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The 𝐻 -function introduced by Inayat-Hussain ([9], see also [1]) in terms of Mellin-Barnes 

type contour integral is defined as follows
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which contains fractional powers of some of the functions. Here and throughout 

the paper aj
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(j=M+1,…,Q) can take on non-integer values.

The contour in (1.2) is imaginary and Re() = 0. It is suitably idented in 

function and to keep these singularities on appropriate side. Again, for Aj (j=1,…,N) 
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not an integer, the poles of the functions of the numerator in (1.2) are converted to 

branch points. However, as long as there is no coincidence of poles from any (bjj) (j 

= 1,…,M) and (1aj+j) (j = 1,…,N) pair, the branch cuts can be chosen so that the 

path of integration can be distorted in the usual manner.
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The above function is connected with a certain class of Feynman integrals. We get

 

 


k
n

b

a
x)g(b

 

p;g(

 

x)Fx)ba)x

 

. dxx)(bz'H
P'1,N'

'
j

'
jaN'1,

'
jA'

j
'
ja

Q'1,M'
'
jB'

j
'
jbM'1,

'
j

'
jb

k'N',M'

Q',P ' 


















 





















rh,
'
j

'
j

P '

'N1j

'
jB

rh,
'
j

'
j

Q'

'1j

'
jA

rh,
'
j

'
j

'N

1j
rh,

'
j

'
j

'M

hj
1j

0r

'M

1h ab1

a1b

. 

















2
21(!n     !r 

22
11)pEn)1a)b1)z'

21p2p
h

1d
1nnrrh,k'

The Integration of Certain Products of the H -function with Extended Jaboci Polynomials
4
.

C
h
in

ey
, 

S
.P

.a
n
d
 B

h
o
n
sl

e,
 B

.R
. 

–
S
o
m

e 
re

su
lt

s 
in

v
o
lv

in
g
 e

x
te

n
d
ed

 J
a
co

b
i 

p
o
ly

n
o
m

ia
ls

R
ev

. 
U

n
iv

. 
N

a
c.

 
T

u
cu

m
án

, 
A

, 
m

a
t.

 
fi
u
.t

eo
r.

 
T

u
cu

m
án

, 
IS

S
N

0
0
8
0
-2

3
6
0
,V

-2
5
, 

N
o
 
1
-

(1
9
7
5
),

 7
-1

1
.

  
G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
II

Is
su

e 
  
  
 e

rs
io
n

I
V

IV
  

 F
)

)

3

    
 

  
20

12
    
 A
pr

i l

© 2012 Global Journals Inc.  (US)

Ref. To establish (2.1), we express the 𝐻𝐻�-functions in series from and contour form as in 
(1.2) respectively, and then interchanging the order of summations and integrations which 
is permissible under the conditions stated, solving the remaining integral with the help of a 
known result Chiney and Bhonsle ( [4], p.9, eqn. (3.1)), and thus, interpreting the result in 
the desired form.
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valid under the condition as surrounding (2.1).

 

 

We shall define the Riemann-Liouville fractional derivative of function f(x) of order 

 

(or, 

alternatively, th order fractional integral) ([5], p.181, 11, p.49) by
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where q is a positive integer and the integral exists.

 

For 

 

= 0, we have  
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Now, replacing b by x and a = 0 in the main result, it can be rewritten as the following 

fractional integral formula

 

. 























 P1,NjjaN1,jAjj(a

Q1,MjBjjbM1,jjb
kNM,

QP,x t)z(xHxD

 

©  2012 Global Journals Inc.  (US)

. 



























t)Ft)(xz'H n

P'1,N'
'
j

'
jaN'1,

'
jA'

j
'
ja

Q'1,M'
'
jB'

j
'
jbM'1,

'
j

'
jb

k'N',M'

Q',P '





















rh,
'
j

'
j

P '

'N1j

'
jB

rh,
'
j

'
j

Q'

'1j

'
jA

rh,
'
j

'
j

'N

1j
rh,

'
j

'
j

'M

hj
1j

0r

'M

1h ab1

a1b

. 





h

rh,k'rh,k'nnr

!n    !r 
n)1x)z'1

The Integration of Certain Products of the H -function with Extended Jaboci Polynomials
5
.

E
rdély

i, 
A

. 
et 

a
l. –

T
a
b
les 

o
f 

In
teg

ra
l 

T
ra

n
sfo

rm
s, 

V
o
l.II, 

M
cG

ra
w

-H
ill, 

N
ew

 
Y

o
rk

, 

1
9
5
4
.

  
  

 )

4

  
G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
II

Is
su

e 
  
  
 e

rs
io
n

I
V

IV
  

 F)

  
20

12
A
pr

il

Ref.



 

 

 
 

. 










 







P1,NjjaN1,jAjj(a

 

k;1),rh,k'(k;1),rh,k'(

k;1)rh,k'n1(k;1),rh,k'nQ1,MjBjjbM1,jjb
k2NM,

2Q2,P  xzH

 

  

 

(4.2)

 

where Re() >

 

0 and all other conditions of validity mentioned with (2.1) are satisfied.

 

The results recently derived by Gupta and Soni in [6], Chaurasia and Srivastava in 

[2] and Chaurasia and Pandey in [3] can be obtained on giving suitable values to the 

parameters and arguments. The result given in (4.2) is also quite general in nature and can 

easily yield Riemann-Liouville fractional integrals of large number of simpler functions and 

polynomials merely by specializing the parameters of H and Fn

 

appearing in it which may 

find applications in electromagnetic theory, statistical mechanics and probability theory.

 

 

1.

 

Buschman, R.G. and Srivastava, H.M. –

 

The function associated with a certain class of 

Feynman integrals, J. Phys. A, Math. Gen., 23(1990), 4707-4710.

 

2.

 

Chaurasia, V.B.L. and Srivastava, Amber –

 

The integration of certain products 

pertaining to the H-function with general polynomials, Jñāñabha, 31/32 (2002), 51-57.

 

3.

 

Chaurasia, V.B.L. and Pandey, S.C. –

 

Fractional integral involving a product of certain 

special functions, Acta Ciencia Indica, 37M(1), (2011), 115-121.

 

4.

 

Chiney, S.P.and Bhonsle, B.R. –

 

Some results involving extended Jacobi polynomials, 

Rev. Univ. Nac. Tucumán, A, mat. fiu.teor. Tucumán, ISSN0080-2360,V-25, No 1-2; 

(1975), 7-11.

 

5.

 

Erdélyi, A. et al. –

 

Tables of Integral Transforms, Vol.II, McGraw-Hill, New York, 

1954.

 

6.

 

Gupta, K.C. and Soni, R.C. –

 

New properties of generalization of hypergeometric series 

associated with Feynman integrals, Kyungpook Math. J., 41 (2001), 97-104.

 

7.

 

Grosche, C. and Steiner,F. –

 

Handbook of Feynman Path Integrals, Springer tracts in 

modern physics, Vol.145, Springer-Verlag, Berlin, Heidelberg, New York, 1998.

 

8. Fujiwara, I. – A unified presentation of classical orthogonal polynomials, Math. Japan, 

11 (1966), 133-148.

9. Hai, N.T. and Yakubovich, S.B. – The Double Mellin-Barnes Type Integrals and Their 

Application to Convolution Theory, World Scientific  Publishing Co. Pvt. Ltd., 

Singapore, New Jersey, London, Hongkong, 1992.

10. Inayat-Hussain, A.A. – New properties of hypergeometric series derivable from 

Feynman integrals : I, Transformation and reduction formulae, J. Phys. A: Math. Gen., 

20 (1987), 4109-4117.

11. Inayat-Hussain, A.A. – New properties of hypergeometric series derivable from 

Feynman integrals : II. A generalization of the H-function, J. Phys. A: Math. Gen., 20 

(1987), 4118-4128.

12. Oldham, K.B. and Spanier, J. – The Fractional Calculus, Academic Press, New York, 

1974.

   

The Integration of Certain Products of the H -function with Extended Jaboci Polynomials

REFERENCES  RÉFÉRENCES REFERENCIAS

  
G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
II

Is
su

e 
  
  
 e

rs
io
n

I
V

IV
  

 F
)

)

5

    
 

  
20

12
    
 A
pr

i l

© 2012 Global Journals Inc.  (US)

Notes



  

 

  

 

  

 

  

 

  

©  2012 Global Journals Inc.  (US)

The Integration of Certain Products of the H -function with Extended Jaboci Polynomials
  

  
 )

6

  
G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
II

Is
su

e 
  
  
 e

rs
io
n

I
V

IV
  

 F)

  
20

12
A
pr

il

Notes

This page is intentionally left blank 



© 2012. R.Dharmarajan & K.Kannan.This is a research/review paper, distributed under the terms of the Creative Commons 
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial 
use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

Global Journal of Science Frontier Research 
Mathematics & Decision Sciences 
Volume 12  Issue 4  Version 1.0  April  2012 
Type : Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals Inc. (USA) 
Online ISSN: 2249-4626 & Print ISSN: 0975-5896 

 
 
Hypergraph-Based Edge Detection in Gray Images by 
Suppression of Interior Pixels   

By  R.Dharmarajan & K.Kannan 
SASTRA University 

Abstract – This paper presents a new two-stage hypergraph-based algorithm for edge detection 
in noise-free gray images. The first stage consists of mapping the input image onto a hypergraph 
called the Intensity Interval Hypergraph (IIHG) associated with the image. In the second stage, 
each hyperedge is partitioned into two disjoint subsets, namely, the interior pixels and the edge 
pixels. The interior pixels are then suppressed, so that the edge pixels trace out the edges in the 
image. These edges are then sharpened using an edge sharpener function to eliminate all the 
duplicated edges. The algorithm is validated on a number of images of largely varying details, 
and shows promising results. Other hypergraph-based algorithms are of computational 
complexity O (n2) or O (n3) whereas the IIHG model works at a reduced computational complexity 
of O (n). 

Keywords : Hypergraph, hyperedge, chessboard metric, interior point, edge. 

AMS subject classification :  05C65, 68U10 

 

Hypergraph-Based EdgeDetection in Gray Images by Suppression of Interior Pixels                                                       
 
 

Strictly as per the compliance and regulations of : 

 



 

 

 

 

Hypergraph-Based Edge Detection in Gray 
Images by Suppression of Interior Pixels

 

R.Dharmarajan

 
α
 
&

 
K.Kannan

 
α

 
 

Author 

 

:

 

Department of Mathematics, SASTRA University, Thanjavur 613402, India. E-mails

 

: claudebergedr@gmail.com, 
kkannan@maths.sastra.edu

 Abstract
 
-
 
This paper presents a new two-stage hypergraph-based algorithm for edge detection in noise-free gray 

images.  The first stage consists of mapping the input image onto a hypergraph called the Intensity Interval Hypergraph 
(IIHG) associated with the image.  In the second stage, each hyperedge is partitioned into two disjoint subsets, namely, 
the interior pixels and the edge pixels.  The interior pixels are then suppressed, so that the edge

 
pixels trace out the 

edges in the image.  These edges are then sharpened using an edge sharpener function to eliminate all the duplicated 

edges.  The algorithm is validated on a number of images of largely varying details, and shows promising results.  Other 

hypergraph-based algorithms are of computational complexity O (n2) or O (n3) whereas the IIHG model works at a 

reduced computational complexity of O (n).   
Keywords / phrases : Hypergraph, hyperedge, chessboard metric, interior point, edge.    

 
In edge detection, one approach is to track pixels column wise (or, row wise) 

before using statistical measures for the processing [1].
 

Graph-based approach [2] 

identifies binary-related pixels before processing them. Graphs are mathematical modeling 

tools for low-level image processing applications because graphs are essentially about 

relationships between objects (these are pixels in images).  But graphs do not go beyond 

binary relations, and pixel relations in images are, in most applications, complex and not 

necessarily binary.  Hence a model that can accommodate higher order relations would be 

desirable and valuable.
 

Hypergraphs do precisely that –
 
they accommodate higher order object relations.  

Hypergraph theory is an original work of Claude Berge [3].  As mathematical entities, 

hypergraphs are rich and extensive in theory.  They also have applications, and published 

research works [4-7] have shown hypergraphs to be excellent tools in image processing.  
 The concept of edge is a very familiar one, yet there is no precise rigorous 

definition of an edge in an arbitrary image.  Indeed, the concept as we use it is an 

abstract one, and so it can give different meaning in different contexts [8].  Several widely 

accepted ideas of edges and edge detection methods are reported in literature [9, 10].  

Essentially, edges in an image correspond to intensity discontinuities or visible intensity 

changes.  The average human eye sees edges in the form of boundaries of objects in the 

target image.  Edge detection, therefore, can be thought of as the process of bringing into 

view these boundaries while suppressing
 
the rest of the image.  Broadly, edge detection 

can be
 
considered a two-stage process:  first, the characterization of intensity changes; 

and second, the use of some structural knowledge to find the edges [11].  Some widely 

known edge detectors are the Sobel, the Laplacian-of-Gaussian (or LoG) and the Canny 

edge detectors.  However, they do have drawbacks: appearance of undesirable double 

edges, large and complicated set of rules, and generation of speckles, to mention a few.  
 2
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A premise in this paper is that edges are consequences of pixel features and pixel 

relations.  As regards gray images, we have only two aspects at our disposal: the intensity 

of each pixel and the spatial relationship between pixels.  Many algorithms in the 

traditional class tend to ignore the important spatial relationship aspect [2].  This 

problem is addressed in the hypergraph framework in this paper.  
 Wide and thick edges (roughly speaking, these are edges upon edges without any 

separating features, with one edge following exactly the course of the other) hamper edge 

detection processes even in clean images by producing undesirable duplication effects in 

the output image (or, the edge image).  So there is a need to characterize not just edges 

but also duplication of edges to identify the undesirable thick edges before eliminating 

such.  This hypergraph-based work brings some properties of sets and functions into a 

hypergraph model towards such characterization in a clean image. 
 The contribution of this article is a novel hypergraph model (called the IIHG, 

detailed in section 3) for edge detection (in noise-free gray images) with reduced 

 The remainder of this paper is organized in sections 2 through 7.  Section 2 

mentions some published and widely-cited graph-
 

and hypergraph-based edge detection 

works.  Section 3 introduces the hypergraph model that is the base for our algorithm.  

Section 4 presents the flow of the algorithm in a compact form.  Results of experiments 

on standard test images and real world images are reported and discussed in section 5.  

This section also features comparative studies to establish the excellent performance and 

potential of the proposed algorithm.  Features of the algorithm are presented in section 6.  

Concluding remarks form section 7.  
 

 

A unified graph-based method for segmentation and edge detection is given in [2], 

which is in a way a pioneering shift from the traditional approach (of row or column 

tracking).  In [2], mapping of the image onto a graph and computation of shortest 

spanning trees are important preludes to the process of segmentation and edge detection.  

However, [2] does not go into the computational complexity of the algorithm .  Also, this 

approach conveys an impression that pixel relations in any image could be simplistic 

enough to be binary, which impression finds no support in published research.
 Bretto and others [4-7] based their research on hypergraph models where patches 

of pixels (rather than pairs of pixels) are processed by algorithms that are guided 

principally by the pixel intensity values.  This approach is reflective of the fact that 

hypergraphs are generalizations of graphs.  Besides mapping the image onto a hypergraph 

structure, Bretto et al use the idea of stars and star aggregates.  These illustrate 

possibilities of application of higher order pixel relations in hypergraphs to image 

processing.  But these algorithms are computationally expensive (O (n3)) and tend to 

leave unprocessed pixels behind.
 

 
A hypergraph

 
is a couple H = (V, E), where V is a nonempty finite set and E

 
is a 

family
 

of nonempty subsets of V that fills out V.  Since E is finite, we index it by a set J 
= {1, …, k}, k Є

 
N,

 
and so we have E =

 
{X1, . . ., Xk

 
}

 
and X1   . . .   Xk

 
= V.  The set V is 

Hypergraph-Based Edge Detection in Gray Images by Suppression of Interior Pixels
  

  
 )

8

  
G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
II

Is
su

e 
  
  
 e

rs
io
n

I
V

IV
  

 F)

  
20

12
A
pr

il

©  2012 Global Journals Inc.  (US)

called the vertex set of H. The family E is called a hyperedge family on the vertex set V, 

and each member of E is called a hyperedge (in H). 
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complexity O (n).  To the best of our knowledge, the proposed algorithm is the first 
hypergraph-based one for edge detection with complexity O (n).   



  

If the members of E are distinct (meaning: i ≠

 

j 

 

Xi ≠

 

Xj), then H is simple.  In 

this case, E is a set

 

of nonempty subsets of V.  H = (V, E) is called a partitioned 

hypergraph if its hyperedges

 

form a partition of V –

 

i.e., V = X1      . . .    

 

Xk

 

and Xi ∩

 

Xj 

= φ

 

for i ≠

 

j (where φ

 

denotes the empty set). 

 

To begin with, the input image is represented as a partitioned hypergraph.  The

 

hyperedges for this representation are constructed as follows:

 
A digital gray image labeled I (and assumed noise-free) is mathematically 

represented by the function I: V→

 

W (where V µ

 

N x N and W is the set of non-negative 

integers), where for a = (x, y) Є

 

V, I (a) is the gray scale intensity value of the pixel a 

located at (x, y) Є

 

N x N, so that it is natural to think of the image I as a nonempty 

finite subset V of N x N.  Let V be endowed with the chessboard metric ρ.  

 
Let L be a positive integer, L ≤

 

254 and q = [255 –

 

255(mod L)] ⁄

 

L.  We set

 

 

     

      

      

 

Let E =  Et │t = 1 through q + 1; and Et

 

≠

 

φ}.  Then E is a set

 

of nonempty 

subsets of V, and E fills out V. We take H = (V, E). Then H is a hypergraph on the set 

V, and thereby is a hypergraph representation of the image I.  We call this the Intensity 

Interval Hypergraph (IIHG) associated with the image I. This hypergraph is a partitioned 

one.

 

The essential mathematics for the algorithm is given in the appendix (after the 

references), where all the theory (A1 through A5) is within the framework of the IIHG on 

V detailed above.

 

 

Figure 1 below gives the flow of the proposed IIHG algorithm.  The input image data 

(box numbered 1 in Fig. 1) are as follows:

 

1(a) V = set of pixels of the image I (as a finite nonempty subset of N ×

 

N)

 

1(b) Gray scale intensity matrix of V. 

 

1(c) Domain distance metric ρ

 

(Chessboard metric) on V

 

1(d) Parameter L (called ‘intensity interval’)
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Notes

{

(a) E1= {a Є V │ 0 ≤ I (a) ≤ L},  

(b) Ek = {a Є V │ (k – 1) L + 1 ≤ I (a) ≤ k L} for k = 2, …, q, 

(c) Eq+1 = {a Є V │ q L +1 ≤ I (a) ≤ 255}.  Obviously the Et (t = 1, . . ., q + 1) are subsets 

of V, some possibly empty (φ).  



 

 

 

 

 

 

 

 

 

 

 

The computing environment for coding the proposed IIHG algorithm has the following 

principal components:  

(i) Computer category: Micro  

(ii) Processor: Intel i13, 3.2 GHz  

(iii) Software: MATLAB  7.0.1  

 

In the proposed algorithm, the output showing the edges depends on the number 

of hyperedges.  The more the number of hyperedges, the denser the edges in the output 

image.   

a)  Test reports  
Figure 2 below is a simple illustration of how the edge detection algorithm works 

on a 10 x 10 image patch for L = 90.  This patch is a part of a test image from [12].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Input: Gray image 
(noise-free)  

2. Construct the IIHG 
(H) for the input image  

3. Identify the interior 
points and edge points in 

each hyperedge  

4. Suppress the interior 
points in each hyperedge  

 

5. Sharpen the thick edges  
 

6. Output:  
Edges in the image  
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Figure 1 : The IIHG algorithm flow diagram
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Figure 2 : The input image is the patch of size 10 x 10.  The hundred pixels in this patch 

are labeled P1 through P100.  The intensity value of each pixel is just above its label. The 

pixels filled with black are the edge pixels as identified by the algorithm.  The pixels 

without any filling color are the suppressed pixels – these are either the interior pixels 

suppressed in the partitioning of the hyperedges or the edge pixels suppressed in the 

sharpening of thick edges. 

 
Over six hundred images were taken from [12, 13] and Google Earth which contain 

ranges of gray images with widely varying features and details. Several of these images 

appear in published works, and are standard test images –
 

for instance, Lena, 

Photographer and Peppers –
 
in image processing research. Tests on five widely used 

images are reported and discussed in this section. The values of the parameter L specified 

in the reports have been selected after exhaustive testing covering the entire range of L (1 

≤
 
L ≤

 
254).  For each image reported here, the selected values of L produce visually more 

credible results (to the subjective human eye) than its other values.  As is always the case 

in any low level image processing, the judgment of the visual results shown in the 

examples is subjective.
 In fig. 3(b) and 3(c), the outputs show ‘cluttering’

 
of edges for L = 50 and L = 60, 

respectively.  For L >
 
80, the edges become more distinguishable.  However, as L is 

increased, some of the edges may actually disappear-
 
for instance, in the edge image for L 

= 100, the outline of the lips has all but vanished.  It is inferred that large values of L 

could result in loss of edges.  And this is in direct contrast to ‘too many edges’
 
(or, 

cluttering) resulting from a low value of L.  As regards the Lena image, our inference is 

that 80 ≤
 
L ≤

 
95 is a good range for the edge image to be a reliable representative of the 

true edges in the original (to the human eye).  A similar inference can be made for each 

image tested.  
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In each of the following test reports, the first image (a) is the input (original).  

The others are the output edge images for the specified values of L.  

 Pic: original

 
3(a) Lena 

 

Pic: Edges for L=50

 
3(b) L = 50

 

Pic: Edges for L=60

 
3(c) L = 60

 

Pic: Edges for L=90

 
3(d) L = 90

 

 
3(e) L = 100

 
 

3(f) L = 110
 

 
3(g) L = 115

 
 

3(h) L = 120
 

 

Another widely used test image –
 

Peppers –
 

features in figure 4.  The range 90 ≤
 

L 

≤
 

120 gives better edge representations.  The Lena and the Peppers images also feature in 

the comparison of our proposed algorithm with three other edge detection algorithms, 

shown in section 5.2
 

  
 Pic: original

 

4(a) Peppers 
 

Pic: Edges for L=50

 

4(b) L =  50
 

Pic: Edges for L=75

 

4(c) L = 75
 

Pic: Edges for L=85

 

4(d) L = 85
 

Pic: Edges for L=95

 

4(e) L = 95
 

Pic: Edges for L=105

 

4(f) L = 105
 

Pic: Edges for L=115

 

4(g) L = 115
 

Pic: Edges for L=121

 

4(h) L = 121
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Pic: original

 
5(a)Photographer 

Pic: Edges for L=80

 
5(b) L = 80 

Pic: Edges for L=90

 
5(c) L = 90 Pic: original

 
6(a)  House 

Pic: Edges for L=70

 
6(b) L = 70 

Pic: Edges for L=90

 
6(c) L = 90 

 
Synthetic and real world images were tested with a view to stress-testing the code.  

Results on two such images are seen in figures 7 and 8 below.
 

       
7(a) Synthetic image (Syn 1)        7(b) Edges in Syn 1 (L = 90)      7(c) Edges in Syn 1 (L = 100) 

              
          

8(a) Real world image (RW1)             8(b) Edges in RW 1 (L = 128)           8(c) Edges in RW 1 (L =
 
65)

 
                 

(Acquired from Google Earth)
 

 

The images reported here are of different sizes (80 x 80 to 512 x 512) and detail contents.  

CPU run time is more for some of these images because of their larger size.       
 

b)
 
Comparisons and performance reports

 

The proposed IIHG algorithm was compared for edge detection results with three 

other published algorithms –
 
namely, the Sobel [14], the Canny [15], and the MG-IT2FIS 

[16]. The original images (inputs) are in panel 1.  The results of each of the four 

algorithms on these five images are in panel 2.  Figures in these panels have not been 

numbered.  As can be seen from panel 2, the comparison works out, to a significant 

extent, in favor of the
 
proposed IIHG-based algorithm.
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Pic: original

 Photographer
 

Pic: original

 Lena
 

Pic: original

 Peppers
 

Pic: original

 House
 

Pic: original

 Parakeet
 

Panel 1  :  The five original images that feature in the comparison (shown in panel 2)  

 Canny                                     Sobel                              MG + IT2FIS*

 
( these edge image pictures are as published in [16])

 
* Morphological Gradient Interval Type 2 Fuzzy Inference System [16]

 

IIHG + suppression

 
(proposed)

 

 

Pic: Edges for L=90

 

  

 

Pic: Edges for L=95

 

 

Pic: Edges for L=90
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Panel 2 : Comparison of the proposed IIHG algorithm with Sobel, Canny and MG+IT2

Notes



 

 

   

In the above comparison experiment, we used L = 90 (for the Photographer image), 80 

(Lena), 95 (Peppers), 90 (House) and 60 (Parakeet).

 

Table 1

 

:

 

Performance of the proposed algorithm (Standard test images)

 

#H: Number of 

hyperedges;

 

*Run time in seconds, rounded to one place after the decimal

 

S.no.

 

Image

 

L

 

#H

 

Run 
time*

 

S.no.

 

Image

 

L

 

#H

 

Run 
time*

 

1

 

Lena

 

(200 x 200;

 

Bitmap)

 

50

 

6

 

13.8

 

4

 

Peppers

 

(200 x 200;

 

JPEG)

 

50

 

6

 

12.8

 

60

 

5

 

12.7

 

75

 

4

 

10.5

 

90

 

3

 

10.3

 

85

 

3

 

10.9

 

100

 

3

 

11.2

 

95

 

3

 

9.5

 

110

 

3

 

11

 

105

 

3

 

8.8

 

115

 

3

 

10

 

115

 

3

 

8.4

 

2

 

Photographer

 

(333 x 336;Bitmap)

 

80

 

4

 

15.8

 

5

 

House

 

(333 x 333;

 

Bitmap)

 

70

 

4

 

10

 

90

 

3

 

17.4

 

90

 

3

 

8.1

 

105

 

3

 

17.9

 

100

 

3

 

7

 

3

 

Parakeet

 

(328 x 198;

 

Bitmap)

 

60

 

5

 

15

 

6

 

Other images**

 

TIF / 
JPEG / Bitmap

 

40 to

 

150

 

2 
to

 

7

 

3

 

to 
40

 

70

 

4

 

13.2

 

85

 

3

 

12.4

 

** More than 350 images from [12] and [13] (size: 80 x 80 to 512 x 512)

 

Table 2

 

:

 

Performance of the proposed algorithm 

 

(Synthetic and real world images)

 

S.no.

 

Image & size

 

L

 

#H

 

Run time*

 

1

 

Syn 1

 

(94 x 150; 
Bitmap)

 

90

 

3

 

8.2

 

100

 

3

 

8.6

 

55

 

5

 

7.1

 

2

 

RW1

 

(108 x

 

168; 
Bitmap)

 

128

 

2

 

10.5

 

93

 

3

 

14

 

65

 

4

 

16.6

 

3

 

Other images***

 

TIF / 
JPEG / Bitmap

 

40 to

 

150

 

2 to

 

7

 

6

 

to 40

 

*** More than 300 images from [12] and [13] and Google Earth (size: 90 x 90 to 512 x 512)

 

c)

 

Computational complexity of the proposed algorithm

 

The number of hyperedges in the first stage does not exceed q + 1, where q = [255 

–

 

255 (mod L)] ⁄

 

L.  So for any positive integer value of L, we have q ≤

 

255.  Since the 

hyperedges are non-intersecting, each pixel is visited exactly once in the first stage.  

 

In the second stage, in each hyperedge, each pixel is visited at most four times for 

segregating the edge points from the interior points.  Then, to suppress each interior 

pixel, we need exactly one assignment of the value 255 to the pixel.  Subsequently, to 

identify the thick edges, each edge pixel is visited at most four times.  And the 
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sharpening process that follows takes one assignment operation (the one mentioned 

above) for every pair of thick edge pixels that correspond in the required bijective way 

(see A3 of appendix).  Hence the number of computations in the algorithm is λn, with 1 ≤

λ ≤ 10, where n = number of pixels in the input image.  Let f(n) = n and g(n) = λ n.  As 

n tends to ∞, the limit of f(n) / g(n) is 1 / λ, and that of g(n)/ f(n) is λ.  Since both λ and 

1/ λ are finite and nonzero, we aver that the complexity of the proposed algorithm is 

O(n).

Notes



 

 

 

 

 

 

(i) The sequential combination of two functions –

 

thick edge identifier and thick edge 

sharpener, in that order –

 

ensures that no redundancies appear in any edge.  This 

combination is effective principally because of the IIHG model.  

 

(ii) The first stage (construction of the IIHG) ends when the empty set (φ) takes the place 

of V, and this happens in at most q + 1 steps.  The second stage (edge detection) 

ends when each hyperedge has been cleared of its thick edges, which happens in at 

most S steps (but in most images well below S because of interior points being 

excluded from this process), where S = Σ

 

Σ

 

(│Ej│x │Ek│),

 

the sums running over the 

indices j (second) and k (first) with j, k ϵ  1, . . , │E   and j   k; and whatever the 

value of L, │E│does not exceed 255.  Thus the algorithm is convergent.

 

(iii) The algorithm handles large sized images of varying  dimensions and for all values of 

L in its stipulated range (1 ≤

 

L ≤

 

254), and so is robust.  

 

(iv) The algorithm is fast for test images that are widely used as standards by researchers 

in image processing (for instance, Lena and Peppers).  

 

(v) Since the output is always viewed rather subjectively, edges that are considered ‘not 

desirable’

 

can be removed by tuning L.  While this is a facility that is in-built in the 

algorithm, tuning L to eliminate such ‘undesirable’

 

edges could accidentally rub out 

true edges also.  This is one limitation of the algorithm.  

 

 

(i) We have presented a hypergraph-based one-parameter-driven partitioning algorithm 

for edge detection in clean gray images.  The algorithm processes patches of pixels of 

arbitrary (finite) size

 

and distribution efficiently.  The computational complexity is 

O(n), which is an outstanding feature here.

 

(ii) From the tests reported in section 5.1, we have arrived at an apparently good range 

for L for a large number of images, standard or real-time, and this is 60 ≤

 

L ≤

 

120.  

However, L is image-dependent.  Going by our tests (on hundreds of standard, real-

pixels, resulting in loss of true edges.  Since performance of parameter-driven 

algorithms are application-dependent, we have not gone into the question of 

optimizing L.  

 

(iii) In image engineering applications, the input image may have to be first subjected to a 

noise removal scheme before the IIHG algorithm is applied.  As for noise removal, 

adequate schemes are available [5, 6, 17-20].
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time and synthetic images), we report that L < 60 tends to clutter the output figure 
with too many edges because false edges are shown among the true ones.  On the 

other hand, for L > 120 could accidentally suppress considerable number of edge 
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Notes



 

 

 

Bonded sets

 

Let N ×

 

N denote the Cartesian square of the set N of positive integers.  For (x1,

 

y1),

 

(x2,

 

y2) Є

 

N ×

 

N, we define ρ

 

((x1,

 

y1), (x2,

 

y2)) = max{|x1 –

 

x2|, |y1 –

 

y2|}.  The 

function ρ

 

is a metric on N x N –

 

and hence on any nonempty subset of N x N –

 

and ρ

 

is 

called the chessboard metric.    

 

For a given nonempty set V, by 2V we mean the power set of V; and by 2V* we 

mean the set of all nonempty subsets of V.   Let V be a finite nonempty subset of N x N 

endowed with the chessboard metric.  

 

If X Є

 

2V*

 

and a Є

 

V, we define ρ

 

(a, X) = min {ρ (a, b): b Є

 

X}.  If X, Y Є

 

2V*

 

then we define ρ(X,

 

Y) = min {ρ (a, b): a Є

 

X, b Є

 

Y}.  

 

Let A be a nonempty subset of V.  A finite sequence x1, . . . , xk

 

of elements of A 

is called a 1-step sequence

 

(1-ss) in A  if ρ

 

(xi, xi + 1) = 1 for each i = 1, . . . , k−1.  If a, b 

Є

 

A, then we say a is bonded

 

to b

 

in A if ρ

 

(a, b) ≤

 

1 or if there exist points z1, . . .,zk

 

in 

A such that the sequence a, z1, . . .,zk, b is a 1-ss in A.  In this case we write {a: b}A.  

 

Clearly: (i) {a: a}A, (ii) {a: b}A 

 

{b: a}A and (iii) {a: b}a and {b: c}A {a: c}A, 

for all a, b, c Є

 

A.  Further, {a: b}A 

 

{a: b}B whenever A 

 

B.  A is called a bonded 

set

 

if {a: b}A for every a, b Є

 

A.  A singleton set is obviously bonded.  

 

Interior points and edge points in an image 

 

Given a = (x, y) Є

 

V, we define the neighborhood B4(a) as: 

 

B4(a) = {b

 

= (p, q) Є

 

V│

 

ρ

 

(a, b) ≤

 

1 and

 

( x = p or y = q)}.  Clearly a Є

 

B4(a) 

for each a Є

 

V. 

 

Let A Є

 

2V*and a = (x, y) Є

 

A.  We say a is an interior point of A

 

if and only if B4 

(a) µA. We let IntA denote the set of all the interior points of a given set A.  If a is not 

an interior point of A then we call it an edge point of A. 

 

Edges in an image 

 

By │A│we mean the cardinality (or, size) of the set A.  An edge

 

in V is a 

nonempty subset e (V) of V with the following properties:

 

(ed-1) e (V) µ

 

X for some (hence unique) hyperedge X in H;

 

(ed-2)

 

│e (V)│> 1;

 

(ed-3)

 

no point of e (V) is an interior point of X;

 

(ed-4)

 

e (V) is bonded, and
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(ed-5) if Y satisfies (i) e (V) Y µ X, (ii) e (V) ≠ Y and (iii) Y IntX = φ, then Y is 

not bonded. 

A thick edge (or, a duplicated edge) in V is a nonempty subset r(V) of V that can 

be partitioned as r(V) = r1(V) r2(V) (i.e., r1(V) and r2(V) are nonempty subsets of r(V) 

such that r1(V) r2(V) = φ) with the following properties:

(t-ed-1) │r1(V)│ = │r2(V)│, 

Notes



     

 

 

 

  
  

 

(t-ed-2)

 

r1(V) 

 

µ

 

X1

 

and r2(V) 

 

µ

 

X2

 

for some distinct (hence disjoint) hyperedges X1

 

and  

X2

 

in H (we call X1

 

and X2

 

the source hyperedges of r1(V) and r2(V), respectively), and

(t-ed-3)

 

there exists a bijective map f: r1(V) →

 

r2(V) such that for each a Є

 

r1(V) we have

 

a Є

 

B4 (f(a)) as well

 

as

 

f(a) Є

 

B4 (a).

 

Suppression of interior points

 

Let A Є

 

2V*

 

and b* (A) = A –

 

IntA, where IntA denotes the set of all the interior 

points of A.  Let.  Evidently b* (A) is nonempty unless A = V.  We call the computation 

of b* (A) the suppression

 

of the interior points of A.  Notice that if A Є

 

E, then b* (A) is 

either an edge in V or a union of edges in V.

 

Sharpening of thick edges

 

Given two distinct hyperedges X1

 

and X2

 

in H, we write X1

  

X2

 

if I(a) 

 

I(b) for 

every a Є

 

X1

 

and  b Є

 

X2.  Let r(V) = r1(V) 

 

r2(V) be a thick edge in V with source 

hyperedges X1

 

and X2, respectively, such that X1

  

X2.  Let ψ: r2(V) →

 

W be the constant 

function ψ(b) = 255.  The function ψ

 

is called the edge sharpener function.  It suppresses 

one half of the targeted thick edge out of the picture, so that only the other half is seen in 

the edge image.
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Integral Formulae’s Involving Two H -function 
and Multivariable Polynomials
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Abstract

 

-

 

The aim of the

 

present paper is to derive a new Integral formulae’s  for the

 

𝐇 -function due to Inayat-Hussain 

whose based upon some integral formulae due to Qureshi et.al. The results are obtained in a compact form containing 

the multivariable Polynomials.

 

Keywords

 

:

 

H -function, general class of polynomials, generalized wright hypergeometric function.

 

 

In 1987, Inayat-Hussain [1, 2] introduced generalization form of Fox's H-function, 

which is popularly known as H -function.  Now H -function stands on fairly firm footing 

through the research contributions of various authors [1-3, 9, 10, 13-15]. 

 

H -function

 

is defined and represented in the following manner [10].

 

 

 
   

   
 

j j j j jm,n m,n 1,n n 1,p
p,q p,q

L
j j j j j1,m m 1,q

a , ;A , a , 1
H z H z z d

2 ib , ;B , b ,


 

  
 





 
  
 
  

  z 0

   

(1.1)

 

where

 

 

   

 

   

 

   

    



    

 

 

j

j

m n
A

j j j j
j 1 j 1

q p
B

j j j j
j m 1 j n 1

(b ) { (1 a )}

{ (1 b )} (a )

     

(1.2)

 

 

It may be noted that the    contains fractional powers of some of the gamma 

function and , , ,m n p q

 

are integers such that    1 ,1m q n p     
1, 1,

,j jp q

 

are positive real 

numbers and    
1, 1,

,j jn m q
A B may take non-integer values, which we assume to be positive 

for standardization purpose.  
1,j p

and  
1,j q

 

are complex numbers.

 

The nature of contourL , sufficient conditions of convergence of defining integral 

(1.1) and other details about the H -function can be seen in the papers [9, 10].

 

The behavior of the H -function for small values of |z|

 

follows easily from a result 

given by Rathie [3]:

   
m,n

p,qH z o |z| ;

 

Where
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The following function which follows as special cases of the H -function will be required in 

the sequel [9]

 

 

 

 

   

 


 


   
    
   
    

1,1, 1,
, 1

1, 1,

, ; 1 , ;
;

, ; 0,1 , 1 , ;

j j j j j jpp p
p qp q

j j j j j jq q

a A a A
z H z

b B b B

     

(1.5)

 

The general class of multivariable polynomials is defined by Srivastava and Garg [7]:

 

   
  

 


 
11 1

1

1 1

1

...
,..., 1

1 1...
,..., 0 1

[ ,..., ] ; ,... ...
! !

rr r

r

r r
r

k kh k h k L
h h r
L r rh k h k

k k r

x x
S x x L A L k k

k k

    

(1.6)

 

Where 1,..., rh h

 

are arbitrary positive integers and the coefficients  1; ,..., ,rA L k k

 ; ; 1,...,iL h N i r 

 

are arbitrary constant, real or complex.

 

 

Evidently the case 1r 

 

of the polynomials (1.6)

 
 

Would correspond to the polynomials given by Srivastava [5]

 

 
 

 



  

[ / ]

,
0

(0,1,2,...)
!

L h
h khk
L L k

k

L
S x A x L N

k

   

(1.7)

 

Where h is arbitrary positive integers and the coefficient  , , 0L kA L k  are arbitrary 

constant, real or complex.

 

The following formulas [11 , p.77, Ens. (3.1), (3.2) & (3.3)] will be required in our 

investigation.

 

  


 




    
    

    


12

1/2

0

( 1/ 2)

( 1)2 (4 )

p

p

b p
ax c dx

x pa ab c
,       0; 0; 4 0;Re( ) 1/ 2 0a b c ab p

 
 

(1.8)

  

 

  


 




    
    

    


12

2 1/2

0

1 ( 1/ 2)

( 1)2 (4 )

p

p

b p
ax c dx

x px b ab c
,

 

      0; 0; 4 0;Re( ) 1/ 2 0a b c ab p

 

(1.9)

 

 

 


 





      
       

      


12

2 1/2

0

( 1/ 2)

( 1)(4 )

p

p

b b p
a ax c dx

x px ab c
,       0; 0; 4 0;Re( ) 1/ 2 0a b c ab p

(1.10)

 

 

 

Let

 

X

 

stands for

 

 
  

 

2
b

ax c
x
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     
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1 1 1 1

| | | | | | | | 0
q qm n

j j j j j j
j j m j j n

B b B a A A ,   0 | |z (1.4)


 

 
  

 
 

1
min Re ,| | 0

j

j m
j

b
z (1.3)

7
.

H
.M

. S
riv

a
sta

v
a
 a

n
d
 M

. G
a
rg

, S
o
m

e in
teg

ra
ls in

v
o
lv

in
g
 a

 g
en

era
l cla

ss o
f p

o
ly

n
o
m

ia
ls 

a
n
d
 m

u
ltiv

a
ria

b
le H

-fu
n
ctio

n
, R

ev
R

o
u
m

a
in

e P
h
y
s 3

2
(1

9
8
7
), 6

8
5
-6

9
2
.

Ref.

II. MAIN INTEGRAL FORMULAE’S



   

   

   

   

   

 

1 1

1 1

, , 1, 1,1, 1,,...,1
, ,1

0
1, 1, 1, 1,

1/2 ..

, ; , ,' , ' ; ' , ' , '
[ ,..., ]
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r r
j j j j jj j j j jM N m n n n pN N Ph h

P Q p qL r

j j j j j j j j j jM M Q m m q
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L
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(2.1)

 

The above result will be converging under the following conditions:

 

(I)    0; 0; 4 0a b c ab and 0, 0, 0, 0i      

 

(II) 
1 1

' 1
min Re min Re

' 2

j j

j M j m
j j

b b
  

    

   
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   
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(III)  
1

|arg |
2

z , where  is given by equation (1.4)
 

Second Integral
 
Formulae:
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(2.2)

 

The above result will be converging under the following conditions:

 

(I) 0; 0; 4 0a b c ab    and 0, 0, 0, 0i      

 

(II) 
1 1

' 1
min Re min Re
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j M j m
j j

b b
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      

   
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(III)  
1

|arg |
2

z , where  is given by equation (1.4)  

 

Third Integral

 

Formulae:
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(2.3)

 

The above result will be converging under the following conditions:

 

(I) 0; 0; 4 0a b c ab    and 0, 0, 0, 0i      
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(III)  

1
|arg |

2
z , where  is given by equation (1.4) 

 

 

Proof: To prove the first integral, we first express H -function occurring on the 

L.H.S. of equation (2.1) in terms of Mellin-Barnes type of contour integral given by 

equation (1.1) and general class of multivariable polynomials 1,...,

1[ ,..., ]rh h
L rS x x

 

in series form 

with the help of

 

(1.6) and then interchanging the order of integration and summation. 

 

We get:
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(2.4)

 
 

Further using the result (1.8) the above integral becomes
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
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(2.5)

 

Then interpreting with the help

 

of (1.1) and (2.5) provides first integral.

 

Proceeding on the same parallel lines, integral second and third given by equation 

(2.2) and (2.3) can be easily obtained by using the results (1.9) and (1.10) respectively.

 

 
(3.1) If we put ' ' 1,j j j jA B A B   

 

H -function reduces to Fox’s H-function [6, 

p. 10, Eqn. (2.1.1)], then the equations (2.1), (2.2) and (2.3) take the following form.
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(3.1.3)

 

The conditions of convergence of (3.1.1), (3.1.2) and (3.1.3) can be easily obtained 

from those of (2.1), (2.2) and (2.3) respectively. 

 

Further If we put ' ' 1; ' ' 1j j j j j j j jA B A B            , then the  H -function 

reduces to general type of G-function [12], which is also the new special case.

 

(3.2)

  

If we put ,n p 1,m  1,q q  1 10, 1,b   1 ,j ja a  1j jb b  , then the H -

function reduces to generalized wright hypergeometric function [9] i.e. 
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,  the equations (2.1), (2.2) and (2.3)  

take the following form.
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(3.2.3)

 

The conditions of convergence of (3.2.1), (3.2.2) and (3.2.3) can be easily obtained 
from those of (2.1), (2.2) and (2.3) respectively. 

 

(3.3)

  

If we put the general class of multivariable polynomials given by 
Srivastava and Garg [7] reduces to the polynomials given by Srivastava [5], the equations 
(2.1), (2.2) and (2.3)  take the following form:
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The conditions of convergence of (3.3.1), (3.3.2) and (3.3.3) can be easily obtained 

from those of (2.1), (2.2) and (2.3) respectively.  

(3.4) By applying the our results given in (3.3.1), (3.3.2) and (3.3.3) to the case of 
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(3.4.3)

 

The conditions of convergence of (3.4.1), (3.4.2) and (3.4.3) can be easily obtained 

from those of (2.1), (2.2) and (2.3) respectively. 
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The conditions of convergence of (3.5.1), (3.5.2) and (3.5.3) can be easily obtained 

from those of (2.1), (2.2) and (2.3) respectively. 
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For |q| < 1,

(a; q)∞ =
∞∏

n=0

(1 − qn) (1.1)

(a; q)∞ =
∞∏

n=1

(1 − aq(n−1))

(a1, a2, a3, ..., ak; q)∞ = (a1; q)∞(a2; q)∞(a3; q)∞...(ak; q)∞

f(a, b) =
∞∑
−∞

a
n(n+1)

2 b
n(n−1)

2 ; |ab| < 1, (1.4)

Jacobi’s triple product identity [1, p.35] is given, as

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞ (1.5)

Special cases of Jacobi’s triple products identity are given, as

Φ(q) =
∞∑

n=−∞
qn2

= (−q; q2)2∞(q2; q2)∞ (1.6)

Ψ(q) =
∞∑

n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

(1.7)

f(−q) =
∞∑

n=−∞
(−1)nq

n(3n−1)
2 = (q; q)∞ (1.8)

(1.3)

Ramanujanhas defined general theta function, as

a

(1.2)

Equation (1.8) is known as Euler’s pentagonal number theorem.  Euler’s another well known
identity is as

(1
)

B
.C

.
B

er
nd

t
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(q; q2)−1
∞ = (−q; q)∞ (1.9)

Throughout this paper we use the following representations

(qa; qn)∞(qb; qn)∞(qc; qn)∞ · · · (qt; qn)∞ = (qa, qb, qc · · · qt; qn)∞ (1.13)

(qa; qn)∞(qa; qn)∞(qc; qn)∞ · · · (qt; qn)∞ = (qa, qa, qc · · · qt; qn)∞ (1.14)

Computation of q-product identities:
we can have following q-products identities, as

(q2; q2)∞ =
∞∏

n=0

(1 − q2n+2)

=
∞∏

n=0

(1 − q2(4n)+2) ×
∞∏

n=0

(1 − q2(4n+1)+2)×

×
∞∏

n=0

(1 − q2(4n+2)+2) ×
∞∏

n=0

(1 − q2(4n+3)+2)

=
∞∏

n=0

(1 − q8n+2) ×
∞∏

n=0

(1 − q8n+4)×

×
∞∏

n=0

(1 − q8n+6) ×
∞∏

n=0

(1 − q8n+8)

= (q2; q8)∞(q4; q8)∞(q6; q8)∞(q8; q8)∞

= (q2, q4, q6, q8; q8)∞ (1.15)

(q4; q4)∞ =
∞∏

n=0

(1 − q4n+4)

=
∞∏

n=0

(1 − q4(3n)+4) ×
∞∏

n=0

(1 − q4(3n+1)+4) ×
∞∏

n=0

(1 − q4(3n+2)+4)

=
∞∏

n=0

(1 − q12n+4) ×
∞∏

n=0

(1 − q12n+8) ×
∞∏

n=0

(1 − q12n+12)

= (q4; q12)∞(q8; q12)∞(q12; q12)∞

= (q4, q8, q12; q12)∞
(1.16)

(q4; q12)∞ =
∞∏

n=0

(1 − q12n+4)

=
∞∏

n=0

(1 − q12(5n)+4) ×
∞∏

n=0

(1 − q12(5n+1)+4)×
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×
∞∏

n=0

(1 − q12(5n+2)+4) ×
∞∏

n=0

(1 − q12(5n+3)+4)×

×
∞∏

n=0

(1 − q12(5n+4)+4)

=
∞∏

n=0

(1 − q60n+4) ×
∞∏

n=0

(1 − q60n+16) ×
∞∏

n=0

(1 − q60n+28)×

×
∞∏

n=0

(1 − q60n+40) ×
∞∏

n=0

(1 − q60n+52)

= (q4; q60)∞(q16; q60)∞(q28; q60)∞(q40; q60)∞(q52; q60)∞

= (q4, q16, q28, q40, q52; q60)∞ (1.17)

Similarly we can compute following, as

(q4; q12)∞ = (q4; q60)∞(q16; q60)∞(q28; q60)∞(q40; q60)∞(q52; q60)∞

= (q4, q16, q28, q40, q52; q60)∞ (1.18)

(q6; q6)∞ = (q6; q24)∞(q12; q24)∞(q18; q24)∞(q24; q24)∞

= (q6, q12, q18, q24; q24)∞ (1.19)

(q6; q12)∞ = (q6; q60)∞(q18; q60)∞(q30; q60)∞(q42; q60)∞(q54; q60)∞

= (q6, q18, q30, q42, q54; q60)∞ (1.20)

(q8; q8)∞ = (q8; q48)∞(q16; q48)∞(q24; q48)∞(q32; q48)∞(q40; q48)∞(q48; q48)∞

= (q8, q16, q24, q32, q40, q48; q48)∞ (1.21)

(q8; q12)∞ = (q8; q60)∞(q20; q60)∞(q32; q60)∞(q44; q60)∞(q56; q60)∞

= (q8, q20, q32, q44, q56; q60)∞ (1.22)

(q8; q16)∞ = (q8; q48)∞(q24; q48)∞(q40; q48)∞

= (q8, q24, q40; q48)∞ (1.23)

(q10; q20)∞ = (q10; q60)∞(q30; q60)∞(q50; q60)∞

= (q10, q30 50; q60)∞ (1.24)

(q12; q12)∞ = (q12; q60)∞(q24; q60)∞(q36; q60)∞(q48; q60)∞(q60; q60)∞

= (q12, q24, q36, q48, q60; q60)∞ (1.25)

, q

Notes
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(q16; q16)∞ = (q16; q48)∞(q32; q48)∞(q48; q48)∞

= (q16, q32, q48; q48)∞ (1.26)

(q20; q20)∞ = (q20; q60)∞(q40; q60)∞(q60; q60)∞

= (q20, q40, q60; q60)∞ (1.27)

In 1983 Denis [5], has introduced following continued fraction identity

(q2; q2)∞(−q; q)∞ =
(q2; q2)∞
(q; q2)∞

=
1

1 − q

1 +
q(1 − q)

1 − q3

1 +
q2(1 − q2)

1 − q5

1 +
q3(1 − q3)

1 +
...

(2.1)

The famous Rogers-Ramanujan continued fraction identity [3, (1.6)], is

(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

=
1

1 +
q

1 +
q2

1 +
q3

1 +
q4

1 +
...

(2.2)

A well known continued fraction identity due to Ramanujan [4, (4.21)], is

(−q3; q4)∞
(−q; q4)∞

=
1

1 +
q

1 +
q3 + q2

1 +
q5

1 +
q7 + q4

1 +
q9

1 +
q11 + q6

1 +
...

(2.3)

          The outline of this paper is as follows. In sections 2, we have recorded some well known results on
continued fraction identities and recent results on q-products identities given by the author[7], those
are useful to the rest of the paper. In section 3, we state and prove four new results related to
q-product identities with theapplications of continued fraction identities.

(7)
M

.P.
C

haudhary
:

O
n

q-product
identities,

pre-print.
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C(q) =
(q2; q5)∞(q3; q5)∞
(q; q5)∞(q4; q5)∞

= 1 +
q

1 +
q2

1 +
q3

1 +
q4

1 +
q5

1 +
...

(2.4)

Recently Chaudhary [7], has introduce following q-product identities

(q2, q4, q6; q8)∞[(−q; q2)2∞ + (q; q2)2∞] = 2(−q4; q8)2∞ (2.5)

(q2, q4, q6, q8; q8)∞[(−q; q2)2∞ − (q; q2)2∞] = 4q
(q16, q32, q48; q48)∞
(q8, q24, q40; q48)∞

(2.6)

(−q; q2)2∞ + (q; q2)2∞
(−q; q2)2∞ − (q; q2)2∞

=
(−q4; q8)2∞(q8, q8, q24, q24, q40, q40; q48)∞

2q
(2.7)

(−q; q2)2∞(q; q2)2∞(q2; q2)2∞ = (q2, q2, q4; q4)∞ (2.8)

(−q; q2)∞(−q3; q6)∞ − (q; q2)∞(q3; q6)∞
(−q; q2)∞ × (−q3; q6)∞ × (q; q2)∞ × (q3; q6)∞

=
2q(−q2; q4)2∞(q4, q8, q16, q20, q24; q24)∞
(q2, q4, q6, q8; q8)∞(q6, q12, q18; q24)∞

(2.9)

(−q3; q6)∞(−q5; q10)∞ − (q3; q6)∞(q5; q10)∞
(−q3; q6)∞ × (−q5; q10)∞ × (q3; q6)∞ × (q5; q10)∞

=
(q4, q8, q12; q12)∞

(q6, q12, q18, q24; q24)∞
×

× 2q3

(q2, q6, q10; q12)∞(q10, q20, q30, q30, q40, q50; q60)∞
(2.10)

5

And,

[(q; q2)∞(q15; q30)∞] + [(−q; q2)∞(−q15; q30)∞]
[(q; q2)∞(q15; q30)∞][(−q; q2)∞(−q15; q30)∞]

=
(q12, q20, q24, q36, q40, q48, q60, q60; q60)∞

(q10, q30, q30, q50, q60; q60)∞
×

× 2
(q2, q4, q6, q8, q8; q8)∞(q6, q18, q30, q42, q54; q60)∞

(2.11)

One of the most celebrated continued fractional identities associated with Ramanujan’s academic
career, given by Rogers-Ramanujan [6], is

(7
)

M
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(q2, q4, q6, q8; q8)∞[(−q; q2)2∞−(q; q2)2∞]

=
4q(q16, q32; q48)∞

(q8, q40; q48)∞
× 1

1 − q24

1 +
q24(1 − q24)

1 − q72

1 +
q48(1 − q48)

1 − q120

1 +
q72(1 − q72)

1 +
...

(3.1)

(−q; q2)∞(−q3; q6)∞ − (q; q2)∞(q3; q6)∞
(−q; q2)∞ × (−q3; q6)∞ × (q; q2)∞ × (q3; q6)∞

=
2q(−q2; q4)2∞(q4, q8, q16, q20; q24)∞
(q2, q4, q6, q8; q8)∞(q6, q18; q24)∞

×

× 1

1 − q12

1 +
q12(1 − q12)

1 − q36

1 +
q24(1 − q24)

1 − q60

1 +
q36(1 − q36)

1 +
...

(3.2)

(−q3; q6)∞(−q5; q10)∞ − (q3; q6)∞(q5; q10)∞
(−q3; q6)∞ × (−q5; q10)∞ × (q3; q6)∞ × (q5; q10)∞

6

=
2q3(q8; q12)∞(q4, q16, q28, q40, q54; q60)∞

(q6, q12, q18, q24; q24)∞(q2, q10; q12)∞(q10, q20, q30, q30, q40, q50; q60)∞
×

× 1

1 − q6

1 +
q6(1 − q6)

1 − q18

1 +
q12(1 − q12)

1 − q30

1 +
q18(1 − q18)

1 +
...

(3.3)

          In this section, we established and proved following identities with the applications of continued
fraction identities in the q-product identities, recentlygiven by Chaudhary [7], as

(7)
M

.P.
C

haudhary
:

O
n

q-product
identities,

pre-print.
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And,

[(q; q2)∞(q15; q30)∞] + [(−q; q2)∞(−q15; q30)∞]
[(q; q2)∞(q15; q30)∞][(−q; q2)∞(−q15; q30)∞]

=
2(q12, q20, q24, q36, q40, q48; q60)∞

(q2, q4, q6, q8, q8; q8)∞(q6, q10, q18, q30, q42, q50, q54, q60; q60)∞
×

×



1

1−
q30

1 +
q30(1 − q30)

1 − q90

1 +
q60(1 − q60)

1 − q150

1 +
q90(1 − q90)

1 +
...



2

(3.4)

24

12

6

30
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Proof of (3.1): Making suitable arrangements in the q-products identitiesgiven in the right hand side of
(2.6), and further apply (2.1) for q = q , we  get (3.1).

Proof of (3.3): Making suitable arrangements in the q-products identities given in the right hand side
of (2.10), and further apply (1.17), and (2.1)for q = q

Proof of (3.2): Making suitable arrangements in the q-products identitiesgiven in the right hand side of
(2.9), and further apply (2.1) for q = q , we

 
get (3.2).

, we get (3.3).

, we get (3.4).
Proof of (3.4): Making suitable arrangements in the q-products identitiesgiven in the right hand side of
(2.11), and further apply (2.1) for q = q
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I.

 

INTRODUCTION

 

Geometric models have been playing a vital role in today’s commercial enterprises 
albeit a fact quite unknown to the users of technology. These technologies have been 
essentially driven by the revolutions in e-commerce and internet usage. The Mathematical 
theory of communication which was initiated by C.E Shannon at Bell labs in the mid

 

of 

20th century can be regarded as a backbone of today’s network revolution. To give a 
sample of the mathematical models driving our society, we have the theory of codes (both 
source codes as well as error correcting codes) which help achieve reliable and

 

efficient 
transport of digital and analog data. Transactions have been taking place over the ATM 
Machines, Internet as well as swipe cards thanks to the mathematical description of 
money exchange. Security systems of e-commerce are basically operated by number 
theoretic and geometric models. Moreover the networked environment itself is 
topologically defined and several surveillance mechanisms are devised through 
combinatorial and geometric models. A global analysis of the same can be made through 
the theory of Riemann surfaces. Our basic structure in this paper is that of a manifold 
and we see several mathematical models that are currently used by industries world over 
to enable communication and trade. In section-I we look at the basic geometric spaces 
and

 

their use in computer graphics and visualization. In Section -II we describe how 
transmission of huge digital data is possible in an error free manner by the use of 
geometric spaces. Also algebraic-geometry based ciphers have been discussed. In section-
III we briefly describe the mathematical model for networking environment at a global 
scale. Finally in section-4 we look at quantum scale structures which are also motivated 
by the theory of manifolds and Hilbert spaces.
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II. GEOMETRIC SPACES AND COMPUTER GRAPHICS

Shapes that we need to convert into graphics can be perceived as a collection of 
curves. So naturally we are led to the definition of a manifold. For example if one 



   
revolves a unit line segment about a point then we see a unit disc formed. But the 
challenge to the computer graphics industry is to describe algorithms such that one 
constructs a required shape with a minimum amount of information to be fed to the 
computer. Geometric Modeling

 

is the science of developing algorithms to construct 
geometric shapes and scenes as required by the graphics industry. One of the earliest 
methods developed in this direction is that of using polynomials to approximate surfaces. 
The basic idea here is to develop a mesh made of curves. This mesh is a discrete version

 

of a manifold [2]. Using the so called algebraic splines a class of manifolds called cell 
polyhedral surfaces can be constructed. A suitable smoothing process then makes up the 
shape that we require. The crucial theoretical consideration here is that of 
parameterization of rational curves and surfaces. From a practical standpoint, 
parameterization requires many functions to be computed and hence it is a costly affair as 
far as computational complexity is concerned. Other alternatives are the implicit surface 
constructions and the conformal geometric algorithms [3].

 

a)

 

Algorithms and Software  

 

Warren and Moore’s Algorithm based on triangulation of quadratic algebraic 
patches is one of the earliest algorithm being implemented on IBM 3D interactive 
accelerator. NURBS is an acronym for a class of algorithms that use the theory of 
algebraic curves and surfaces to generate computer graphics. It means non-uniform 
rational basis spline, which employs analytic techniques including Bezier curves. Pierre 
Bezier and Casteljau are the pioneers who developed mathematical models to build very 
flexible representations of curves

 

and surfaces. If the surface or a scene to be created is 
already an algebraic manifold then it is relatively easy to build algorithms to represent 
the same on the computer screen However to get more realistic textures one uses 

softwares that generate fractal geometric sets. ‘GANITH’

 

is a software developed by 
Scientists at the Purdue University. The programmes written in C-language enable a wide 
range of computing with respect to graphics. The tasks that can be performed through 
GANITH include synthesis of

 

graphics and rendering, spline generation, implicit surface 
generation and many kinds of animations.

 

b)

 

Mathematical programming method

 

This method uses linear algebra and related algorithms to generate graphics. A 
scattered set of points, curves and derived

 

jets are given as inputs. They are fed to the 
computer as a finite set of vectors. The output should ideally be a low degree algebraic 
surface fit through the scattered set of points, curves and derived jets with a prescribed 
higher order interpolation and least squares approximation. The mathematical problem to 
be solved can be expressed as follows:

 

 

This linear programming problem which involves alignment of points curves and 
patches in a given pattern leads to a solution that is

 

very helpful in the computer 
graphics industry.
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III. CODES AND CIPHERS

In the modern era of ICT - Information and communication technology the right 
kind of processes are required for efficient transfer of data. The problems associated came 
to the fore when digital technology was in its infant stage. Mathematicians Richard 

2.
J
.M

u
n
k
res, (1996) “E

lem
en

ts of A
lgeb

raic T
op

ology”, A
d
d
ison

 W
essley

.

Ref.

Let X be a vector containing coefficients of an algebraic surface containing the 

points, curves and derived jets. Let MI, MA be the interpolation matrix and 

approximation matrix respectively. Then one needs to minimize Xt(MT
A,MAX) subject to 

the constraints i) MIX=0  and ii) XtX=0



  

 

Hamming and others began working towards a theory for reliable communication, which 
got fulfilled with the path breaking work of C.E.Shannon. He developed the so called 

“Mathematical Theory of communication”

 

which became a foundation for a lot of future 
work to be done in this area.

 

a)

 

Description of the Problem

 

When data has to travel through some medium which we shall call a channel, it is 
subjected to disturbances or ‘Noise’. Errors may creep in at various positions of the 
digital data so much so that the receiver may not make any sense out of the scrambled 
data. Same is the case with the data/signals contained in a digital compact disc. So for 
reliable data communication one needs to encode the data in such a

 

way that at the 
receiving end, a check can be performed to detect for errors and then correct all the errors 
that might have occurred. There is another type of encoding in literature namely source 
encoding. This is done whenever we need to achieve data compression. This is based on 
Shannon’s theory of communication and the related Nyquist rate. Here we are only 
concerned with data encoding which is done for reliable transmission of data as described 
above.

 

b)

 

The Solution

 

One of the popular methods to solve the above problem is to use vector spaces. 
Suppose one encodes all the message bits using an alphabet set say ∑

 

then this set need 
to have the structure of a finite field and the n-dimensional product space becomes a 

vector space of dimension ‘n’. We fix the block size as ‘n’

 

so that the whole message is 

divided into blocks of size ‘n’. In each block one deliberately keeps message bits of size n-
k, thus making way for k positions for inserting check bits. The set of all meaningful 

words will be a subspace of

 

the space 
received word can be checked for errors by using the parity check matrix. The detection 
of error as well as the correction is done by making use of the concept of a distance on 
this space of (digital) words. The distance function called the Hamming distance is 
defined as follows: 

 

 

c)

 

Role of Geometry

 

Clearly the vector space structure and the parity check matrix play a central role 
in any such scheme of error correction. Now there are three parameters of any scheme of 
coding through vector spaces. The block size n, the number of check bits k and the 
minimum distance of the code. Here the minimum distance is defined as the smallest 
distance separating two meaningful words, among all the pairs of words, that is 

D=Min{d(x,y):x,y є

 

C, x≠y}.Now for the code to be efficient in the sense of faster 

implementation, the value of ‘d’

 

should be large while keeping the value of n  also large.

 

This is accomplished by considering an algebraic curve. The set of all rational functions 
on this curve is a certain ring of polynomials. It is in fact an integral domain and hence 
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d(x,y)={i:xi≠yi, xi, yi are the ith position bits of x and y respectively}

. Now after passing through the channel, the ∑n

use of evaluation of the polynomials at the points of the curve. This is the precise 
geometric argument and the injectivity of the above map means that the image is a 

a very special kind of manifold namely a Grassman manifold to develop efficient codes.

one can define a mapping from this ring into the vector space ∑n. This mapping makes 

subspace of ∑n. Thus we arrive at an efficient code. In very recent developments one uses 



 

d)

 

Ciphers

 

The elliptic curve which is topologically a torus has a very interesting algebraic 
structure. The points on this surface can be realized as an abelian group. This geometric 
object and of late its generalization namely an abelian variety are used in the theory of 

cryptograms. Cryptography is a science that assumes a very central role in today’s world 
of electronic transactions, digitally signed documents, virtual conferences etc. Primarily 
one needs to protect messages being sent on a public network from the so called 
eavesdroppers

 

or illegal snoopers. Another problem to be tackled in the e-commerce 
environment is the 'authentication' of messages. Let us say a bank has to release money 
to a vendor on behalf of a customer. Now the bank should be sure that the customer has 
made the transaction and the customer should not be able to fool the bank saying that he 
has not entered into a contract with the vendor (This property is called non-repudiation).

 

So a cipher (or ciphertext) is a transformed text out of the original text so that 
only the intended recipient can recover the original message and the

 

sender himself 
cannot alter its content once having made the communication.

 

e)

 

Discrete Log problem
Let G be a cyclic group of a very large order generated by an element 'a'. Let y be 

any random element of G. Then the discrete log problem in this setting is

 

to find 'n' 

 

used by anybody who would like to encrypt and send messages digitally using this cipher 

scheme. Now the private key available only to the recipient is the number ‘a’.

 

 

Now the required cipher text is c=(r,s). One can decrypt the message by using the 

 

This simple analysis can be made extended to a more secure cryptosystem by 
making a judicial use of Geometric

 

spaces. The torus alluded to earlier in this article 
contains a neat algebraic structure namely that of an abelian group. The discrete log 
problem described in the previous paragraph can be suitably modified to make analogous 

   

This set of points is in the algebro-geometric language is called an Elliptic curve.

 

Elliptic curve cryptography has been made very popular by some firms involved in 
digital signatures and digital copyrights. Researchers in this area

 

are trying to use higher 
dimensional geometric spaces in search of better security since they need to be always 
smarter than the hacking communities.

 

IV.

 

NETWORKING ENVIRONMENT MODEL

 

a)

 

Sensor Networks

 

A network that we use in the communication system is basically made up of 
several nodes that are interconnected by physical or abstract linkages. Signals which may 
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be of digital or analog form are transmitted across these nodes. If we view the entire 
domain that is inter-networked, one can imagine a manifold underlying the entire gamut 
of devices. Sensors are devices that measure features of a domain and return a signal from 

satisfying the equation y=an .One implements public key cryptosystem by using this 

generic mathematically hard problem. Let „a‟ be a random element such that 1≤a≤q-1. 

Now let us compute the number h=ga(modp). The triple (p,g,h) is called a public key 

The Process: By using the public key (p,g,h) one encrypts a message m  ( plain 

text  message is converted into a number say „m‟) by computing r=gk(modp), s=hkm 

(modp) . Note that here 0≤m≤p-1

secret key (i.e the private key „a‟) just by computing the value of s.r-a

computations on the so called elliptic curve. By a suitable identification one can visualize 

the torus as the set E={(x,y): x3+ax+b-y2=0,a,b є F} where F is a very large finite field. 



which information is extracted. More complex sensors involve video devices so as to

 

extract visual, audio or textual data. While local topology is coarse in nature the 
continuum nature of a Riemann Surface is quite useful for a deeper understanding of the 
systems. The fundamental idea here is the integration

 

of small networks to get a global 
surface. The local data is a triangulated domain. These discrete objects can be integrated 
to get a Riemannian surface. The emphasis on the Riemannian structure is to enable one 
to do a homological study and develop a suitable model. A network of sensors required for 
applications like global positioning systems, machine learning systems and other ad-hoc 
network devices consists of a simplicial complex made up of cloud points. These are 
essentially neighborhood systems made up of ε-balls. Let V be the set of points. In real 
world applications this is a finite set. However the mathematical abstraction has a 

Riemann surface.With this convention we describe a discrete model.

 

b)

 

Discrete Model

  

Based on local communication a class of simple sensors helps in fast and pervasive 
computing. The discretization of the Riemannian surface is as follows: The whole global 
area is covered by triangles formed by nodes. Each node broadcasts a unique ID number 
and it can detect any other node due to connectivity. The nodes have radially symmetric 
covering domains. The nodes on the boundary have designated properties so that 
neighboring devices can interact. The theory of simplicial complexes leads to this 
mathematical model on the said Riemannian surface. A theorem of Rado asserts that 
every orientable Riemann surface can be triangulated. On the other hand given any 
surface with a Riemannian metric given, one can put isothermal coordinates on the

 

surface thus getting a conformal structure which leads to a complex manifold of 
dimension-1. Thus we get a Riemann surface say X. Let this surface have a triangulation 

П

 

made up of points of the set V. Now consider a graph G(V,E) where E is the set of 

edges occurring in the triangulation. Now select a spanning tree i.e a subgraph Γ

 

with the 
same vertex set V but edges are selected such that no non-trivial closed paths (circuits) 

exist. This spanning tree helps us to form a fundamental polygon for П

 

.The following 
theorem [9] then enables us to construct a homology basis.

 

 

Thus using the short geodesics guaranteed by the above theorem one constructs a 
homology basis.

 

V.

 

MICROSTRUCTURES   ‘A FUTURISTIC PROPOSITION’

 

In this concluding section we delve into a futuristic proposition. While the 
networking environment is inundated by mathematical modeling proceedures, we seek to 
view what is in store in the pipeline of research. According to Moore's law, the size of the 
computing structures is decreasing at a rapid pace. So it is worthwhile to look at the kind 
of innovations taking place to reduce the size of the devices (nodes) themselves. Quantum 
computing is the buzzword in this direction, ever since Peter Shor demonstrated the 
power of this kind of computing. Here the fundamentals of quantum mechanics take over 
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the semiconductor devices to perform computing. As all of us know a computing device is 
a finite state machine that takes as input a string of states and after processing in finite 
time a desired output is generated. While these states are processed as LOGIC gates 

provision of infinite points embedded in the Euclidean space Rn or on an oriented 

Theorem 3.2 Let D be a canonical cell decomposition of a compact orientable 

surface M of genus g. ≥1 with n2 cells and n edges. Then (there exists) a canonical 

homology basis for M such that any curve in the basis is homotopic to an edge path D 

having atmost n n  edges.1- 2



operated by semiconductor chips, one is constantly looking for “lighter materials”

 

in place 
of the bulkier ones. Thus nanotechnological advances are fast making inroads to develop 
miniature designs. If one uses principles of particle physics, then we lead to quantum 
particles and strings. Quantum computing is evolving by looking at energy states that are 
actually at the level of quantum packets. Non-zero equivalence classes of a Hilbert space 
represent all the energy states of a quantum particle. The theory of Riemann surfaces 
surprisingly is the right kind of mathematical abstraction to understand computing at 
this level. The Transition from Classical (Physics) to the Quantum setting as per Edward 
Witten , the Fields medalist , is very closely connected to the passage from Riemannian 
Geometry   to Symplectic Geometry. Physicists discuss deformations mainly to look at 

one “The Quantum Theory”

 

and the other to string Theory (Membranes). Symplectic 
Geometry was first explored because the classical equations of motions can be put in 

‘Hamiltonian form’

 

and thereby symplectic properties can be utilized to solve these 
equations in certain important cases. Superdense coding is possible in this setting due to 
which in future the computing capabilities can become extremely fast almost comparable 
to the speed of light.
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-

 

In this paper, we make an application of an integral involving sine function,

 

exponential function, the product 
of Kamp´e de F´eriet functions and the I-function

 

to evaluate three fourier series. We also evaluate a multiple integral 
involving the Ifunction

 

to make its application to derive a multiple exponential Fourier series. Some

 

known and 
interesting particular cases are also given at the end.
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Im,npi,qi:r
[z] = Im,npi,qi:r






(aj , αj)1,n, (aji, αji)n+1,pi
z

(bj, βj)1,m, (bji, βji)m+1,qi






=
1

2πi

∫ i∞

−i∞
φ(ξ)zξ dξ (1.1)

where

φ(ξ) =

m∏

j=1
Γ(bj − βjξ)

n∏

j=1
{Γ(1− aj + αjξ)}

Σ{
qi∏

j=m+1
{Γ(1− bji + βjiξ)}

pi∏

j=n+1
Γ(aji − αjiξ)}

(1.2)

For the convergence and other details of the I-function, we refer the original paper of

Saxena[5]. Saxena [5] has proved that the integral on the right hand side of (1.1) is

absolutely convergent when Ω > 0 and | arg z |< 1

2
πΩ, where

Kampé de Fériet hypergeometric function will be represented as follows.

F






p a1, · · · , ap
µ b1, b

′

1, · · · , bµ, b′µ
q c1, . . . , cq
σ d1, d

′

1, · · · , dσ, d′σ

xy






=
∞∑

m=0

∞∑

n=0

p∏

j=1
(aj)m+n

µ∏

j=1
{(bj)m(b′j)n}

q∏

j=M+1
(cj)m+n

σ∏

j=1
{(dj)m(d′j)n}

xmyn

m!n!
(1.3)

[5
]
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(p+ ν < q + σ + 1 or p+ ν = q + σ + 1 and | x | + | y |< min(1, 2q−p+1));

= − 1

4π2K

∫ +i∞

−i∞

∫ +i∞

−i∞
ψ(s, t)Γ(−s)Γ(−t)(−x)s(−y)tds dt

where

K =

p∏

j=1
Γ(aj)

µ∏

j=1
{Γ(bj)Γ(b′j)}

q∏

j=M+1
Γ(cj)

σ∏

j=1
{Γ(dj)Γ(d′j)}

(1.4)

and

ψ(s, t) =

p∏

j=1
(aj + s+ t)

µ∏

j=1
{Γ(bj + s)Γ(b′j + t)}

q∏

j=M+1
Γ(cj + s+ t)

σ∏

j=1
{Γ(dj + s)Γ(d′j + t)}

(1.5)

if we put ν = 0 = σ,then it changes in the following form;

F






p a1, · · · , ap
µ −−−−
q c1, . . . , cq
σ −−−−

xy






= pFq






a1, · · · , ap

c1, . . . , cq
; x+ y






(1.7)

For further detail one can refer the monography by Appell and Kampé de Fériet[1].

Mishra[4] has evaluated

∫ π

0
(sinx)w−1eimxpFq

[
αp;
βq;

(sinx)2h
]

dx =
πeimπ/2

2w−1

∞∑

r=0

(αp)r
rΓ(w + 2hr)

(βq)rr!4hrΓ(ω+2hr±M+1
2

)
(1.7)

Where (α)p denotes α1, · · · , αp; Γ(a± b) representsΓ(a + b),Γ(a − b); h is a positive
integer;p < q and Re(w) > 0.Recall the following elementary integrals:

∫ π

0
ei(m−n)x dx =

{
π , m = n ;
0 , m �= n ;

(1.8)

∫ π

0
eimx cosnx dx =






π

2
, m = n �= 0 ;

π , m = n = 0 ;
0 , m = n ;

(1.9)

∫ π

0
eimx sinnx dx =





i
π

2
, m = n ;

0 , m �= n ;
(1.10)

[4]
M

ish
ra,S

.:
In

tegra
ls

in
vo

lvin
g

L
egen

d
re

fu
n
ctio

n
s,gen

era
lized

h
y
pergeo

m
etric

series

a
n
d

F
o
x’s

H
-fu

n
ctio

n
,a

n
d

F
o
u
rier-L

egen
d
re

series
fo

r
p
rod

u
cts

o
f

gen
era

lized
h
y
per-

geo
m

etric
fu

n
ctio

n
s,

In
d
ian

J.
P

u
re

A
p
p
l.M

ath
.,
2
1
(1990),

805-812.

Ref.

C
C



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
II

Is
su

e 
  
  
 e

rs
io
n

I
V

IV
  

 F
)

)

© 2012 Global Journals Inc.  (US)

47

    
 

  
20

12
A
pr

il

Notes

A Unified Study of Fourier Series Involving Generalized Hypergeometric Function

II. INTEGRAL

Provided either both m and n are odd or both m and n are even integers.

For brevity, we shall use the following notations.

E∏

k=1
(ek)r+t

F∏

k=1
(fk)r

F ′∏

k=1
(f ′k)t

G∏

k=1
(gk)r+t

H∏

k=1
(hk)r

H′∏

k=1
(h′k)t

= ε

E1∏

k1=1
(e1k1)r1+t1

F1∏

k1=1
(f1k1)r1

F ′1∏

k1=1
(f ′1j1)t1

G1∏

k1=1
(g1k1)r1+t1

H1∏

k1=1
(h1k1)r1

H′

1∏

k1=1
(h1k1)t1

= ε1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

En∏

kn=1
(enkn)rn+tn

Fn∏

kn=1
(fnkn)rn

F ′
n∏

kn=1
(f ′njn)tn

Gn∏

kn=1
(gnkn)rn+tn

Hn∏

kn=1
(hnkn)rn

Hn∏

kn=1
(h′nkn)tn

= εn

The integrals to be evaluated are:

∫ π

0
(sin x)w−1eimxFE;F ;F

′

G;H;H ′

[
(e); (f); (f ′); α(sin x)2ρ

(g); (h); (h′); β(sin x)2γ

]

×Ipi,qi:rm,n






(aj, αj)1,n, (aji, αji)n+1,Pi
z(sin x)2σ

(bj, βj)1,m, (bji, βji)m+1,qi




 dx =

√
(π)eimπ/2

2ω−1

∞∑

r,t=0

ε
(α/4ρ)r(β/4γ)t

r! t!

×Im,n+1pi+1,qi+2:r






(1− ω − 2ρr − 2γt, 2σ; 1), (aj , αj)1,n, (aji, αji)n+1,pi
z
4σ

(bj, βj)1,m, (bji, βji)m+1,qi
(
1−ω−2ρr−2γt±m

2
, σ; 1

)




 (2.1)

provided that | arg z |< 1

2
πΩ,and Re(w) > 0;α, β, ρ, γ, σ, z are positive integers, where

Ω ≡
m∑

j=1

βj +
n∑

j=1

αj −
qi∑

j=m+1

βji −
p∑

j=n+1

αji > 0.
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III. EXPONENTIAL FOURIER SERIES

∫ π

0
· · ·

∫ π

0
(sinx)w1−1 · · · (sinx)wn−1ei(m1x1+···+mnxn)

×FE1;F1;F
′

1

G1;H1;H′

1

[
(e1); (f1); (f1); α1(sinx1)

2ρ1

(g1); (h1); (h
′

1); β1(sinx1)
2γ1

]

· · ·FEn;Fn;F ′nGn;Hn;H ′
n

[
(en); (fn); (f

′

n); αn(sinxn)
2ρn

(gn); (hn); (h
′

n); βn(sinxn)
2γn

]

×Ipi,qi:rm,n

[
z(sinx1)

2σ1 · · · (sinxn)2σn
]
dx1 · · · dxn

=
(π)nei(m1+···+mn)π/2

2(ω1+···+ωn)−n

∞∑

r1,t1=0

· · ·
∞∑

rn,tn

(ε1 · · · εn)
(α1/4

ρ1)r1(β1/4
γ1)t1

r1! t1!
· · · (αn/4

ρn)rn(βn/4
γn)tn

rn! tn!

×Im,n+npi+n,qi+2n:r






(1−ω1−2ρ1r1 − 2γ1t1, 2σ1; 1) · · · (1− ωn−2ρnrn − 2γntn, 2σn; 1),
z

4(σ1+···+σn)

(bj , βj)1,m, (bji, βji)m+1,qi
(
1−ω1−2ρ1r1−2γ1t1±m1

2
, σ1; 1

)

(aj , αj)1,n, (aji, αji)n+1,pi

· · ·
(
1−ωn−2ρnrn−2γntn±mn

2
, σn; 1

)




 (2.2)

provided that all the conditions of (2.1) are satisfied and Re(wi) > 0; σi, αi, βi, ρi, γi, zi
are positive integers (i = 1, · · · , n)
Proof: To prove (2.1), expand the I-Function into the mellin-Barnes type integral. Now,
on changing the order of integration,which is permissible under the conditions stated with
the integral, the integral readily follows from (1.7)

On applying the same procedure as above the integral (2.2) can be derived easily.

Notes

Let

f(x) = (sinx)w−1FE;F ;F
′

G;H;H′

[
(e); (f); (f ′); α(sinx)2ρ

(g); (h); (h′); β(sinx)2γ

]

×Im,npi,qi:r






(aj , αj)1,n, (aji, αji)n+1,pi
z(sinx)2σ

(bj, βj)1,m, (bji, βji)m+1,qi




 dx =

∞∑

p=−∞

Ape
−ipx (3.1)

which is valid due to f(x) is continuous and of bounded variation with interval (0, π).

Now,multiplying by eimx both sides in (3.1) and integrating it with respect to x from 0
to π, and then making an appcal to (1.8)and (2.1),we get

Ap =
eimπ/2

2ω−1

∞∑

r,t=0

ε
(α/4ρ)r

r!

(β/4γ)t

t!
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IV. COSINE FOURIER SERIES

×Im,n+1pi+1,qi+1:r






(1− ω − 2ρr − 2γt, 2σ; 1), (aj , αj)1,n, (aji, αji)n+1,pi
z
4σ

(bj, βj)1,m, (bji, βji)m+1,qi
(
1−ω−2ρr−2γt±m

2
, σ; 1

)




 (3.2)

An application to (3.1) and (3.2) gives the required exponential Fourier series

(2 sinx)w−1FE;F ;F
′

G;H;H′

[
(e); (f); (f ′); α(sinx)2ρ

(g); (h); (h′); β(sinx)2γ

]

×H̄P,Q
M,N






(aj , αj)1,n, (aji, αji)n+1,pi
z(sinx)2σ

(bj , βj)1,m, (bji, βji)m+1,qi






=
∞∑

p=−∞

∞∑

r,t=0

eip(π/2−x) ε
(α/4ρ)r

r!

(β/4γ)t

t!

×Im,n+1pi+1,qi+1:r






(1− ω − 2ρr − 2γt, 2σ; 1), (aj , αj)1,n, (aji, αji)n+1,pi
z
4σ

(bj, βj)1,m, (bji, βji)m+1,qi
(
1−ω−2ρr−2γt±m

2
, σ; 1

)




 . (3.3)

Let

f(x) = (sinx)w−1FE;F ;F
′

G;H;H′

[
(e); (f); (f ′); α(sinx)2ρ

(g); (h); (h′); β(sinx)2γ

]

×Im,npi,qi:r






(aj , αj)1,n, (aji, αji)n+1,pi
z(sinx)2σ

(bj, βj)1,m, (bji, βji)m+1,qi




 =

B0
2

+
∞∑

p=1

Bp cospx (4.1)

Integrating both sides with respect to x from 0 to π, we get

B0
2

=
1

√
(π)

∞∑

r,t=0

ε
(α)r

r!

(β)t

t!

×Im,n+1pi+1,qi+1:r






(2−ω
2
− ρr − γt, 2σ; 1), (aj , αj)1,n, (aji, αji)n+1,pi

z

(bj , βj)1,m, (bji, βji)m+1,qi
(
1−ω
2
− 2ρr − 2γt, σ; 1

)




 (4.2)

Now, multiplying by eimx both sides in (4.1) and integrating it with respect to x frome 0
to π ,and finally ,making an application to (1.8),(1.9) and (2.1), we derive

Bp =
eipπ/2

2ω−1

∞∑

r,t=0

ε
(α/4ρ)r

r!

(β/4γ)t

t!
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V. SINE FOURIER SERIES

×Im,n+1pi+1,qi+2:r






(1− ω − 2ρr − 2γt, 2σ; 1), (aj , αj)1,n, (aji, αji)n+1,pi
z
4σ

(bj, βj)1,m, (bji, βji)m+1,qi
(
1−ω−2ρr−2γt±m

2
, σ; 1

)




 (4.3)

using (4.2), (4.3), from(4.1) we get required cosine Fourier Series.

(sinx)w−1FE;F ;F
′

G;H;H′

[
(e); (f); (f ′); α(sinx)2ρ

(g); (h); (h′); β(sinx)2γ

]

×Im,npi,qi:r






(aj, αj)1,n, (aji, αji)n+1,pi
z(sinx)2σ

(bj , βj)1,m, (bj , βj)m+1,qi




 =

1
√

(π)

∞∑

r,t=0

ε
(α)r

r!

(β)t

t!

×Im,n+1pi+1,qi+1:r






(2−ω
2
− ρr − γt, 2σ; 1), (aj, αj)1,n, (aji, αji)n+1,pi

z

(bj , βj)1,m, (bji, βji)m+1,qi
(
1−ω
2
− 2ρr − 2γt), σ; 1

)






+
∞∑

p=−∞

∞∑

r,t=0

ε eipπ/2 cospx
(α/4ρ)r

r!

(β/4γ)t

t!
.

1

2ω−2

Notes

×Im,n+1pi+1,qi+2:r






(1− ω − 2ρr − 2γt, 2σ; 1), (aj , αj)1,n, (aji, αji)n+1,pi
z
4σ

(bj, βj)1,n, (bji, βji)m+1,qi
(
1−ω−2ρr−2γt±m

2
, σ; 1

)




 . (4.4)

Let

f(x) = (sinx)w−1FE;F ;F
′

G;H;H′

[
(e); (f); (f ′); α(sinx)2ρ

(g); (h); (h′); β(sinx)2γ

]

×Im,npi,qi:r






(aj, αj)1,n, (aji, αji)n+1,pi
z(sinx)2σ

(bj , βj)1,m, (bji, βji)m+1,qi




 =

∞∑

p=−∞
p sin px. (5.1)

Multiplying by eimx both sides in (5.1) and the integrating it with respect to x frome 0
to π ,and making to (1.10) and (2.1), we obtain

p =
eipπ/2

2ω−1

∞∑

r,t=0

ε
(α/4ρ)r

r!

(β/4γ)t

t!
.

C

C
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VI. MULTIPLE EXPONENTIAL FOURIER SERIES

×Im,n+1pi+1,qi+2:r






(1− ω − 2ρr − 2γt, 2σ; 1), (aj , αj)1,n, (aji, αji)n+1.pi
z
4σ

(bj, βj)1,m, (bji, βji)m+1,qi
(
1−ω−2ρr−2γt±m

2
, σ; 1

)




 . (5.2)

Now making an application of (5.1) and (5.2), we get required Sine Fourier Series.

(2 sinx)w−1FE;F ;F
′

G;H;H′

[
(e); (f); (f ′); α(sinx)2ρ

(g); (h); (h′); β(sinx)2γ

]

×Im,npi,qi:r






(aj, αj)1,n, (aji, αji)n+1,pi
z(sinx)2σ

(bj , βj)1,m, (bji, βji)m+1,qi






=
∞∑

p=−∞

∞∑

r,t=0

2 ε eipπ/2

i
sin px ε

(α/4ρ)r

r!

(β/4γ)t

t!

×Im,n+1pi+1,qi+2:r






(1− ω − 2ρr − 2γt, 2σ; 1), (aj , αj)1,n, (aji, αji)n+1,pi
z
4σ

(bj, βj)1,m, (bji, βji)m+1,qi
(
1−ω−2ρr−2γt±m

2
, σ; 1

)




 . (5.3)

Let

f(x1, · · · , xn) = (sinx)w1−1 · · · (sinx)wn−1FE1;F1;F
′

1

G1;H1;H′

1

[
(e1); (f1); (f

′

1); α1(sinx1)
2ρ1

(g1); (h1); (h
′

1); β1(sinx1)
2γ1

]

· · ·FEn;Fn;F ′nGn;Hn;H′
n

[
(en); (fn); (f

′

n); αn(sinxn)
2ρn

(gn); (hn); (h
′

n); βn(sinxn)
2γn

]

×Im,npi,qi:r






(aj, αj)1,, (aji, αji)n+1,pi
z(sinx1)

2σ1 · · · (sinxn)2σn
(bj , βj)1,m, (bji, βji)m+1,qi






=
∞∑

p1=−∞

· · ·
∞∑

pn=−∞

Ap1···pne
−i(p1x1+···+pnxn). (6.1)

Equation (6.1) is valid, since f(x1, · · · , xn) is continuous and of bounded variation in the
open interval (0, π). In the series (6.1),to calculate Ap1···pnwe fix x1, · · · , xn−1,so that

∞∑

p1=−∞

· · ·
∞∑

pn−1=−∞

Ap1···pn−1e
−i(p1x1+···+pn−1xn−1)
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depends only on pn.

Furthermore ,it must be the coefficient of Fourier exponential series in xn of f(x1, · · · , xn)
over 0 < xn < π.

Now multiplying by eimnxn both sides in (6.1) and integrating with respect to xn from 0
to π,we get

(sinx1)
w1−1 · · · (sinxn)wn−1FE1;F1;F

′

1

G1;H1;H′

1

[
(e1); (f1); (f

′

1); α1(sinx1)
2ρ1

(g1); (h1); (h
′

1); β1(sinx1)
2γ1

]

· · ·FEn−1;Fn−1;F
′

n−1

Gn−1;Hn−1;H′

n−1

[
(en−1); (fn−1); (f

′

n−1); αn−1(sinxn−1)
2ρn−1

(gn−1); (hn−1); (h
′

n−1); βn−1(sinxn−1)
2γn−1

]

×
∫ π

0
(sinxn)

wn−1eimnxnF
En;Fn;F ′n
Gn;Hn;H′

n

[
(en); (fn); (f

′

n); αn(sinxn)
2ρn

(gn); (hn); (h
′

n); βn(sinxn)
2γn

]

×Im,npi,qi:r






(aj , αj)1,n, (aji, αji)n+1,pi
z(sinx1)

2σ1 · · · (sinxn)2σn
(bj , βj)1,m, (bji, βji)m+1,qi




 dxn

=
∞∑

p1=−∞

· · ·
∞∑

pn−1=−∞

Ap1···pn−1e
−i(p1x1+···+pnxn) +

∞∑

pn=−∞

∫ π

0
(ei(mn−pn)xndx (6.2)

using(1.8) and (2.1),from (6.2), respectively,we get

Ap1···pn =
∞∑

r1,t1=0

· · ·
∞∑

rn,tn=0

ei(p1+···+pn)π/2

2(ω1+···+ωn)−n
(ε1 · · · εn)

×(α1/4
ρ1)r1

r1!

(β1/4
γ1)t1

t1!
, · · · · · · · · · · · · , (αn/4

ρn)rn

rn!

(βn/4
γn)tn

tn!

×Im,n+1pi+1,qi+1:r






(1− ω1 − 2ρ1r1 − 2γ1t1, 2σ1; 1) · · · (1− ωn − 2ρnrn − 2γntn, 2σn; 1),
z

4(σ1+···+σn)

(bj , βj)1,m, (bji, βji)m+1,qi
(
1−ω1−2ρ1r1−2γ1t1±m1

2
, σ1; 1

)

(aj , αj)1,n, (aji, αji)n+1,pi

· · ·
(
1−ωn−2ρnrn−2γntn±mn

2
, σn; 1

)




 . (6.3)

Using (6.3) in (6.1), we get required multiple exponential Fourier series.

Let

(sinx1)
w1−1 · · · (sinxn)wn−1FE;F ;F

′

G;H;H′

[
(e1); (f1); (f

′

1); α1(sinx1)
2ρ1

(g1); (h1); (h
′

1); β1(sinx1)
2γ1

]

Notes
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VII. PARTICULAR CASES

×FEn;Fn;F ′nGn;Hn;H′
n

[
(en); (fn); (f

′

n); αn(sinxn)
2ρn

(gn); (hn); (h
′

n); βn(sinxn)
2γn

]

×Im,npi,qi:r






(aj , αj)1,n, (aj, αj)n+1,pi
z(sinx1)

2σ1 · · · (sinxn)2σn
(bj, βj)1,m, (bji, βji)m+1,qi






=
∞∑

p1···pn=−∞

· · ·
∞∑

r1···rn,t1···tn=0

(ε1 · · · εn)
2(ω1+···+ωn)−n

× e−i(p1n1+···+pnnn) . e(p1+···+pn) 2

(α1/4
ρ1)r1

r1!

(β1/4
γ1)t1

t1!
, · · · · · · · · · , (αn/4

ρn)rn

rn!

(βn/4
γn)tn

tn!

×Im,n+npi+n,qi+n






(1− ω1 − 2ρ1r1 − 2γ1t1, 2σ1; 1) · · · (1− ωn − 2ρnrn − 2γntn, 2σn; 1),
z

4(σ1+···+σn)

(bj, βj)1,m, (bji, βji)m+1,qi
(
1−ω1−2ρ1r1−2γ1t1±m1

2
, σ1; 1

)

(aji, αji)1,n, (aji, αji)n+1,pi

· · ·
(
1−ωn−2ρnrn−2γntn±mn

2
, σn; 1

)




 . (6.4)

Setting β1, · · · , βn = 0 in (2.2),we get

∫ π

0
· · ·

∫ π

0
(sinx1)

w1−1 · · · (sinxn)wn−1ei(m1x1···mnxn)

×E1+F1FG1+H1






(e1); (f1);
α1(sinx1)

2ρ1

(g1); (h1);




 · · · En+FnFGn+Hn






(en); (fn);
αn(sinxn)

2ρn

(gn); (hn);






×Im,npi,qi:r






(aj, αj)1,n, (aji, αji)n+1,pi
z(sinx1)

2σ1 · · · (sinxn)2σn
(bj, βj)1,m, (bji, βji)m+1,qi




 dx1 · · · dxn

=
(π)nei(m1+···+mn)π/2

2(ω1+···+ωn)−n

∞∑

r1···rn=0

E1∏

k1=1
(e1k1)r1

F1∏

k1=1
(f1k1)r1

G1∏

k1=1
(g1k1)r1

H1∏

k1=1
(h1k1)r1

· · ·



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  

 )

54

  
G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
II

Is
su

e 
  
  
 e

rs
io
n

I
V

IV
  

 F)

  
20

12
A
pr

il

©  2012 Global Journals Inc.  (US)

A Unified Study of Fourier Series Involving Generalized Hypergeometric Function

· · ·

En∏

kn=1
(enkn)rn

Fn∏

kn=1
(fnkn)rn

Gn∏

kn=1
(gnkn)rn

Hn∏

kn=1
(hnkn)rn

(α1/4
ρ1)r1

r1!
· · · (αn/4

ρn)rn

rn!

×Im,n+npi+2,qi+2:r






(1− ω1 − 2ρ1r1, 2σ1; 1) · · · (1− ωn − 2ρnrn, 2σn; 1),
z

4(σ1+···+σn)

(bj , βj)1,m, (bji, βji)m+1,qi
(
1−ω1−2ρ1r1±m1

2
, σ1; 1

)

(aj, αj)1,n, (aji, αji)n+1,pi

· · ·
(
1−ωn−2ρnrn±mn

2
, σn; 1

)




 . (7.1)

Further setting α1, · · · , αn = 0 in (7.1),we obtain

∫ π

0
· · ·

∫ π

0
(sinx1)

w1−1 · · · (sinxn)wn−1ei(m1x1+···+mnxn)

Notes

×In,Npi,qi:r






(aj, αj)1,n, (aji, αji)n+1,pi
z(sinx1)

2σ1 · · · (sinxn)2σn
(bj, βj)1,m, (bji, βji)m+1,qi




 dx1 · · · dxn

=
(π)nei(m1+···+mn)π/2

2(ω1+···+ω2)−n

×Im,n+1pi+n,qi+n:r






(1− ω1, 2σ1; 1) · · · (1− ωn, 2σn; 1),
z

4(σ1+···+σn)

(bj, βj)1,m, (bji, βji)m+1,qi
(
1−ω1±m1

2
, σ1; 1

)

(aj , αj)1,, (aji, αji)n+1,pi

· · ·
(
1−ωn±mn

2
, σn; 1

)




 . (7.2)

Now setting α = β = 0 in (3.3) we establish

(sinx)w−1Im,npi,qi






(aj, αj)1,n, (aji, αji)n+1,pi
z(sinx)2σ

(bj, βj)1,m, (bji, βji)m+1,qi






=
∞∑

p=−∞

eip(
π

2
−x)

2w−1
Im,n+1P=pi+1,qi+2:r






(1− ω, 2σ; 1), (aj , αj)1,n, (aji, αji)n+1,pi
z
4σ

(bj , βj)1,m, (bji, βji)m+1,qi
(
1−ω1±p

2
, σ; 1

)




 . (7.3)
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Letting p = 2l as l is a integer,from (7.3), we establish

L.H.S. of (7.3) =
1√
π
Im,n+1pi+1,qi+1:r






(2−ω
2
, σ; 1), (aj, αj)1,n, (aji, αji)n+1,pi

z

(bj, βj)1,m, (bji, βji)m+1,qi
(
1−ω
2
, σ; 1

)






+
1

2w−2

∞∑

pn=1

coslπ cos2lx Im,n+1pi+1,qi+2:r






(1− ω, σ; 1), (aj, αj)1,n, (aji, αji)n+1,pi
z
4σ

(bj , βj)1,m, (bji, βji)m+1,qi
(
1−ω±2l

2
, σ; 1

)






(7.4)

Further letting p = (2l + 1) as l is an integer,from (7.3) we obtain

=
1

2w−2

∞∑

p=1

sin(2l + 1)π/2 .sin(2l + 1)x

×Im,n+1pi+1,qi+2:r






(1− ω, 2σ; 1), (aj, αj)1,n, (aji, αji)n+1,pi
z
4σ

(bj, βj)1,m, (bji, βji)m+1,qi
(
1−ω±(2l+1)

2
, σ; 1

)




 (7.5)

Similarly, remaining particular cases can be evaluated by (4.4) and (5.3) applying the
same techniques.
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 Contour Integrals
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 Abstract

 

-

 

The aim of the present paper is to evaluate new generating functions of 𝐇𝐇�-function, using Truesdell’s 
ascending and descending F-equation technique. These formulae are unified in nature and act as the key formulae from 
which we can obtain as their special cases. For the sake of illustration, we record here some special cases of

 

our main 
formulae, which are believe to be new and important themselves. 

 

Keywords

 

:

 

𝐻𝐻�-function, generating function, F-equations.

 I.

 

INTRODUCTION

 
In 1987, Inayat-Hussain [1, 2] introduced generalization form of Fox's H-function, 

which is popularly known as

 

H -function.  Now H -function

 

stands on fairly firm footing 

through the research contributions of various authors [1-3, 6, 7, 9-12]. H -function

 

is 
defined and represented in the following manner [7]:

 

 [ ]
( ) ( )
( ) ( )

( )+ ξ

+

 α α
 = = φ ξ ξ  πβ β  

∫
j j j j jm,n m,n 1,n n 1,p

p,q p,q
L

j j j j j1,m m 1,q

a , ;A , a , 1
H z H z z d

2 ib , , b , ;B
( )z 0≠

  

  

 

(1.1)

 
where

 

( )
j

j

m n
A

j j j j
j 1 j 1
q p

B
j j j j

j m 1 j n 1

(b ) { (1 a )}

{ (1 b )} (a )

= =

= + = +

Γ − β ξ Γ − + α ξ
φ ξ =

Γ − + β ξ Γ − α ξ

∏ ∏

∏ ∏
    

(1.2)

 

 It may be noted that the ( )φ ξ

 

contains fractional powers of some of the gamma 

function and m,n,p,q

 

are integers such that 1 m q,1 n p,≤ ≤ ≤ ≤ ( ) ( )j j1,p 1,q
,α β

 

are positive real 

numbers and ( ) ( )j j1,n m 1,q
A , B

+
may take non-integer values, which we assume to be positive 

for standardization purpose. and ( )j 1,q

 

are complex numbers.
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The nature of contour L, sufficient conditions of convergence of defining integral 

(1.1) and other details about the H -function can be seen in the papers [6, 7].
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Ref.

b( )j 1,p
a



 

The behavior of the H�-function for small values of | z |

 

follows easily from a result 

given by Rathie [3]:

 
[ ] ( )m,n

p,qH z o |z| ;α=

 

 
 

Where  

 

j

1 j m
j

b
minRe ,|z| 0
≤ ≤

 
α = →  α 

      

(1.3)

 
                               (1.4)

 The following function which follows as special cases of the H�-function will be 
required in the sequel [7]:

 

   

(1.5)

 

 

Truesdell’s F-equations are defined and represented as:

 
  

 

 

   
For F(z,s)

 

satisfying ascending F-equation, Truesdell [13] and Agarwal and Saxena 

[4] obtained the following generating functions using Tayler’s series:

 ( )n

n 0

F z,s n
F(z y,s) y

n!

∞

=

+
+ = ∑

      

(1.6)

     

       

  

( )n

n 0

Y z,s n
Y(z y,s) y

n!

∞

=

−
+ = ∑   

      

(1.7)

 

 

In order to obtain main results of this section, we will make use of the following 
well known results on multiplication formulae for the Gamma functions.

 

 

 

m 1 m 1
r

r
k 0 k 0

s r k s k
m (s)

m m

− −
−

= =

+ + +   Γ = Γ   
   

∏ ∏

     

(1.8)

  
    

 

rm 1 m 1

k 0 k 0r

s r k ( m) s k
m (m s) m

−− −

= =

− − − −   Γ = Γ   −   
∏ ∏

     

(1.9)  
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rm 1 m 1

k 0 k 0r

s r k ( m) s k
m (m s) m

−− −

= =

− + − +   Γ = Γ   −   ∏ ∏ (1.10)
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asc. II 52 (1997), 297-310.

Ref.

a) The function F(z,s) is said to satisfy the ascending F-equations if  r
zD F(z,s) F(z,s r)= +

where   
r

r
z

d
D .

dz
 =  
 

b) The function Y(z,s) is said to satisfy the descending F-equations if  
r
zD Y(z,s) Y(z,s r)= − , where r is a positive integer.

( )
( )

( )
( ) ( )

+

  α − α
  ψ = −  β − β    

j j j j j j1,p1,p 1,p
p,q 1p q

j j j j j j1,q 1,q

a , ;A 1 a , ;A
;z H z

b , ;B 0,1 , 1 b , ;B

= = + = = +

Ω = β − β + α − α >∑ ∑ ∑ ∑
q pm n

j j j j j j
j 1 j m 1 j 1 j n 1

| | | B | | A | | | 0 , 0 |z|< < ∞



  

        

  

m 1 m 1
r

r
k 0 k 0

s r k s k
m (s m 1)

m m

− −
−

= =

+ − −   Γ = − + Γ   
   

∏ ∏

    

(1.11)

  

 

( ){ } s s 1 s 2 s a 1
a,s ,h ,h , ,h , ,h ,..., ,h

a a a a
+ + + −       ∆ =        

       

   

(1.12)

 

 

II.

 

DIFFERENT FORMS OF H�-FUNCTION

 

 

In this section, we have different forms of H�-Function which satisfy Truesdell’s 
ascending and descending F-equation.

 

The following forms of H�-Function satisfy Truesdell’s ascending F-equation:

 
 

( ) ( ) ( )

( ) ( ) ( ) ( )

s ha
j j j j jm,n 1,n n 1,p

p,q

j j j j ja 1,m m 1,q

a , ;A , a , ,{ ,s ,h}z zt
H

a a { a,s ,h}, b , , b , ;B ,{ ,s ,h}

−
+ −ρ

+ + −ρ

 α α ∆ ρ    
        ∆ β β ∆ ρ  

 

   

(2.1)

 

 

( ) ( ) ( )
( ) ( ) ( )

s ha
j j j j jm,n a 1,n n 1,p

p,q

j j j j j2a 1,m m 1,q

{ a,s 1/ 2 ,h} , a , ;A , a ,z zt
H

a a { 2a,2s ,h}, b , , b , ;B

−
+ +

+ +

 ∆ + α α    
        ∆ β β  

    

(2.2)

 

 

( ) ( ) ( ) ( )

( ) ( ) ( )
s ha

j j j j jm,n a 1,n n 1,p a
p,q

j j j j j3a 1,m m 1,q

{ a,s 2 / 3 ,h}, a , ;A , a , ,{ a,s 1/ 3 ,h}z zt
H

a a { 3a,3s ,h}, b , , b , ;B

−
+ + −

+ +

 ∆ + α α ∆ +    
        ∆ β β  

 

 

(2.3)

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(s 1) ha
j j j j jm,n 2a 1,n n 1,p 2a

p,q

j j j j j4a 1,m m 1,q a

{ 2a,2s 1/ 2 ,h}, a , ;A , a , ,{ 2a,2s 1 ,h}z zt
H

a a { 4a,4s 1 ,h}, b , , b , ;B ,{ a,s 1 ,h}

− +
+ + −

+ + −

 ∆ + α α ∆ +    
        ∆ + β β ∆ +  

 

(2.4)

 

 

 

( ) ( )
( ) ( )

s ha
j j j j jm,n 1,n n 1,p

p,q

j j j j j1,m m 1,q a

a , ;A , a ,z zt
H

a a b , , b , ;B ,{ (a,s),h}

−
+

+ −

 α α    
        β β ∆  

 

    

(2.5)

 

 
( ) ( )

( ) ( )
s 2ha

j j j j jm,n 1,n n 1,ps i s/2
p,q

j j j j ja 1,m m 1,q a

a , ;A , a ,z zt
2 e H

a a { (a,s / 2),h}, b , , b , ;B ,{ (a,(s 1) / 2),h}

−
+π

+ + −

 α α    
        ∆ β β ∆ +  

 

 

(2.6)

 

 
( ) ( )

( ) ( )
s ha

j j j j jm,n 1,n n 1,pi s
p,q

j j j j ja 1,m m 1,q

{ ( ,s),h} , a , ;A , a ,z zt
e H

a a { (a,s),h} b , , b , ;B ,{ ( ,s),h}

−
ρ+ +π

+ + −ρ

 ∆ ρ α α    
        ∆ β β ∆ ρ  

 

  

(2.7)

 

 ( ) ( )
( ) ( )

s ha
j j j j jm,n 1,n n 1,pi s

p,q

j j j j ja 1,m m 1,q

a , ;A , a ,z zt
e H

a a { (a,s),h} , b , , b , ;B

−
+π

+ +

 α α    
        ∆ β β  

 

   

(2.8)

 

 
Making use of the equation (2.1), we obtain:
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 ( ) ( ) ( )

( ) ( ) ( ) ( )

s ha
j j j j jm,n 1,n n 1,pr r

p,qz z

j j j j ja 1,m m 1,q

a , ;A , a , ,{ ,s ,h}z zt
D [A(z,s)] D H

a a { a,s ,h}, b , , b , ;B ,{ ,s ,h}

−
+ −ρ

+ + −ρ

 α α ∆ ρ    =         ∆ β β ∆ ρ  

 

 
(2.9)

 

 Replacing the H�-Function by its definition (1.1) and then interchanging the order 
of integration and differentiation and (2.9) transforms to

 
 

( )j

j

haa 1 m n
ha sA r

j j j j zha s
k 0 j a 1 j 1

q 1 p 1L
B

j j j j
j m 1 k 0 j n 1 k 0

s k t
h (b ) { (1 a )} D z

a a1
d

2 i s k s k
{ (1 b )} 1 h (a ) h

ξ−
ξ−

ξ−
= = + =

−ρ ρ− −ρ ρ−

= + = = + =

 + Γ − ξ Γ − β ξ Γ − + α ξ   
    ξ

π    + +
Γ − + β ξ Γ − − ξ Γ − α ξ Γ − ξ   ρ ρ   

∏ ∏ ∏
∫
∏ ∏ ∏ ∏   

(2.10)
 

 
Now using (1.8) and (1.9) lead to two identities:  

 

( )
ra 1 a 1

k 0 k 0r

s k a s r k
h h

a s ha a

− −

= =

+ + +   Γ − ξ = Γ − ξ   − ξ   
∏ ∏     (2.11)   

     

( )
( )

a 1 a 1
r

r r
k 0 k 0

s has k s r k
1 h 1 h

a a1 a

− −

= =

− ξ+ + +   Γ − + ξ = Γ − + ξ   
   −

∏ ∏    (2.12)  

 
Using these results, equation (2.10) takes the following form:  

r
zD [A(z,s)] A[z,s r]= +  

Similarly, forms of H�-Function (2.2), (2.3), (2.4), (2.5), (2.6), (2.7) and (2.8) satisfy 

the Truesdell’s ascending F-equation.
 

 

Also the following forms of H�-Function satisfy Truesdell’s descending F-equation:  
 

( ) ( ) ( ) ( )

( ) ( ) ( )

s 1 ha
j j j j jm,n a 1,n n 1,p

p,q

j j j j j1,m m 1,q

{ a,s ,h}, a , ;A , a , ,{ ,s ,h}z t
H

a za b , , b , ;B ,{ ,s ,h}

−
+ + −ρ

+ −ρ

 ∆ α α ∆ ρ    
        β β ∆ ρ    

  
(2.13)

 

 

 

   
(2.14)

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

s 1 ha
j j j j jm,n 4a 1,n n 1,p a

p,q

j j j j j2a 1,m m 1,q 2a

{ 4a,4s 1 ,h}, a , ;A , a , ,{ a,s ,h}z t
H

a za { 2a,2s 1/ 2 ,h}, b , , b , ;B ,{ 2a,2s ,h}

−
+ + −

+ + −

 ∆ + α α ∆    
        ∆ + β β ∆  

 

 

(2.15)

 

 

( ) ( ) ( )
( ) ( ) ( ) ( )

s 1 ha
j j j j jm,n 3a 1,n n 1,p

p,q

j j j j ja 1,m m 1,q a

{ 3a,3s ,h}, a , ;A , a ,z t
H

a za { a,s 2 / 3 ,h}, b , , b , ;B ,{ a,s 1/ 3 ,h}

−
+ +

+ + −

 ∆ α α    
        ∆ + β β ∆ +  

 

 

(2.16)
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( ) ( ) ( )
( ) ( ) ( )

s 1 ha
j j j j jm,n 2a 1,n n 1,p

p,q

j j j j ja 1,m m 1,q

{ 2a,2s ,h}, a , ;A , a ,z t
H

a za { a,s 1/ 2 ,h} , b , , b , ;B

−
+ +

+ +

 ∆ α α    
        ∆ + β β  



( ) ( ) ( )
( ) ( )

s 1 ha
j j j j jm,n a 1,n n 1,pi s

p,q

j j j j j1,m m 1,q

{ a,s ,h} , a , ;A , a ,z t
e H

a za b , , b , ;B

−
+ +π

+

 ∆ α α    
        β β  

 

    (2.17) 

 

( ) ( ) ( ) ( )

( ) ( )
s 1 2ha

j j j j jm,n a 1,n n 1,p as i s/2
p,q

j j j j j1,m m 1,q

{ a,s / 2 ,h}, a , ;A , a , ,{ a,(s 1) / 2 ,h}z t
2 e H

a za b , , b , ;B

−
+ + −− π

+

 ∆ α α ∆ +    
        β β  

 

(2.18) 

 

( ) ( ) ( )

( ) ( )
s 1 ha

j j j j jm,n 1,n n 1,p a
p,q

j j j j j1,m m 1,q

a , ;A , a , ,{ a,s ,h}z t
H

a za b , , b , ;B

−
+ −

+

 α α ∆    
        β β    

    (2.19) 

 

( ) ( ) ( ) ( )

( ) ( ) ( )
s 1 ha

j j j j jm,n 1,n n 1,p ai s
p,q

j j j j j1,m m 1,q

{ ,s ,h}, a , ;A , a , ,{ a,s ,h}z t
e H

a za { ,s ,h} , b , , b , ;B

−
ρ+ + −π

ρ+ +

 ∆ ρ α α ∆    
        ∆ ρ β β  

 

  
(2.20)

 

 

Making use of the equation (2.13), we obtain:

 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

s 1 ha
j j j j jm,n a 1,n n 1,pr r

p,qz z

j j j j j1,m m 1,q

{ a,s ,h}, a , ;A , a , ,{ ,s ,h}z t
D [B(z,s)] D H

a za b , , b , ;B ,{ ,s ,h}

−
+ + −ρ

+ −ρ

 ∆ α α ∆ ρ    =         β β ∆ ρ  

 

 

(2.21)

 

 

Replacing the H�-Function by its definition (1.1) and then interchanging the order 
of integration and differentiation and (2.21) transforms to

 
 

( )j

j

ham a 1 n
s ha 1A r

j j j j zha s 1
j 1 k 0 j 1

q 1 p 1L
B

j j j j
j m 1 k 0 j n 1 k 0

s k t
(b ) 1 h { (1 a )} D z

a a1
d

2 i s k s k
{ (1 b )} 1 h (a ) h

ξ−
− ξ−

ξ+ −
= = =

−ρ ρ− −ρ ρ−

= + = = + =

 + Γ − β ξ Γ − + ξ Γ − + α ξ   
    ξ

π    + +
Γ − + β ξ Γ − + ξ Γ − α ξ Γ − ξ   ρ ρ   

∏ ∏ ∏
∫

∏ ∏ ∏ ∏

  

(2.22)

 

 
 

Now using (1.10) and (1.11) lead to two identities:

 
 

a 1 a 1
r

r
k 0 k 0

s k s r k
h ( ) (ha s 1) h

a a

− −
−

= =

+ − +   Γ − ξ = −λ ξ − + Γ − ξ   
   

∏ ∏

    

(2.23)

  

    

 

ra 1 a 1

k 0 k 0r

s k a s r k
1 h 1 h

a (ah s 1) a

− −

= =

+ − +   Γ − + ξ = Γ − + ξ   ξ − +   
∏ ∏

    

(2.24)

 

 

Using these results, (2.22) takes the following form:

 
 

r
zD [B(z,s)] B[z,s r]= −

 
 

Similarly, forms of H�-function (2.14), (2.15), (2.16), (2.17), (2.18), (2.19) and (2.20) 

satisfy the Truesdell’s descending F-equation.
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III.  GENERATING FUNCTIONS  

If 
h

A 1
a

 = + 
 

, then the generating functions obtained by employing forms (2.1) to (2.8):  

 
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

j j j j jm,n 1,n n 1,ps ha
p,q

j j j j ja 1,m m 1,q

r j j j j jm,n 1,n n 1,p
p,q

r 0 j j j j ja 1,m m 1,q

a , ;A , a , ,{ ,s ,h}
A H A x

{ a,s ,h}, b , , b , ;B ,{ ,s ,h}

a , ;A , a , ,{ ,s r ,h}h
H x

r! { a,s r ,h}, b , , b , ;B ,{ ,s r ,

+ −ρ−

+ + −ρ

∞
+ −ρ

=
+ + −ρ

 α α ∆ ρ
 
 ∆ β β ∆ ρ  

α α ∆ ρ +
=

∆ + β β ∆ ρ +
∑

h}

 
 
 
  

 

  (3.1)  

 

    (3.2)  

 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

j j j j jm,n a 1,n n 1,p as ha
p,q

j j j j j3a 1,m m 1,q

r j j j j jm,n a 1,n n 1,p a
p,q

r 0

{ a,s 2 / 3 ,h}, a , ;A , a , ,{ a,s 1/ 3 ,h}
A H A x

{ 3a,3s ,h}, b , , b , ;B

{ a,s r 2 / 3 ,h}, a , ;A , a , ,{ a,s r 1/ 3 ,h}h
H x

r! { 3a,3s 3r ,h},

+ + −−

+ +

∞
+ + −

=

 ∆ + α α ∆ +
 
 ∆ β β  

∆ + + α α ∆ + +
=

∆ +
∑ ( ) ( )j j j j j3a 1,m m 1,q

b , , b , ;B
+ +

 
 
 β β  

 

 (3.3)  

 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

j j j j jm,n 2a 1,n n 1,p 2as ha
p,q

j j j j j4a 1,m m 1,q a

r j j j j jm,n 2a 1,n n 1,p 2a
p,q

r 0

{ 2a,2s 1/ 2 ,h}, a , ;A , a , ,{ 2a,2s 1 ,h}
A H A x

{ 4a,4s 1 ,h}, b , , b , ;B ,{ a,s 1 ,h}

{ 2a,2s 2r 1/ 2 ,h}, a , ;A , a , ,{ 2ah
H x

r!

+ + −−

+ + −

∞
+ + −

=

 ∆ + α α ∆ +
 
 ∆ + β β ∆ +  

∆ + + α α ∆
=∑

( )

( ) ( ) ( ) ( )j j j j j4a 1,m m 1,q a

,2s 2r 1 ,h}

{ 4a,4s 4r 1 ,h}, b , , b , ;B ,{ a,s r 1 ,h}
+ + −

 + +
 
 ∆ + + β β ∆ + +  

 
(3.4)

 

 
 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

j j j j jm,n 1,n n 1,ps ha
p,q

j j j j j1,m m 1,q a

r j j j j jm,n 1,n n 1,p
p,q

r 0 j j j j j1,m m 1,q a

a , ;A , a ,
A H A x

b , , b , ;B ,{ (a,s),h}

a , ;A , a ,h
H x

r! b , , b , ;B ,{ (a,s r),h}

+−

+ −

∞
+

=
+ −

 α α
 
 β β ∆  

 α α
 =  β β ∆ +  

∑
 

    
(3.5)

 

 
 

  
  

 )
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( ) ( )
( ) ( )

j j j j jm,n 1,n n 1,ps 2ha 2
p,q

j j j j ja 1,m m 1,q a

a , ;A , a ,
A H A x

{ (a,s / 2),h}, b , , b , ;B ,{ (a,(s 1) / 2),h}

+−

+ + −

 α α
 
 ∆ β β ∆ +  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

j j j j jm,n a 1,n n 1,ps ha
p,q

j j j j j2a 1,m m 1,q

r j j j j jm,n a 1,n n 1,p
p,q

r 0 j j j j j2a 1,m m 1,q

{ a,s 1/ 2 ,h} , a , ;A , a ,
A H A x

{ 2a,2s ,h}, b , , b , ;B

{ a,s r 1/ 2 ,h} , a , ;A , a ,h
H x

r! { 2a,2s 2r ,h}, b , , b , ;B

+ +−

+ +

∞
+ +

=
+ +

 ∆ + α α
 
 ∆ β β  

 ∆ + + α α
=  ∆ + β β 

∑ 





( ) ( ) ( )
( ) ( )

r /2r
j j j j jm,n 1,n n 1,p2

p,q

r 0 j j j j ja 1,m m 1,q a

a , ;A , a ,(2h) 1
H x

r! { (a,(s r) / 2),h}, b , , b , ;B ,{ (

∞
+

=
+ + −

α α−
=

∆ + β β ∆
∑

a,(s r 1) / 2),h}

 
 
 + +  

 

(3.6)

 

 
 

 

  

(3.7)

 

 

 

    

(3.8)

 

 

To prove the above generating function, we employ the forms (2.1) to (2.8) in 

equation (1.6) and then on replacing z by   
ya
h

 

and    
ha

yt
h

 
 
 

 

by x , we get the above 

result from (3.1) to (3.8).

 

Generating functions obtained by employing forms (2.13) to (2.20):

 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

j j j j jm,n a 1,n n 1,ps 1 ha
p,q

j j j j j1,m m 1,q

r j j j j jm,n a 1,n n 1,p
p,q

r 0 j j j j j1,m m 1,q

{ a,s ,h}, a , ;A , a , ,{ ,s ,h}
A H A x

b , , b , ;B ,{ ,s ,h}

{ a,s r ,h}, a , ;A , a , ,{ ,s r ,h}h
H x

r! b , , b , ;B ,{ ,s

+ + −ρ− −

+ −ρ

∞
+ + −ρ

=
+ −ρ

 ∆ α α ∆ ρ
 
 β β ∆ ρ  

∆ − α α ∆ ρ −
=

β β ∆ ρ −
∑ ( )r ,h}

 
 
 
  

 

  

(3.9)

 

 

 

   

(3.10)
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

j j j j jm,n 4a 1,n n 1,p as 1 ha
p,q

j j j j j2a 1,m m 1,q 2a

r j j j j jm,n 4a 1,n n 1,p a
p,q

r 0

{ 4a,4s 1 ,h}, a , ;A , a , ,{ a,s ,h}
A H A x

{ 2a,2s 1/ 2 ,h}, b , , b , ;B ,{ 2a,2s ,h}

{ 4a,4s 4r 1 ,h}, a , ;A , a , ,{ a,s r ,hh
H x

r!

+ + −− −

+ + −

∞
+ + −

=

 ∆ + α α ∆
 
 ∆ + β β ∆  

∆ − + α α ∆ −
=∑ ( ) ( ) ( ) ( )j j j j j2a 1,m m 1,q 2a

}

{ 2a,2s 2r 1/ 2 ,h}, b , , b , ;B ,{ 2a,2s 2r ,h}
+ + −

 
 
 ∆ − + β β ∆ −  

(3.11)

( ) ( )
( ) ( )

( ) ( )
( ) ( )

j j j j jm,n 1,n n 1,ps ha
p,q

j j j j ja 1,m m 1,q

r r j j j j jm,n 1,n n 1,p
p,q

r 0 j j j j ja 1,m m

{ ( ,s),h} , a , ;A , a ,
A H A x

{ (a,s),h}, b , , b , ;B ,{ ( ,s),h}

{ ( ,s r),h} , a , ;A , a ,h ( 1)
H x

r! { (a,s r),h} , b , , b , ;B

ρ+ +−

+ + −ρ

∞
ρ+ +

=
+

 ∆ ρ α α
 
 ∆ β β ∆ ρ  

∆ ρ + α α−
=

∆ + β β
∑

1,q
,{ ( ,s r),h}

+ −ρ

 
 
 ∆ ρ +  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

j j j j jm,n 1,n n 1,ps ha
p,q

j j j j ja 1,m m 1,q

r r j j j j jm,n 1,n n 1,p
p,q

r 0 j j j j ja 1,m m 1,q

a , ;A , a ,
A H A x

{ (a,s),h} , b , , b , ;B

a , ;A , a ,h ( 1)
H x

r! { (a,s r),h} , b , , b , ;B

+−

+ +

∞
+

=
+ +

 α α
 
 ∆ β β  

 α α−  =  ∆ + β β  
∑

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

j j j j jm,n 2a 1,n n 1,ps 1 ha
p,q

j j j j ja 1,m m 1,q

r j j j j jm,n 2a 1,n n 1,p
p,q

r 0 j j j j ja 1,m m 1,q

{ 2a,2s ,h}, a , ;A , a ,
A H A x

{ a,s 1/ 2 ,h} , b , , b , ;B

{ 2a,2s 2r ,h}, a , ;A , a ,h
H x

r! { a,s r 1/ 2 ,h} , b , , b , ;B

+ +− −

+ +

∞
+ +

=
+ +

 ∆ α α
 
 ∆ + β β  

 ∆ − α α
=  ∆ − + β β

∑







 

  

 

 

 

(3.12)

 

 

 

    

(3.13)

 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( )

j j j j jm,n a 1,n n 1,p as 1 2ha 2
p,q

j j j j j1,m m 1,q

r /2r
j j j j jm,n a 1,n n 1,p a2

p,q

r 0 j j j1,m

{ a,s / 2 ,h}, a , ;A , a , ,{ a,(s 1) / 2 ,h}
A H A x

b , , b , ;B

{ a,(s r) / 2 ,h}, a , ;A , a , ,{ a,(s r 1) / 2 ,h}(2h) 1
H x

r! b , , b ,

+ + −− −

+

∞
+ + −

=

 ∆ α α ∆ +
 
 β β  

∆ − α α ∆ − +−
=

β β
∑ ( )j j m 1,q

;B
+

 
 
 
  

 

(3.14)

 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

j j j j jm,n 1,n n 1,p as 1 ha
p,q

j j j j j1,m m 1,q

r j j j j jm,n 1,n n 1,p a
p,q

r 0 j j j j j1,m m 1,q

a , ;A , a , ,{ a,s ,h}
A H A x

b , , b , ;B

a , ;A , a , ,{ a,s r ,h}h
H x

r! b , , b , ;B

+ −− −

+

∞
+ −

=
+

 α α ∆
 
 β β  

 α α ∆ −
 =  β β  

∑

 

    

(3.15)

 

 

 

  

(3.16)

 

 
 

To prove the above generating function, we employ the forms (2.13) to (2.20) in 

equation (1.7) and then on replacing z by 
ya
h

 

and 
ha

yt
h

 
 
 

by x , we get the above result 

from (3.9) to (3.16).
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( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

j j j j jm,n 3a 1,n n 1,ps 1 ha
p,q

j j j j ja 1,m m 1,q a

r j j j j jm,n 3a 1,n n 1,p
p,q

r 0 j j ja 1,m

{ 3a,3s ,h}, a , ;A , a ,
A H A x

{ a,s 2 / 3 ,h}, b , , b , ;B ,{ a,s 1/ 3 ,h}

{ 3a,3s 3r ,h}, a , ;A , a ,h
H x

r! { a,s r 2 / 3 ,h} , b , , b ,

+ +− −

+ + −

∞
+ +

=
+

 ∆ α α
 
 ∆ + β β ∆ +  

∆ − α α
=

∆ − + β
∑ ( ) ( )j j m 1,q a

;B ,{ a,s r 1/ 3 ,h}
+ −

 
 
 β ∆ − +  

( ) ( ) ( )
( ) ( )
( ) ( ) ( )

( ) ( )

j j j j jm,n a 1,n n 1,ps 1 ha
p,q

j j j j j1,m m 1,q

r r j j j j jm,n a 1,n n 1,p
p,q

r 0 j j j j j1,m m 1,q

{ a,s ,h} , a , ;A , a ,
A H A x

b , , b , ;B

{ a,s r ,h} , a , ;A , a ,h ( 1)
H x

r! b , , b , ;B

+ +− −

+

∞
+ +

=
+

 ∆ α α
 
 β β  

 ∆ − α α−  =  β β  
∑

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

j j j j jm,n 1,n n 1,p as 1 ha
p,q

j j j j j1,m m 1,q

rr
j j j j jm,n 1,n n 1,p a

p,q

r 0 j j j j1,m

{ ,s ,h}, a , ;A , a , ,{ a,s ,h}
A H A x

{ ,s ,h} , b , , b , ;B

{ ,s r ,h}, a , ;A , a , ,{ a,s r ,h}h 1
H x

r! { ,s r ,h} , b , , b , ;

ρ+ + −− −

ρ+ +

∞
ρ+ + −

=
ρ+

 ∆ ρ α α ∆
 
 ∆ ρ β β  

∆ ρ − α α ∆ −−
=

∆ ρ − β β
∑ ( )j m 1,q

B
+

 
 
 
  



IV. SPECIAL CASES 

 (4.1) When j jA B 1= =  , the H�-Function reduces to the Fox’s H-function [5, p. 10, 

Eqn. (2.1.1)], the above results (3.1) to (3.16) reduces to the following form: 
 

 

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

j j 1,ps m,n ha
p,q

j j 1,q

r j j 1,pm,n
p,q

r 0 j j a 1,q

a , ,{ ,s ,h}
A H A x

{ a,s ,h}, b , ,{ ,s ,h}

a , ,{ ,s r ,h}h
H x

r! { a,s r ,h}, b , ,{ ,s r ,h}

−ρ−

−ρ

∞
−ρ

=
+ −ρ

 α ∆ ρ
 
 ∆ β ∆ ρ  

 α ∆ ρ +
 =  ∆ + β ∆ ρ +  

∑  

   (4.1.1) 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

rj j j ja 1,p a 1,ps m,n ha m,n
p,q p,q

r 0j j j j2a 1,q 2a 1,q

{ a,s 1/ 2 ,h}, a , { a,s r 1/ 2 ,h}, a ,h
A H A x H x

r!{ 2a,2s ,h}, b , { 2a,2s 2r ,h}, b ,

∞
+ +−

=
+ +

   ∆ + α ∆ + + α
   =   ∆ β ∆ + β      

∑
 (4.1.2) 

 
( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

j j a 1,p as m,n ha
p,q

j j 3a 1,q

r j j a 1,p am,n
p,q

r 0 j j 3a 1,q

{ a,s 2 / 3 ,h}, a , ,{ a,s 1/ 3 ,h}
A H A x

{ 3a,3s ,h}, b ,

{ a,s r 2 / 3 ,h}, a , ,{ a,s r 1/ 3 ,h}h
H x

r! { 3a,3s 3r ,h}, b ,

+ −−

+

∞
+ −

=
+

 ∆ + α ∆ +
 
 ∆ β  

 ∆ + + α ∆ + +
 =  ∆ + β  

∑  

  (4.1.3) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

j j 2a 1,p 2as m,n ha
p,q

j j 4a 1,q a

r j j 2a 1,p 2am,n
p,q

r 0 j j 4a 1,q a

{ 2a,2s 1/ 2 ,h}, a , ,{ 2a,2s 1 ,h}
A H A x

{ 4a,4s 1 ,h}, b , ,{ a,s 1 ,h}

{ 2a,2s 2r 1/ 2 ,h}, a , ,{ 2a,2s 2r 1 ,h}h
H x

r! { 4a,4s 4r 1 ,h}, b , ,{

+ −−

+ −

∞
+ −

=
+ −

 ∆ + α ∆ +
 
 ∆ + β ∆ +  

∆ + + α ∆ + +
=

∆ + + β
∑ ( )a,s r 1 ,h}

 
 
 ∆ + +  

   

(4.1.4) 

 

 
( )

( )
( )

( )
rj j j j1,p 1,ps m,n ha m,n

p,q p,q
r 0j j j j1,q a 1,q a

a , a ,h
A H A x H x

r!b , ,{ (a,s),h} b , ,{ (a,s r),h}

∞
−

=
− −

   α α
   =   β ∆ β ∆ +      

∑    (4.1.5) 

 
( )

( )

( ) ( )
( )

j j 1,ps m,n 2ha 2
p,q

j j a 1,q a

r /2r
j j 1,pm,n 2

p,q
r 0 j j a 1,q a

a ,
A H A x

{ (a,s / 2),h}, b , ,{ (a,(s 1) / 2),h}

a ,(2h) 1
H x

r! { (a,(s r) / 2),h}, b , ,{ (a,(s r 1) / 2),h}

−

+ −

∞

=
+ −

 α
 
 ∆ β ∆ +  

 α−  =  ∆ + β ∆ + +  
∑

   
(4.1.6)
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( )
( )

j j 1,ps m,n ha
p,q

j j a 1,q

{ ( ,s),h}, a ,
A H A x

{ (a,s),h}, b , ,{ ( ,s),h}

ρ+−

+ −ρ

 ∆ ρ α
 
 ∆ β ∆ ρ  

5.
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H
-f
u
n
ct

io
n
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b
li
sh
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s,

 N
ew
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eh

li
, 
M
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s 
(1

98
2)

.
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( )
( )

r r j j 1,pm,n
p,q

r 0 j j a 1,q

{ ( ,s r),h}, a ,h ( 1)
H x

r! { (a,s r),h}, b , ,{ ( ,s r),h}

∞
ρ+

=
+ −ρ

 ∆ ρ + α−  =  ∆ + β ∆ ρ +  
∑

 

    

(4.1.7)

 

 

( )
( )

( )
( )

r rj j j j1,p 1,qs m,n ha m,n
p,q p,q

r 0j j j ja 1,q a 1,q

a , a ,h ( 1)
A H A x H x

r!{ (a,s),h}, b , { (a,s r),h}, b ,

∞
−

=
+ +

   α α−   =   ∆ β ∆ + β      
∑

  

(4.1.8)

 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

j j a 1,ps 1 m,n ha
p,q

j j 1,q

r j j a 1,pm,n
p,q

r 0 j j 1,q

{ a,s ,h}, a , ,{ ,s ,h}
A H A x

b , ,{ ,s ,h}

{ a,s r ,h}, a , ,{ ,s r ,h}h
H x

r! b , ,{ ,s r ,h}

+ −ρ− −

−ρ

∞
+ −ρ

=
−ρ

 ∆ α ∆ ρ
 
 β ∆ ρ  

 ∆ − α ∆ ρ −
 =  β ∆ ρ −  

∑

 

    

(4.1.9)

 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

rj j j j2a 1,p 2a 1,ps 1 m,n ha m,n
p,q p,q

r 0j j j ja 1,q a 1,q

{ 2a,2s ,h}, a , { 2a,2s 2r ,h}, a ,h
A H A x H x

r!{ a,s 1/ 2 ,h}, b , { a,s r 1/ 2 ,h}, b ,

∞
+ +− −

=
+ +

   ∆ α ∆ − α
   =   ∆ + β ∆ − + β      

∑

 

(4.1.10)

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

j j 4a 1,p as 1 m,n ha
p,q

j j 2a 1,q 2a

r j j 4a 1,p am,n
p,q

r 0 j j 2a 1,q 2a

{ 4a,4s 1 ,h}, a , ,{ a,s ,h}
A H A x

{ 2a,2s 1/ 2 ,h}, b , ,{ 2a,2s ,h}

{ 4a,4s 4r 1 ,h}, a , ,{ a,s r ,h}h
H x

r! { 2a,2s 2r 1/ 2 ,h}, b , ,{ 2a,2s

+ −− −

+ −

∞
+ −

=
+ −

 ∆ + α ∆
 
 ∆ + β ∆  

∆ − + α ∆ −
=

∆ − + β ∆ −
∑ ( )2r ,h}

 
 
 
  

 

  

(4.1.11)

 

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

j j 3a 1,ps 1 m,n ha
p,q

j j a 1,q a

r j j 3a 1,pm,n
p,q

r 0 j j a 1,q a

{ 3a,3s ,h}, a ,
A H A x

{ a,s 2 / 3 ,h}, b , ,{ a,s 1/ 3 ,h}

{ 3a,3s 3r ,h}, a ,h
H x

r! { a,s r 2 / 3 ,h}, b , ,{ a,s r 1/ 3 ,h}

+− −

+ −

∞
+

=
+ −

 ∆ α
 
 ∆ + β ∆ +  

 ∆ − α
 =  ∆ − + β ∆ − +  

∑
 

  

(4.1.12)

 

 ( ) ( )
( )

( ) ( )
( )

r rj j j ja 1,p a 1,ps 1 m,n ha m,n
p,q p,q

r 0j j j j1,q 1,q

{ a,s ,h}, a , { a,s r ,h}, a ,h ( 1)
A H A x H x

r!b , b ,

∞
+ +− −

=

   ∆ α ∆ − α−   =   β β      
∑

  

(4.1.13)
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( ) ( ) ( )

( )
j j a 1,p as 1 m,n 2ha 2

p,q

j j 1,q

{ a,s / 2 ,h}, a , ,{ a,(s 1) / 2 ,h}
A H A x

b ,

+ −− −
 ∆ α ∆ +
 
 β  

Notes



( ) ( ) ( ) ( )

( )

r /2r
j j a 1,p am,n 2

p,q
r 0 j j 1,q

{ a,(s r) / 2 ,h}, a , ,{ a,(s r 1) / 2 ,h}(2h) 1
H x

r! b ,

∞
+ −

=

 ∆ − α ∆ − +−  =  β  
∑

  

(4.1.14)

 

 

( ) ( )

( )
( ) ( )

( )
rj j j j1,p a 1,p as 1 m,n ha m,n

p,q p,q
r 0j j j j1,q 1,q

a , ,{ a,s ,h} a , ,{ a,s r ,h}h
A H A x H x

r!b , b ,

∞
− −− −

=

   α ∆ α ∆ −
   =   β β      

∑

  

(4.1.15)

 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

j j 1,p as 1 m,n ha
p,q

j j 1,q

rr
j j 1,p am,n

p,q
r 0 j j 1,q

{ ,s ,h}, a , ,{ a,s ,h}
A H A x

{ ,s ,h}, b ,

{ ,s r ,h}, a , ,{ a,s r ,h}h 1
H x

r! { ,s r ,h}, b ,

ρ+ −− −

ρ+

∞
ρ+ −

=
ρ+

 ∆ ρ α ∆
 
 ∆ ρ β  

 ∆ ρ − α ∆ −−  =  ∆ ρ − β  
∑

 

   

(4.1.16)

 

 
 

(4.2) If we put j j j jA B 1; 1= = α = β = , then the  H -function reduces to general type of 

G-function [8] i.e. 
( ) ( )
( ) ( )

j jm,n 1,n n 1,p
p,q

j j1,m m 1,q

a ,1,1 , a ,1
H z

b ,1,1 , b ,1

+

+

 
 
 
  

( )
( )

j 1,p

j 1,q

a ,1
G z

b ,1

 
 =  
  

, the above results (3.1) to (3.16) 

reduces to the following form:

 

 

 

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

j 1,ps m,n ha
p,q

j a 1,q

r j 1,pm,n
p,q

r 0 j a 1,q

a ,1 ,{ ,s ,h}
A G A x

{ a,s ,h}, b ,1 ,{ ,s ,h}

a ,1 ,{ ,s r ,h}h
G x

r! { a,s r ,h}, b ,1 ,{ ,s r ,h}

−ρ−

+ −ρ

∞
−ρ

=
+ −ρ

 ∆ ρ
 
 ∆ ∆ ρ  

 ∆ ρ +
 =  ∆ + ∆ ρ +  

∑

 

    

(4.2.1)

 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

rj ja 1,n 1,p a 1,ps m,n ha m,n
p,q p,q

r 0j j2a 1,q 2a 1,q

{ a,s 1/ 2 ,h}, a ,1 { a,s r 1/ 2 ,h}, a ,1h
A G A x G x

r!{ 2a,2s ,h}, b ,1 { 2a,2s 2r ,h}, b ,1

∞
+ + +−

=
+ +

   ∆ + ∆ + +
   =   ∆ ∆ +      

∑

 

(4.2.2)

 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

j a 1,p as m,n ha
p,q

j 3a 1,q

r j a 1,p am,n
p,q

r 0 j 3a 1,q

{ a,s 2 / 3 ,h}, a ,1 ,{ a,s 1/ 3 ,h}
A G A x

{ 3a,3s ,h}, b ,1

{ a,s r 2 / 3 ,h}, a ,1 ,{ a,s r 1/ 3 ,h}h
G x

r! { 3a,3s 3r ,h}, b ,1

+ −−

+

∞
+ −

=
+

 ∆ + ∆ +
 
 ∆  

 ∆ + + ∆ + +
 =  ∆ +  

∑

 

   

(4.2.3)
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( ) ( ) ( )

( ) ( ) ( )
j 2a 1,p 2as m,n ha

p,q

j 4a 1,q a

{ 2a,2s 1/ 2 ,h}, a ,1 ,{ 2a,2s 1 ,h}
A G A x

{ 4a,4s 1 ,h}, b ,1 ,{ a,s 1 ,h}

+ −−

+ −

 ∆ + ∆ +
 
 ∆ + ∆ +   (4.2.4)

8.
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( )
( )

( )
( )

rj j1,p 1,ps m,n ha m,n
p,q p,q

r 0j j1,q a 1,q a

a ,1 a ,1h
A G A x G x

r!b ,1 ,{ (a,s),h} b ,1 ,{ (a,s r),h}

∞
−

=
− −

   
   =   ∆ ∆ +      

∑

   

(4.2.5)

 

 

( )
( )

( ) ( )
( )

j 1,ps m,n 2ha 2
p,q

j a 1,q a

r /2r
j 1,pm,n 2

p,q
r 0 j a 1,q a

a ,1
A G A x

{ (a,s / 2),h}, b ,1 ,{ (a,(s 1) / 2),h}

a ,1(2h) 1
G x

r! { (a,(s r) / 2),h}, b ,1 ,{ (a,(s r 1) / 2),h}

−

+ −

∞

=
+ −

 
 
 ∆ ∆ +  

 −  =  ∆ + ∆ + +  
∑

   

(4.2.6)

 

 

( )
( )

( )
( )

j 1,ps m,n ha
p,q

j a 1,q

r r j 1,pm,n
p,q

r 0 j a 1,q

{ ( ,s),h}, a ,1
A G A x

{ (a,s),h}, b ,1 ,{ ( ,s),h}

{ ( ,s r),h}, a ,1h ( 1)
G x

r! { (a,s r),h}, b ,1 ,{ ( ,s r),h}

ρ+−

+ −ρ

∞
ρ+

=
+ −ρ

 ∆ ρ
 
 ∆ ∆ ρ  

 ∆ ρ +−  =  ∆ + ∆ ρ +  
∑

 

    

(4.2.7)

 

 

( )
( )

( )
( )

r rj j1,p 1,ps m,n ha m,n
p,q p,q

r 0j ja 1,q a 1,q

a ,1 a ,1h ( 1)
A G A x G x

r!{ (a,s),h}, b ,1 { (a,s r),h}, b ,1

∞
−

=
+ +

   
−   =   ∆ ∆ +      

∑

  

(4.2.8)

 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

j a 1,ps 1 m,n ha
p,q

j 1,q

r j a 1,pm,n
p,q

r 0 j 1,q

{ a,s ,h}, a ,1 ,{ ,s ,h}
A G A x

b ,1 ,{ ,s ,h}

{ a,s r ,h}, a ,1 ,{ ,s r ,h}h
G x

r! b ,1 ,{ ,s r ,h}

+ −ρ− −

−ρ

∞
+ −ρ

=
−ρ

 ∆ ∆ ρ
 
 ∆ ρ  

 ∆ − ∆ ρ −
 =  ∆ ρ −  

∑

 

    

(4.2.9)

 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

rj j2a 1,p 2a 1,ps 1 m,n ha m,n
p,q p,q

r 0j ja 1,q a 1,q

{ 2a,2s ,h}, a ,1 { 2a,2s 2r ,h}, a ,1h
A G A x G x

r!{ a,s 1/ 2 ,h}, b ,1 { a,s r 1/ 2 ,h}, b ,1

∞
+ +− −

=
+ +

   ∆ ∆ −
   =   ∆ + ∆ − +      

∑

 

(4.2.10)
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( ) ( ) ( )

( ) ( )
r j 2a 1,p 2am,n

p,q
r 0 j 4a 1,q a

{ 2a,2s 2r 1/ 2 ,h}, a ,1 ,{ 2a,2s 2r 1 ,h}h
G x

r! { 4a,4s 4r 1 ,h}, b ,1 ,{ a,s

∞
+ −

=
+ −

∆ + + ∆ + +
=

∆ + + ∆
∑ ( )r 1 ,h}

 
 
 + +  

Notes

( ) ( ) ( )

( ) ( ) ( )
j 4a 1,p as 1 m,n ha

p,q

j 2a 1,q 2a

{ 4a,4s 1 ,h}, a ,1 ,{ a,s ,h}
A G A x

{ 2a,2s 1/ 2 ,h}, b ,1 ,{ 2a,2s ,h}

+ −− −

+ −

 ∆ + ∆
 
 ∆ + ∆  



( ) ( ) ( )

( ) ( ) ( )

r j 4a 1,p am,n
p,q

r 0 j 2a 1,q 2a

{ 4a,4s 4r 1 ,h}, a ,1 ,{ a,s r ,h}h
G x

r! { 2a,2s 2r 1/ 2 ,h}, b ,1 ,{ 2a,2s 2r ,h

∞
+ −

=
+ −

∆ − + ∆ −
=

∆ − + ∆ −
∑

}

 
 
 
  

 

  

(4.2.11)

 

 

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

j 3a 1,ps 1 m,n ha
p,q

j a 1,q a

r j 3a 1,pm,n
p,q

r 0 j a 1,q a

{ 3a,3s ,h}, a ,1
A G A x

{ a,s 2 / 3 ,h}, b ,1 ,{ a,s 1/ 3 ,h}

{ 3a,3s 3r ,h}, a ,1h
G x

r! { a,s r 2 / 3 ,h}, b ,1 ,{ a,s r 1/ 3 ,h}

+− −

+ −

∞
+

=
+ −

 ∆
 
 ∆ + ∆ +  

 ∆ −
 =  ∆ − + ∆ − +  

∑

 

   

(4.2.12)

 

 

( ) ( )
( )

( ) ( )
( )

r rj ja 1,p a 1,ps 1 m,n ha m,n
p,q p,q

r 0j j1,q 1,q

{ a,s ,h}, a ,1 { a,s r ,h}, a ,1h ( 1)
A G A x G x

r!b ,1 b ,1

∞
+ +− −

=

   ∆ ∆ −−   =   
      

∑

  

(4.2.13)

 

 

( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )

j a 1,p as 1 m,n 2ha 2
p,q

j 1,q

r /2r
j a 1,p am,n 2

p,q
r 0 j 1,q

{ a,s / 2 ,h}, a ,1 ,{ a,(s 1) / 2 ,h}
A G A x

b ,1

{ a,(s r) / 2 ,h}, a ,1 ,{ a,(s r 1) / 2 ,h}(2h) 1
G x

r! b ,1
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∞
+ −

=

 ∆ ∆ +
 
 
  

 ∆ − ∆ − +−  =  
  

∑
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∞
− −− −

=
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   =   
      

∑

   

(4.2.15)
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G x
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ρ+

∞
ρ+ −

=
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 ∆ ρ ∆
 
 ∆ ρ  

 ∆ ρ − ∆ −−  =  ∆ ρ −  
∑

 

   

(4.2.16)

 

 

 

(4.3) If we put 1 1 j j j jn p,m 1,q q 1,b 0, 1,a 1 a ,b 1 b= = = + = β = = − = − , then the H -function 
reduces to generalized wright hypergeometric function  [12] i.e. 

( )
( ) ( )

( )
( )

j j j j j j1,p 1,p 1,p
p,q 1 p q

j j j j j j1,q 1,q

1 a , ;A a , ;A
H z ; z

0,1 , 1 b , ;B b , ;B
+

   − α α
   = ψ −   − β β    

, the above results (3.1) to (3.16) reduces to 

the following form:
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( ) ( )

( ) ( ) ( )

r j j j 1,p
p q

r 0 j j j a 1,q

a , ;A ,{ ,s r ,h}h
; x

r! { a,s r ,h}, b , ;B ,{ ,s r ,h}

∞
−ρ

=
+ −ρ

 α ∆ ρ +
 = ψ −
 ∆ + β ∆ ρ +
 

∑

    

(4.3.1)
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( ) ( )

( ) ( )
( ) ( )

j j j a 1,ps ha
p q

j j j 2a 1,q

r j j j a 1,p
p q

r 0 j j j 2a 1,q

{ a,s 1/ 2 ,h}, a , ;A
A ; A x

{ 2a,2s ,h}, b , ;B

{ a,s r 1/ 2 ,h}, a , ;Ah
; x

r! { 2a,2s 2r ,h}, b , ;B

+−

+

∞
+

=
+

 ∆ + α
 ψ −
 ∆ β
 

 ∆ + + α
 = ψ −
 ∆ + β
 

∑

      

(4.3.2)
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j j j a 1,p as ha
p q

j j j 3a 1,q

r j j j a 1,p a
p q

r 0 j j j 3a 1,q

{ a,s 2 / 3 ,h}, a , ;A ,{ a,s 1/ 3 ,h}
A ; A x

{ 3a,3s ,h}, b , ;B

{ a,s r 2 / 3 ,h}, a , ;A ,{ a,s r 1/ 3 ,h}h
; x

r! { 3a,3s 3r ,h}, b , ;B

+ −−

+

∞
+ −

=
+

 ∆ + α ∆ +
 ψ −
 ∆ β
 

 ∆ + + α ∆ + +
 = ψ −
 ∆ + β
 

∑

 

  

(4.3.3)
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p q

j j j 4a 1,q a

r j j j 2a 1,p 2a
p q

r 0 j j j 4a 1,q

{ 2a,2s 1/ 2 ,h}, a , ;A ,{ 2a,2s 1 ,h}
A ; A x

{ 4a,4s 1 ,h}, b , ;B ,{ a,s 1 ,h}

{ 2a,2s 2r 1/ 2 ,h}, a , ;A ,{ 2a,2s 2r 1 ,h}h
r! { 4a,4s 4r 1 ,h}, b , ;B

+ −−

+ −

∞
+ −

=
+ −

 ∆ + α ∆ +
 ψ −
 ∆ + β ∆ +
 

∆ + + α ∆ + +
= ψ

∆ + + β
∑ ( )

a

; x
,{ a,s r 1 ,h}

 
 −
 ∆ + +
 
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p q p q

r 0j j j j j j1,q a 1,q a

a , ;A a , ;Ah
A ; A x ; x

r!b , ;B ,{ (a,s),h} b , ;B ,{ (a,s r),h}

∞
−

=
− −

   α α
   ψ − = ψ −   β ∆ β ∆ +    

∑
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p q

j j j a 1,q a

r /2r
j j j 1,p 2

p q
r 0 j j j a 1,q a

a , ;A
A ; A x

{ (a,s / 2),h}, b , ;B ,{ (a,(s 1) / 2),h}

a , ;A(2h) 1
; x

r! { (a,(s r) / 2),h}, b , ;B ,{ (a,(s r 1) / 2),h}

−

+ −

∞

=
+ −

 α
 ψ −
 ∆ β ∆ +
 
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p q

j j j a 1,q p

r r j j j 1,p
p q

r 0 j j j a 1,q
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(4.3.16)

 

 

In all the above results, it is assumed that all the parameters satisfy the conditions 

necessary for the existence of the

 

H -function involved.
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Abstract

 

-

 

The aim of the present paper is to discuss  a number of interesting classes of Eulerian integrals and the 
theorem based upon the fractional calculus associated with general class of polynomials given by Srivastava [4, P.1, 
Eq.(1)], generalized polynomials

 

given by Srivastava [8, P.185, Eq.(7)] and the multivariable H-function given by 
Srivastava and Panda [13, P.271, eq.(4.1)]. The results derived here are of a very general nature and hence encompass 
several cases of interest hitherto scattered in the literature.

 

I.

 

INTRODUCTION

 

In recent years, several authors namely Saigo and Saxena [5], Srivastava and 
Hussain [12], Saxena and Saigo [7], Saxena and Nishimoto [6], Srivastava and Owa [16] 
have established certain fractional integral formulae deduced from Eulerian integrals.  
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ν). Srivastava [9] introduced the general class of polynomials (see also Srivastava 

and Singh [15])
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arbitrary constants, real or complex.
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are arbitrary positive integers and the coefficients A(N1k1  
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are arbitrary constants, real or complex.
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The multiple integral in (1.6) converges absolutely, if 
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are given by Srivastava, Gupta and Goyal [11, p.251].
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The formula (1.13) can be developed by making use of (1.2), (1.3) and (1.12).

 

The known result [4, p.301, entry (2.2.6.1)] and [12, p.81, Eq.(3.6)] are deducible for h=1 
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Proof.

 

To establish (2.1) express the general class of polynomials, the generalized 
polynomials, the generalized polynomials with the help of equations (1.4) and (1.5) and the 
multivariable H-function in terms of Mellin-Barnes type contour integral by virtue of (1.7) 
and interchanging the order of summation and integration (which is permissible under the 
conditions of validity stated above). Appealing to the results in (1.3), (1.12) and (1.13), we 
arrive at the right hand side of (2.1).
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valid under the same conditions as required for integral (2.1) and where I1, I2, K1, K2, 

K3, K4, Z1

 

and Z2

 

are the same as in integral (4.1) after eliminating ,σii'

 

anda (i' = 1,…,k; i 

= 1,…,r).

 

2.

 

Taking Mi

 

= 0 (i = 2,…,s) and Ni = 0 and N= 0, the results given in (2.1) and (4.1) 
reduce to the known results recently obtained by Saigo and Saxena [5].

 

3.

 

If we take Mi

 

= 0 (i = 2,…,s), Ni

 

= 0 = N, σi

 

= 0 = ρr

 

(i = 1,…,r) and h = 2 in (2.1) 
and (4.1), then we arrive at the result given by Srivastava and Hussain [12] obtained 
in a different form.

 

4.

 

For Ni

 

= 0 (i = 2,…,s) and N = 0, the results in (2.1) and (4.1) can be reduced to the 
results recently obtained by Chaurasia and Godika [1].

 

5.

 

For N = 0, the results in (2.1) and (4.1) reduce to known results given by Chaurasia 
and Singhal [2].
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-

 

In the present paper we first establish three new theorems, which involves I-function and general class of 
polynomials. Next, we obtain
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By giving 
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 I.
 

INTRODUCTION
 

The
 
I-function, introduced in 1982, is a byproduct of V.P.

 
Saxena’s work on higher 

transcendental function.
 
Now I-function

 
stands on fairly firm footing through the research 

contributions of various authors [1, 10, 11, 12]:
 I-function is defined and represented in the following manner [11]:
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and i iM,N,P,Q
 
are integers satisfying  i i1 N P,1 M Q (i 1,...,R)≤ ≤ ≤ ≤ =

 
and R

 
is finite. j j ji ji, , ,α β α β

 

are 

positive integers and j j ji jia ,b ,a ,b
 
are complex numbers. I-function, which is a generalized 

form of the well known Fox’s H-function [5, p.10, Eqn. (2.1.1)]. In the sequel the I-
function is studied under the following conditions of existence:
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(1.6)
 

   

The general class of polynomials 1 r

1 r

m ,...,m
n ,...,nS [x]

 

will be defined and represented as follow 

[2, p.185, eqn. (7)]:
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where 1 r 1 rn ,...,n 0,1,2,...;m ,...m= are arbitrary positive integers, the coefficients 

i in ,l i iA (n ,l 0)≥

 

are arbitrary constants, real or complex. 1 r

1 r

m ,...,m
n ,...,nS [x]

 

yield a number of known 

polynomials as its special cases. These include, among other, the Jacobi polynomials, the 
Bessel Polynomials, the Lagurre Polynomials, the Brafman Polynomials and

 

several 
others [6, p. 158-161].

 

The following formulas [8, p.77, Ens. (3.1), (3.2) & (3.3)] will be required in our 
investigation:

 

p 12

p 1/2
0

b (p 1/ 2)
ax c dx

x (p 1)2a(4ab c)

− −
∞

+

  π Γ + + + =   Γ ++   
∫ , ( )a 0;b 0;c 4ab 0;Re(p) 1/ 2 0> ≥ + > + >

   (1.8)   
 

  

p 12

2 p 1/2
0

1 b (p 1/ 2)
ax c dx

x (p 1)x 2b(4ab c)

− −
∞

+

  π Γ + + + =   Γ ++   
∫ , ( )a 0;b 0;c 4ab 0;Re(p) 1/ 2 0≥ > + > + >

  

(1.9)

 

  
 

 
p 12

2 p 1/2
0

b b (p 1/ 2)
a ax c dx

x (p 1)x (4ab c)

− −
∞

+

  π Γ +   + + + =     Γ ++     
∫ , ( )a 0;b 0;c 4ab 0;Re(p) 1/ 2 0> > + > + >

 

(1.10)

 

II.

 

MAIN THEOREMS

 

 

Let

 

X

 

stands for

 

2
b

ax c
x

 + + 
 

 

First Theorem:

 

If

 

( ) ( ) r
2 1 r

r 0

1 y F 2 ,2 ;2 ;y a y
∞

α+β−γ

=

− α β γ = ∑

 

                      (2.1)

 

then

   

Where
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1 k i

1 k i i

k
m ,...,m1 M,N

2 1 2 1 n ,...,n i P ,Q ;R
i 10

1 1
X F , ; ;X F , ; ;X S y X I zX dx

2 2

∞
−µ−λ− −δ

=

      α β γ + γ − α γ − β γ +            
∏∫



       

( ) ( )1 1 k k
i i i

i i i i
1 k

[n /m ] [n /m ] k i ml rl r
n ,l i1/2 r l

l 0 l 0 i 1 i

n a1
... A (y )

1l !2a(4ab c) (4ab c)
2

λ+ − +µ
= = =

− γπ
=

+ + γ +
∑ ∑ ∏

( ) ( ) ( )
( ) ( ) ( )

i

i i

i

r 0

r

k

i i j j ji jii 1 1,n n 1,pM,N 1
P 1,Q 1;R k

j j ji ji i ii 11,m m 1,q

1/ 2 r l , ; a , ; a ,z
I

(4ab c) b , ; b , ; r l ,

∞

=

= ++
+ + δ

=+

×
 
 
 

 − λ + − µ δ α α 
 + β β −λ + − µ δ  

∑

∑

∑
      

(2.2)

 

           
 
The above result will be converge under the following conditions:

 (I)

 

a 0;b 0;c 4ab 0> ≥ + > and i 0, 0µ > δ ≥ .

 
(II)  j

1 j m
j

b 1
Re min 0

2≤ ≤

  
λ + δ + >   β   

 

(III) i

1
|argz|

2
< Ωπ , where iΩ is given by equation (1.5)

 

(IV) ( )1 1
2 2

− < α −β − γ <

 

 Second Theorem:

 
If

 
( ) ( ) r

2 1 r
r 0

1 y F 2 ,2 ;2 ;y a y
∞

α+β−γ

=

− α β γ = ∑ 
                                             (2.3)

 

       then
 

 
( ) ( )

1 k i

1 k i i

1 1 k k
i i i

i i i i
1 k

k
m ,...,m1 M,N

2 1 2 1 n ,...,n i P ,Q ;R2
i 10

[n /m ] [n /m ] k i ml rl r
n ,l i1/2 r l

l 0 l 0 i 1 i

1 1 1
X F , ; ;X F , ; ;X S y X I zX dx

2 2x

n a1
... A (y )

l !2b(4ab c) (4ab c)

∞
−µ−λ− −δ

=

λ+ − +µ
= = =

      α β γ + γ − α γ − β γ +            

− γπ
=

+ + γ

∏∫

∑ ∑ ∏

( ) ( ) ( )
( ) ( ) ( )

i

i i

i

r 0

r

k

i i j j ji jii 1 1,n n 1,pM,N 1
P 1,Q 1;R k

j j ji ji i ii 11,m m 1,q

1
2

1/ 2 r l , ; a , ; a ,z
I

(4ab c) b , ; b , ; r l ,

∞

=

= ++
+ + δ

=+

×
 + 
 

 − λ + − µ δ α α 
 + β β −λ + − µ δ  

∑

∑

∑

 

           

(2.4)

 

The above result will be converge under the following conditions:
 

 

(I) a 0;b 0;c 4ab 0≥ > + > and i 0, 0µ > δ ≥ 

(II) j

1 j m
j

b 1
Re min 0

2≤ ≤

  
λ + δ + >   β   

 

(III) i

1
|argz|

2
< Ωπ , where iΩ is given by equation (1.5) 

(IV) ( )1 1
2 2

− < α −β − γ <  
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Third Theorem:

 If

 

( ) ( ) r
2 1 r

r 0

1 y F 2 ,2 ;2 ;y a y
∞

α+β−γ

=

− α β γ = ∑
 

                                                 (2.5)

        
then

 

 

( )

1 k i

1 k i i

1 1 k k
i i i

i i

1 k

k
m ,...,m1 M,N

2 1 2 1 n ,...,n i P ,Q ;R2
i 10

[n /m ] [n /m ] k i ml l
n ,l i1/2 r

l 0 l 0 i 1 i

b 1 1
a X F , ; ;X F , ; ;X S y X I zX dx

2 2x

n 1
... A (y )

l !2a(4ab c) (4ab c)

∞
−µ−λ− −δ

=

λ+ − +µ
= = =

        + α β γ + γ − α γ − β γ +                

−π
=

+ +

∏∫

∑ ∑ ∏
( )

( ) ( ) ( )
( ) ( ) ( )

i i

i

i i

i

rr
l

r 0

r

k

i i j j ji jii 1 1,n n 1,pM,N 1
P 1,Q 1;R k

j j ji ji i ii 11,m m 1,q

a

1
2

1/ 2 r l , ; a , ; a ,z
I

(4ab c) b , ; b , ; r l ,

∞

=

= ++
+ + δ

=+

γ
×

 γ + 
 

 − λ + − µ δ α α 
 + β β −λ + − µ δ  

∑

∑

∑
    

(2.6)

 

           The above result will be converge under the following conditions
 

(I) a 0;b 0;c 4ab 0> > + > and i 0, 0µ > δ ≥  

(II) j

1 j m
j

b 1
Re min 0

2≤ ≤

  
λ + δ + >   β   

  

(III)  i

1
|argz|

2
< Ωπ , where iΩ is given by equation (1.5)  

(IV) ( )1 1
2 2

− < α −β − γ <  

 
Proof:  In our investigation following result [7, p. 75] is also required:  

 
( ) rr

2 1 2 1 r
r 0

r

1 1
F , ; ;X F , ; ;X a X

12 2
2

∞

=

γ   α β γ + γ − α γ − β γ + =         γ + 
 

∑     (2.7)  

 
Where ra is given by (2.1).  

To prove the first theorem, using the result given by equation (2.7)  and express I-
function  occurring on the L.H.S. of equation (2.2) in terms of contour integral given by 

equation (1.1) and the general class of polynomials  1 r

1 r

m ,...,m
n ,...,nS [x]  in series form with the help 

of equation (1.7)  and then interchanging the order of integration and summation we get:
 

 

     
( ) ( ) ( )

k
i ii 11 1 k k

i i i

i i

1 k

r l 1[n /m ] [n /m ] k i ml rl r
n ,l i

r 0 l 0 l 0 i 1 i L 0

r

n a 1 b
... A (y ) z ax c dx d

1l ! 2 i x
2

=
−λ+ − µ −δξ−∞∞

ξ

= = = =

 ∑− γ    φ ξ + + ξ   π    γ +   
 

∑ ∑ ∑ ∏ ∫ ∫   (2.8)

            
    Further using the formulae (1.8) the above integral becomes
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( ) ( )1 1 k k
i i i

i i

1 k

[n /m ] [n /m ] k i ml rl r
n ,l i

r 0 l 0 l 0 i 1 i

r

n a
... A (y )

1l !
2

∞

= = = =

− γ
×

 γ + 
 

∑ ∑ ∑ ∏



( )
( )
( )k

i ii 1

k

i ii 1

kr l 1/2
L i ii 1

r l 1/ 21
z d

2 i r l 12a(4ab c) =

=ξ

λ+ + µ +δξ+
=

Γ λ − + µ + δξ +π
φ ξ ξ

π ∑ Γ λ − + µ + δξ ++

∑
∫

∑
  

         

(2.9)

 

 
 

Then interpreting with the help of (1.1) and (2.9) provides first integral.

 

Proceeding on the same parallel lines, theorems second and third given by 
equation (2.4) and (2.6) can be obtained by using the results (1.9) and (1.10) respectively.

 

III.

 

SPECIAL CASES

 

(3.1)  If we put R 1,=

 

I-function reduces to Fox’s H-function [5, p. 10, Eqn. (2.1.1)], 

then the equation (2.2), (2.4) and (2.6) takes the following form:

 ( ) ( )

1 k i

1 k

1 1 k k
i i i

i i i i
1 k

k
m ,...,m1 m,n

2 1 2 1 n ,...,n i p,q
i 10

[n /m ] [n /m ] k i ml rl r
n ,l i1/2 r l

l 0 l 0 i 1 i

1 1
X F , ; ;X F , ; ;X S y X H zX dx

2 2

n a1
... A (y )

1l !2a(4ab c) (4ab c)
2

∞
−µ−λ− −δ

=

λ+ − +µ
= = =

      α β γ + γ − α γ − β γ +            

− γπ
=

+ +  γ +


∏∫

∑ ∑ ∏

( ) ( )
( ) ( )

r 0

r

k

i i j ji 1 1,pm,n 1
p 1,q 1 k

j j i ii 11,q

1/ 2 r l , ; a ,z
H

(4ab c) b , ; r l ,

∞

=

=+
+ + δ

=

×




 − λ + − µ δ α 
 + β −λ + − µ δ  

∑

∑
∑

(3.1.1)

   

 ( ) ( )

1 k i

1 k

1 1 k k
i i i

i i i i
1 k

k
m ,...,m1 m,n

2 1 2 1 n ,...,n i p,q2
i 10

[n /m ] [n /m ] k i ml rl r
n ,l i1/2 r l

l 0 l 0 i 1 i

1 1 1
X F , ; ;X F , ; ;X S y X H zX dx

2 2x

n a1
... A (y )

1l !2b(4ab c) (4ab c)
2

∞
−µ−λ− −δ

=

λ+ − +µ
= = =

      α β γ + γ − α γ − β γ +            

− γπ
=

+ +  γ +

∏∫

∑ ∑ ∏

( ) ( )
( ) ( )

r 0

r

k

i i j ji 1 1,pm,n 1
p 1,q 1 k

j j i ii 11,q

1/ 2 r l , ; a ,z
H

(4ab c) b , ; r l ,

∞

=

=+
+ + δ

=

×


 
 

 − λ + − µ δ α 
 + β −λ + − µ δ  

∑

∑
∑

            

(3.1.2)
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( ) ( )

1 k i

1 k

1 1 k k
i i i

i i i i
1 k

k
m ,...,m1 m,n

2 1 2 1 n ,...,n i p,q2
i 10

[n /m ] [n /m ] k i ml l
n ,l i1/2 r l

l 0 l 0 i 1 i

b 1 1
a X F , ; ;X F , ; ;X S y X H zX dx

2 2x

n 1
... A (y )

l !2a(4ab c) (4ab c)

∞
−µ−λ− −δ

=

λ+ − +µ
= = =

        + α β γ + γ − α γ − β γ +                

− γπ
=

+ +

∏∫

∑ ∑ ∏ rr

r 0

r

a

1
2

∞

=

×
 γ + 
 

∑

(3.1.3)

( ) ( )
( ) ( )

k

i i j ji 1 1,pm,n 1
p 1,q 1 k

j j i ii 11,q

1/ 2 r l , ; a ,z
H

(4ab c) b , ; r l ,

=+
+ + δ

=

 − λ + − µ δ α 
 + β −λ + − µ δ  

∑
∑



  

            
    

 

The Conditions of validity of (3.1.1), (3.1.2) and (3.1.3) easily follow from those 
given

 

in (2.2), (2.4) and (2.6).

 

(3.2)

 

By applying the our results given in (2.2), (2.4) and (2.6)

 

to the case of 

Hermite polynomials [2, 3] by setting 2 n/2
n n

1
S (x) x H

2 x

 
→  

 

 

in which 

i i

l
1 k 1 k i i n ,lm ,...,m 2;n ,...,n n;k 1;v v,y y,A ( 1)= = = = = = − , we have the following interesting results:

 

 

( )

( ) ( ) ( )

i i

i i

n/21 M,N
2 1 2 1 n P ,Q ;R

0

l[n/2]
rl2l r

1/2 r l
r 0 l 0

r

M,N 1
P 1,Q 1;R

1 1 1 X
X F , ; ;X F , ; ;X yX H I zX dx

2 2 2 y

n ay
( 1)

1l!2a(4ab c) (4ab c)
2

1/ 2 r lz
I

(4ab c)

∞ µ
−λ− −µ −δ

∞

λ+ − +µ
= =

+
+ + δ

      α β γ + γ − α γ − β γ +             

− γπ
= − ×

+ +  γ + 
 

− λ + − µ

+

∫

∑∑

( ) ( ) ( )
( ) ( ) ( )

i

j j ji ji1,n n 1,pi

j j ji ji1,m m 1,q

, ; a , ; a ,

b , ; b , ; r l,

+

+

 δ α α
 
 β β −λ + − µ δ  

  

(3.2.1)

 

( )
i i

n/21 M,N
2 1 2 1 n P ,Q ;R2

0

1 1 1 1 X
X F , ; ;X F , ; ;X yX H I zX dx

2 2 2 yx

∞ µ
−λ− −µ −δ

      α β γ + γ − α γ − β γ +             
∫

 

( ) ( ) ( )l[n/2]
rl2l r

1/2 r l
r 0 l 0

r

n ay
( 1)

1l!2b(4ab c) (4ab c)
2

∞

λ+ − +µ
= =

− γπ
= − ×

+ +  γ + 
 

∑∑

 

 

( ) ( ) ( )
( ) ( ) ( )

i

i i

i

j j ji ji1,n n 1,pM,N 1
P 1,Q 1;R

j j ji ji1,m m 1,q

1/ 2 r l, ; a , , a ,z
I

(4ab c) b , ; b , ; r l,

++
+ + δ

+

 − λ + − µ δ α α
 
 + β β −λ + − µ δ  

  

(3.2.2)
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( )

( ) ( ) ( )

i i

i i

n/21 M,N
2 1 2 1 n P ,Q ;R2

0

l[n/2]
rl2l r

1/2 r l
r 0 l 0

r

M,N 1
P 1,Q 1;R

b 1 1 1 X
a X F , ; ;X F , ; ;X yX H I zX dx

2 2 2 yx

n ay
( 1)

1l!(4ab c) (4ab c)
2

1z
I

(4ab c)

∞ µ
−λ− −µ −δ

∞

λ+ − +µ
= =

+
+ + δ

        + α β γ + γ − α γ − β γ +                 

− γπ
= − ×

+ +  γ + 
 

+

∫

∑∑

( ) ( ) ( )
( ) ( ) ( )

i

i

j j ji ji1,n n 1,p

j j ji ji1,m m 1,q

/ 2 r l, ; a , ; a ,

b , ; b , ; r l,

+

+

 − λ + − µ δ α α
 
 β β −λ + − µ δ  

(3.2.3)

The Conditions of validity of (3.2.1), (3.2.2) and (3.2.3) easily follow from those 
given in (2.2), (2.4) and (2.6)

(3.3) By applying the our results given in (2.2), (2.4) and (2.6) to the case of 

Lagurre polynomials [2, 3] by setting ( )'2
n nS (x) L [x]α→ in which 

( )i i1 k 1 k i i n ,l

l

n ' 1
m ,...,m 1;n ,...,n n;k 1,v v,y y,A

n ' 1

+ α 
= = = = = =   α + 

, we have the following interesting 

results:



  

 
 

  
 

 

 

( )

( )
( )

( ) ( )

i i

i i

1 M,N
2 1 2 1 n P ,Q ;R

0

l[n/2]
r2l r

1/2 r l
r 0 l 0 l

r

M,N 1
P 1,Q 1;R

1 1
X F , ; ;X F , ; ;X L yX I zX dx

2 2

n ayn ' 1
1nl! ' 12a(4ab c) (4ab c)
2

1/ 2 rz
I

(4ab c)

∞
α−λ− −µ −δ

∞

λ+ − +µ
= =

+
+ + δ

       α β γ + γ − α γ − β γ +          

− γ+ α π
= ×  α ++ +    γ + 

 

− λ + − µ

+

∫

∑∑

( ) ( ) ( )
( ) ( ) ( )

i

i

j j ji ji1,n n 1,p

j j ji ji1,m m 1,q

l, ; a , ; a ,

b , ; b , ; r l,

+

+

 δ α α
 
 β β −λ + − µ δ  

  

(3.3.1)

 

( )

( )
( )

( ) ( )

i i

i i

1 M,N
2 1 2 1 n P ,Q ;R2

0

l[n/2]
r2l r

1/2 r l
r 0 l 0 l

r

M,N 1
P 1,Q 1;R

1 1 1
X F , ; ;X F , ; ;X L yX I zX dx

2 2x

n ayn ' 1
1nl! ' 12b(4ab c) (4ab c)
2

1/ 2z
I

(4ab c)

∞
α−λ− −µ −δ

∞

λ+ − +µ
= =

+
+ + δ

       α β γ + γ − α γ − β γ +          

− γ+ α π
= ×  α ++ +    γ + 

 

− λ +

+

∫

∑∑

( ) ( ) ( )
( ) ( ) ( )

i

i

j j ji ji1,n n 1,p

j j ji ji1,m m 1,q

r l, ; a , ; a ,

b , ; b , ; r l,

+

+

 − µ δ α α
 
 β β −λ + − µ δ  

   

(3.3.2)

 

( )

( )
( )

( ) ( )

i i

i i

1 M,N
2 1 2 1 n P ,Q ;R2

0

l[n/2]
r2l r

1/2 r l
r 0 l 0 l

r

M,N 1
P 1,Q 1;R

b 1 1
a X F , ; ;X F , ; ;X L yX I zX dx

2 2x

n ayn ' 1
1nl! ' 1(4ab c) (4ab c)
2

z
I

(4ab c)

∞
α−λ− −µ −δ

∞

λ+ − +µ
= =

+
+ + δ

         + α β γ + γ − α γ − β γ +              

− γ+ α π
= ×  α ++ +    γ + 

 

+

∫

∑∑

( ) ( ) ( )
( ) ( ) ( )

i

i

j j ji ji1,n n 1,p

j j ji ji1,m m 1,q

1/ 2 r l, ; a , ; a ,

b , ; b , ; r l,

+

+

 − λ + − µ δ α α
 
 β β −λ + − µ δ  

  

(3.3.3)
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The Conditions of validity of (3.3.1), (3.3.2) and (3.3.3) easily follow from those 
given in (2.2), (2.4) and (2.6)

(3.4) If we put j jR 1; 1= α = β = , then the I-function reduces to general type of G-

function [9] i.e. 
( ) ( )
( ) ( )

1

i i

1

j j11,n n 1,pM,N
P,Q ;1

j j11,m m 1,q

a ,1 ; a ,1
I z

b ,1, ; b ,1

+

+

 
 
 
  

( )
( )

j 1,p

j 1,q

a ,1
G z

b ,1

 
 =  
  

, the equation (2.2), (2.4) and (2.6) 

takes the following form:

( ) ( )

1 k i

1 k

1 1 k k
i i i

i i i i
1 k

k
m ,...,m1 m,n

2 1 2 1 n ,...,n i p,q
i 10

[n /m ] [n /m ] k i ml rl r
n ,l i1/2 r l

l 0 l 0 i 1 i

1 1
X F , ; ;X F , ; ;X S y X G zX dx

2 2

n a1
... A (y )

1l !2a(4ab c) (4ab c)
2

∞
−µ−λ− −δ

=

λ+ − +µ
= = =

      α β γ + γ − α γ − β γ +            

− γπ
=

+ +  γ +


∏∫

∑ ∑ ∏
r 0

r

∞

=

×




∑



 
 

 
 

( ) ( )
( ) ( )

k

i i ji 1 1,pm,n 1
p 1,q 1 k

j i ii 11,q

1/ 2 r l , ;1 , a ,1z
G

(4ab c) b ,1 , r l , ;1

=+
+ + δ

=

 − λ + − µ δ 
 + −λ + − µ δ  

∑
∑

   

(3.4.1)

 
 

( ) ( )

1 k i

1 k

1 1 k k
i i i

i i i i
1 k

k
m ,...,m1 m,n

2 1 2 1 n ,...,n i p,q2
i 10

[n /m ] [n /m ] k i ml rl r
n ,l i1/2 r l

l 0 l 0 i 1 i

1 1 1
X F , ; ;X F , ; ;X S y X G zX dx

2 2x

n a1
... A (y )

1l !2b(4ab c) (4ab c)
2

∞
−µ−λ− −δ

=

λ+ − +µ
= = =

      α β γ + γ − α γ − β γ +            

− γπ
=

+ +  γ +

∏∫

∑ ∑ ∏

( ) ( )
( ) ( )

r 0

r

k

i i ji 1 1,pm,n 1
p 1,q 1 k

j i ii 11,q

1/ 2 r l , ;1 , a ,1z
G

(4ab c) b ,1 , r l , ;1

∞

=

=+
+ + δ

=

×


 
 

 − λ + − µ δ 
 + −λ + − µ δ  

∑

∑
∑

           

(3.4.2)

 

 

 

1 k i

1 k

k
m ,...,m1 m,n

2 1 2 1 n ,...,n i p,q2
i 10

b 1 1
a X F , ; ;X F , ; ;X S y X G zX dx

2 2x

∞
−µ−λ− −δ

=

        + α β γ + γ − α γ − β γ +                
∏∫

 

( ) ( )1 1 k k
i i i

i i i i
1 k

[n /m ] [n /m ] k i ml rl r
n ,l i1/2 r l

r 0 l 0 l 0 i 1 i

r

n a1
... A (y )

1l !2a(4ab c) (4ab c)
2

∞

λ+ − +µ
= = = =

− γπ
= ×

+ +  γ + 
 

∑ ∑ ∑ ∏

 

( ) ( )
( ) ( )

k

i i ji 1 1,pm,n 1
p 1,q 1 k

j i ii 11,q

1/ 2 r l , ;1 , a ,1z
G

(4ab c) b ,1 , r l , ;1

=+
+ + δ

=

 − λ + − µ δ 
 + −λ + − µ δ  

∑
∑

      

(3.4.3)

 

 

The Conditions of validity of (3.4.1), (3.4.2) and (3.4.3) easily follow from those 
given in (2.2), (2.4) and (2.6)

 

(3.5)

 

If we put i i 1 1 j j ji j ji jR 1,M 1,N P P,Q Q 1,b 0, 1,a 1 a ,b 1 b ,= = = = = + = β = = − = − β = β , then the 

I-function reduces to generalized wright hypergeometric function [12, p.33, Eq. (2.3.8)] i.e. 
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( )
( ) ( )

( )
( )

j j j j1,p 1,p1,P
P,Q 1;1 p q

j j j j1,q 1,q

1 a , a ,
I z ; z

0,1 , 1 b , b ,
+

   − α α
   = ψ −   − β β    

, the equation (2.2), (2.4) and (2.6) takes the 

following form:

1 k i

1 k

k
m ,...,m1

2 1 2 1 n ,...,n i p q
i 10

1 1
X F , ; ;X F , ; ;X S y X zX dx

2 2

∞
−µ−λ− −δ

=

      α β γ + γ − α γ − β γ + ψ            
∏∫

( ) ( )1 1 k k
i i i

i i i i
1 k

[n /m ] [n /m ] k i ml rl r
n ,l i1/2 r l

r l 0 l 0 i 1 i

r

n a1
... A (y )

1l !2a(4ab c) (4ab c)
2

λ+ − +µ
= = =

− γπ
=

+ +  γ + 
 

∑ ∑ ∏

( ) ( )
( ) ( )

0

k

i i j ji 1 1,p

p 1 q 1 k

j j i ii 11,q

1/ 2 r l , ; a , z
;
(4ab c)b , ; r l ,

∞

=

=

+ + δ

=

×

 − λ + − µ δ α − ψ  +β −λ + − µ δ  

∑

∑
∑ (3.5.1)

Notes



 
 

 
  

 

( ) ( )

1 k i

1 k

1 1 k k
i i i

i i i i
1 k

k
m ,...,m1

2 1 2 1 n ,...,n i p q2
i 10

[n /m ] [n /m ] k i ml rl r
n ,l i1/2 r l

l 0 l 0 i 1 i

1 1 1
X F , ; ;X F , ; ;X S y X zX dx

2 2x

n a1
... A (y )

1l !2b(4ab c) (4ab c)
2

∞
−µ−λ− −δ

=

λ+ − +µ
= = =

      α β γ + γ − α γ − β γ + ψ            

− γπ
=

+ +  γ +
 

∏∫

∑ ∑ ∏

( ) ( )
( ) ( )

r 0

r

k

i i j ji 1 1,p

p 1 q 1 k

j j i ii 11,q

1/ 2 r l , ; a , z
;
(4ab c)b , ; r l ,

∞

=

=

+ + δ

=

×



 − λ + − µ δ α − ψ  +β −λ + − µ δ  

∑

∑
∑

            

(3.5.2)

 

 

( ) ( )

1 k i

1 k

1 1 k k
i i i

i i i i
1 k

k
m ,...,m1

2 1 2 1 n ,...,n i p q2
i 10

[n /m ] [n /m ] k i ml rl r
n ,l i1/2 r l

l 0 l 0 i 1 i

b 1 1
a X F , ; ;X F , ; ;X S y X zX dx

2 2x

n a1
... A (y )

l !2a(4ab c) (4ab c)

∞
−µ−λ− −δ

=

λ+ − +µ
= = =

        + α β γ + γ − α γ − β γ + ψ                

− γπ
=

+ + γ

∏∫

∑ ∑ ∏

( ) ( )
( ) ( )

r 0

r

k

i i j ji 1 1,p

p 1 q 1 k

j j i ii 11,q

1
2

1/ 2 r l , , a , z
;
(4ab c)b , , r l ,

∞

=

=

+ + δ

=

×
 + 
 

 − λ + − µ δ α − ψ  +β −λ + − µ δ  

∑

∑
∑

  

(3.5.3)

            
   

 

The Conditions of validity of (3.5.1), (3.5.2) and (3.5.3) easily follow from those 
given in (2.2), (2.4) and (2.6)

 

(3.6)

 

If we putα = γ , in the main

 

theorem, the value of ra

 

in (2.1) comes out to be 

equal to r

r!
β

and the result (2.2), (2.4) and (2.6)  gives the following interesting integral:
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( ) ( ) ( )

1 k i

1 k i i

1 1 k k
i i i

i i i i
1 k

i i

k
m ,...,m1 M,N

2 1 n ,...,n i P ,Q ;R
i 10

[n /m ] [n /m ] k i ml l r r
n ,l i1/2 r l

r 0 l 0 l 0 i 1 i

r

P 1,Q

1
X F , ; ;X S y X I zX dx

2

n 1
... A (y )

1l !2a(4ab c) (4ab c) r!
2

I

∞
−µ−λ− −δ

=

∞

λ+ − +µ
= = = =

+

    α β α +        

− α βπ
= ×

+ +  α + 
 

∏∫

∑ ∑ ∑ ∏

( ) ( ) ( )
( ) ( ) ( )

i

i

k

i i j j ji jii 1 1,n n 1,pM,N 1
1;R k

j j ji ji i ii 11,m m 1,q

1/ 2 r l , , a , , a ,z
(4ab c) b , , b , , r l ,

= ++
+ δ

=+

 − λ + − µ δ α α 
 + β β −λ + − µ δ  

∑

∑
(3.6.1)

( ) ( ) ( )

1 k i

1 k i i

1 1 k k
i i i

i i i i
1 k

i

k
m ,...,m1 M,N

2 1 n ,...,n i P ,Q ;R2
i 10

[n /m ] [n /m ] k i ml l r r
n ,l i1/2 r l

r 0 l 0 l 0 i 1 i

r

P 1

1 1
X F , ; ;X S y X I zX dx

2X

n 1
... A (y )

1l !2b(4ab c) (4ab c) r!
2

I

∞
−µ−λ− −δ

=

∞

λ+ − +µ
= = = =

+

    α β α +        

− α βπ
= ×

+ +  α + 
 

∏∫

∑ ∑ ∑ ∏

( ) ( ) ( )
( ) ( ) ( )

i

i

i

k

i i j j ji jii 1 1,n n 1,pM,N 1
,Q 1;R k

j j ji ji i ii 11,m m 1,q

1/ 2 r l , , a , , a ,z
(4ab c) b , , b , , r l ,

= ++
+ δ

=+

 − λ + − µ δ α α 
 + β β −λ + − µ δ  

∑

∑ (3.6.2)



   

 

   

 
 

( ) ( ) ( )

1 k i

1 k i i

1 1 k k
i i i

i i i i
1 k

k
m ,...,m1 M,N

2 1 n ,...,n i P ,Q ;R2
i 10

[n /m ] [n /m ] k i ml l r r
n ,l i1/2 r l

r 0 l 0 l 0 i 1 i

r

b 1
a X F , ; ;X S y X I zX dx

2X

n 1
... A (y )

1l !(4ab c) (4ab c) r!
2

∞
−µ−λ− −δ

=

∞

λ+ − +µ
= = = =

      + α β α +            

− α βπ
=

+ +  α + 
 

∏∫

∑ ∑ ∑ ∏

( ) ( ) ( )
( ) ( ) ( )

i

i i

i

k

i i j j ji jii 1 1,n n 1,pM,N 1
P 1,Q 1;R k

j j ji ji i ii 11,m m 1,q

1/ 2 r l , , a , , a ,z
I

(4ab c) b , , b , , r l ,

= ++
+ + δ

=+

×

 − λ + − µ δ α α 
 + β β −λ + − µ δ  

∑

∑

   

(3.6.3)

 
 

The Conditions of validity of (3.6.1), (3.6.2) and (3.6.3) easily follow from those 
given in (2.2), (2.4) and (2.6).

 

(3.7)

 

If we put
1
2

β = α +

 

and fα = −

 

( f is non-negative integer) in (3.6.1), (3.6.2) and 

(3.6.3), we have:
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( )

( ) ( )

1 k i

1 k i i

1 1 k k
i i i

i i i i
1 k

i i

k
f m ,...,m1 M,N

n ,...,n i P ,Q ;R
i 10

[n /m ] [n /m ] kf i ml l r
n ,l i1/2 r l

r 0 l 0 l 0 i 1 i

M,N 1
P 1,Q 1;R

X 1 X S y X I zX dx

n f1
... A (y )

l ! r!2a(4ab c) (4ab c)

1/ 2 rz
I

(4ab c)

∞
−µ−λ− −δ

=

λ+ − +µ
= = = =

+
+ + δ

   −     

− −π
= ×

+ +

− λ + − µ

+

∏∫

∑ ∑ ∑ ∏

( ) ( ) ( )
( ) ( ) ( )

i

i

k

i i j j ji jii 1 1,n n 1,p

k

j j ji ji i ii 11,m m 1,q

l , , a , , a ,

b , , b , , r l ,

= +

=+

 δ α α 
 

β β −λ + − µ δ  

∑

∑ (3.7.1)
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The Conditions of validity of (3.7.1), (3.7.2) and (3.7.3) easily follow from those 
given in (2.2), (2.4) and (2.6).
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the search? Will I be able to find all information in this field area? If the answer of these types of questions will be "Yes" then you can 

choose that topic. In most of the cases, you may have to conduct the surveys and have to visit several places because this field is related 

to Computer Science and Information Technology. Also, you may have to do a lot of work to find all rise and falls regarding the various 

data of that subject. Sometimes, detailed information plays a vital role, instead of short information. 

 

 

2. Evaluators are human: First thing to remember that evaluators are also human being. They are not only meant for rejecting a paper. 

They are here to evaluate your paper. So, present your Best. 

3. Think Like Evaluators: If you are in a confusion or getting demotivated that your paper will be accepted by evaluators or not, then 

think and try to evaluate your paper like an Evaluator. Try to understand that what an evaluator wants in your research paper and 

automatically you will have your answer. 

4. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper 

logical. But remember that all points of your outline must be related to the topic you have chosen.  

5. Ask your Guides: If you are having any difficulty in your research, then do not hesitate to share your difficulty to your guide (if you 

have any). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work then ask the 

supervisor to help you with the alternative. He might also provide you the list of essential readings. 

6. Use of computer is recommended: As you are doing research in the field of Computer Science, then this point is quite obvious. 

 

7. Use right software: Always use good quality software packages. If you are not capable to judge good software then you can lose 

quality of your paper unknowingly. There are various software programs available to help you, which you can get through Internet. 

 

8. Use the Internet for help: An excellent start for your paper can be by using the Google. It is an excellent search engine, where you can 

have your doubts resolved. You may also read some answers for the frequent question how to write my research paper or find model 

research paper. From the internet library you can download books. If you have all required books make important reading selecting and 

analyzing the specified information. Then put together research paper sketch out. 

9. Use and get big pictures: Always use encyclopedias, Wikipedia to get pictures so that you can go into the depth. 

 

10. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right! It is a good habit, which helps to 

not to lose your continuity. You should always use bookmarks while searching on Internet also, which will make your search easier. 

 

11. Revise what you wrote: When you write anything, always read it, summarize it and then finalize it. 

12. Make all efforts: Make all efforts to mention what you are going to write in your paper. That means always have a good start. Try to 

mention everything in introduction, that what is the need of a particular research paper. Polish your work by good skill of writing and 

always give an evaluator, what he wants. 

13. Have backups: When you are going to do any important thing like making research paper, you should always have backup copies of it 

either in your computer or in paper. This will help you to not to lose any of your important. 

14. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. Using several 

and unnecessary diagrams will degrade the quality of your paper by creating "hotchpotch." So always, try to make and include those 

diagrams, which are made by your own to improve readability and understandability of your paper. 

15. Use of direct quotes: When you do research relevant to literature, history or current affairs then use of quotes become essential but 

if study is relevant to science then use of quotes is not preferable.  
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16. Use proper verb tense: Use proper verb tenses in your paper. Use past tense, to present those events that happened. Use present 

tense to indicate events that are going on. Use future tense to indicate future happening events. Use of improper and wrong tenses will 

confuse the evaluator. Avoid the sentences that are incomplete. 

17. Never use online paper: If you are getting any paper on Internet, then never use it as your research paper because it might be 

possible that evaluator has already seen it or maybe it is outdated version.  

18.
 
Pick a good study spot: To do your research studies always try to pick a spot, which is quiet. Every spot is not for studies. Spot that 

suits you choose it and proceed further. 

19. Know what you know: Always try to know, what you know by making objectives. Else, you will be confused and cannot achieve your 

target. 

 20. Use good quality grammar: Always use a good quality grammar and use words that will throw positive impact on evaluator. Use of 

good quality grammar does not mean to use tough words, that for each word the evaluator has to go through dictionary. Do not start 

sentence with a conjunction. Do not fragment sentences. Eliminate one-word sentences. Ignore passive voice. Do not ever use a big 

word when a diminutive one would suffice. Verbs have to be in agreement with their subjects. Prepositions are not expressions to finish 

sentences with. It is incorrect to ever divide an infinitive. Avoid clichés like the disease. Also, always shun irritating alliteration. Use 

language that is simple and straight forward. put together a neat summary. 

21. Arrangement of information: Each section of the main body should start with an opening sentence and there should be a 

changeover at the end of the section. Give only valid and powerful arguments to your topic. You may also maintain your arguments with 

records. 

 22. Never start in last minute: Always start at right time and give enough time to research work. Leaving everything to the last minute 

will degrade your paper and spoil your work. 

23. Multitasking in research is not good: Doing several things at the same time proves bad habit in case of research activity. Research is 

an area, where everything has a particular time slot. Divide your research work in parts and do particular part in particular time slot. 

 24. Never copy others' work: Never copy others' work and give it your name because if evaluator has seen it anywhere you will be in 

trouble. 

 25. Take proper rest and food: No matter how many hours you spend for your research activity, if you are not taking care of your health 

then all your efforts will be in vain. For a quality research, study is must, and this can be done by taking proper rest and food.  

 26. Go for seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources. 

27. Refresh your mind after intervals: Try to give rest to your mind by listening to soft music or by sleeping in intervals. This will also 

improve your memory. 

28. Make colleagues: Always try to make colleagues. No matter how sharper or intelligent you are, if you make colleagues you can have 

several ideas, which will be helpful for your research. 

29.

 

Think technically: Always think technically. If anything happens, then search its reasons, its benefits, and demerits. 

 30. Think and then print: When you will go to print your paper, notice that tables are not be split, headings are not detached from their 

descriptions, and page sequence is maintained.  

31. Adding unnecessary information: Do not add unnecessary information, like, I have used MS Excel to draw graph. Do not add 

irrelevant and inappropriate material. These all will create superfluous. Foreign terminology and phrases are not apropos. One should 

NEVER take a broad view. Analogy in script is like feathers on a snake. Not at all use a large word when a very small one would be 
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sufficient. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grunt readers. 

Amplification is a billion times of inferior quality than sarcasm. 

32. Never oversimplify everything: To add material in your research paper, never go for oversimplification. This will definitely irritate the 

evaluator. Be more or less specific. Also too, by no means, ever use rhythmic redundancies. Contractions aren't essential and shouldn't 

be there used. Comparisons are as terrible as clichés. Give up ampersands and abbreviations, and so on. Remove commas, that are, not 

necessary. Parenthetical words however should be together with this in commas. Understatement is all the time the complete best way 

to put onward earth-shaking thoughts. Give a detailed literary review. 

33. Report concluded results: Use concluded results. From raw data, filter the results and then conclude your studies based on 

measurements and observations taken. Significant figures and appropriate number of decimal places should be used. Parenthetical 

remarks are prohibitive. Proofread carefully at final stage. In the end give outline to your arguments. Spot out perspectives of further 

study of this subject. Justify your conclusion by at the bottom of them with sufficient justifications and examples. 

 

34. After conclusion: Once you have concluded your research, the next most important step is to present your findings. Presentation is 

extremely important as it is the definite medium though which your research is going to be in print to the rest of the crowd. Care should 

be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is 

essential because it serves to highlight your research paper and bring to light all necessary aspects in your research. 

INFORMAL GUIDELINES OF RESEARCH PAPER WRITING 

Key points to remember:  

 Submit all work in its final form. 

 Write your paper in the form, which is presented in the guidelines using the template. 

 Please note the criterion for grading the final paper by peer-reviewers. 

Final Points:  

A purpose of organizing a research paper is to let people to interpret your effort selectively. The journal requires the following sections, 

submitted in the order listed, each section to start on a new page.  

The introduction will be compiled from reference matter and will reflect the design processes or outline of basis that direct you to make 

study. As you will carry out the process of study, the method and process section will be constructed as like that. The result segment will 

show related statistics in nearly sequential order and will direct the reviewers next to the similar intellectual paths throughout the data 

that you took to carry out your study. The discussion section will provide understanding of the data and projections as to the implication 

of the results. The use of good quality references all through the paper will give the effort trustworthiness by representing an alertness 

of prior workings. 

Writing a research paper is not an easy job no matter how trouble-free the actual research or concept. Practice, excellent preparation, 

and controlled record keeping are the only means to make straightforward the progression.  

General style: 

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines. 

 
To make a paper clear 

· Adhere to recommended page limits 

Mistakes to evade 

 
Insertion a title at the foot of a page with the subsequent text on the next page 
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 Separating a table/chart or figure - impound each figure/table to a single page 

 Submitting a manuscript with pages out of sequence 

In every sections of your document 

· Use standard writing style including articles ("a", "the," etc.) 

· Keep on paying attention on the research topic of the paper 

 

· Use paragraphs to split each significant point (excluding for the abstract) 

 

· Align the primary line of each section 

 

· Present your points in sound order 

 

· Use present tense to report well accepted  

 

· Use past tense to describe specific results  

 

· Shun familiar wording, don't address the reviewer directly, and don't use slang, slang language, or superlatives  

 

· Shun use of extra pictures - include only those figures essential to presenting results 

 

Title Page: 

 
Choose a revealing title. It should be short. It should not have non-standard acronyms or abbreviations. It should not exceed two printed 

lines. It should include the name(s) and address (es) of all authors. 

 
Abstract:  

 
The summary should be two hundred words or less. It should briefly and clearly explain the key findings reported in the manuscript--

must have precise statistics. It should not have abnormal acronyms or abbreviations. It should be logical in itself. Shun citing references 

at this point. 

 
An abstract is a brief distinct paragraph summary of finished work or work in development. In a minute or less a reviewer can be taught 

the foundation behind the study, common approach to the problem, relevant results, and significant conclusions or new questions.  

 
Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? 

Wealth of terminology is very essential in abstract. Yet, use comprehensive sentences and do not let go readability for briefness. You can 

maintain it succinct by phrasing sentences so that they provide more than lone rationale. The author can at this moment go straight to                    
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shortening the outcome. Sum up the study, with the subsequent elements in any summary. Try to maintain the initial two items to no 

more than one ruling each.  

 Reason of the study - theory, overall issue, purpose 

 Fundamental goal 

 To the point depiction of the research 

 Consequences, including definite statistics - if the consequences are quantitative in nature, account quantitative data; results 
of any numerical analysis should be reported 

 Significant conclusions or questions that track from the research(es) 

Approach: 

 
Single section, and succinct 

 
As a outline of job done, it is always written in past tense 

 
A conceptual should situate on its own, and not submit to any other part of the paper such as a form or table 

 
Center on shortening results - bound background information to a verdict or two, if completely necessary 

 
What you account in an conceptual must be regular with what you reported in the manuscript 

 
Exact spelling, clearness of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) 
are just as significant in an abstract as they are anywhere else 

Introduction:  

 The Introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be 
capable to comprehend and calculate the purpose of your study without having to submit to other works. The basis for the study should 
be offered. Give most important references but shun difficult to make a comprehensive appraisal of the topic. In the introduction, 
describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will have no attention in your 
result. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the 
protocols here. Following approach can create a valuable beginning: 

 
Explain the value (significance) of the study  

 
Shield the model - why did you employ this particular system or method? What is its compensation? You strength remark on its 
appropriateness from a abstract point of vision as well as point out sensible reasons for using it. 

 
Present a justification. Status your particular theory (es) or aim(s), and describe the logic that led you to choose them. 

 
Very for a short time explain the tentative propose and how it skilled the declared objectives. 

Approach: 

 
Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is 
done.  

 
Sort out your thoughts; manufacture one key point with every section. If you make the four points listed above, you will need a 
least of four paragraphs. 

 
Present surroundings information only as desirable in order hold up a situation. The reviewer does not desire to read the 
whole thing you know about a topic. 

 
Shape the theory/purpose specifically - do not take a broad view. 

 
As always, give awareness to spelling, simplicity and correctness of sentences and phrases. 

Procedures (Methods and Materials): 

 This part is supposed to be the easiest to carve if you have good skills. A sound written Procedures segment allows a capable scientist to 
replacement your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of 
information. Present methods in sequential order but linked methodologies can be grouped as a segment. Be concise when relating the 
protocols. Attempt for the least amount of information that would permit another capable scientist to spare your outcome but be 
cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section. 
When a technique is used that has been well described in another object, mention the specific item describing a way but draw the basic                  
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principle while stating the situation. The purpose is to text all particular resources and broad procedures, so that another person may 
use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step by step report of the 
whole thing you did, nor is a methods section a set of orders. 
 
Materials: 

 Explain materials individually only if the study is so complex that it saves liberty this way. 

 Embrace particular materials, and any tools or provisions that are not frequently found in laboratories.  

 Do not take in frequently found. 

 If use of a definite type of tools. 

 Materials may be reported in a part section or else they may be recognized along with your measures. 

Methods:  

Report the method (not particulars of each process that engaged the same methodology) 

 
Describe the method entirely 

 
To be succinct, present methods under headings dedicated to specific dealings or groups of measures 

 
Simplify - details how procedures were completed not how they were exclusively performed on a particular day.  

 
If well known procedures were used, account the procedure by name, possibly with reference, and that's all.  

Approach:  

 
It is embarrassed or not possible to use vigorous voice when documenting methods with no using first person, which would 
focus the reviewer's interest on the researcher rather than the job. As a result when script up the methods most authors use 
third person passive voice. 

 
Use standard style in this and in every other part of the paper - avoid familiar lists, and use full sentences. 

What to keep away from 

 
Resources and methods are not a set of information. 

 
Skip all descriptive information and surroundings - save it for the argument. 

 
Leave out information that is immaterial to a third party. 

Results: 
 

 The principle of a results segment is to present and demonstrate your conclusion. Create this part a entirely objective details of the 
outcome, and save all understanding for the discussion. 

 The page length of this segment is set by the sum and types of data to be reported. Carry on to be to the point, by means of statistics and 
tables, if suitable, to present consequences most efficiently.You must obviously differentiate material that would usually be incorporated 
in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matter should not 
be submitted at all except requested by the instructor. 

 Content 

 

Sum up your conclusion in text and demonstrate them, if suitable, with figures and tables.  

 

In manuscript, explain each of your consequences, point the reader to remarks that are most appropriate. 

 

Present a background, such as by describing the question that was addressed by creation an exacting study.

 

 

Explain results of control experiments and comprise remarks that are not accessible in a prescribed figure or table, if 
appropriate. 

 

Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or in manuscript form. 
What to stay away from 

 

Do not discuss or infer your outcome, report surroundings information, or try to explain anything. 

 

Not at all, take in raw data or intermediate calculations in a research manuscript. 
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Do not present the similar data more than once. 

Manuscript should complement any figures or tables, not duplicate the identical information. 

Never confuse figures with tables - there is a difference. 
Approach 

As forever, use past tense when you submit to your results, and put the whole thing in a reasonable order.

Put figures and tables, appropriately numbered, in order at the end of the report  

If you desire, you may place your figures and tables properly within the text of your results part. 
Figures and tables 

If you put figures and tables at the end of the details, make certain that they are visibly distinguished from any attach appendix 
materials, such as raw facts 

Despite of position, each figure must be numbered one after the other and complete with subtitle  

In spite of position, each table must be titled, numbered one after the other and complete with heading 

All figure and table must be adequately complete that it could situate on its own, divide from text 
Discussion:  

The Discussion is expected the trickiest segment to write and describe. A lot of papers submitted for journal are discarded based on
problems with the Discussion. There is no head of state for how long a argument should be. Position your understanding of the outcome
visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implication of the study. The
purpose here is to offer an understanding of your results and hold up for all of your conclusions, using facts from your research and
generally accepted information, if suitable. The implication of result should be visibly described. 
Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact you must explain mechanisms
that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results
agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved with prospect, and let it
drop at that. 

Make a decision if each premise is supported, discarded, or if you cannot make a conclusion with assurance. Do not just dismiss
a study or part of a study as "uncertain." 

Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that
you have, and take care of the study as a finished work  

You may propose future guidelines, such as how the experiment might be personalized to accomplish a new idea. 

Give details all of your remarks as much as possible, focus on mechanisms. 

Make a decision if the tentative design sufficiently addressed the theory, and whether or not it was correctly restricted. 

Try to present substitute explanations if sensible alternatives be present. 

One research will not counter an overall question, so maintain the large picture in mind, where do you go next? The best
studies unlock new avenues of study. What questions remain? 

Recommendations for detailed papers will offer supplementary suggestions.
Approach:  

When you refer to information, differentiate data generated by your own studies from available information 

Submit to work done by specific persons (including you) in past tense.  

Submit to generally acknowledged facts and main beliefs in present tense.  

ADMINISTRATION RULES LISTED BEFORE  
SUBMITTING YOUR RESEARCH PAPER TO GLOBAL JOURNALS INC. (US) 

Please carefully note down following rules and regulation before submitting your Research Paper to Global Journals Inc. (US):  

Segment Draft and Final Research Paper: You have to strictly follow the template of research paper. If it is not done your paper may get

rejected.  
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Do not give permission to anyone else to "PROOFREAD" your manuscript. 

Methods to avoid Plagiarism is applied by us on every paper, if found guilty, you will be blacklisted by all of our collaborated
research groups, your institution will be informed for this and strict legal actions will be taken immediately.) 

To guard yourself and others from possible illegal use please do not permit anyone right to use to your paper and files. 

The major constraint is that you must independently make all content, tables, graphs, and facts that are offered in the paper.
You must write each part of the paper wholly on your own. The Peer-reviewers need to identify your own perceptive of the
concepts in your own terms. NEVER extract straight from any foundation, and never rephrase someone else's analysis. 
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CRITERION FOR GRADING A RESEARCH PAPER (COMPILATION)
BY GLOBAL JOURNALS INC. (US)

Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading 

solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after 

decision of Paper. This report will be the property of Global Journals Inc. (US).

Topics Grades

A-B C-D E-F

Abstract

Clear and concise with 

appropriate content, Correct 

format. 200 words or below 

Unclear summary and no 

specific data, Incorrect form

Above 200 words 

No specific data with ambiguous 

information

Above 250 words

Introduction

Containing all background 

details with clear goal and 

appropriate details, flow 

specification, no grammar 

and spelling mistake, well 

organized sentence and 

paragraph, reference cited

Unclear and confusing data, 

appropriate format, grammar 

and spelling errors with 

unorganized matter

Out of place depth and content, 

hazy format

Methods and 

Procedures

Clear and to the point with 

well arranged paragraph, 

precision and accuracy of 

facts and figures, well 

organized subheads

Difficult to comprehend with 

embarrassed text, too much 

explanation but completed 

Incorrect and unorganized 

structure with hazy meaning

Result

Well organized, Clear and 

specific, Correct units with 

precision, correct data, well 

structuring of paragraph, no 

grammar and spelling 

mistake

Complete and embarrassed 

text, difficult to comprehend

Irregular format with wrong facts 

and figures

Discussion

Well organized, meaningful 

specification, sound 

conclusion, logical and 

concise explanation, highly 

structured paragraph 

reference cited 

Wordy, unclear conclusion, 

spurious

Conclusion is not cited, 

unorganized, difficult to 

comprehend 

References

Complete and correct 

format, well organized

Beside the point, Incomplete Wrong format and structuring
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Barnes

 

· 2, 3, 30, 61, 84, 103, 124, 126, 128, 130, 
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Calculus

 

· 176

 

Canny

 

· 32, 38, 39, 42

 

Cardinality

 

· 43

 

Chessboard

 

· 32, 34, 43

 

Cluttering

 

· 36

 

Coincidence

 

· 5

 

Combinatorial

 

· 93

 

Complexity

 

· 32, 33, 40, 41, 94

 

Computational

 

· 40

 

Convergence

 

· 46, 66, 68, 79, 80, 82, 99, 124, 

 

183

 

Cryptograms

 

· 96

 

D

 

Discrete

 

· 96, 97

 

Distorted

 

· 5

 

E

 

Electromagnetic

 

· 3, 30

 

Endowed

 

· 34, 43

 

Eulerian

 

· 176, 197

 

Evidently

 

· 44, 48

 

F

 

Feynman
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Integral

 

· 3, 61, 84, 103, 172, 174

 

Integrations

 

· 7

 

Interpreting
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· 80, 222, 230
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M
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