z)
1+Bjφ(z) , which implies that,

(2.3)
∣∣∣∣1 − Ajr

n

1 − Bjrn

∣∣∣∣ ≤ Rep(z) ≤ |p(z)| ≤ 1 + Ajr
n

1 + Bjrn
.

Moreover the double inequality (2.3) will be also satisfied for the functions uj(z). Now,
since

q ∈ Pα1,α2,α3,...,αN

k1,k2,k3,...,kN
[n; A1, B1, A2, B2, A3, B3, ..., AN , BN ],

then using relation (2.1), it follows that

(2.4)
N∑

j=1

αj

[kj + 2
4

minRepj(z) − kj − 2
4

max uj(z)
] ≤ Req(z)

≤
N∑

j=1

αj

[kj + 2
4

max Repj(z) − kj − 2
4

minuj(z)
]
.

Introducing the double inequality (2.3) in the double inequality (2.4), we obtain the
following double inequality

N∑
j=1

αj

{
kj + 2

4
(1 − Ajr

n

1 − Bjrn

)− kj − 2
4
[1 + Ajr

n

1 + Bjrn

]} ≤ Req(z)

≤
N∑

j=1

αj

{kj + 2
4
(1 + Ajr

n

1 + Bjrn

)− kj − 2
4
[1 − Ajr

n

1 − Bjrn

]}
,

which yields, after simplification the required double inequality. The result of part (iii)
of Lemma 2.2 follows easily from part (ii) of the same Lemma ; since
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Req(z) ≥
{ N∑

s=1

αs

N∏
j=1;
j �=s

(1−B2
j r2n)

(
1− ks

2
(As−Bs)rn−AsBsr

2n
)}/ N∏

j=1;
j �=s

(1−B2
j r2n),

thus Re q(z) > 0, for |z| = r0, where r0 is the least positive root of the equation

N∑
s=1

αs

N∏
j=1;
j �=s

(1 − B2
j r2n)

(
1 − ks

2
(As − Bs)rn − AsBsr

2n
)

= 0.

The function

q(z) =
N∑

j=1

αj

{
(1 − kj

2 (Aj − Bj)zn − AjBjz
2n)

(1 − B2
j z2n)

}
,

shows that the results of part (ii) and (iii) of Lemma 2.2 are sharp.

Lemma 2.3. Let

q ∈ Pα1,α2,α3,...,αN

k1,k2,k3,...,kN
[n; A1, B1, A2, B2, A3, B3, ..., AN , BN ].

Then

(i)
1
2π

∫ 2π

0

|q(reiθ)|2dθ ≤ 1 +

[∑N
j=1

αjkj

2 (Aj − Bj)
]2

r2n

1 − r2
,

(ii)
1
2π

∫ 2π

0

|q(reiθ)|2dθ ≤
N∑

j=1

αjkj

2

[
Aj − Bj

1 − B2
j r2n

]
.

Proof. Let

q(z) = 1 +
∞∑

k=n

akzk.

Then by using Parseval’s identity and the result of (i) given in Lemma 2.2, we get

1
2π

∫ 2π

0

|q(reiθ)|2dθ =
∞∑

k=0

|ak|2r2k ≤ 1 +
∞∑

k=n

[ N∑
j=1

αjkj

2
(Aj − Bj)

]2
r2k

= 1 +

[∑N
j=1

αjkj

2 (Aj − Bj)
]2

(1 − r2)
r2n

Now, using relation (2.1), we get that

(2.5) q′(z) =
∑N

j=1
αj

[
kj + 2

4
Rep′j(z) − kj − 2

4
Reu′

j(z)
]
.

Moreover, for p′j ∈ Pn[Aj , Bj ] ; we have

p′j(z) =
(Aj − Bj)φ′

j(z)
[1 + Bjφj(z)]2

,
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then

(2.6)
1
2π

∫ 2π

0

∣∣q(reiθ)
∣∣2dθ =

1
2π

∫ 2π

0

∣∣(Aj − Bj)
∣∣× ∣∣w′

j(re
iθ)
∣∣dθ∣∣1 + Bjwj(reiθ)

∣∣ ≤ Aj − Bj

1 − B2
j r2n

.

Applying (2.6) in (2.5), it follows that

1
2π

∫ 2π

0

∣∣q′(reiθ)
∣∣2dθ ≤

N∑
j=1

αj

2π

∫ 2π

0

[
kj + 2

4

∣∣p′j(reiθ)
∣∣+ kj − 2

4

∣∣u′
j(re

iθ)
∣∣]dθ

≤
N∑

j=1

αjkj

2

[
Aj − Bj

1 − B2
j r2n

]
.

A function f analytic in Δ is said to belong to the class

P ′α1,α2,α3,...,αN

k1,k2,k3,...,kN
[n;A1, B1, A2, B2, A3, B3, ..., AN , BN ],

if and only if,

f ′ ∈ Pα1,α2,α3,...,αN

k1,k2,k3,...,kN
[n;A1, B1, A2, B2, A3, B3, ..., AN , BN ].

Lemma 3.1. The class Pn is a convex set.

Proof. The proof of this Lemma is very similar to the proof of Lemma 1.4 (see [6]).
Now, we give the following theorem:

Theorem 3.1. Let f ∈ Pn. Then f is univalent for |z| < r0; where r0 is the least
positive root of the equation (2.2). This result is sharp.

Proof. Let f ∈ Pn, hence it follows from Lemma 1.2.2 assertion (iii) that Ref(z) > 0,

|z| < r0; where r0 is the least positive root of the equation (2.2).

The sharpness follows from the function f1(z) defined by

f1(z) ={∫ z

0

N∑
s=1

αs

N∏
j=1;j �=s

(1−B2
j ζ2n)

(
1− ks

2
(As −Bs)ζn −AsBsζ

2n
)
dζ

}/ N∏
j=1;
j �=s

(1−B2
j ζ2n)

Theorem 3.2. Let f ∈ Pn. Then f maps |z| < r1 = (
√

2− 1)rn
0 onto a convex domain,

where r0 is the least positive root of the equation (2.2). This result is sharp.

III. THE CLASS PN

Proof. Let f ∈ Pn. Hence it follows from Lemma 2.2 assertion (iii) that Ref(z) > 0,
|z| < r0; where r0 is the least positive root of the equation (2.2). Let w be any complex
number such that |w| < r0. Then the function

G(z) = P
(r2n

0 (z + w)
r2n
0 + zw̄

)
= P (w) + P ′(w)

[
1 − |w|2

r2n
0

]
z + ...

[6
]
Z
.M

.G
.
K

is
h
k
a
,
O

n
so

m
e

C
la

ss
es

o
f
a
n
a
ly

ti
c

fu
n
ct

io
n
s,

B
u
ll
et

in
d
e

la
S
o
ci

et
e’

R
o
y
a
le

d
es

S
ci

en
ce

s
d
e

L
ie

’g
e,

6
2
(5

-6
)(

1
9
9
3
),

3
1
3
-3

6
0
.
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is analytic in |z| < r0 and Re G(z) > 0 for |z| < r0. Hence∣∣∣∣P ′(w)(1 − |w|2
r2n
0

)
∣∣∣∣ ≤ 2P (w)

rn
0

,

which implies that, ∣∣∣∣P ′(w)
P (w)

∣∣∣∣ ≤ 2rn
0

r2n
0 − |w|2 .

Since w is any complex number with |w| < r0, we can write the above inequality as∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 2rn
0 |z|

r2n
0 − |z|2 ,

which implies that,

Re(1 +
zf ′′(z)
f ′(z)

) ≥ 1 − 2rn
0 |z|

r2n
0 − |z|2 =

r2n
0 − 2rn

0 |z| − |z|2
r2n
0 − |z|2 > 0,

for all |z| < r1 = (
√

2 − 1)rn
0 , where r0 is the least positive root of the equation (2.2).

The function
f(z) =

∫ z

0

1 + ζn

1 − ζn
dζ

shows that (
√

2 − 1) can not replaced by a smaller constant.

Theorem 3.3. Let f ∈ Pn. Then for z = reiθ, we have

(3.1) |f(z)| ≥
N∑

j=1

αj

{
r

[
1 − Ajkjr

n

2(n + 1)

]
γ(Bj) +

AjΦ(Bj)
(Bj + γ(Bj))

r

+
[
1 − AjΦ(Bj)

(Bj + γ(Bj))

][ ∞∑
S=0

β2s
j

r2ns+1

2ns + 1

]

− kj

2
(Aj − Bj)Φ(Bj)

[ ∞∑
S=0

β2s
j

r2ns+n+1

2ns + n + 1

]}
,

where,

γ(Bj) =
{

1, Bj = 0,

0, Bj 	= 0

and

Φ(Bj) =
{

0, Bj = 0,

1, Bj 	= 0.

This result is sharp for the function

f0(z) =
N∑

j=1

αj

{
z

[
1 − Ajkjz

n

2(n + 1)

]
γ(Bj) +

AjΦ(Bj)
(Bj + γ(Bj))

z
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+
[
1 − AjΦ(Bj)

(Bj + γ(Bj))

][ ∞∑
s=0

β2s
j

z2ns+1

2ns + 1

]

− kj

2
(Aj − Bj)Φ(Bj)

[ ∞∑
s=0

β2s
j

z2ns+n+1

2ns + n + 1

]}
.

Proof. Since,
|f(z)| ≥

∫ r

0

Re(f ′(teiθ))dt

Using part (ii) of Lemma 2.2, for f ′(z) = p(z) ;

p(z) ∈ P ′α1,α2,α3,...,αN

k1,k2,k3,...,kN
[n;A1, B1, A2, B2, A3, B3, ..., AN , BN ],

we get that,

(3.2) |f(z)| ≥
∫ r

0

N∑
j=1

αj

{
1 − kj

2 (Aj − Bj)tn − AjBjt
2n

1 − B2
j t2n

}
dt.

But

1 − kj

2 (Aj − Bj)tn − AjBjt
2n

1 − B2
j t2n

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[1 − kjAj

2 tn]; Bj = 0

Aj

Bj
+

[1−Aj
Bj

]− kj
2 (Aj−Bj)t

n

1−B2
j
t2n ;

Bj 	= 0.

Thus

I =
∫ r

0

1 − kj

2 (Aj − Bj)tn − AjBjt
2n

1 − B2
j t2n

dt

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[1 − kjAj

2(n+1)r
n]r; Bj = 0

Aj

Bj
r +
{

(1 − Aj

Bj
)
[∑∞

s=0 β2s
j

r2ns+1

2ns+1

]− kj

2 (Aj − Bj)
[∑∞

s=0 β2s
j

r2ns+n+1

2ns+n+1

]}
,

s = 1, 2, ..., N ; Bj 	= 0,

which implies that,

(3.3) I =
[
1 − kjAj

2(n + 1)
rn

]
rγ(Bj) +

AjΦ(Bj)
(Bj + γ(Bj))

r

+
[
1 − AjΦ(Bj)

(Bj + γ(Bj))

][ ∞∑
s=0

β2s
j

r2ns+1

2ns + 1

]
− kj

2
(Aj − Bj)Φ(Bj)

[ ∞∑
s=0

β2s
j

r2ns+n+1

2ns + n + 1

]
.

Introducing (3.3) in the right hand side of inequality (3.2), we obtain inequality (3.1).

Remark 3.1. If we put n = 1 in Theorems 3.1, 3.2 and 3.3, we obtain the corresponding
results in [6].
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I. INTRODUCTION

For |q| < 1,

(a; q)∞ =
∞∏

n=0

(1 − aqn) (1.1)

(a; q)∞ =
∞∏

n=1

(1 − aq(n−1)) (1.2)

(a1, a2, a3, ..., ak; q)∞ = (a1; q)∞(a2; q)∞(a3; q)∞...(ak; q)∞ (1.3)

Ramanujan [2, p.1(1.2)] has defined general theta function, as

f(a, b) =
∞∑
−∞

a
n(n+1)

2 b
n(n−1)

2 ; |ab| < 1, (1.4)

Jacobi’s triple product identity [3,p.35] is given, as

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞ (1.5)

Special cases of Jacobi’s triple products identity are given, as

φ(q) = f(q, q) =
∞∑

n=−∞
qn2

= (−q; q2)2
∞(q2; q2)∞ (1.6)

(q) = f(q, q3) =
∞∑

n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

(1.7)
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f(−q) = f(−q,−q2) =
∞∑

n=−∞
(−1)nq

n(3n−1)
2 = (q; q)∞ (1.8)

Equation (1.8) is known as Euler’s pentagonal number theorem. Euler’s another well
known identity is as

(q; q2)−1
∞ = (−q; q)∞ (1.9)

Throughout this paper we use the following representations

(qa; qn)∞(qb; qn)∞(qc; qn)∞ · · · (qt; qn)∞ = (qa, qb, qc · · · qt; qn)∞ (1.10)

(qa; qn)∞(qb; qn)∞(qc; qn)∞ · · · (qt; qn)∞ = (qa, qb, qc · · · qt; qn)∞ (1.11)

(−qa; qn)∞(−qb; qn)∞(qc; qn)∞ · · · (qt; qn)∞ = (−qa,−qb, qc · · · qt; qn)∞ (1.12)

Computation of q-product identities:
Now we can have following q-products identities, as

(q2; q2)∞ =
∞∏

n=0

(1 − q2n+2)

=
∞∏

n=0

(1 − q2(4n)+2) ×
∞∏

n=0

(1 − q2(4n+1)+2) ×
∞∏

n=0

(1 − q2(4n+2)+2) ×
∞∏

n=0

(1 − q2(4n+3)+2)

=
∞∏

n=0

(1 − q8n+2) ×
∞∏

n=0

(1 − q8n+4) ×
∞∏

n=0

(1 − q8n+6) ×
∞∏

n=0

(1 − q8n+8)

or,
(q2; q2)∞ = (q2; q8)∞(q4; q8)∞(q6; q8)∞(q8; q8)∞

= (q2, q4, q6, q8; q8)∞ (1.13)

also we can compute
(q2; q2)∞ = (q2; q4)∞(q4; q4)∞ (1.14)

(q4; q4)∞ =
∞∏

n=0

(1 − q4n+4)

=
∞∏

n=0

(1 − q4(3n)+4) ×
∞∏

n=0

(1 − q4(3n+1)+4) ×
∞∏

n=0

(1 − q4(3n+2)+4)

=
∞∏

n=0

(1 − q12n+4) ×
∞∏

n=0

(1 − q12n+8) ×
∞∏

n=0

(1 − q12n+12)

or,

(q4; q4)∞ = (q4; q12)∞(q8; q12)∞(q12; q12)∞

= (q4, q8, q12; q12)∞
(1.15)

(q4; q12)∞ =
∞∏

n=0

(1 − q12n+4) =
∞∏

n=0

(1 − q12(5n)+4) ×
∞∏

n=0

(1 − q12(5n+1)+4)×

×
∞∏

n=0

(1 − q12(5n+2)+4) ×
∞∏

n=0

(1 − q12(5n+3)+4) ×
∞∏

n=0

(1 − q12(5n+4)+4)
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II. PRELIMINARIES

=
∞∏

n=0

(1 − q60n+4) ×
∞∏

n=0

(1 − q60n+16) ×
∞∏

n=0

(1 − q60n+28)×

×
∞∏

n=0

(1 − q60n+40) ×
∞∏

n=0

(1 − q60n+52)

or,
(q4; q12)∞ = (q4; q60)∞(q16; q60)∞(q28; q60)∞(q40; q60)∞(q52; q60)∞

= (q4, q16, q28, q40, q52; q60)∞ (1.16)

Similarly we can compute following as

(q5; q5)∞ = (q5; q15)∞(q10; q15)∞(q15; q15)∞

= (q5, q10, q15; q15)∞ (1.17)

(q6; q6)∞ = (q6; q24)∞(q12; q24)∞(q18; q24)∞(q24; q24)∞

= (q6, q12, q18, q24; q24)∞ (1.18)

(q6; q12)∞ = (q6; q60)∞(q18; q60)∞(q30; q60)∞(q42; q60)∞(q54; q60)∞

= (q6, q18, q30, q42, q54; q60)∞ (1.19)

The outline of this paper is as follows. In sections 2, some results on continued fraction
[5-8], and also some well known results recorded by Ramanujan [9], are listed, those
are useful to the rest of the paper. In section 3, we established seven new results by
generalizing Rmanujan’s identities in terms of q-products and continued fractions, using
the properties Jacobi’s triple product identities. Findings are new and not available in the
literature of special functions. In section 4, we provide the proofs for newly established
results.

In [9, p. 224], Ramanujan recorded following identities

Entry(i):
(q7) (q9) − (−q7) (−q9)

(q) (q63) − (−q) (−q63)
= q6 (2.1)

Entry(ii):
(q5) (q11) − (−q5) (−q11)

(q) (q55) − (−q) (−q55)
= q5 (2.2)

Entry(iii):
(q3) (q13) − (−q3) (−q13)

(q) (q39) − (−q) (−q39)
= q3 (2.3)

In [9, p. 230], Ramanujan recorded following identities

Entry(vii):

(q) (q11) − (−q) (−q11) = 2qf(q2, q10)f(q44, q88) + 2q15φ(q6) (q132) (2.4)
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In [9, p. 299], Ramanujan recorded following identities

Entry(ii):

φ(q)φ(q27) − φ(−q)φ(−q27) = 4qf(−q6)f(−q18) + 4q7 (q2) (q54) (2.5)

Entry(iii):

φ(q)φ(q35) − φ(−q)φ(−q35) = 4qf(−q10)f(−q14) + 4q9 (q2) (q70) (2.6)

Entry(iv):

φ(q5)φ(q7) − φ(−q5)φ(−q7) = 4q3 (q10) (q14) − 2q3f(−q2)f(−q70) (2.7)

In [7], following continued fractional identities is given

(q2; q2)∞(−q; q)∞ =
(q2; q2)∞
(q; q2)∞

=
1

1 − q

1 +
q(1 − q)

1 − q3

1 +
q2(1 − q2)

1 − q5

1 +
q3(1 − q3)

1 +
...

(2.8)

Following Rogers-Ramanujan continued fraction is one of the most celebrated identities
associated with Ramanujan’s academic career [8],

C(q) =
(q2; q5)∞(q3; q5)∞
(q; q5)∞(q4; q5)∞

= 1 +
q

1 +
q2

1 +
q3

1 +
q4

1 +
q5

1 +
...

(2.9)

In [5, equation (1.6)], the famous Rogers-Ramanujan continued fraction identity is given

(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

=
1

1 +
q

1 +
q2

1 +
q3

1 +
q4

1 +
...

(2.10)

In [6, equation (4.21)], following Ramanujan continued fraction identity is given

(−q3; q4)∞
(−q; q4)∞

=
1

1 +
q

1 +
q3 + q2

1 +
q5

1 +
q7 + q4

1 +
q9

1 +
q11 + q6

1 +
...

(2.11)
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In this section, we established seven new results by using (.) and φ(.) functions in
Ramanujan identities [9], or in more general language we can say that by using the
properties of Jacobi’s triple product identity, as (.) and φ(.) functions are special cases
of it, and further applying the properties of continued fraction identities. These results
are new, and not recorded in the literature of special functions

q6 =

[
(−q7; q14)∞(−q9; q18)∞ − (q7; q14)∞(q9; q18)∞
(−q; q2)∞(−q63; q126)∞ − (q; q2)∞(q63; q126)∞

]
×

× (−q, q; q2)∞(−q63, q63; q126)∞
(q2; q2)∞(−q7; q14)∞(−q9; q18)∞(q126; q126)∞

×

× 1

1 − q7

1 +
q7(1 − q7)

1 − q21

1 +
q14(1 − q14)

1 − q35

1 +
q21(1 − q21)

1 +
...

× 1

1 − q9

1 +
q9(1 − q9)

1 − q27

1 +
q18(1 − q18)

1 − q45

1 +
q27(1 − q27)

1 +
...

(3.1)

q5 =

[
(−q5; q10)∞(−q11; q22)∞ − (q5; q10)∞(q11; q22)∞
(−q; q2)∞(−q55; q110)∞ − (q; q2)∞(q55; q110)∞

]
×

III. MAIN RESULTS

× (−q, q; q2)∞(−q55, q55; q110)∞
(q2; q2)∞(−q5; q10)∞(−q11; q22)∞(q110; q110)∞

×

× 1

1 − q5

1 +
q5(1 − q5)

1 − q15

1 +
q10(1 − q10)

1 − q25

1 +
q15(1 − q15)

1 +
...

× 1

1 − q11

1 +
q11(1 − q11)

1 − q33

1 +
q22(1 − q22)

1 − q55

1 +
q33(1 − q33)

1 +
...

(3.2)

q3 =

[
(−q3; q6)∞(−q13; q26)∞ − (q3; q6)∞(q13; q26)∞
(−q; q2)∞(−q39; q78)∞ − (q; q2)∞(q39; q78)∞

]
×

× (−q, q; q2)∞(−q39, q39; q78)∞
(q2; q2)∞(q78; q78)∞(−q3; q6)∞(−q13; q26)∞

×
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× 1

1 − q3

1 +
q3(1 − q3)

1 − q9

1 +
q6(1 − q6)

1 − q15

1 +
q9(1 − q9)

1 +
...

× 1

1 − q13

1 +
q13(1 − q13)

1 − q39

1 +
q26(1 − q26)

1 − q65

1 +
q39(1 − q39)

1 +
...

(3.3)

2q(q12; q12)∞

[
(−q2,−q10; q12)∞(−q44, q88; q132)∞+q14(−q6; q12)2

∞
(q264; q264)∞
(q132; q264)∞

]

=

[
(−q; q2)∞(−q11; q22)∞ − (q; q2)∞(q11; q22)∞

(−q; q2)∞(−q11; q22)∞

]
×

× 1

1 − q

1 +
q(1 − q)

1 − q3

1 +
q2(1 − q2)

1 − q5

1 +
q3(1 − q3)

1 +
...

× 1

1 − q11

1 +
q11(1 − q11)

1 − q33

1 +
q22(1 − q22)

1 − q55

1 +
q33(1 − q33)

1 +
...

(3.4)

(q2; q2)∞(q54; q54)∞

[
(−q; q2)2

∞(−q27; q54)2
∞ − (q; q2)2

∞(q27; q54)2
∞

]
= 4q(q6; q6)∞(q18; q18)∞ + 4q7×

× 1

1 − q2

1 +
q2(1 − q2)

1 − q6

1 +
q4(1 − q4)

1 − q10

1 +
q6(1 − q6)

1 +
...

× 1

1 − q54

1 +
q54(1 − q54)

1 − q162

1 +
q108(1 − q108)

1 − q270

1 +
q162(1 − q162)

1 +
...

(3.5)

(q2; q2)∞(q70; q70)∞

[
(−q; q2)2

∞(−q35; q70)2
∞ − (q; q2)2

∞(q35; q70)2
∞

]
= 4q(q10; q10)∞(q14; q14)∞ + 4q9×

× 1

1 − q2

1 +
q2(1 − q2)

1 − q6

1 +
q4(1 − q4)

1 − q10

1 +
q6(1 − q6)

1 +
...

× 1

1 − q70

1 +
q70(1 − q70)

1 − q210

1 +
q140(1 − q140)

1 − q350

1 +
q210(1 − q210)

1 +
...

(3.6)
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(q10; q10)∞(q14; q14)∞

[
(−q5; q10)2

∞(−q7; q14)2
∞−(q5; q10)2

∞(q7; q14)2
∞

]
= −2q3(q2; q2)∞(q70; q70)∞ + 4q3×

× 1

1 − q10

1 +
q10(1 − q10)

1 − q30

1 +
q20(1 − q20)

1 − q50

1 +
q30(1 − q30)

1 +
...

× 1

1 − q14

1 +
q14(1 − q14)

1 − q42

1 +
q28(1 − q28)

1 − q70

1 +
q42(1 − q42)

1 +
...

(3.7)

Proof of (3.1): In (1.7), put q = −q, q7,−q7, q9,−q9, q63,−q63 respectively, we get

(−q) =
(q2; q2)∞
(−q; q2)∞

, ψ(q7) =
(q14; q14)∞
(q7; q14)∞

, ψ(−q7) =
(q14; q14)∞
(−q7; q14)∞

(3.1.1)

IV. PROOFS FOR MAIN RESULTS (3.1) TO (3.7)

(q9) =
(q18; q18)∞
(q9; q18)∞

, ψ(−q9) =
(q18; q18)∞
(−q9; q18)∞

(3.1.2)

(q63) =
(q126; q126)∞
(q63; q126)∞

, ψ(−q63) =
(q126; q126)∞
(−q63; q126)∞

(3.1.3)

Now, substituting the values from (3.1.1) to (3.1.3), and using (1.7) into (2.1), after sim-
plifications by applying the properties of q-product identities and further using continued
fraction (2.8), we get desired result (3.1).

Proofs of (3.2) and (3.3): On similar lines of proof for (3.1), we can easily obtain
proofs for (3.2) and (3.3).

Proof of (3.4): In (1.7), put q = −q, q11,−q11, q132, respectively, we get

(−q) =
(q2; q2)∞
(−q; q2)∞

, ψ(q11) =
(q22; q22)∞
(q11; q22)∞

, ψ(−q11) =
(q22; q22)∞

(−q11; q22)∞
, ψ(q132) =

(q264; q264)∞
(q132; q264)∞

(3.4.1)

again by putting q = q6 in (1.6), we get

φ(q6) = (−q6; q12)2
∞(q12; q12)∞ (3.4.2)

also by putting a = q2, b = q10 and a = q44, b = q88 respectively in (1.5), we get

f(q2, q10) = (−q2; q12)∞(−q10; q12)∞(q12; q12)∞ (3.4.3)

f(q44, q88) = (−q44; q132)∞(−q88; q132)∞(q132; q132)∞ (3.4.4)
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Now, substituting the values from (3.4.1) to (3.4.4), and using (1.7) into (2.4), after sim-
plifications by applying the properties of q-product identities and further using continued
fraction (2.8), we get desired result (3.4).

Proof of (3.5): In (1.6), put q = −q, q27,−q27, respectively, we get

φ(−q) = (q; q2)2
∞(q2; q2)∞ (3.5.1)

and
φ(q27) = (−q27; q54)2

∞(q54; q54)∞, φ(−q27) = (q27; q54)2
∞(q54; q54)∞ (3.5.2)

by substituting q = q2, q54 respectively in (1.7), we get

(q2) =
(q4; q4)∞
(q2; q4)∞

, ψ(q54) =
(q108; q108)∞
(q54; q108)∞

(3.5.3)

again by substituting q = q6, q18 respectively in (1.8), we get

f(−q6) = (q6; q6)∞, f(−q18) = (q18; q18)∞ (3.5.4)

Now, substituting the values from (3.5.1) to (3.5.4), and using (1.6) into (2.5), after sim-
plifications by applying the properties of q-product identities and further using continued
fraction (2.8), we get desired result (3.5).

Proofs of (3.6) and (3.7): On similar lines of proof for (3.5), we can easily obtain
proofs for (3.6) and (3.7).
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I. INTRODUCTION

A quiver ([2]) Q = (Q0, Q1, s, t) is a quadruple consisting of two set: Q0(whose

elements are called points, or vertices) and Q1 (whose elements are called arrows)

and two maps s, t : Q1 → Q0 which associates to each arrow α ∈ Q1 its source

s(α) ∈ Q0 and its target t(α) ∈ Q0, respectively. Hereafter we use the notation

Q = (Q0, Q1) or simply Q to denote a quiver. A path of length l in Q is a sequence

of arrows (α1, α2, ..., αl) of Q, of length l, such that s(αi+1) = t(αi). A path of

length 0, from a point a to a is denoted by εa and it is called stationary path.

Let Q be a quiver. The Path Algebra KQ, of Q is the K−algebra, whose under-

lying K−vector space has as a basis, the set of all paths (a|α1, α2, ..., αl|b) of length

≥ 0. The product of 2 basis elements (a|α1, α2, ..., αl|b) and (c|β1, β2, ..., βm|d) of

KQ is defined as,

(a|α1, α2, ..., αl|b).(c|β1, β2, ..., βm|d) = δbc(a|α1, ..., αl, β1, ...βm|d).

Let KQl be the subspace of KQ generated by the set Ql of all paths of length

l, where l ≥ 0. It is clear that (KQn).(KQm) ⊆ (KQn+m) and we have the direct

sum decomposition

KQ = KQ0 ⊕ KQ1 ⊕ ... ⊕ KQl ⊕ ... .

KQ is an associative algebra. It has an identity if and only if Q0 is finite and
acyclic.

Let Q be a quiver. The two sided ideal of the path algebra KQ generated (as

an ideal) by the arrows of Q is called the arrow ideal of KQ and is denoted by

RQ. So
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RQ = KQ1 ⊕ KQ2 ⊕ ... ⊕ KQl ⊕ ... .

Let Rl
Q denote the ideal of KQ generated, as a K− vectorspace, by the set of all

paths of length ≥ l.

A two-sided ideal I of KQ is said to be admissible if there exists m ≥ 2 such

that Rm
Q ⊆ I ⊆ R2

Q. If I is an admissible ideal of KQ, the pair (Q, I) is called

bound quiver and the quotient algebra KQ/I is called a bound quiver algebra.

A Quiver Q is said to be connected if the underlying graph is connected. An

algebra A is said to be connected if A is not a direct product of two algebras, or

equivalently, 0 and 1 are the only central idempotents.

A partially ordered set X is said to be locally finite if, the subset Xyz = {x ∈
X : y ≤ x ≤ z} is finite for each y ≤ z ∈ X. The Incidence algebra I(X, R) of a

locally finite partially ordered set X over the commutative ring R with identity is

I(X, R) = {f : X × X → R | f(x, y) = 0 if x � y}
with operations defined by

(f + g)(x, y) = f(x, y) + g(x, y),

(f.g)(x, y) =
∑

x≤z≤y

f(x, z).g(z, y),

(r.f)(x, y) = r.f(x, y)

for all f, g ∈ I(X, R), r ∈ R and x, y, z ∈ X.

The identity element of I(X, R) is δ(x, y) =

⎧⎪⎨⎪⎩ 1 if x = y

0 Otherwise

For a finite partially ordered set X, the incidence algebra I(X, K) is a sub-

algebra of the matrix algebra Mn(K). The following theorem characterize finite

dimensional incidence algebras.( [1], Theorem 4.2.10)

Theorem 1. Let K be a field and S be a subalgebra of Mn(K). Then there

exists a partially ordered set X of order n such that I(X, K) ∼= S if and only if

(i) S contains n pairwise orthogonal idempotent and

(ii) S/J(S) is commutative.

And, for incidence algebras of lower finite partially ordered sets we have the

following characterization: ([3], Theorem 2.)

Theorem 2. Let V be a K−vector space with dimension |X|, for a suitable

set X. Let S be a subalgebra of EndKV . Then there exists a lower finite partial

ordering in X such that S ∼= I(X, K) if and only if,
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(1) 1 ∈ S

(2) S/J(S) is commutative

(3) For each x ∈ X, there is an Ex ∈ S of rank 1, such that

Ex.Ey = δxyEx and
⊕
x∈X

Ex (V ) = V

(4) Xy = {z ∈ X | Ez.S.Ey 	= 0} is finite for each y ∈ X

Let Q be an acyclic quiver. Let Q0 denote the set of all points of Q. We may

define an order on Q0 by i ≤ j if and only if there exists a path from i to j. Since

εa ∈ Q , ∀a ∈ Q0, we have i ≤ i, ∀i ∈ Q0. If i 	= j and i < j, then j � i, since

Q is acyclic. If there exist a path α from i to j and β from j to k, αβ is a path

from i to k. So i ≤ j and j ≤ k implies i ≤ k. So (Q0,≤) is a partially ordered

set. Clearly (Q0,≤) is locally finite for a finite quiver Q.

Proposition 1. Let Q be a finite acyclic quiver such that there exists at

most 1 path from i to j, for each pair i, j ∈ Q0. Then the path algebra KQ is

isomorphic to the incidence algebra I(Q0, K).

Proof. Let Q = (Q0, Q1) be a finite acyclic quiver such that, there exists at

most 1 path from i to j, for each pair i, j ∈ Q0. If i ≤ j, denote the unique path

from i to j by αij. Define φ : KQ → I(Q0, K) such that αij �→ Eij where Eδij

is the function which assumes the value 1 at (i, j) and zero elsewhere. This is an

isomorphism from KQ to I(Q0, K), since φ is a bijective map from basis of KQ

({αij|i, j ∈ Q0}) to a basis of I(Q0, K) ({δij|i, j ∈ Q0}) and it preserves addition,

multiplication and identity element. Hence the theorem.

Definition 1. If a quiver Q = (Q0, Q1) is such that there exists atmost one

path from x to y for each pair x, y ∈ Q0, then we call Q a unique path quiver.

Proposition 2. Let K be a field and S be a subalgebra of Mn(K). Then

there is a unique path quiver Q = (Q0, Q1) with n vertices such that KQ ∼= S if

and only if

(i) S contains n pairwise orthogonal idempotents and

(ii) S/J(S) is commutative.

Proposition 3. Given a finite acyclic quiver Q = (Q0, Q1) there exists a

surjective homomorphism from KQ onto the associated incidence algebra I(Q0, K)

and this becomes an isomorphism if and only if Q is such that, there exists atmost

one path from i to j, for each pair i, j ∈ Q0.

II. THE PARTIALLY ORDERED SET CORRESPONDING TO AN ACYCLIC QUIVER
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Proof. Since Q is finite and acyclic, KQ is finite dimensional with the set

of all paths as its basis. Let Q0 = {x1, x2, ..., xn} and let for each i, j ∈ Q0,

i ≤ j whenever there exists a path from i to j. I(Q0, K) will be isomorphic to

a subalgebra S of Tn(K). If Eij denote the n × n matrix with 1 at the (i, j)th

position and zeros elsewhere. It is clear that whenever i ≤ j, Eij ∈ S. Now define

ϕ : KQ → I(Q0, K) such that ϕ(α) = Eij if α is a path from i to j. If α : i → j and

β : m → n are two paths Q, αβ = 0 if j 	= m and αβ is a path from i to n, if j = m.

ϕ(αβ) =

⎧⎪⎨⎪⎩ Ein if j = m

0 Otherwise

= Eij.Emn

= ϕ(α).ϕ(β)

φ(
∑

i∈Q0

εi) = In since εi �→ Eii. Hence φ is a surjective map from the basis of

KQ onto a basis of I(Q0, K), which is compatible with the addition, multiplication

and scalar multiplication. Hence φ is a surjective homomorphism from KQ onto

I(Q0, K). Clearly if there exists at most one path from i to j for each pair i, j ∈ Q0,

then dim(KQ) = dim(I(Q0, K)). So KQ ∼= I(Q0, K).

Remark 1. Under the above defined surjective homomorphism φ, we can

reach at the following results.

(1) If Q is a finite acyclic quiver then the Jacobson radical of KQ will be mapped

on to the Jacobson Radical of I(Q0, K)

(2) R l
Q will be mapped on to the two sided ideal Jl of I(Q0, K), where Jl = {f ∈ I

(Q0, K)|f(x, y) = 0 if the length of the longest chain from x to y is ≤ l}
Definition 2. Let Q = (Q0, Q1) be an acyclic quiver. Then Q is said to be

a locally finite quiver, if for each pair i, j ∈ Q0, there exists only finitely many

paths from i to j and is said to be lower finite if for each x ∈ Q0 there exist only

finitely many paths that ends at x.

Note that if Q = (Q0, Q1) is an acyclic locally finite quiver, then the associated

partial order set is also locally finite.

Proposition 4. If Q is an acyclic locally finite quiver and (Q0,≤) is the

associated locally finite partially ordered set, then there exists a homomorphism

φ : KQ → I(Q0, K) and this homomorphism is injective if and only if Q is such

that, for each pair i, j ∈ Q0 there exists at most one path from i to j.
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Proof. Let V be a K−vector space of dimension | Q0 |. Let {vi | i ∈ Q0}
be a basis of V . For each pair i, j ∈ Q0 there exists Eij ∈ EndKV such that

Eij(vk) = δjkvi. Let S = span{Eij | i, j ∈ Q0, i ≤ j}. This is a subalgebra

of I(Q0, K), since Eij can be mapped to δij ∈ I(Q0, K). These δijs will span a

subalgebra of I(Q0, K). Denote this subalgebra by A. We have, S ∼= A. Call this

isomorphism by .

Now, consider a basis of KQ, which is the set of all paths in Q. If α is a path from

i to j, then define φ : KQ → S such that α �→ Eij.This is a homomorphism from

KQ to S.

Now, φ ◦ : KQ → I(Q0, K) is a homomorphism. It is clear that this becomes

injective if and only if there exists at most one path from i to j for each pair

i, j ∈ Q0.

Remark 2. KQ has an identity if and only if Q is finite and acyclic. But

I(Q0, K) always has an identity. So that φ ◦ can not be surjective in general.

Remark 3. Associated to a finite acyclic quiver we get a unique partially

ordered set. But the converse is not true. For example, corresponding to X =

{1, 2} together with the usual ordering we get countably many quivers with n

arrows between 1 and 2 for any natural number n ∈ N.

Definition 3. Let Q be a quiver, and let P be the set of all paths in Q. A

Path Algebra of Q is defined as

{∑
α∈P

cαα | cα ∈ K, α ∈ P

}
. We define addition

Ã

Ã

Ã

III. PATH ALGEBRA: A GENERALIZED DEFINITION

and scalar multiplication componentwise. If (a |α1, α2, ..., αl | b) and (c | β1, β2, ..., βm | d)

are any paths in Q, we define their product as,

(a |α1, α2, ..., αl | b).(c | β1, β2, ..., βm | d) = δbc(a |α1, ..., αl, β1, ...βm | d). The prod-

uct of two arbitrary elements of KQ can be defined by assuming distributivity of

multiplication of paths over arbitrary summation.

∴
(∑

α∈P

cαα

) ∑
β∈P

dββ

)
=
∑

α,β∈P

cαdβαβ

This is well defined since αβ = 0 if t(α) 	= s(β) and since αβ is a path, it is

of finite length and so it can be expressed as a product of 2 paths only in finitely

many ways.

)

Define KQl =

{∑
α∈P

cαα | cα = 0 if length of α 	= l

}
.
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KQ can be expressed as a direct product of KQl for l ≥ 0. i.e.,

KQ = KQ0 × KQ1 × ... × KQl × ...

Clearly (KQn).(KQm) ⊆ KQn+m ∀n, m ≥ 0.

Note that if Q is a finite acyclic quiver, then our generalized definition and old

definition of path algebra coincides. So the results we obtained in the previous

section for finite acyclic quiver holds, even when we use the generalized definition

of path algebra. For a finite acyclic quiver Q, the set of all its paths P , will serve

as a basis for KQ. Here after we use the generalized definition of path algebra.

Proposition 5. Let Q be a quiver and KQ be the corresponding path alge-

bra.Then,

(a) KQ is an associative algebra.

(b) The element
∑

a∈Q0

εa is the identity in KQ.

(c) KQ is finite dimensional if and only if Q is finite and acyclic.

Proof. (a) The fact that KQ is an associative algebra, follows directly from the

definition of multiplication, because, the product of paths is the composition of

paths and hence it is associative. Any element in KQ is an arbitrary linear com-

bination of paths. So associativity holds in general, since we have distributivity of

multiplication over arbitrary summation.

(b) Let
∑
α∈P

cαα ∈ KQ be arbitrary.

∑
a∈Q0

εa

)
.

(∑
α∈P

cαα

)
=
∑
α∈P

cα

[( ∑
a∈Q0

εa

)
.α

]

=
∑
α∈P

cα

∑
a∈Q0

εa.α

)
=
∑
α∈P

cαα

,

since εa.α =

⎧⎪⎨⎪⎩ α, if s(α) = a

0, otherwise

Similarly since α.εa =

⎧⎪⎨⎪⎩ α, if t(α) = a

0, otherwise
,

we get

(∑
α∈P

cαα

)
.
∑

a∈Q0

εa

)
=

(∑
α∈P

cαα

)
Therefore,

∑
a∈Q0

εa serves as the identity of KQ.
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(c) If Q is infinite, so is the set P . Span(P ) ⊆ KQ and P is linearly indepen-

dent. So that KQ is infinite dimensional.

Now if Q is cyclic, then there is atleast one cycle, say ω in Q.

Then ω l ∈ P ∀ l ≥ 1, which implies P is infinite and hence KQ is also infinite
dimensional.

Conversely, if Q is finite and acyclic, then | P | is finite and in this case P serves

as a basis for KQ. Hence KQ is finite dimensional.

Proposition 6. Let Q = (Q0, Q1) be a unique path quiver then an element

a ∈ KQ is a unit if and only if the coefficient axx of the stationary path εx is

nonzero for all x ∈ Q0.

Proof. Let a =
∑

x,y∈Q0

axyαxy be a unit element of KQ, where αxy is the unique

path from x to y, if there is one. Then there exists a b =
∑

x,y∈Q0

bxyαxy in KQ such

that ab =
∑

x∈Q0

εx. That is

∑
x,y,z,u∈Q0

axybzuαxyαzu =
∑

x∈Q0

εx

⇒ ∑
x,u∈Q0

∑
y∈Q0

axybyu

)
αxu =

∑
x∈Q0

εx

Equating coefficients on both sides we may conclude that the coefficients of each

stationary path should be nonzero.

Conversely, suppose that a =
∑

x,y∈Q0

axyαxy is such that axx 	= 0 for all x ∈ Q0.

Then there is an element b ∈ KQ such that

bxy = 1/axx, if x = y

= −1
axx

∑
z∈Q0−{x}

axzbzy, if x 	= y

So that if x = y coefficient of εx = axx.bxx = 1 and

if x 	= y, coefficient of αxy in the product a.b =
∑

z∈Q0

axzbzy

But,∑
z∈Q0

axzbzy = axxbxy +
∑

z∈Q0−{x}
axzbzy

= axx
−1
axx

∑
z∈Q0−{x}

axzbzy +
∑

z∈Q0−{x}
axzbzy

= 0

Hence a.b =
∑

x∈Q0

εx which implies that a is a unit.
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Remark 4. {εa | a ∈ Q0} of all stationary paths in Q is a set of primitive

orthogonal idempotents for KQ such that
∑

a∈Q0

εa = 1 ∈ KQ.

Proposition 7. Let Q be a quiver and KQ be its path algebra. Then KQ is

connected if and only if Q is connected.

Proof. To prove this, we first prove that KQ is connected if and only if there

does not exist a nontrivial partition I
.∪ J of Q0 such that if i ∈ I and j ∈ J then,

εi(KQ)εj = 0 = εj(KQ)εi. Assume that there exists such a partition for Q0. Let

c =
∑
j∈J

εj. Since the partition is nontrivial c 	= 0 or 1. Since εj’s are primitive

orthogonal idempotents and multiplication in KQ is distributive over arbitrary

sum, we can conclude that c is an idempotent. Also,

c.εi = 0 = εi.c, ∀i ∈ I and

c.εj = 0 = εj.c, ∀j ∈ J .

According to our hypothesis εi.a.εj = 0 = εj.a.εi, ∀i ∈ I and ∀j ∈ J and ∀a ∈
KQ.

Therefore,

c.a =
∑
j∈J

εj

)
.a

=
∑
j∈J

εj.a

)
.1

=
∑
j∈J

εj.a

)
.

(∑
i∈I

εi +
∑
k∈J

εk

)
=
∑

k,j∈J

εjaεk

=
∑
j∈J

εj +
∑
i∈I

εi

)
a

(∑
k∈J

εk

)
= a.c

which implies c is a nontrivial central idempotent. Hence KQ is not connected.

Conversely, if KQ is not connected, it contains a nontrivial central idempotent,

say c.

Therefore,

c = 1.c.1

=
∑

i∈Q0

εi

)
.c.

∑
j∈Q0

εj

)
=
∑

i,j∈Q0

εicεj
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=
∑

i∈Q0

εicεi, since c is central

Now let ci = εic = cεi = εicεi ∈ εi(KQ)εi

So that, c2
i = (εicεi) (εicεi) = εic

2εi = εicεi = ci,

hence ci is an idempotent.

But εi’s are primitive, so that either ci = 0 or ci = 1, since

εi = εi (1 − ci + ci)

= εi (1 − ci) + εici

So, εi = εici or εi = εi (1 − ci).

Let I = {i ∈ Q0/ci = 0} and J = {j ∈ Q0/cj = 1}. Since c 	= 0, 1, this is a

nontrivial partition of Q0. And if i ∈ I then, εic = cεi = 0 and if j ∈ J then,

εjc = cεj = εj.

Therefore if i ∈ I and j ∈ J , εi(KQ)εj = εi(KQ)cεj = εic(KQ)εj = 0.

Similarly, εj(KQ)εi = 0.

Now assume that KQ is not connected. Let Q′ be a connected component of Q.

Let Q′′ be the full subquiver of Q having the set of points Q′′
0 = Q0\Q′

0. Since Q

is not connected, both Q′
0 and Q′′

0 are nonempty. Let a ∈ Q′
0 and b ∈ Q′′

0. Since Q

is not connected, then if α is any path in Q, either α is entirely contained in Q′ or

α is entirely contained in Q′′

If α is contained in Q′ then, α.εb = 0 and so εa.α.εb = 0.

If α is contained in Q′′ then, εa.α = 0 and so εa.α.εb = 0.

Therefore, εa (KQ) εb = 0. Similarly, εb (KQ) εa = 0

This implies KQ is not connected.

Now assume that Q is connected but KQ is not. We have a nontrivial disjoint

union of Q0 such that Q0 = Q′
0

.∪Q′′
0 and if a ∈ Q′ and b ∈ Q′′ then, εa (KQ) εb =

0 = εb (KQ) εa.

Since Q is connected, there exists some a0 ∈ Q′
0 and some b0 ∈ Q′′

0 such that

they are neighbors. Without loss of generality, suppose that there exists an arrow

α : a0 → b0. Therefore, α = εa0 .α.εb0 ∈ εa0 (KQ) εb0 = 0, which is a contradiction.

Hence KQ is connected.

Definition 4. Let Q be a quiver and KQ be its path algebra. The two-sided

ideal of KQ, is called arrow ideal and is denoted by RQ if it is defined by,

RQ =

{∑
α∈P

cαα| cα = 0, if α is a stationary path

}
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Let R l
Q denote the two-sided ideal of KQ generated by the paths of length ≥ l.

So that

R l
Q =

{∑
α∈P

cαα | cα = 0, if α is a path of length less than l

}
.

Therefore
Rl

Q

Rl+1
Q

∼= KQl

Definition 5. A two-sided ideal I of KQ is said to be admissible if there

exists m ≥ 2 such that

Rm
Q ⊆ I ⊆ R2

Q.

If I is an admissible ideal of KQ, the pair (Q, I) is called bound quiver and

the quotient algebra KQ/I is called a bound quiver algebra.

Proposition 8. Let Q be a quiver and I be an admissible ideal of KQ.

The set {ea = εa + I | a ∈ Q0} is a set of primitive orthogonal idempotents of the

bound quiver algebra KQ/I and
∑

a∈Q0

ea = 1KQ/I

Proof. Since ea is the image of εa under the canonical homomorphism from

KQ → KQ/I, and
∑

a∈Q0

εa = 1, it is clear that {ea = εa + I | a ∈ Q0} is a set of

orthogonal idempotents such that
∑

a∈Q0

ea = 1KQ/I . Now we have to prove that each

ea is primitive. That is only idempotents of ea (KQ/I) ea are zero and ea. Any

idempotent of ea (KQ/I) ea can be written in the form e = λεa + ω + I, λ ∈ K

and ω is a linear combination of cycles of length ≥ 1. Therefore, since e is an

idempotent,

(λεa + ω)2 + I = (λεa + ω) + I

i.e., (λεa + ω)2 − (λεa + ω) ∈ I

i.e., (λ2 − λ) εa + (2λ − 1) ω + ω2 ∈ I

Since I ⊆ R2
Q, (λ2 − λ) = 0 which implies λ = 0 or 1

If λ = 0, e = ω + I and then, ω is an idempotent modulo I.Since Rm
Q ⊆ I for some

m ≥ 2, ωm ∈ I and so ω ∈ I. So that e = 0 ∈ KQ/I.

If λ = 1, then e = εa +ω+I and ea−e = −ω+I is an idempotent in ea (KQ/I) ea.

So that ω is an idempotent modulo I, which implies ωm ∈ I which in turn implies

that ω ∈ I. Hence ea − e ∈ I and ea = e modulo I.

Proposition 9. Let Q be a quiver and I be an admissible ideal of KQ. The

bound quiver algebra KQ/I is connected if and only if Q is a connected quiver.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes

  
G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
II

Is
su

e 
  
  
er

sio
n

I
V 

II
  

 F
)

)

© 2012 Global Journals Inc.  (US)

71

        

20
12

  
eb
ru
ar
y

F

On Quivers and Incidence Algebras

Proof. Let Q be not connected. By Proposition 5, we have KQ is not con-

nected. And this implies that there exists a nontrivial central idempotent γ

(neither 0 nor 1) which can be chosen as a sum of paths of stationary paths.

Then c = γ + I 	= I. If c = 1 + I then, 1 − γ ∈ I, which is not possible, since

I ⊆ R2
Q. Hence c is a nontrivial central idempotent of KQ/I and so KQ/I is not

connected as an algebra.

Conversely, assume that Q is a connected quiver, but KQ/I is not a connected al-

gebra. Then, there exists a nontrivial partition Q0 = Q′
0

.∪Q′′
0 such that whenever

x ∈ Q′
0 and y ∈ Q′′

0, then ex (KQ/I) ey = 0 = ey (KQ/I) ex. Since Q is a connected

quiver, There is some a ∈ Q′
0 and b ∈ Q′′

0 that are neighbors. With out loss of

generality we may assume that there exists an arrow from a to b. Then, α = εaαεb

and so, α = α + I satisfies α = eaαeb ∈ ea (KQ/I) eb = 0. As α 	= I
(
∵ I ⊆ R2

Q

)
,

This is a contradiction. Hence KQ/I is connected.

In the second section, we discussed some homomorphism between Path algebras

of finite and acyclic quivers and Incidence algebras of associated partially ordered

sets. Now we discuss the same for infinite dimensional algebras.

Proposition 10. Let Q be a unique path quiver. Then KQ ∼= I(Q0, K)

Proof. Given that there exists atmost one path from x to y for each pair x, y ∈
Q0. Denote this path by αxy. An arbitrary element a ∈ KQ can be written as

a =
∑

αxy∈P

axyαxy

Define Φ : KQ → I(Q0, K) by Φ(a) = fa where,

fa(x, y) = axy

If x � y, there is no path from x to y, so that the coefficient of αxy in a = axy = 0.

So that fa(x, y) = 0. Hence fa ∈ I(Q0, K).

Now let a =
∑

αxy∈P

axyαxy and b =
∑

αxy∈P

bxyαxy

Then,

fa+b = Φ(a + b) = Φ

⎛⎝ ∑
αxy∈P

axyαxy +
∑

αxy∈P

bxyαxy

⎞⎠

IV. THE RELATION BETWEEN THE PATH ALGEBRA OF AN ACYCLIC QUIVER AND THE 

INCIDENCE ALGEBRA OF THE ASSOCIATED POSET
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= Φ

⎛⎝ ∑
αxy∈P

(axy + bxy)αxy

⎞⎠
So that Φ(a + b) = Φ(a) + Φ(b).

Let Φ(ab) = fab. Then,

Φ(ab) = Φ

⎛⎝⎛⎝ ∑
αxy∈P

axyαxy

⎞⎠ ∑
αuv∈P

buvαuv

)⎞⎠
= Φ

⎛⎝ ∑
αxy ,αuv∈P

axybuv (αxyαuv)

⎞⎠
= Φ

∑
αxv∈P

∑
x�y�v

axybyv

)
αxv

)

Therefore, fab(x, y) =
∑

x�z�y

axzbzy

)
= (fa.fb) (x, y), which implies

Φ(ab) = Φ(a).Φ(b)

Φ
∑

a∈Q0

εa

)
= δ = identity in I (Q0, K)

Φ (c.a) = c.Φ(a), for c ∈ K, a ∈ KQ

So that Φ is a homomorphism from KQ to I(Q0, K).

Now let f ∈ I(Q0, K), then there exists an a =
∑

αxy∈P

f(x, y)αxy ∈ KQ such that

Φ(a) = f . Hence Φ is onto.

If a, b ∈ KQ such that Φ(a) = Φ(b) then,

Φ(a)(x, y) = Φ(b)(x, y) ∀x, y ∈ Q0

i.e. axy = bxy ∀x, y ∈ Q0

i.e. a = b

So Φ is one-one and hence it is an isomorphism.

Combining theorem 2 and proposition 10 we can reach at the following result

Proposition 11. Let K be a field and V be a K−vectorspace. Let S be

a subalgebra of EndK(V ). Then there exists a lower finite unique path quiver

Q = (Q0, Q1) with | Q0 |= dim(V ) such that KQ ∼= S if and only if

(i) 1 ∈ S

On Quivers and Incidence Algebras
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(ii) S/J(S) is commutative.

(iii) For each x ∈ Q0, there is Ex ∈ S of rank 1 such that Ex.Ey = δxyEx where

δxy is the Kronecker’s delta and
∑

x∈Qo

Ex (V ) = V

(iv) Xy = {z ∈ Q0 : Ez.S.Ey 	= 0} is finite for each y ∈ Q0

Proposition 12. Let Q be a locally finite acyclic quiver. Then there exists a

surjective homomorphism from KQ to I(Q0, K).

Proof. Let Q be a locally finite acyclic quiver and P be the set of all paths

in Q. Since Q is locally finite, there exists only finitely many paths from x to y

for each pair x, y ∈ Q0. Let nxy denote the number of paths from x to y in Q,

and let α
(1)
xy , α

(2)
xy , ..., α

(nxy)
xy denote the nxy paths from x to y in Q. Let a ∈ KQ be

arbitrary. So that a can be written as a =
∑
α∈P

aαα. Let axy denote the sum of

coefficients of all paths from x to y that comes in a. Define Φ : KQ → I(Q0, K) by

Φ(a) = fa, where fa(x, y) = axy As in the previous proposition, it is easy to verify

that fa ∈ I(Q0, K), Φ preserves addition and scalar multiplication, Φ maps iden-

tity of KQ to identity of I(Q0, K). Now we prove that Φ preserves multiplication.

Let a =
∑
α∈P

aαα and b =
∑
β∈P

bββ. So that ab =
∑

α,β∈P

aαbβαβ. Let us denote the

sum of coefficients of all paths from x to y that comes in ab by (ab)xy. Note that

αβ is a path from x to y if and only if s(α) = x and t(β) = y and t(α) = s(β). So,

(ab)xy =
∑

x≤z≤y
1≤m≤nxz
1≤n≤nzy

a
α

(m)
xz

b
β

(n)
zy

=
∑

x≤z≤y

( ∑
1≤m≤nxz

a
α

(m)
xz

) ∑
1≤n≤nzy

b
β

(n)
zy

)
=
∑

x≤z≤y

axzbzy

=
∑

x≤z≤y

fa(x, z)fb(z, y)

= (fa.fb)(x, y)

So that Φ is a homomorphism from KQ to I(Q0, K). Now, let f ∈ I(Q0, K)

and denote any fixed path from x to y by αxy. So that there exists some a =∑
x,y∈Q0

f(x, y)αxy ∈ KQ such that Φ(a) = f .

Hence Φ is a surjective homomorphism.
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function.The results derived in this paper are of general character and are believed to be new.
Keywords and Phrases : Contiguous relation,Recurrence relation, Gauss second summation theorem.

I. INTRODUCTION

The special function is one of the central branches of Mathematical sciences initiated
by LEuler .But systematic study of the Hypergeometric functions were initiated by C.F
Gauss, an imminent German Mathematician in 1812 by defining the Hypergeometric series
and he had also proposed notation for Hypergeometric functions. Since about 250 years
several talented brains and promising Scholars have been contributed to this area. Some
of them are C.F Gauss, G.H Hardy , S. Ramanujan ,A.P Prudnikov , W.W Bell , Yu. A
Brychkov and G.E Andrews.
Generalized Gaussian Hypergeometric function of one variable is defined by

AFB

⎡
⎣ a1, a2, · · · , aA ;

z

b1, b2, · · · , bB ;

⎤
⎦ =

∞∑
k=0

(a1)k(a2)k · · · (aA)kz
k

(b1)k(b2)k · · · (bB)kk!

or

AFB

⎡
⎣ (aA) ;

z

(bB) ;

⎤
⎦ ≡ AFB

⎡
⎣ (aj)

A
j=1 ;

z

(bj)
B
j=1 ;

⎤
⎦ =

∞∑
k=0

((aA))kz
k

((bB))kk!
(1)

where the parameters b1, b2, · · · , bB are neither zero nor negative integers and A, B are
non-negative integers. The series converges for all finite z if A ≤ B, converges for| z |< 1
if A=B+1, diverges for all z, z �= 0 ifA > B + 1.

Contiguous Relation is defined by

Following Eq. (10), p-51 of ref [6], we write

(a − b) 2F1

[
a, b ;
c ;

z

]
= a 2F1

[
a + 1, b ;

c ;
z

]
− b 2F1

[
a, b + 1 ;
c ;

z

]
(2)
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94
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II. MAIN RESULTS OF SUMMATION FORMULAE

Two Summation Formulae Relating Hypergeometric Function

Recurrence relation is defined by

Γ(z + 1) = z Γ(z) (3)

Gauss second summation theorem is defined by [Prudnikov., 491(7.3.7.3)]

2F1

[
a, b ;
a+b+1

2
;

1

2

]
=

Γ(a+b+1
2

) Γ(1
2
)

Γ(a+1
2

) Γ( b+1
2

)
(4)

=
2(b−1) Γ( b

2
) Γ(a+b+1

2
)

Γ(b) Γ(a+1
2

)
(5)

2F1

[
a, b ;
a+b+23

2
;

1

2

]
=

2b Γ(a+b+23
2

)

(a − b) Γ(b)
×

×

[
Γ( b

2
)

Γ(a+1
2

)

{
1024a(654729075 − 1396704420a + 1094071221a2 − 444647600a3 + 107494190a4)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024a(−16486680a5 + 1646778a6 − 106800a7 + 4335a8 − 100a9 + a10 − 400914000b)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024a(4564470450ab − 1410623712a2b + 1263684888a3b − 155769600a4b + 42918540a5b)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024a(−2331168a6b + 255192a7b − 5040a8b + 210a9b + 2644887945b2 − 265793584ab2)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024a(3183848164a2b2 − 293010704a3b2 + 257688830a4b2 − 11918928a5b2 + 3222324a6b2)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024a(−57456a7b2 + 5985a8b2 + 368444608b3 + 2290676024ab3 − 33209568a2b3)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024a(529562376a3b3 − 17364480a4b3 + 14271432a5b3 − 217056a6b3 + 54264a7b3)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024a(407004318b4 + 126838376ab4 + 413414806a2b4 − 904400a3b4 + 26340650a4b4)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +
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+
1024a(−271320a5b4 + 203490a6b4 + 32111520b5 + 117320364ab5 + 9767520a2b5)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024a(21434280a3b5 + 352716a5b5 + 9231474b6 + 4019792ab6 + 7533652a2b6 + 180880a3b6)[ 10∏

ϕ=1

{
a − b− (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024a(293930a4b6 + 357312b7 + 1020984ab7 + 93024a2b7 + 116280a3b7 + 38367b8 + 14364ab8)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024a(20349a2b8 + 560b9 + 1330ab9 + 21b10)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}]+

+
1024b(654729075 − 400914000a + 2644887945a2 + 368444608a3 + 407004318a4 + 32111520a5)[ 11∏

ς=1

{
a − b− (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024b(9231474a6 + 357312a7 + 38367a8 + 560a9 + 21a10 − 1396704420b + 4564470450ab)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024b(−265793584a2b + 2290676024a3b + 126838376a4b + 117320364a5b + 4019792a6b)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024b(1020984a7b + 14364a8b + 1330a9b + 1094071221b2 − 1410623712ab2)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024b(3183848164a2b2 − 33209568a3b2 + 413414806a4b2 + 9767520a5b2 + 7533652a6b2)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024b(93024a7b2 + 20349a8b2 − 444647600b3 + 1263684888ab3 − 293010704a2b3)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024b(529562376a3b3 − 904400a4b3 + 21434280a5b3 + 180880a6b3 + 116280a7b3)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024b(107494190b4 − 155769600ab4 + 257688830a2b4 − 17364480a3b4 + 26340650a4b4)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024b(293930a6b4 − 16486680b5 + 42918540ab5 − 11918928a2b5 + 14271432a3b5)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +
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+
1024b(−271320a4b5 + 352716a5b5 + 1646778b6 − 2331168ab6 + 3222324a2b6)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
(1024b − 217056a3b6 + 203490a4b6 − 106800b7 + 255192ab7 − 57456a2b7 + 54264a3b7)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024b(4335b8 − 5040ab8 + 5985a2b8 − 100b9 + 210ab9 + b10)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}]
}
−

−
Γ( b+1

2
)

Γ(a
2
)

{
2048(654729075 + 400914000a + 2644887945a2 − 368444608a3 + 407004318a4[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
2048(−32111520a5 + 9231474a6 − 357312a7 + 38367a8 − 560a9 + 21a10 + 1396704420b)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
2048(4564470450ab + 265793584a2b + 2290676024a3b − 126838376a4b + 117320364a5b)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
2048(−4019792a6b + 1020984a7b − 14364a8b + 1330a9b + 1094071221b2 + 1410623712ab2)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
2048(3183848164a2b2 + 33209568a3b2 + 413414806a4b2 − 9767520a5b2 + 7533652a6b2)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
2048(−93024a7b2 + 20349a8b2 + 444647600b3 + 1263684888ab3 + 293010704a2b3)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
2048(529562376a3b3 + 904400a4b3 + 21434280a5b3 − 180880a6b3 + 116280a7b3)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
2048(107494190b4 + 155769600ab4 + 257688830a2b4 + 17364480a3b4 + 26340650a4b4)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
2048(293930a6b4 + 16486680b5 + 42918540ab5 + 11918928a2b5 + 14271432a3b5 + 271320a4b5)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +
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+
2048(352716a5b5 + 1646778b6 + 2331168ab6 + 3222324a2b6 + 217056a3b6 + 203490a4b6)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
2048(+106800b7 + 255192ab7 + 57456a2b7 + 54264a3b7 + 4335b8 + 5040ab8 + 5985a2b8)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
2048(100b9 + 210ab9 + b10)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}]+

+
2048(654729075 + 1396704420a + 1094071221a2 + 444647600a3 + 107494190a4 + 16486680a5)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
2048(1646778a6 + 106800a7 + 4335a8 + 100a9 + a10 + 400914000b + 4564470450ab)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
2048(1410623712a2b + 1263684888a3b + 155769600a4b + 42918540a5b + 2331168a6b)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
2048(255192a7b + 5040a8b + 210a9b + 2644887945b2 + 265793584ab2 + 3183848164a2b2)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
2048(293010704a3b2 + 257688830a4b2 + 11918928a5b2 + 3222324a6b2 + 57456a7b2)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
2048(5985a8b2 − 368444608b3 + 2290676024ab3 + 33209568a2b3 + 529562376a3b3)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
2048(17364480a4b3 + 14271432a5b3 + 217056a6b3 + 54264a7b3 + 407004318b4)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
2048(−126838376ab4 + 413414806a2b4 + 904400a3b4 + 26340650a4b4 + 271320a5b4)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
2048(203490a6b4 − 32111520b5 + 117320364ab5 − 9767520a2b5 + 21434280a3b5)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
2048(352716a5b5 + 9231474b6 − 4019792ab6 + 7533652a2b6 − 180880a3b6 + 293930a4b6)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +
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+
2048(−357312b7 + 1020984ab7 − 93024a2b7 + 116280a3b7 + 38367b8 − 14364ab8)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
2048(20349a2b8 − 560b9 + 1330ab9 + 21b10)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}]
}]

(6)

2F1

[
a, b ;
a+b+24

2
;

1

2

]
=

2b Γ(a+b+24
2

)

(a − b) Γ(b)
×

×

[
Γ( b

2
)

Γ(a
2
)

{
2048(3715891200a − 5441863680a2 + 3264915456a3 − 1076416000a4)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
2048(218683520a5 − 28865760a6 + 2524368a7 − 145200a8 + 5280a9 − 110a10 + a11)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
2048(3715891200b + 18690693120a2b − 4089046016a3b + 3093104256a4b − 317412480a5b)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
2048(75431664a6b − 3589344a7b + 347424a8b − 6160a9b + 231a10b + 5441863680b2)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
2048(18690693120ab2 + 9866191104a3b2 − 699103328a4b2 + 531899984a5b2 − 21114016a6b2)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
2048(4975872a7b2 − 79002a8b2 + 7315a9b2 + 3264915456b3 + 4089046016ab3)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
2048(9866191104a2b3 + 1327912432a4b3 − 35814240a5b3 + 25467904a6b3 − 341088a7b3)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
2048(74613a8b3 + 1076416000b4 + 3093104256ab4 + 699103328a2b4 + 1327912432a3b4)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
2048(55711040a5b4 − 497420a6b4 + 319770a7b4 + 218683520b5 + 317412480ab5)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
2048(531899984a2b5 + 35814240a3b5 + 55711040a4b5 + 646646a6b5 + 28865760b6)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +
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+
2048(75431664ab6 + 21114016a2b6 + 25467904a3b6 + 497420a4b6 + 646646a5b6 + 2524368b7)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
2048(3589344ab7 + 4975872a2b7 + 341088a3b7 + 319770a4b7 + 145200b8 + 347424ab8)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
2048(79002a2b8 + 74613a3b8 + 5280b9 + 6160ab9 + 7315a2b9 + 110b10 + 231ab10 + b11)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
4096b(3715891200 + 1199554560a + 4962674688a2 + 720247296a3 + 469992064a4)[ 11∏

δ=0

{
a − b− 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
4096b(34181280a5 + 7691376a6 + 270864a7 + 24816a8 + 330a9 + 11a10 − 1199554560b)[ 11∏

δ=0

{
a − b− 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
4096b(12030259200ab + 1008349696a2b + 3230041600a3b + 198001888a4b + 113212512a5b)[ 11∏

δ=0

{
a − b − 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
4096b(3702160a6b + 743424a7b + 9702a8b + 770a9b + 4962674688b2 − 1008349696ab2)[ 11∏

δ=0

{
a − b− 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
4096b(5777911552a2b2 + 181722688a3b2 + 473992848a4b2 + 12633936a5b2 + 6273344a6b2)[ 11∏

δ=0

{
a − b − 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
4096b(75240a7b2 + 13167a8b2 − 720247296b3 + 3230041600ab3 − 181722688a2b3)[ 11∏

δ=0

{
a − b− 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
4096b(747974976a3b3 + 9586640a4b3 + 20837376a5b3 + 198968a6b3 + 85272a7b3)[ 11∏

δ=0

{
a − b− 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
4096b(469992064b4 − 198001888ab4 + 473992848a2b4 − 9586640a3b4 + 30749600a4b4)[ 11∏

δ=0

{
a − b− 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
4096b(135660a5b4 + 248710a6b4 − 34181280b5 + 113212512ab5 − 12633936a2b5)[ 11∏

δ=0

{
a − b− 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
4096b(20837376a3b5 − 135660a4b5 + 352716a5b5 + 7691376b6 − 3702160ab6)[ 11∏

δ=0

{
a − b− 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +
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+
4096b(6273344a2b6 − 198968a3b6 + 248710a4b6 − 270864b7 + 743424ab7 − 75240a2b7)[ 11∏

δ=0

{
a − b− 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
4096b(+85272a3b7 + 24816b8 − 9702ab8 + 13167a2b8 − 330b9 + 770ab9 + 11b10)[ 11∏

δ=0

{
a − b− 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}]
}
−

−
Γ( b+1

2
)

Γ(a+1
2

)

{
4096a(3715891200 − 1199554560a + 4962674688a2 − 720247296a3 + 469992064a4)[ 10∏

η=0

{
a − b− 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
4096a(−34181280a5 + 7691376a6 − 270864a7 + 24816a8 − 330a9 + 11a10 + 1199554560b)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
4096a(12030259200ab − 1008349696a2b + 3230041600a3b − 198001888a4b + 113212512a5b)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
4096a(−3702160a6b + 743424a7b − 9702a8b + 770a9b + 4962674688b2 + 1008349696ab2)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
4096a(5777911552a2b2 − 181722688a3b2 + 473992848a4b2 − 12633936a5b2 + 6273344a6b2)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
4096a(−75240a7b2 + 13167a8b2 + 720247296b3 + 3230041600ab3 + 181722688a2b3)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
4096a(747974976a3b3 − 9586640a4b3 + 20837376a5b3 − 198968a6b3 + 85272a7b3)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
4096a(469992064b4 + 198001888ab4 + 473992848a2b4 + 9586640a3b4 + 30749600a4b4)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
4096a(−135660a5b4 + 248710a6b4 + 34181280b5 + 113212512ab5 + 12633936a2b5)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
4096a(20837376a3b5 + 135660a4b5 + 352716a5b5 + 7691376b6 + 3702160ab6 + 6273344a2b6)[ 10∏

η=0

{
a − b− 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
4096a(198968a3b6 + 248710a4b6 + 270864b7 + 743424ab7 + 75240a2b7 + 85272a3b7)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
II

Is
su

e 
  
  
er

sio
n

I
V 

II
  

 F
)

)

© 2012 Global Journals Inc.  (US)

83

        

20
12

  
eb
ru
ar
y

F
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+
4096a(24816b8 + 9702ab8 + 13167a2b8 + 330b9 + 770ab9 + 11b10)[ 10∏

η=0

{
a − b − 2η

}][ 11∏
ϑ=1

{
a − b + 2ϑ

}] +

+
2048(3715891200a + 5441863680a2 + 3264915456a3 + 1076416000a4 + 218683520a5)[ 11∏

δ=0

{
a − b− 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
2048(28865760a6 + 2524368a7 + 145200a8 + 5280a9 + 110a10 + a11 + 3715891200b)[ 11∏

δ=0

{
a − b− 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
2048(18690693120a2b + 4089046016a3b + 3093104256a4b + 317412480a5b + 75431664a6b)[ 11∏

δ=0

{
a − b − 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
2048(3589344a7b + 347424a8b + 6160a9b + 231a10b − 5441863680b2 + 18690693120ab2)[ 11∏

δ=0

{
a − b− 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
2048(9866191104a3b2 + 699103328a4b2 + 531899984a5b2 + 21114016a6b2 + 4975872a7b2)[ 11∏

δ=0

{
a − b − 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
2048(79002a8b2 + 7315a9b2 + 3264915456b3 − 4089046016ab3 + 9866191104a2b3)[ 11∏

δ=0

{
a − b− 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
2048(1327912432a4b3 + 35814240a5b3 + 25467904a6b3 + 341088a7b3 + 74613a8b3)[ 11∏

δ=0

{
a − b− 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
2048(−1076416000b4 + 3093104256ab4 − 699103328a2b4 + 1327912432a3b4 + 55711040a5b4)[ 11∏

δ=0

{
a − b − 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
2048(497420a6b4 + 319770a7b4 + 218683520b5 − 317412480ab5 + 531899984a2b5)[ 11∏

δ=0

{
a − b− 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
2048(−35814240a3b5 + 55711040a4b5 + 646646a6b5 − 28865760b6 + 75431664ab6)[ 11∏

δ=0

{
a − b− 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
2048(−21114016a2b6 + 25467904a3b6 − 497420a4b6 + 646646a5b6 + 2524368b7 − 3589344ab7)[ 11∏

δ=0

{
a − b − 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +

+
2048(4975872a2b7 − 341088a3b7 + 319770a4b7 − 145200b8 + 347424ab8)[ 11∏

δ=0

{
a − b− 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}] +
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Notes

III. DERIVATION OF SUMMATION FORMULA (6)

+
2048(−79002a2b8 + 74613a3b8 + 5280b9 − 6160ab9 + 7315a2b9 − 110b10 + 231ab10 + b11)[ 11∏

δ=0

{
a − b − 2δ

}][ 10∏
ζ=1

{
a − b + 2ζ

}]
}]

(7)

Substituting c = a+b+23
2

and z = 1
2

in equation (2), we get

(a − b) 2F1

[
a, b ;
a+b+23

2
;

1

2

]
= a 2F1

[
a + 1, b ;
a+b+23

2
;

1

2

]
− b 2F1

[
a, b + 1 ;
a+b+23

2
;

1

2

]

Now applying the formula obtained by Salahuddin [Salahuddin.,p.12(9)], we get

L.H.S = a
2b Γ(a+b+23

2
)

Γ(b)

[
Γ( b

2
)

Γ(a+1
2

)

{
1024(654729075 − 1396704420a + 1094071221a2)[ 10∏
ϕ=1

{
a − b− (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}]+

+
1024(−444647600a3 + 107494190a4 − 16486680a5 + 1646778a6 − 106800a7 + 4335a8 − 100a9)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(a10 − 400914000b + 4564470450ab − 1410623712a2b + 1263684888a3b− 155769600a4b)[ 10∏

ϕ=1

{
a − b− (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(42918540a5b − 2331168a6b + 255192a7b − 5040a8b + 210a9b + 2644887945b2)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(−265793584ab2 + 3183848164a2b2 − 293010704a3b2 + 257688830a4b2 − 11918928a5b2)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(3222324a6b2 − 57456a7b2 + 5985a8b2 + 368444608b3 + 2290676024ab3 − 33209568a2b3)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(529562376a3b3 − 17364480a4b3 + 14271432a5b3 − 217056a6b3 + 54264a7b3)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(407004318b4 + 126838376ab4 + 413414806a2b4 − 904400a3b4 + 26340650a4b4)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +
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+
1024(−271320a5b4 + 203490a6b4 + 32111520b5 + 117320364ab5 + 9767520a2b5)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(21434280a3b5 + 352716a5b5 + 9231474b6 + 4019792ab6 + 7533652a2b6 + 180880a3b6)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(293930a4b6 + 357312b7 + 1020984ab7 + 93024a2b7 + 116280a3b7)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(38367b8 + 14364ab8 + 20349a2b8 + 560b9 + 1330ab9 + 21b10)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}]
}
−

−
Γ( b+1

2
)

Γ(a+2
2

)

{
1024(654729075 + 400914000a + 2644887945a2 − 368444608a3 + 407004318a4)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(−32111520a5 + 9231474a6 − 357312a7 + 38367a8 − 560a9 + 21a10 + 1396704420b)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(4564470450ab + 265793584a2b + 2290676024a3b − 126838376a4b + 117320364a5b)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(−4019792a6b + 1020984a7b − 14364a8b + 1330a9b + 1094071221b2 + 1410623712ab2)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(3183848164a2b2 + 33209568a3b2 + 413414806a4b2 − 9767520a5b2 + 7533652a6b2)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(−93024a7b2 + 20349a8b2 + 444647600b3 + 1263684888ab3 + 293010704a2b3)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(529562376a3b3 + 904400a4b3 + 21434280a5b3 − 180880a6b3 + 116280a7b3)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(107494190b4 + 155769600ab4 + 257688830a2b4 + 17364480a3b4 + 26340650a4b4)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(293930a6b4 + 16486680b5 + 42918540ab5 + 11918928a2b5 + 14271432a3b5 + 271320a4b5)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +
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+
1024(352716a5b5 + 1646778b6 + 2331168ab6 + 3222324a2b6 + 217056a3b6 + 203490a4b6)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(106800b7 + 255192ab7 + 57456a2b7 + 54264a3b7 + 4335b8 + 5040ab8 + 5985a2b8)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}] +

+
1024(100b9 + 210ab9 + b10)[ 10∏

ϕ=1

{
a − b − (2ϕ − 1)

}][ 11∏
ω=1

{
a − b + (2ω − 1)

}]
}]

−

−b
2b+1 Γ(a+b+23

2
)

Γ(b + 1)

[
Γ( b+1

2
)

Γ(a
2
)

{
1024(654729075 + 1396704420a + 1094071221a2 + 444647600a3)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(107494190a4 + 16486680a5 + 1646778a6 + 106800a7 + 4335a8 + 100a9 + a10)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(400914000b + 4564470450ab + 1410623712a2b + 1263684888a3b + 155769600a4b)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(42918540a5b + 2331168a6b + 255192a7b + 5040a8b + 210a9b + 2644887945b2)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(265793584ab2 + 3183848164a2b2 + 293010704a3b2 + 257688830a4b2 + 11918928a5b2)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(3222324a6b2 + 57456a7b2 + 5985a8b2 − 368444608b3 + 2290676024ab3 + 33209568a2b3)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(529562376a3b3 + 17364480a4b3 + 14271432a5b3 + 217056a6b3 + 54264a7b3)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(407004318b4 − 126838376ab4 + 413414806a2b4 + 904400a3b4 + 26340650a4b4)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(271320a5b4 + 203490a6b4 − 32111520b5 + 117320364ab5 − 9767520a2b5 + 21434280a3b5)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(352716a5b5 + 9231474b6 − 4019792ab6 + 7533652a2b6 − 180880a3b6 + 293930a4b6)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +
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Two Summation Formulae Relating Hypergeometric Function

Notes

+
1024(−357312b7 + 1020984ab7 − 93024a2b7 + 116280a3b7 + 38367b8 − 14364ab8 + 20349a2b8)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(−560b9 + 1330ab9 + 21b10)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}]
}
−

−
Γ( b+2

2
)

Γ(a+1
2

)

{
1024(654729075 − 400914000a + 2644887945a2 + 368444608a3 + 407004318a4)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(32111520a5 + 9231474a6 + 357312a7 + 38367a8 + 560a9 + 21a10 − 1396704420b)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(4564470450ab − 265793584a2b + 2290676024a3b + 126838376a4b + 117320364a5b)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(4019792a6b + 1020984a7b + 14364a8b + 1330a9b + 1094071221b2 − 1410623712ab2)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(3183848164a2b2 − 33209568a3b2 + 413414806a4b2 + 9767520a5b2 + 7533652a6b2)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(93024a7b2 + 20349a8b2 − 444647600b3 + 1263684888ab3 − 293010704a2b3)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(529562376a3b3 − 904400a4b3 + 21434280a5b3 + 180880a6b3 + 116280a7b3 + 107494190b4)[ 11∏

ς=1

{
a − b− (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(−155769600ab4 + 257688830a2b4 − 17364480a3b4 + 26340650a4b4 + 293930a6b4)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(−16486680b5 + 42918540ab5 − 11918928a2b5 + 14271432a3b5 − 271320a4b5)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(352716a5b5 + 1646778b6 − 2331168ab6 + 3222324a2b6 − 217056a3b6 + 203490a4b6)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +

+
1024(−106800b7 + 255192ab7 − 57456a2b7 + 54264a3b7 + 4335b8 − 5040ab8 + 5985a2b8)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}] +
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Notes

Two Summation Formulae Relating Hypergeometric Function

IV. CONCLUSION

+
1024(−100b9 + 210ab9 + b10)[ 11∏

ς=1

{
a − b − (2ς − 1)

}][ 10∏
τ=1

{
a − b + (2τ − 1)

}]
}]

On simplification ,we get the result (6).

On the same way, we can prove the result (7).

In this paper we have derived two summation formulae with the help of contiguous relation
. However, the formulae presented herein may be further developed to extend this result
.Thus we can only hope that the development presented in this work will stimulate further
interest and research in this important area of classical special functions. Just as the
mathematical properties of the Gauss hypergeometric function are already of immense and
significant utility in mathematical sciences and numerous other areas of pure and applied
mathematics, the elucidation and discovery of the formulae of hypergeometric functions
considered herein should certainly eventually prove useful to further developments in the
broad areas alluded to above.
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AAbstract - The present investigation is concerned with the reflection and transmission of plane waves at an imperfect 
interface between two different swelling porous elastic media. The expression for various amplitude ratios due to the 
incidence of longitudinal wave in solid (PS), transverse wave in solid (SVS) are obtained for imperfect boundary and are 
deduced for normal stiffness, transversal stiffness and welded contact. The resulting amplitude ratios are computed and 
depicted graphically for a specific model. The present investigation has immense application in structural problems, 
geophysics etc.
Keywords : longitudinal waves, transversal waves, normal stiffness, transversal stiffness, welded contact.

I. INTRODUCTION

Dynamic analysis of theories of porous media is a subject with application in various branches of 

geophysics, civil and mechanical engineering. Based on the work of Von Terzaghi [1,2], Biot [3] proposed a 

general theory of three dimensional deformations of fluid saturated porous elastic solids. Subsequently, Biot 

[4,5,6,7] presented the models for describing the dynamic behaviour of fluid saturated porous media. He 

examines both high and low frequency limits and shows the existence of two longitudinal waves and one 

shear wave, which are dispersive and dissipative. Biot theory was based on the assumption of compressible 

constituents and till recently, some of his results have been taken as standard references and the basis for 
subsequent analysis in acoustic, geophysics and other fields. Based on the Fillunger model [8], (which is 

further based on the concept of volume fractions combined with surface porosity coefficients), Bowen [9], 

Boer and Ehlers[10,11] and Ehlers[12] develop and use another interesting theory in which all the 

constituents of a porous medium are assumed as soil; solid constituents are incompressible and liquid 

constituents which are generally water or oils are also incompressible.

Swelling porous medium (material) is a porous material that swells (shrinks) upon whetting 
(drying). Eringen [13] point out the importance of theories of mixtures to the applied field of swelling 

porous elastic soils as a continuum theory of mixtures for porous elastic solids filled with fluid and gas. 

Bofill and Quintanilla[14] discus the problem of anti-plane shear deformations of swelling porous elastic soils 

in case of fluid saturation or gas saturation. Gales [15] investigates the spatial behavior of solutions 

describing harmonic vibrations of right cylinder in the isothermal linear theory of swelling porous elastic 

soils. Gales [16] investigates some theoretical problems concerning waves and vibrations within the context 

of isothermal linear theory of swelling porous elastic soils with fluid, or gas saturation. Kleintelter, Park and 
Cushman[17] study various problems on swelling porous elastic soils.

A perfectly bonded interface is a surface across which both traction and displacement are 

continuous. Thus when solving harmonic wave problem in the neighborhood of a perfectly bonded interface 
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The exact nature beneath the earth surface is not known. For the purpose of theoretical

investigation about the earth interior one has to consider various appropriate model. The problem of waves 

and their reflection is very useful to understand the internal structure of earth and to explore various useful 

material in form of rocks buried inside the earth, for example mineral and crystals etc.

The spring like model has been adopted in the present work between two swelling porous elastic 

half space as has been represented by the boundary conditions in the text. Kn , Kt , Knf , Ktf used in the 

boundary conditions are spring constant type material parameters. Kn , Kt ; Knf , Ktf

implies the continuity of displacement components in case of solid and fluid respectively and therefore the 
two solids are perfectly bonded together or to say that the two solids are in welded contact. Reflection and 

transmission of plane waves in swelling porous elastic field at the imperfect boundary surface have been 

studied due to incidence of longitudinal and transversal waves. The amplitude ratios of various reflected 

and transmitted waves are computed and shown graphically. As such a model may be found in the earth’s 
crust, the results of the problem can be applicable to engineering, seismology and geophysics problem.

II. BASIC EQUATIONS

Following Eringen [13], the field equations in linear theory of swelling porous elastic soils are

where, the superscripts s and f denote respectively, the elastic solid and the fluid; u s
i and u f

i are the 

displacement components of solid and fluid respectively. The functions (f i
s
, f i

f ) are the body forces,  0

s, 0
f

are the densities of each constituent and v v , f, ff ff are constitutive constants. Subscripts 

preceded by a comma denote partial differentiation with respect to the corresponding Cartesian coordinate, 

and a superposed dot denotes time differentiation, t
s
ij , t f

ij are the partial stress tensors.

III. FORMULATION OF THE PROBLEM AND SOLUTION

We consider two homogeneous swelling porous elastic half spaces in contact with each other at a plane 

surface which we designate as the plane z = 0 of a rectangular Cartesian co-ordinate system oxyz. We 

consider plane waves in the xz - plane with wave front parallel to the yz - plane and all the field variables 

depend only on x,z and t.

For two dimensional problem, we assume the displacement vector

We define the non - dimensional quantities as

Expressing the displacement components u1
s
,u3

s
,u1

f ,u3
f by the scalar potential functions i (x, z, t) and

i (x, z, t) in dimensionless form

Effect of Imperfectness on Reflection and Transmission Coefficients in Swelling Porous Elastic Media at 

an Imperfect Boundary

between two different elastic media, wave solution in one medium must be matched with those in the 

second medium through interface condition. The generalization of the concept is that of an imperfectly 

bonded interface for which the displacement and temperature distribution across a surface need not be 

continuous. Debonding and imperfect contact however are known to exist in composites, in the domain of 
electrical, thermal conduction or elasticity.

Kumar and Singh[18,19] study some problems on propagation of plane waves at an imperfect 

surface. Kumar et al [20] studied some problems on reflection and transmission of waves at an imperfect 

boundary.

, , , 0( ) ( ) ,s s f f f f f s s s s
i j j j j i j j i i i i iu u u u u f uμ λ μ σ ξ ρ+ + − + − + =   (1)

, , , , 0( ) ( ) ,f f f s ff f ff f s f f f
v i jj v v j ji j ji j ji i i i iu u u u u u f uμ λ μ σ σ ξ ρ+ + − − − − + =    (2) 

, , , ,( ) ( ) ,s f f s s s
i j r r r r i j i j j it u u u uσ λ δ μ= − + + +                (3) 

, , , , ,( ) ( ),f f s ff f f f f
ij r r r r v r r ij v i j j it u u u u uσ σ λ δ μ= − − + + +     (4) 

          i,j=1,2,3 

1 3( ,0, )i i iu u u= i=s,f             (5)  

* * * *
* 2 *

1 1 3 3, 2
2 2 2 2 0 0

, , , , , , ,
i ff

iji i i i i
ij s s

t
x x z z u u u u t c t t

c c c c

ω ω ω ω ξ μω ω
μ ρ ρ

′ ′ ′′ ′ ′= = = = = = = =   (6) 
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Effect of Imperfectness on Reflection and Transmission Coefficients in Swelling Porous Elastic Media at 

an Imperfect Boundary

Using equations (1)-(2), (5)-(7) we obtain two coupled system of equations in absence of body forces

where, 2 is the Laplacian operator and

IV. REFLECTION AND TRANSMISSION

We consider a longitudinal wave in solid (PS)/longitudinal wave in fluid (PF) /transverse wave in solid 
(SVS)/ transverse wave in fluid(SVF) propagating through the medium M1 which is designated as the 

region z=0 and incident at the plane z=0, with its direction of propagating with angle 0 normal to the 

surface. Corresponding to each incident wave, we get reflected PS, PF, SVS, SVF waves and transmitted 

PS, PF, SVS, SVF waves in medium M as shown in Fig. 1.

Fig. 1 : Geometry of the problem

1 3,
i i i i

i iu u
x z z x

φ ψ φ ψ∂ ∂ ∂ ∂= − = +
∂ ∂ ∂ ∂       (7) 

2
2 2

1 3 2 32

2
2 2

2 4 1 3 4 5 2
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0
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a a a a
t t t

h h h h h h
t t t t

φ
φ

∂ ∂ ∂+ ∇ − − − ∇ +
∂ ∂ ∂ =

∂ ∂ ∂ ∂− ∇ + + − ∇ − −
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   (8) 
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3 32
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t t t
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     (9) 
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=
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Notes

Effect of Imperfectness on Reflection and Transmission Coefficients in Swelling Porous Elastic Media at 

an Imperfect Boundary

where V= / k is the velocity of the waves: V1,V2 are the velocities of the reflected longitudinal PS and 

PF waves respectively, given by equation (11)1, and V3,V4 are the velocities of transverse SVS and SVF 

waves respectively given by equation (11)2.

where,

V. BOUNDARY CONDITIONS

We consider two-bonded swelling porous elastic half-spaces as shown in Fig. 1. Imperfect bonding 
considered here means that the traction is continuous across the interface but that the small displacement 

is assumed to depend linearly on the traction vector. If the size and spacing between the imperfections is 

much smaller than the wave-length at the interface, we can use spring boundary conditions at z=0 [21] as

where Kn, K
f
n are normal stiffness in case of solid and fluid respectively and Kt , K

f
t are transversal 

stiffness in case of solid and fluid respectively.

In view of (10), we assume the values of
s , f , s , f 

for medium M1 and
s , f , s , f for medium M 

satisfying the boundary conditions as

where,

A0i are the amplitudes of the incident PS wave, PF wave and B0j are the amplitudes of the incident SVS 

wave, SVF wave respectively. Ai are the amplitudes of the reflected PS wave (PSR), PF wave (PFR) and 

Bj are the amplitudes of the reflected SVS wave (SVSR) and SVF wave (SVFR), A are the amplitudes of 

We assume the solutions of the system of equations (8)-(9) in the form

where k is the wave number and is the complex circular frequency.

Making use of equation (10) in (8)-(9) we obtain two quadratic equations in V2 given by

{ { sin cos } }
1 1 1 1, , , , , ,s f s f s f s f i k x z te θ θ ωφ φ ψ ψ φ φ ψ ψ − −=

     (10)  

4 2 0AV BV C+ + = ,  1

4 2
1 1 0AV B V C+ + =     (11)  

5 3 4 4 4
5 1 3 1 2 2 1 5 3 1 1 5

( ) , ( (1 ) )(1 ) , , , ( ),i h a h h ih
A h C i h h a h a B i h a C i hω ω ω τ

ω ω ω
+= + = − + − + − = − − − = − = +

3 3
1 3 1 1 3 0 4 2 2 3 1 5 4 3 5 4 5 02(1 )( ) (1 ) ( ), ( ) ( ) , (1 ),a iai i

B h i a a h h a h a A h h a h h hω τ τ τ
ω ω ω ω

= + − − + + + + = − + + + = +

33 3 3( ) ( )s s s
ni t K u u= − 33 3 3( ) ( )f f f

nfii t K u u= −    31 1 1( ) ( )s s s
tiii t K u u= −    31 1 1( ) ( )f f f

tfiv t K u u= −

33 33( ) s sv t t= 33 33( ) f fvi t t= 31 31( ) s svii t t=     31 31( ) f fviii t t=

0 0

2 2
{ { sin cos } } { { sin cos } }

0
1 1

{ , } {1, }[ ], { , } {1, }[ ]i i i i i i i ii k x z t i k x z ts f s f
i i i i i

i i

A e P Aeθ θ ω θ θ ωφ φ η φ φ η− − − −

= =

= + =

0 0
4 4

{ { sin cos } } { { sin cos } }
0

3 3
{ , } {1, }[ ], { , } {1, }[ ]j j j j j j j ji k x z t i k x z ts f s f

j j j j j
j j

B e P B eθ θ ω θ θ ωψ ψ η ψ ψ η− − − −

= =

= + =
(12)

2
{ { sin cos } }{ { sin cos } } 1 3

2
2 3

(1 ), , ,j j j ji i i i
i k x z ti k x z t i i

i i j j i
i

a ia V V
P A e P B e

a ia V
θ θ ωθ θ ω ω ωη

ω
+ −+ − + − −= = =

−
  

2 22
3 31 3

2 2 2
3 2 3 3

( ) ( )(1 ), , ,j ji i
j i j

j i j

ia V ia Va ia V V

ia V a ia V ia V

ω ω ω ωω ωη η η
ω

− + + − + ++ − −= = =
−

(i=1,2  & j=3,4) 

the transmitted PS wave (PST), transmitted PF wave (PFT), j A are the amplitudes of transmitted SVS 

wave (SVST) and transmitted SVF wave (SVFT) respectively.
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Making use of potentials given by (12) in boundary conditions, we obtain a system of eight non-
homogeneous equations which can be written as

where,

Where,

where ,

In order to satisfy the boundary conditions, the extension of the Snell’s law will be

0 3 31 2 4 1 2 4

0 1 2 3 4 1 2 3 4

sin sin sinsin sin sin sin sin sin

V V V V V V V V V

θ θ θθ θ θ θ θ θ= = = = = = = =
   (13) 

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4k V k V k V k V k V k V k V k V ω= = = = = = = =   at z=0   (14) Where, 

8

, 1
ij j i

i j

a Z Y
=

=          (15) 

2 2 2
3 4 4( sin ) , sin , s ,d e e e e e t p p tf p p e e tf e ea k s ik s K l a K ik l a K ik lθ η θ η= − + − = − =

* 2 * 2 2 2
4 4 ,( 2 ) sin , ( ( sin ) )r p p p p tf p p d e e e e tf e ea l k s lk K a l k s ilk K sω ω η θ ω θ η= − + = − +

2 2 2 2 2 2
5 5 3 5 5( 2 ) , 2 sin , ( 2 ) , 2 sin ,p p p p e e e r p p p d e e ea m n s k a k s a m n s k a k sη θ η θ= − − = − = − + + = −

* *
2 2 2

61 6
2( ( 2 )) , ( sin ),p p v

p v v p p e e e e e e

i
a m v s k a ik s

ω ω η μ ωη λ μ θ ω η
μ μ

= + + + =

* * 2 2 * 2 2
6 6 7( ( 2 ) ) , 2 sin , 2 sin ,r p p p p p d e e e e e p p p pa m v n i l i s k a l i s k a k sω ω ω ω η ω ω η θ θ= − + + − = = −

2 2 2 2 2 2 2 * 2
7 7 7 8( sin ), 2 sin , ( sin ), 2 sin ,e e e e r p p p d e e e p v p p p p pa k s a k s a k s a l ik sθ θ θ ω θ ω η= − + = − = − + =

* 2 2 2 * 2 * 2 2 2
8 8 1 8(sin ), 2 sin , ( sin ) ,e v e e e e e r p p p p d e e e e ea l i k s a l ik s a l ik sω ω η θ ω θ ω η ω θ ω η= − = − = − −

2 θ= +k s K ike e n e e(2 )sin ,
μ
μ

2 2
1 1 1 1, sin , ( 2 ) ,

f

p n p p e n e e r p p p n p p da liK k s a liK k a s k K ik s a
σ λ μθ η
μ μ μ

= − = − = − − −

2 *
2 2 2, , ( ( ( 2 ) ) )

f ff
v

p nf p p p e nf e e e r v p p pa lK ik s a K ik Sin a s i
λμ σ ση η θ μ ω ω η

μ μ μ μ
= = − = + + +

− ηk K ik s lp nf p p p
2

a K ik s l= −, ( 1) ,e t e e3
e

= − + = − + =a k s K ik l a k s K k l i a K ik l(2 )sin , ( 2 ) sin , sin ,θ μ ω ω θ η θr p p t p p d v e e nf e e e p t p p
2

2 3 33
* 2

1 1
2 22 2

2 20 0
0 0

0 0

, , , , ,d d v
d d

d d

V V V V
s Sin s Sin l l m

V V V V

μμ σθ θ
μ μ μ

= − = − = = =

m n n
σ λ λ
μ μ μ

= = =, ,
f

f

d=p,e,r,d 
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(iv) For incident SVF –wave:

where, Z1, Z2 , Z3 , Z4 are the amplitude ratios of reflected PS-, PF-, SVS-, SVF-waves and Z1 , Z2 , Z3 , Z4,

are the amplitude ratios of transmitted PS-, PF-, SVS-, SVF-waves.

Case -I: Normal Stiffness (NS):

Kn= 0 , Knf = 0, Kt Ktf Correspond to the case of normal stiffness and we obtain a system of 

eight non-homogeneous equations with the changed values of aij as

Case - II: Transverse Stiffness (TS):

Kn Knf Kt = 0 , Ktf = 0 Correspond to the case of transverse stiffness. We obtain a system of 

eight non-homogeneous equations with the changed values of aij as 

(iii) For incident SVS –wave:

and

(i) For incident PS –wave:

(ii) For incident PF–wave:

1 2 1 2 1 2 1 2
1 2 3 4 5 6 7 8* * * * * * * *, , , , , , , ,A A B B A A B B

Z Z Z Z Z Z Z Z
A A A A A A A A

= = = = = = = =

*
01 02 03 04

1 11, 2 21, 3 31, 4 41 5 51, 6 61 7 71 8 81

, 0

, , ,

A A A B B

Y a Y a Y a Y a Y a Y a Y a Y a

= = = =

= = = − = − = − = − = =

*
02 01 03 04

1 12, 2 22, 3 32, 4 42, 5 52, 6 62, 7 72, 8 82

, 0A A A B B

Y a Y a Y a Y a Y a Y a Y a Y a

= = = =

= = = − = − = − = − = =

*
03 01 02 04

1 13, 2 23, 3 33, 4 43, 5 53, 6 63, 7 73, 8 83

, 0A B A A B

Y a Y a Y a Y a Y a Y a Y a Y a

= = = =

= − = − = − = = = = − = −

*
04 01 02 03

1 14, 2 24, 3 34, 4 44 5 54, 6 64, 7 74, 8 84

, 0

, ,

A B A A B

Y a Y a Y a Y a Y a Y a Y a Y a

= = = =

= − = − = − = = = = − = −

3 3 3 3 41 4

4 4

sin , ( 1) , sin , s , sin , ,
( 1) sin , ,

e
p p p e e e r p p d e e p p p e e e e

r
r p p p d e e e

a ik l a ik ls a ik l a ik l a ik l a l ik s

a ik l a l ik s

θ θ η θ η
η θ η

= = − = − = − = − =

= − = −

1 1 1 1 2 2

2 2

, sin , , sin , , sin ,

, sin
p p p e e e r p p d e e p p p p e e e e

r p p p d e e e

a ilk s a ik a ilk s a ik l a lik s a ilk

a i lk s a il k

θ θ η η θ

η η θ

= − = − = − = = − = −

= − =

Case -III: Welded Contact (WC):

Kn Knf Kt , Ktf Correspond to the case of transverse stiffness. We obtain a system of 

eight non-homogeneous equations with the changed values of aij as 

1 1 1 1 2 2, sin , , sin , , sin ,p p p e e e r p p d e e p p p p e e e ea ilk s a ilk a ik ls a ik l a i lk s a i lkθ θ η η θ= − = − = − = = − = −

2 2 3 3 3 3, sin , sin , , sin , ,r p p p d e e e p p p e e e r p p d e ea ik l s a ik l a ik l a ilk s a ik l a ilk sη η θ θ θ= − = = = − = − = −

4 4 4 4sin , , sin , sp p p p e e e e r p p p d e e ea i lk a i lk s a i k l a i kη θ η η θ η= − = = =
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(ST), normal stiffness (NS), transversal stiffness (TS), welded contact (WC) with angle of incidence 0 of 

the incident PS wave, incident SVS wave are shown graphically in Figures 2-3 

VII. INCIDENT PS-WAVE

Fig. 2(a)-2(h) depicts the variation in values of amplitude ratios |Zs| , s = 1,2,3,4,5,6,7,8 when PS wave is 
incident.

VI. NUMERICAL RESULTS AND DISCUSSION

In order to illustrate theoretical results obtained in the preceding sections, we now present some numerical 

results. For numerical computation, the physical data is given below: 

A computer programme has been developed and amplitude ratios of various reflected and transmitted 

waves have been computed. The variations of amplitude ratios for swelling porous elastic solid with stiffness 
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10 2 10 2 3 2 4 3 2 4
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Fig. 2(a)        Variation in amplitude ratios of Reflected PS wave 
when PS wave is incident
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Fig. 2(b)      Variation in amplitude ratios of Ref lected PF wave 
when PS wave is incident
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Fig. 2(d)     Variation in amplitude ratios of Reflected SVF wave 
when PS wave is incident
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Fig. 2(e)      Variation in amplitude ratios of Transmitted PS wave 
when PS wave is incident
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Fig. 2(c)       Variation in amplitude ratios of Reflected SVS wave 
when PS wave is incident
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Fig. 2(f)     Variation in amplitude ratios of Transmitted PF wave 
when PS wave is incident
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From Fig. 2(a), we notice that the values of amplitude ratios|Z1|for PSR NS, TS and WC are of oscillatory 

behavior. Amplitude ratio for TS remains greater than the values of amplitude ratio for PSR, NS and WC 

in range 0 3, whereas values of amplitude ratio for WC remains less than the values of amplitude ratio 

for PSR, NS, and TS in range 0 5. The values of amplitude ratio for PSR, NS and WC oscillate in the 

whole range whereas for WC it decrease in range 1 0 70 and then for 0 71 it starts increasing.

Fig. 2(b) shows that the values of amplitude ratio |Z2| for PFR, TS and WC decreases with increase in 

angle of incidence, whereas the values of amplitude ratio|Z2|for NS initially oscillates and then decrease 

with angle of incidence. The values of amplitude ratios for WC remains greater than the values obtained for 

PFR, NS and TS in whole range. The values of amplitude ratio for NS remain less than the values of 

amplitude ratio for PFR, TS and WC in whole range.

Fig. 2(c) depicts the variation in amplitude ratio |Z3| due to incidence of PS wave. From the fig we notice 

that amplitude ratio for SVSR oscillates in the region 1 0 50 . Then for 0 51 it decrease. The values 

of amplitude ratio for TS oscillate in the region 1 0 30 then for 31 0 80 it decrease, for 0 81it is 

of oscillatory behavior. The values of amplitude ratio for NS decreases for 1 0 5 , for 6 0 45 it 
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Fig. 2(g)    Variation in amplitude ratios of Transmitted SVS wave 
when PS wave is incident
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Fig. 2(h)    Variation in amplitude ratios of Transmitted SVF wave 
when PS wave is incident
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increase and for 0 46 it decreases with angle of incidence. The values of amplitude ratio for WC remain 

less than the values obtain for SVSR, NS and TS in whole range and keeps increasing with increase in angle 

of incidence.

Fig. 2(d) depicts the variation in amplitude ratio|Z4|due to the incidence of PS wave. From the figure, we 

notice that amplitude ratio for SVFR initially oscillates, then decreases in range 0 4 . The values of 

amplitude ratio for NS, TS and WC decrease in whole range. For the 0 4 values of amplitude ratio for 

WC remains greater than the values obtain for SVFR, NS and WC. The values of amplitude ratio for TS 

remain less than the values of amplitude ratio for SVFR, NS and WC in whole range.

From Fig. 2(e) we notice that the values of amplitude ratio|Z5| for PST initially oscillate then decreases in 

range 0 4 . The values of amplitude ratio for NS oscillates in the region 1 0 3 , then decreases in 

the range 0 4 , whereas for TS it initially oscillates, then decrease in the range 4 0 80 and remains 

greater than the values obtain for PST, NS and WC in whole range. The values of amplitude ratio for WC 

remain less than the values of amplitude ratio for PST, TS in whole range.

From Fig. 2(f) we notice that the values of amplitude ratio|Z6|for PFT, NS, TS and WC decreases with 

increase in angle of incidence. The values of amplitude ratio for WC remain greater than the values of 

amplitude ratio for PFT, NS and TS. The values of amplitude ratios for NS remain less than the values of 

amplitude ratios for PFT, TS and WC in whole range.

From Fig. 2(g), we notice that values of amplitude ratio|Z7|for SVST and WC decreases with increase in 

angle of incidence. In range 1 0 35 the values of amplitude ratio for SVST remains greater than the 

values of amplitude ratio for NS, TS and WC. The values of amplitude ratio for WC remain less than the 

values of amplitude ratio for SVST, NS and TS.
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From Fig. 2(h), we notice that values of amplitude ratio|Z8|for SVFT, NS, TS and WC decreases with 

angle of incidence. The values of amplitude ratio for WC remain greater than the values of amplitude ratio 

for SVFT, NS and TS, whereas for SVFT remains less than the values obtain for NS, TS and WC.

VIII. INCIDENCE OF SVS-WAVE

Fig. 3(a)-3(h) depicts the variation in values of amplitude ratios ,|Zs|, s = 1,2,3,4,5,6,7,8 when SVS wave 
is incident.
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Fig. 3(a)     Variation in amplitude ratios of Reflected PS wave 
when SVS wave is incident
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Fig. 3(c)Variation in amplitude ratios of Reflected SVS wave 
when SVS wave is incident
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Fig. 3(b)        Variation in amplitude ratios of Reflected PF wave 
when SVS wave is incident
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Fig. 3(d)     Variation in amplitude ratios of Reflected SVF wave 
when SVS wave is incident
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Fig. 3(e)    Variation in amplitude ratios of Transmitted PS wave 
when SVS wave is incident
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Fig. 3(f)    Variation in amplitude ratios of Transmitted PF wave 
when SVS wave is incident
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Fig. 3(g)      Variation in amplitude ratios of Transmitted SVS wave 
when SVS wave is incident
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Fig. 3(h)    Variation in amplitude ratios of Transmitted SVF wave 
when SVS wave is incident
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decreasing. For 0 5the values of amplitude ratio for WC remains less than the values for PSR, NS and 

TS.

From Fig. 3(b) we notice that values of amplitude ratio|Z2|for PFR, NS, TS and WC decreases in whole 

range. The values of amplitude ratio|Z2|for TS remain greater than the values of amplitude ratio|Z2|for 

PFR, NS and WC.

From Fig. 3(c) we notice, that values of amplitude ratio|Z3|for SVSR, NS, TS and WC is of oscillatory 

behavior. For 0 36 the values of amplitude ratio for WC remains less than the values of amplitude ratio 

for SVSR, NS, and TS. For 5 0 50 the values of amplitude ratio for TS remains greater than the values 

of amplitude ratio for SVSR, NS, WC.

Fig. 3(d), depicts that values of amplitude ratio|Z4|for SVFR oscillates in the region 1 0 5 then decrease 

with angle of incidence. The values of amplitude ratio for NS and WC decrease with angle of incidence. For 

0 3the values of amplitude ratio for NS remains less than the values obtain for SVFR, TS and WC. The 

values of amplitude ratio for TS initially increase then decrease with angle of incidence. For 0 5the values 

of amplitude ratio for TS remains greater than the values of amplitude ratio for SVFR, NS and WC.

From Fig. 3(e) we notice, that values of amplitude ratios|Z5|for PST, NS, TS and WC are of oscillatory 

behavior. For 10 0 35 the values of amplitude ratio for NS remains greater than the values of amplitude 

ratio for PST, NS and WC. The values of amplitude ratio for WC remains less than the values obtain for 

PST, NS, and TS in whole range. The values of amplitude ratio for NS and WC attains maximum value at 

0 = 35 .

From Fig. 3(f) we notice that values of amplitude ratio|Z6|for PFT initially oscillates in region 1 0 4 ,

then starts decreasing . The values of amplitude ratio for NS decrease with angle of incidence. The values of 

amplitude ratio for WC and TS initially oscillates then decrease with angle of incidence. The values of 

amplitude ratio for TS remains greater than the values of amplitude ratio obtain for PFT, NS and WC for 

0 4 .

From Fig. 3(g), we notice that values of amplitude ratio|Z7|for SVST, NS, TS and WC are of oscillatory 

behavior. In range  5 0 30 the values of amplitude ratio for NS remains greater than the values of 

amplitude ratio for SVST, TS and WC. For  31 0 64 the values of amplitude ratio for TS remain greater 

than the values of amplitude ratio obtain for SVST, NS and WC.

From Fig. 3(h), we notice that values of amplitude ratio|Z8|for NS and TS are of oscillatory behavior, 

whereas for SVFT and WC it decrease with angle of incidence. The values of amplitude ratio for SVFT 

remain less than the values of amplitude ratio for NS, TS and WC in whole range.

IX. CONCLUSION

When PS wave is incident the values of amplitude ratio for|Z2|,|Z4|,|Z6|,|Z8|decrease with angle of 

incidence, whereas for  |Z1 | , |Z3| , |Z5| , |Z7| are of oscillatory behavior. When SVS wave is incident the 

values of amplitude ratio for |Z1|,|Z3|,|Z4|,|Z5|,|Z6|,|Z7|,|Z8|are of oscillatory behavior, whereas |Z2|

decrease with angle of incidence.

The values of amplitude ratios |Z1| for PSR and TS are of oscillatory behavior. They attains peak value at 

0= 37 and then for 0 38 it decrease, whereas for WC it attains peak value at 0=36 and then starts 
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I. INTRODUCTION

In [11], S.Tanno classified connected almost contact metric manifolds whose automorphism group possesses 

the maximum dimension. For such a manifold, the sectional curvature of a plain sections containing is a 

constant, say c .He showed that they can be divided into three classes:

(1.1)    homogeneous normal contact Riemannian manifolds with c < 0 ,

(1.2)    global Riemannian products of a line or a circle with a Kaehlar manifold of constant
          holomorphic sectional curvature if c = 0 and

(1.3)    A warped product space R x fC if c > 0.

It is well known that the manifolds of class (1.1) are characterized by admitting a Sasakian structure. 

Kenmotsu [8] characterized the differential geometric properties of the manifolds of class (1.3); the structure 
so obtained is now known as Kenmotsu structure. In general these structures are not Sasakian [8].The 

Gray-Hervella classication of almost Hermitian manifolds [2], there appears a class W4 , of Hermitian 

manifolds which are closely related to locally conformal Kaehlar manifolds [10]. An almost contact metric 

structure on the manifold M is called a trans-Sasakian structure [7] if the product manifoldM xR belongs to 

the classW4 . The class C6 C (see [5], [6]) coincides with the class of trans-Sasakian structure of type ( ,

) .We note that trans-Sasakian structure of type (0,0),(0, ) and ( ,0) are cosymplectic [4], -Kenmotsu

[8] and -Sasakian [8] respectively. 

In 2005, Ahmet Yildiz [1] studied Lorentzian –Sasakian manifolds and proved that conformally flat and 

quasi conformally flat Lorentzian -Ssaskian manifolds are locally isometric with a sphere. 

A Riemannian manifold M are locally symmetric if its curvature tensor R satisfies R=0 , where Levi-

Civita connection of the Riemannian metric. As a generalization of locally symmetric spaces, many 

geometers have considered semi-symmetric spaces and in turn their generalizations. A Riemannian manifold 
M is said to be semi-symmetric if its curvature tensor R satisfies

where R (X,Y) acts on R as a derivation.

Author : Department of Applied Science, Faculty of Mathematics, Alwar Institute of Engineering &Technology, M.I.A.Alwar-301030, 
Rajasthan India. E-mails : prof_sky16@yahoo.com,dd_suthar@yahoo.co.in

5 

,,,0),( TMYXRYXR

Locally symmetric and semi-symmetric P-Sasakian manifolds are studied in [14] .After curvature tensor, the 

Weyl conformal curvature tensor C and the concircular curvature tensor Z are the next important curvature 

tensor .In this paper, we study several derivation conditions on Lorentzian – Sasakian manifolds. The 
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for all X,Y TM.

Also Lorentzian -Sasakian manifold is satisfying (see [1])

where denotes the operator of covariant differentiation with respect to the Lorentzian metric g
Further on Lorentzian – Sasakian manifold M the following relations holds ([1]).

An almost para contact Riemannian manifold M is said to be -Einstein if the Ricci operator Q satisfies

where a and b are smooth functions on the manifold. In particular if b = 0 , then M is an Einstein manifold.

Let (M , g) be an n – dimensional Riemannian manifold .Then the concircular curvature tensor and the 
Wey conformal curvature te

paper is organized as follows. In section2, we give a brief account of Lorentzian –Sasakian manifolds, the 

Wey conformal curvature tensor and the concircular  curvature  tensor. In section 3, we find the necessary 

and sufficient condition for Lorentzian – Sasakian manifolds satisfying the condition Z ( , X) . Z = 0, Z

( ,X ) . R = 0 , R ( ,X ) . Z = 0, Z ( , X ) . S = 0, and Z ( , X ) .C = 0.

II. LORENTZIAN -SASAKIAN MANIFOLDS

An n - dimension differentiable manifold M is called Lorentzian –Sasakian manifold if it
admits a (1,1) tensor field ,a contravarient vector field , a covariant vector field and a
Lorentzian metric g which satisfy (see [1])
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TTheorem 3.1. An n – dimensional Lorentzian –Sasakian manifold (M
n
, g) satisfies

if and only if either the scalar curvature of (M n,g) is = 2 n (1-n) or (M n,g) is locally isometric to the 

Hyperbolic space H
n
(- 2).

Proof. In a Lorentz an – Sasakian manifold (M n,g) , we have

The condition Z ( , X) . Z = 0 implies that

This in view of (3.1) and (3.2) gives

Therefore either the scalar curvature = 2n (1 n) or

This in view of (2.14) gives

The above equation implies that is of constant curvature 2 and consequently it is locally isometric to the 

Hyperbolic space H n( 2). Conversely, if has scalar curvature = 2 n (1 n) .Then from (3.2), it follows that 

Z ( , X) = 0 .Similarly in the second case, since is of constant curvature = 2n (1=n) therefore we again 

get Z ( , X) = 0 .In view of the fact Z ( , X).R denotes acting on R as a derivation, we state the 

following result as the theorem

Theorem3.2. An n –dimensional Lorentzian Sasakian manifold (M n, g) satisfies

if and only if either (M n, g ) is locally isometric to the Hyperbolic space H n( 2).or the scalar curvature of 

(Mn, g) is = 2n (1=n) . 

for all X,Y,U  TM, ,respectively, where R is the curvature tensor, S is the Ricci tensor and is the scalar 

curvature tensor of M .

III. MAIN RESULTS

In this section, we obtain necessary and sufficient condition for Lorentzian –Sasakian manifolds satisfying 

the derivations conditions Z ( ,X) . Z = 0 , Z( ,X) . R= 0 , R( ,X) . Z = 0, Z ( , X) . S = 0, and Z

( , X) .C = 0.
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Proposition3.3. In an n –dimensional Riemannian manifold, we have 

Proof. We suppose that X,Y,U,V,W TM.Therefore 

RRZR
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TTheorem3.4. An n – dimensional Lorentzian – Sasakian manifold (M
n
, g) satisfies

if and only if either (M
n
,g) is locally isometric to the Hyperbolic space Hn( 2 ).

Next we prove the following result

Theorem3.5 An n – dimensional Lorentzian – Sasakian manifold (M n,g) satisfies

if and only if either (M n,g) has the curvature = 2 n (1 n) or M n is an Einstein manifold.

Proof. The condition Z ( , X ) . S = 0 implies that

This in view of (2.13) and (3.2) gives

Therefore either the scalar curvature of (M
n
,g) is = 2n (1 n) which is of constant or S = 2(1 n)g(X,Y) 

which implies that (M n, g) is an Einstein manifold with = 2n (1 n).

which proves that theorem3.5.

Theorem3.6 .An n –dimensional conformally flat Lorentzian –Sasakian manifold (M
n
,g) is locally isometric 

to the hyperbolic space H
n
(

2
).

Proof. In this section we suppose that Z(X,Y) .U= 0 .Then from (2.14) we get

From (3.3), we have

where 

which in view of (3.1) and symmetric properties of R ,we get

This proves the proposition3.3

n3.3 we have the following result as the theorem: 
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Putting X=W= in (3.4) and by use of (2.4) and (2.8), we obtain
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TTheorem6. An n – dimensional Lorentzian –Sasakian manifold (M n, g) satisfies

if and only if either (M n, g) has the scalar curvature = 2n (n 1) or (M n, g) is an -Einstein manifold.

Proof. The condition Z ( , X).C = 0 implies that

This in view of (3.1) gives

So either scalar curvature of (M
n
,g) is = 2n (n 1) or the equation

holds on M .Taking inner product of above last equations with , we get

Hence by using (2.7)(2.13)and(2.15) in above equations we get

which implies that (M
n
, g ) is an -Einstein manifold

This shows that either = 2n(n 1) or g(Y,U)= (Y) (U) .But if g(Y,U )= (Y) (U) .Then from 

(2.3) we get g (Y, U )= 0 , which is not possible. Therefore, = 2n (n 1) .Now putting = 2n (n 1) 

in (3.3), we find

This proves the theorem3.6
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to Computer Science and Information Technology. Also, you may have to do a lot of work to find all rise and falls regarding the various 

data of that subject. Sometimes, detailed information plays a vital role, instead of short information. 

 

 

2. Evaluators are human: First thing to remember that evaluators are also human being. They are not only meant for rejecting a paper. 

They are here to evaluate your paper. So, present your Best. 

3. Think Like Evaluators: If you are in a confusion or getting demotivated that your paper will be accepted by evaluators or not, then 

think and try to evaluate your paper like an Evaluator. Try to understand that what an evaluator wants in your research paper and 

automatically you will have your answer. 

4. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper 

logical. But remember that all points of your outline must be related to the topic you have chosen.  

5. Ask your Guides: If you are having any difficulty in your research, then do not hesitate to share your difficulty to your guide (if you 

have any). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work then ask the 

supervisor to help you with the alternative. He might also provide you the list of essential readings. 

6. Use of computer is recommended: As you are doing research in the field of Computer Science, then this point is quite obvious. 

 

7. Use right software: Always use good quality software packages. If you are not capable to judge good software then you can lose 

quality of your paper unknowingly. There are various software programs available to help you, which you can get through Internet. 

 

8. Use the Internet for help: An excellent start for your paper can be by using the Google. It is an excellent search engine, where you can 

have your doubts resolved. You may also read some answers for the frequent question how to write my research paper or find model 

research paper. From the internet library you can download books. If you have all required books make important reading selecting and 

analyzing the specified information. Then put together research paper sketch out. 

9. Use and get big pictures: Always use encyclopedias, Wikipedia to get pictures so that you can go into the depth. 

 

10. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right! It is a good habit, which helps to 

not to lose your continuity. You should always use bookmarks while searching on Internet also, which will make your search easier. 

 

11. Revise what you wrote: When you write anything, always read it, summarize it and then finalize it. 

12. Make all efforts: Make all efforts to mention what you are going to write in your paper. That means always have a good start. Try to 

mention everything in introduction, that what is the need of a particular research paper. Polish your work by good skill of writing and 

always give an evaluator, what he wants. 

13. Have backups: When you are going to do any important thing like making research paper, you should always have backup copies of it 

either in your computer or in paper. This will help you to not to lose any of your important. 

14. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. Using several 

and unnecessary diagrams will degrade the quality of your paper by creating "hotchpotch." So always, try to make and include those 

diagrams, which are made by your own to improve readability and understandability of your paper. 

15. Use of direct quotes: When you do research relevant to literature, history or current affairs then use of quotes become essential but 

if study is relevant to science then use of quotes is not preferable.  
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16. Use proper verb tense: Use proper verb tenses in your paper. Use past tense, to present those events that happened. Use present 

tense to indicate events that are going on. Use future tense to indicate future happening events. Use of improper and wrong tenses will 

confuse the evaluator. Avoid the sentences that are incomplete. 

17. Never use online paper: If you are getting any paper on Internet, then never use it as your research paper because it might be 

possible that evaluator has already seen it or maybe it is outdated version.  

18.
 
Pick a good study spot: To do your research studies always try to pick a spot, which is quiet. Every spot is not for studies. Spot that 

suits you choose it and proceed further. 

19. Know what you know: Always try to know, what you know by making objectives. Else, you will be confused and cannot achieve your 

target. 

 20. Use good quality grammar: Always use a good quality grammar and use words that will throw positive impact on evaluator. Use of 

good quality grammar does not mean to use tough words, that for each word the evaluator has to go through dictionary. Do not start 

sentence with a conjunction. Do not fragment sentences. Eliminate one-word sentences. Ignore passive voice. Do not ever use a big 

word when a diminutive one would suffice. Verbs have to be in agreement with their subjects. Prepositions are not expressions to finish 

sentences with. It is incorrect to ever divide an infinitive. Avoid clichés like the disease. Also, always shun irritating alliteration. Use 

language that is simple and straight forward. put together a neat summary. 

21. Arrangement of information: Each section of the main body should start with an opening sentence and there should be a 

changeover at the end of the section. Give only valid and powerful arguments to your topic. You may also maintain your arguments with 

records. 

 22. Never start in last minute: Always start at right time and give enough time to research work. Leaving everything to the last minute 

will degrade your paper and spoil your work. 

23. Multitasking in research is not good: Doing several things at the same time proves bad habit in case of research activity. Research is 

an area, where everything has a particular time slot. Divide your research work in parts and do particular part in particular time slot. 

 24. Never copy others' work: Never copy others' work and give it your name because if evaluator has seen it anywhere you will be in 

trouble. 

 25. Take proper rest and food: No matter how many hours you spend for your research activity, if you are not taking care of your health 

then all your efforts will be in vain. For a quality research, study is must, and this can be done by taking proper rest and food.  

 26. Go for seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources. 

27. Refresh your mind after intervals: Try to give rest to your mind by listening to soft music or by sleeping in intervals. This will also 

improve your memory. 

28. Make colleagues: Always try to make colleagues. No matter how sharper or intelligent you are, if you make colleagues you can have 

several ideas, which will be helpful for your research. 

29.

 

Think technically: Always think technically. If anything happens, then search its reasons, its benefits, and demerits. 

 30. Think and then print: When you will go to print your paper, notice that tables are not be split, headings are not detached from their 

descriptions, and page sequence is maintained.  

31. Adding unnecessary information: Do not add unnecessary information, like, I have used MS Excel to draw graph. Do not add 

irrelevant and inappropriate material. These all will create superfluous. Foreign terminology and phrases are not apropos. One should 

NEVER take a broad view. Analogy in script is like feathers on a snake. Not at all use a large word when a very small one would be 
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sufficient. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grunt readers. 

Amplification is a billion times of inferior quality than sarcasm. 

32. Never oversimplify everything: To add material in your research paper, never go for oversimplification. This will definitely irritate the 

evaluator. Be more or less specific. Also too, by no means, ever use rhythmic redundancies. Contractions aren't essential and shouldn't 

be there used. Comparisons are as terrible as clichés. Give up ampersands and abbreviations, and so on. Remove commas, that are, not 

necessary. Parenthetical words however should be together with this in commas. Understatement is all the time the complete best way 

to put onward earth-shaking thoughts. Give a detailed literary review. 

33. Report concluded results: Use concluded results. From raw data, filter the results and then conclude your studies based on 

measurements and observations taken. Significant figures and appropriate number of decimal places should be used. Parenthetical 

remarks are prohibitive. Proofread carefully at final stage. In the end give outline to your arguments. Spot out perspectives of further 

study of this subject. Justify your conclusion by at the bottom of them with sufficient justifications and examples. 

 

34. After conclusion: Once you have concluded your research, the next most important step is to present your findings. Presentation is 

extremely important as it is the definite medium though which your research is going to be in print to the rest of the crowd. Care should 

be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is 

essential because it serves to highlight your research paper and bring to light all necessary aspects in your research. 

INFORMAL GUIDELINES OF RESEARCH PAPER WRITING 

Key points to remember:  

 Submit all work in its final form. 

 Write your paper in the form, which is presented in the guidelines using the template. 

 Please note the criterion for grading the final paper by peer-reviewers. 

Final Points:  

A purpose of organizing a research paper is to let people to interpret your effort selectively. The journal requires the following sections, 

submitted in the order listed, each section to start on a new page.  

The introduction will be compiled from reference matter and will reflect the design processes or outline of basis that direct you to make 

study. As you will carry out the process of study, the method and process section will be constructed as like that. The result segment will 

show related statistics in nearly sequential order and will direct the reviewers next to the similar intellectual paths throughout the data 

that you took to carry out your study. The discussion section will provide understanding of the data and projections as to the implication 

of the results. The use of good quality references all through the paper will give the effort trustworthiness by representing an alertness 

of prior workings. 

Writing a research paper is not an easy job no matter how trouble-free the actual research or concept. Practice, excellent preparation, 

and controlled record keeping are the only means to make straightforward the progression.  

General style: 

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines. 

 
To make a paper clear 

· Adhere to recommended page limits 

Mistakes to evade 

 
Insertion a title at the foot of a page with the subsequent text on the next page 
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 Separating a table/chart or figure - impound each figure/table to a single page 

 Submitting a manuscript with pages out of sequence 

In every sections of your document 

· Use standard writing style including articles ("a", "the," etc.) 

· Keep on paying attention on the research topic of the paper 

 

· Use paragraphs to split each significant point (excluding for the abstract) 

 

· Align the primary line of each section 

 

· Present your points in sound order 

 

· Use present tense to report well accepted  

 

· Use past tense to describe specific results  

 

· Shun familiar wording, don't address the reviewer directly, and don't use slang, slang language, or superlatives  

 

· Shun use of extra pictures - include only those figures essential to presenting results 

 

Title Page: 

 
Choose a revealing title. It should be short. It should not have non-standard acronyms or abbreviations. It should not exceed two printed 

lines. It should include the name(s) and address (es) of all authors. 

 
Abstract:  

 
The summary should be two hundred words or less. It should briefly and clearly explain the key findings reported in the manuscript--

must have precise statistics. It should not have abnormal acronyms or abbreviations. It should be logical in itself. Shun citing references 

at this point. 

 
An abstract is a brief distinct paragraph summary of finished work or work in development. In a minute or less a reviewer can be taught 

the foundation behind the study, common approach to the problem, relevant results, and significant conclusions or new questions.  

 
Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? 

Wealth of terminology is very essential in abstract. Yet, use comprehensive sentences and do not let go readability for briefness. You can 

maintain it succinct by phrasing sentences so that they provide more than lone rationale. The author can at this moment go straight to                    
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shortening the outcome. Sum up the study, with the subsequent elements in any summary. Try to maintain the initial two items to no 

more than one ruling each.  

 Reason of the study - theory, overall issue, purpose 

 Fundamental goal 

 To the point depiction of the research 

 Consequences, including definite statistics - if the consequences are quantitative in nature, account quantitative data; results 
of any numerical analysis should be reported 

 Significant conclusions or questions that track from the research(es) 

Approach: 

 
Single section, and succinct 

 
As a outline of job done, it is always written in past tense 

 
A conceptual should situate on its own, and not submit to any other part of the paper such as a form or table 

 
Center on shortening results - bound background information to a verdict or two, if completely necessary 

 
What you account in an conceptual must be regular with what you reported in the manuscript 

 
Exact spelling, clearness of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) 
are just as significant in an abstract as they are anywhere else 

Introduction:  

 The Introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be 
capable to comprehend and calculate the purpose of your study without having to submit to other works. The basis for the study should 
be offered. Give most important references but shun difficult to make a comprehensive appraisal of the topic. In the introduction, 
describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will have no attention in your 
result. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the 
protocols here. Following approach can create a valuable beginning: 

 
Explain the value (significance) of the study  

 
Shield the model - why did you employ this particular system or method? What is its compensation? You strength remark on its 
appropriateness from a abstract point of vision as well as point out sensible reasons for using it. 

 
Present a justification. Status your particular theory (es) or aim(s), and describe the logic that led you to choose them. 

 
Very for a short time explain the tentative propose and how it skilled the declared objectives. 

Approach: 

 
Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is 
done.  

 
Sort out your thoughts; manufacture one key point with every section. If you make the four points listed above, you will need a 
least of four paragraphs. 

 
Present surroundings information only as desirable in order hold up a situation. The reviewer does not desire to read the 
whole thing you know about a topic. 

 
Shape the theory/purpose specifically - do not take a broad view. 

 
As always, give awareness to spelling, simplicity and correctness of sentences and phrases. 

Procedures (Methods and Materials): 

 This part is supposed to be the easiest to carve if you have good skills. A sound written Procedures segment allows a capable scientist to 
replacement your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of 
information. Present methods in sequential order but linked methodologies can be grouped as a segment. Be concise when relating the 
protocols. Attempt for the least amount of information that would permit another capable scientist to spare your outcome but be 
cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section. 
When a technique is used that has been well described in another object, mention the specific item describing a way but draw the basic                  
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principle while stating the situation. The purpose is to text all particular resources and broad procedures, so that another person may 
use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step by step report of the 
whole thing you did, nor is a methods section a set of orders. 
 
Materials: 

 Explain materials individually only if the study is so complex that it saves liberty this way. 

 Embrace particular materials, and any tools or provisions that are not frequently found in laboratories.  

 Do not take in frequently found. 

 If use of a definite type of tools. 

 Materials may be reported in a part section or else they may be recognized along with your measures. 

Methods:  

Report the method (not particulars of each process that engaged the same methodology) 

 
Describe the method entirely 

 
To be succinct, present methods under headings dedicated to specific dealings or groups of measures 

 
Simplify - details how procedures were completed not how they were exclusively performed on a particular day.  

 
If well known procedures were used, account the procedure by name, possibly with reference, and that's all.  

Approach:  

 
It is embarrassed or not possible to use vigorous voice when documenting methods with no using first person, which would 
focus the reviewer's interest on the researcher rather than the job. As a result when script up the methods most authors use 
third person passive voice. 

 
Use standard style in this and in every other part of the paper - avoid familiar lists, and use full sentences. 

What to keep away from 

 
Resources and methods are not a set of information. 

 
Skip all descriptive information and surroundings - save it for the argument. 

 
Leave out information that is immaterial to a third party. 

Results: 
 

 The principle of a results segment is to present and demonstrate your conclusion. Create this part a entirely objective details of the 
outcome, and save all understanding for the discussion. 

 The page length of this segment is set by the sum and types of data to be reported. Carry on to be to the point, by means of statistics and 
tables, if suitable, to present consequences most efficiently.You must obviously differentiate material that would usually be incorporated 
in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matter should not 
be submitted at all except requested by the instructor. 

 Content 

 

Sum up your conclusion in text and demonstrate them, if suitable, with figures and tables.  

 

In manuscript, explain each of your consequences, point the reader to remarks that are most appropriate. 

 

Present a background, such as by describing the question that was addressed by creation an exacting study.

 

 

Explain results of control experiments and comprise remarks that are not accessible in a prescribed figure or table, if 
appropriate. 

 

Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or in manuscript form. 
What to stay away from 

 

Do not discuss or infer your outcome, report surroundings information, or try to explain anything. 

 

Not at all, take in raw data or intermediate calculations in a research manuscript. 
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Do not present the similar data more than once. 

Manuscript should complement any figures or tables, not duplicate the identical information. 

Never confuse figures with tables - there is a difference. 
Approach 

As forever, use past tense when you submit to your results, and put the whole thing in a reasonable order.

Put figures and tables, appropriately numbered, in order at the end of the report  

If you desire, you may place your figures and tables properly within the text of your results part. 
Figures and tables 

If you put figures and tables at the end of the details, make certain that they are visibly distinguished from any attach appendix 
materials, such as raw facts 

Despite of position, each figure must be numbered one after the other and complete with subtitle  

In spite of position, each table must be titled, numbered one after the other and complete with heading 

All figure and table must be adequately complete that it could situate on its own, divide from text 
Discussion:  

The Discussion is expected the trickiest segment to write and describe. A lot of papers submitted for journal are discarded based on
problems with the Discussion. There is no head of state for how long a argument should be. Position your understanding of the outcome
visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implication of the study. The
purpose here is to offer an understanding of your results and hold up for all of your conclusions, using facts from your research and
generally accepted information, if suitable. The implication of result should be visibly described. 
Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact you must explain mechanisms
that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results
agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved with prospect, and let it
drop at that. 

Make a decision if each premise is supported, discarded, or if you cannot make a conclusion with assurance. Do not just dismiss
a study or part of a study as "uncertain." 

Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that
you have, and take care of the study as a finished work  

You may propose future guidelines, such as how the experiment might be personalized to accomplish a new idea. 

Give details all of your remarks as much as possible, focus on mechanisms. 

Make a decision if the tentative design sufficiently addressed the theory, and whether or not it was correctly restricted. 

Try to present substitute explanations if sensible alternatives be present. 

One research will not counter an overall question, so maintain the large picture in mind, where do you go next? The best
studies unlock new avenues of study. What questions remain? 

Recommendations for detailed papers will offer supplementary suggestions.
Approach:  

When you refer to information, differentiate data generated by your own studies from available information 

Submit to work done by specific persons (including you) in past tense.  

Submit to generally acknowledged facts and main beliefs in present tense.  

ADMINISTRATION RULES LISTED BEFORE  
SUBMITTING YOUR RESEARCH PAPER TO GLOBAL JOURNALS INC. (US) 

Please carefully note down following rules and regulation before submitting your Research Paper to Global Journals Inc. (US):  

Segment Draft and Final Research Paper: You have to strictly follow the template of research paper. If it is not done your paper may get

rejected.  
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Do not give permission to anyone else to "PROOFREAD" your manuscript. 

Methods to avoid Plagiarism is applied by us on every paper, if found guilty, you will be blacklisted by all of our collaborated
research groups, your institution will be informed for this and strict legal actions will be taken immediately.) 

To guard yourself and others from possible illegal use please do not permit anyone right to use to your paper and files. 

The major constraint is that you must independently make all content, tables, graphs, and facts that are offered in the paper.
You must write each part of the paper wholly on your own. The Peer-reviewers need to identify your own perceptive of the
concepts in your own terms. NEVER extract straight from any foundation, and never rephrase someone else's analysis. 
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CRITERION FOR GRADING A RESEARCH PAPER (COMPILATION)
BY GLOBAL JOURNALS INC. (US)

Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading 

solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after 

decision of Paper. This report will be the property of Global Journals Inc. (US).

Topics Grades

A-B C-D E-F

Abstract

Clear and concise with 

appropriate content, Correct 

format. 200 words or below 

Unclear summary and no 

specific data, Incorrect form

Above 200 words 

No specific data with ambiguous 

information

Above 250 words

Introduction

Containing all background 

details with clear goal and 

appropriate details, flow 

specification, no grammar 

and spelling mistake, well 

organized sentence and 

paragraph, reference cited

Unclear and confusing data, 

appropriate format, grammar 

and spelling errors with 

unorganized matter

Out of place depth and content, 

hazy format

Methods and 

Procedures

Clear and to the point with 

well arranged paragraph, 

precision and accuracy of 

facts and figures, well 

organized subheads

Difficult to comprehend with 

embarrassed text, too much 

explanation but completed 

Incorrect and unorganized 

structure with hazy meaning

Result

Well organized, Clear and 

specific, Correct units with 

precision, correct data, well 

structuring of paragraph, no 

grammar and spelling 

mistake

Complete and embarrassed 

text, difficult to comprehend

Irregular format with wrong facts 

and figures

Discussion

Well organized, meaningful 

specification, sound 

conclusion, logical and 

concise explanation, highly 

structured paragraph 

reference cited 

Wordy, unclear conclusion, 

spurious

Conclusion is not cited, 

unorganized, difficult to 

comprehend 

References

Complete and correct 

format, well organized

Beside the point, Incomplete Wrong format and structuring
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