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The origin of a lattice concept can be traced back to Boole’s analysis of thought and 
Dedekind’s study of divisibility, Schroder and Pierce contributed substantially to this 

area. Though some of the work in this direction was done around 1930, much 

momentum was gained in 1967 with the contributions of Birkhoff’s [2]. In 1963, Gabor 

szasz [9] introduced the generalization of the lattice measure concepts. To study σ - 

additive set functions on a lattice of sets, Gena A. DE Both [3] introduced σ  - lattice in 

1973. The concept of partial lattices was introduced by George Gratzer [5] in 1978. In 

2000, Pao - Sheng Hus [8] characterized outer measures associated with lattice measure. 

The Hann decomposition theorem of a signed lattice measure by Jun Tanaka [10] 

defined a signed lattice measure on a lattice σ  - algebras and the concept of sigma 

algebras are extensively studied by [4]. D.V.S.R. Anil Kumar etal [1] introduce the 

concept of measurable Borel lattices, σ - lattice and δ –lattice to characterize a class of 

Measurable Borel Lattices. This paper is organized as follows. Section 2 presents the 

preliminaries definitions and results. In Section 3 we proved that  

Pσ – lattice and Pδ –lattice are measurable partial lattices and all partial lattices of a 

lattice satisfy both countable join and meet properties. Some interesting result on the 

injective property of the lattice measurable functions defined over countable Boolean lattices 

are established in Section 4.   
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Notes

 Consider a lattice (L,,) with the operations meet  and join  and usual ordering , where L is a collection of subset of a non empty set X. Now this lattice (L,,) is 

denoted by L and satisfy the commutative law, the associative law and the absorption 

law. A lattice L is called distributive if the distributive law is satisfied. The zero and one 

elements of the lattice L are denoted by 0 and 1 respectively. A distributive lattice L is 

called a Boolean lattice if for any element x in L, there exists a unique complement xc

such that x  xc = 1 and x  xc = 0. An operator C: L  L, where L is a lattice is called 

a lattice complement in L if the law of complementation, the law of contra positive and 

the law of double negation are satisfied. The following are very important examples of 

Boolean lattice. 

Example2.1. Let ({0,1},≤) be the set consisting of the two elements 0,1 equipped with 

the usual order relation 0 ≤ 1.This poset is a Boolean lattice with respect to the 

operations  presented  in  the  tables below (at the left the lattice operations and at the  

right the complementation):     

  

           

This is usually known as the two valued or two elements Boolean lattice, denoted by            

B= ({0,1},, , 
c
,0,1).      

Example2.2. The power set P(X) of a universe X a Boolean lattice if we choose the set 

theoretic complement A
c
 = X\A:={xX: xX and xA} as the complement of a given 

set A in the universe X. Such a Boolean lattice is P = (P(X), , , 
c
, , X).

Example2.3. E = (2
X
 ,, ,

c
 0, 1) is the collection 2

X of all two valued functional on the 

universe X is a Boolean lattice if we choose the functional c
= 1- as the complement of 

a given functional . 

Example2.4. Let (D, , , 
c
,1,70) is a Boolean lattice where D={1,2,5,7,10,14,35,70} is 

the set of all divisors of 70, x  y = Greatest Common Devisor of x and y, x  y = Least 

Common Multiple of x and y and x
c

=
x

70
. 

Definition2.1. A Boolean lattice L is called a countable Boolean lattice if L is closed 

under countable join and is denoted by σ (L). 

Example2.5. {empty set, X}, Power set of X, Let X = , L = {measurable subsets of } with usual ordering (≤) are all countable Boolean lattice.  

a b ba  ba
0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 1 

x x
c

0 1 

1 0 

Definitition2.2. The entire set X together with countable Boolean lattice is called lattice 

measurable space and is denoted by the ordered pair (X, σ (L)). 
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Definitition2.3. If μ: σ (L)  R  {} satisfies the following properties (i) μ() = μ (0) 

= 0 (ii) for all h, g  σ (L), such that μ (h), μ (g) > 0; h < g  μ (h) < μ (g) (iii) for all  

h, g  σ (L): μ (h  g) + μ (h  g) = μ (h) + μ (g) (iv) If hn  σ (L), n  N such that h1 < 

h2 < ... < hn < ...., then μ (

1n

hn) = lim μ (hn) then μ is called a lattice measure on the 

countable Boolean lattice σ (L).
The following is definition given in [5] 

Definition2.4. Let σ (L) be a countable Boolean lattice, H  σ (L), and restrict  and 
to H as follows. For a, b, c  H, if a  b = c (dually, a  b = c), then we say that in H, a  b(dually a  b) is defined and it equals c, if, for a, b  H, a  b   H(dually a  b 
H), then we say that a  b(dually a  b) is not defined in H. Thus (H, ,) is a set with 

two binary partial operations. (H, ,) is called a partial lattice, a relative sublattice of σ 
(L). 

Observation2.1. Every subset of a countable Boolean lattice determines a partial lattice. 

Every sublattice of σ (L) is a partial lattice and the converse need not be true.  

Definition2.5.[7] A set A is said to be measurable partial lattice, if A is in σ (L). 

Example2.7. ( , σ (L)) be lattice measurable space. Then the interval (a,  ) is a 

measurable partial lattice under usual ordering.

Example2.8. [0, 1) <  is a measurable partial lattice under usual ordering.

Definition2.9. A Pσ - lattice is a poset for which sup exist for any countable collection of 

its partial lattices. 

Example2.9. R = 

1n

(-n, n) is a pσ -lattice. 

Definition2.10. A Pδ - lattice is a poset for which inf exist for any countable collection of 

its partial lattices. 

Example2.11. (i) 

1n

(-n, n) = (-1, 1) and (ii) 

1n





n

1
,

n

1
= {0} are Pδ – lattices.  

Definition2.11.Countable join property (CJP): If { kE } is monotonic increasing 

sequence of partial lattices of a lattice L and E =

1k

kE . Then μ (E) = n
Lt μ( nE ).  

Definition2.12.Countable meet property (CMP): If { kE } is a monotonic decreasing 

sequence of partial lattices of a lattice L and E = k
1k
E


 . Then μ (E) = n

Lt )m(En .

Result2.1.[1]. If E is measurable lattice so is cE .  

σ δ

Theorem3.1. Every Pσ - lattice is lattice measurable. 

Proof.  Let .......E,E 2,1  are pair wise disjoint measurable partial lattices and E =

1k

kE , 

Example2.6. X = , where   is extended real number system and L = {All Lebesgue 

measurable sub sets of  },( ,σ (L)) is a lattice measurable space. 
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Evidently,  

μ (

1k

kE ) ≤ 1k

k )μ(E                                                           (1)    

and     

μ (

1k

kE ) ≥ μ(
n

k 1 kE )                                                                (2)

            

From definition 2.3. We have μ ( 21 EE  ) = μ ( 1E ) + μ ( 2E ). By the principle of 

mathematical induction on number of pair wise disjoint measurable partial lattices, n, we 

have μ (
n

k 1 kE ) = 
n

1k

k )μ(E . As n   , from (2) it follows that                          

μ (

1k

kE ) ≥ 1k

k )μ(E                                                                (3) 

From (1) and (3), we have μ (

1k

kE ) = 1k

k )μ(E . Now E = 

1k

kE =  

...)E((E...)E(EE c

k

1n

1k
k

c

121  
 . Since ... ,EE ,E c

121   are disjoint measurable 

partial lattices, we have,

1k

kE  is a measurable partial lattice. Hence every Pσ - lattice is a 

lattice measurable.  

Theorem3.2. Every Pσ - lattice satisfies CJP. 

Proof.  Suppose that { kE } is monotonic increasing sequence of partial lattices of a σ (L)

and E =

1k

kE . Write E = ...)E((E...)E(EE c

k

1n

1k
k

c

121  
   

So we have E = )E(E(E c

k1k
1k

1  

 (a disjoint joint). By Theorem 3.1.  

Now, μ (E) = μ ( 1E ) +   
1k

k1k )Eμ(E = μ ( 1E ) + n
Lt 

n

1k

[ )μ(E - )μ(E k1k ] = μ ( 1E ) 

+ n
Lt [ )μ(E)μ(E........)μ(E)μ(E 1nn12  ] = μ ( 1E ) + n

Lt [ )μ(E)μ(E n1  ] = μ 

( 1E ) - μ ( 1E ) + n
Lt )μ(E n = n

Lt )μ(E n .

Theorem3.3. Every Pδ -lattice is lattice measurable. 

Proof. Let ....E,E 2,1  are measurable partial lattices. 

By theorem 3.1.  E =  

1k

kE is a measurable partial lattice. Let G = k
1k
E


 .   

Then cG = c

k
1k

)E(

  = c

k
1k
E


 . Given that each kE  is a measurable partial lattice.  

Hence by Result 2.1., each c

kE  is a measurable partial lattice. Which implies c

k
1k
E


 is a 

measurable partial lattice (Every Pσ - lattice is a measurable partial lattice). This leads to 
cG  is measurable partial lattice. Hence G is measurable partial lattice (By Result 2.1.). 

Notes
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Theorem 3.4.Every Pδ -lattice satisfies CMP. 

Proof.  Suppose that { kE } is a monotonic decreasing sequence of partial lattices of σ (L)

and E =
k

1k
E


 . Let E =

k
1k
E


 . Evidently ...  )E(E  )E(E E E c

32

c

211 
Then μ( 1E ) = μ (E) +  

1k

1kk )μ(E)μ(E = μ (E) + n
Lt  n

1k

1kk )μ(E)(Eμ 

= μ (E) + n
Lt [ )μ(E)μ(E..........)μ(E - )μ(E 1nn21  ] = μ (E) + n

Lt [ )μ(E - )μ(E 1n1  ] 

= μ (E) + µ( 1E ) - n
Lt )μ(E 1n . Which implies μ (E) = n

Lt µ( nE ).  

Definition4.1. An extended real value function f defined on a lattice measurable E is said 

to be lattice measurable function if the set {xE/f(x)> α} is lattice measurable for all real 

numbers α.

Example4.1. Constant functions, Continuous functions  and Characteristic functions are 

lattice measurable functions. 

Result4.1. If f and g are lattice measurable functions then f   g and f   g are also lattice 

measurable functions.  

Proof. For any real number α  we have {x L / (f   g)(x) > α } =  

{ x L / f(x) > α } { x L / g(x) > α } and {x L / (f   g)(x) > α } = { x L / f(x) 

> α } { x L / g(x) > α }. Since { x L / f(x) > α } and { x L / g(x) > α } are lattice 

measurable sets implies the sets of RHS are lattice measurable implies f   g and f  g 

are lattice measurable functions. 

The following interesting property can easily be verified from the works of [6] by 

considering lattice measurable functions f and g defined over countable Boolean lattice.   

Proporty4.1. A Countable Boolean lattice A is a Retrace of Countable Boolean lattice B  

if there exist homomorphism g: A  B and f: B  A such that fg is the identity on A. 

Here g and f are necessarily a monomorphism (injection) and epimorphism(projective) 

respectively. That is A Countable Boolean lattice is Retrace injective if it is a Retrace of 

every Countable Boolean lattice that contains it  

New concepts like countable join property, countable meet property, P–lattice and

Pδ–lattice are introduced. Characterized partial lattices of a lattice through countable join 

and meet properties and proved that P–lattice and Pδ–lattice are measureable partial 

lattices. Interesting result on the injective property of the lattice measurable functions 

defined over Countable Boolean lattices are established.
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