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[. INTRODUCTION

The origin of a lattice concept can be traced back to Boole’s analysis of thought and
Dedekind’s study of divisibility, Schroder and Pierce contributed substantially to this
area. Though some of the work in this direction was done around 1930, much
momentum was gained in 1967 with the contributions of Birkhoff’s [2]. In 1963, Gabor
szasz [9] introduced the generalization of the lattice measure concepts. To study o-
additive set functions on a lattice of sets, Gena A. DE Both [3] introduced ¢ - lattice in
1973. The concept of partial lattices was introduced by George Gratzer [5] in 1978. In
2000, Pao - Sheng Hus [8] characterized outer measures associated with lattice measure.
The Hann decomposition theorem of a signed lattice measure by Jun Tanaka [10]
defined a signed lattice measure on a lattice ¢ - algebras and the concept of sigma
algebras are extensively studied by [4]. D.V.S.R. Anil Kumar etal [1] introduce the
concept of measurable Borel lattices, ¢ - lattice and & —lattice to characterize a class of
Measurable Borel Lattices. This paper is organized as follows. Section 2 presents the
preliminaries definitions and results. In Section 3 we proved that

P, — lattice and Ps —lattice are measurable partial lattices and all partial lattices of a
lattice satisfy both countable join and meet properties. Some interesting result on the
injective property of the lattice measurable functions defined over countable Boolean lattices
are established in Section 4.
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[1. PRELIMINARIES

Consider a lattice (L,A,v) with the operations meet A and join v and usual ordering
<, where L is a collection of subset of a non empty set X. Now this lattice (L,A,Vv) is
denoted by L and satisfy the commutative law, the associative law and the absorption
law. A lattice L is called distributive if the distributive law is satisfied. The zero and one
elements of the lattice L. are denoted by 0 and 1 respectively. A distributive lattice L is

called a Boolean lattice if for any element x in L, there exists a unique complement x°

such that x v x® =1 and x A x® = 0. An operator C: L — L, where L is a lattice is called
a lattice complement in L if the law of complementation, the law of contra positive and
the law of double negation are satisfied. The following are very important examples of
Boolean lattice.

Example2.1. Let ({0,1},<) be the set consisting of the two elements 0,1 equipped with
the usual order relation O < 1.This poset is a Boolean lattice with respect to the
operations presented in the tables below (at the left the lattice operations and at the
right the complementation):

alb|anb | avb X
0{0]0 0 0 |1
0[1]0 1 1
1/0(0 1

11111 1

This is usually known as the two valued or two elements Boolean lattice, denoted by
B=({0,1},v, A, %,0,1).

Example2.2. The power set P(X) of a universe X a Boolean lattice if we choose the set
theoretic complement A° = X\A:={xeX: xe X and x¢ A} as the complement of a given
set A in the universe X. Such a Boolean lattice is P = (P(X), v, A, ¢, ¢, X).

Example2.3. E = (2X 2V, A0, 1) is the collection 2X of all two valued functional on the

universe X is a Boolean lattice if we choose the functional % = 1- as the complement of
a given functional y.

Example2.4. Let (D, v, A, ,1,70) is a Boolean lattice where D={1,2,5,7,10,14,35,70} is
the set of all divisors of 70, x A y = Greatest Common Devisor of x and y, X v y = Least

Common Multiple of x and y and x° _70 .
X

Definition2.1. A Boolean lattice L is called a countable Boolean lattice if L is closed
under countable join and is denoted by o (L).

Example2.5. {empty setd, X}, Power set of X, Let X =R, L = {measurable subsets of
R } with usual ordering (<) are all countable Boolean lattice.

Definitition2.2. The entire set X together with countable Boolean lattice is called lattice
measurable space and is denoted by the ordered pair (X, ¢ (L)).
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Example2.6. X =R, where R is extended real number system and L = { All Lebesgue
measurable sub sets of ‘R },(*R,o (L)) is a lattice measurable space.

Definitition2.3. If u: o (L) > R U {0} satisfies the following properties (i) u(¢p) = p (0)
=0 (ii) for all h, g € 6 (L), such that p (h), p (g) >0; h< g = p (h) < p (g) (iii) for all
h,geoL):pthvg+pthag)=pnth)+p(g @Gv) Ifhn eoc(),ne Nsuchthathlg
hy <...<h, <., then p ( M h,) =lim p (h,) then p is called a lattice measure on the
countable Boolean lattice ¢ (L).

The following is definition given in [5]

Definition2.4. Let 6 (L) be a countable Boolean lattice, H < o (L), and restrict A and v
to H as follows. Fora, b, c € H,if a A b=c (dually, a v b =c), then we say that in H, a
A b(dually a v b) is defined and it equals c, if, fora,b € H,aAb ¢ H(duallyavb ¢
H), then we say that a A b(dually a v b) is not defined in H. Thus (H, A,v) is a set with
two binary partial operations. (H, A,v) is called a partial lattice, a relative sublattice of ¢

@L).
Observation2.1. Every subset of a countable Boolean lattice determines a partial lattice.
Every sublattice of ¢ (L) is a partial lattice and the converse need not be true.

Definition2.5.[7] A set A is said to be measurable partial lattice, if A isin ¢ (L).

Example2.7. (R, o (L)) be lattice measurable space. Then the interval (a,o) is a
measurable partial lattice under usual ordering.

Example2.8. [0, 1) < R is a measurable partial lattice under usual ordering.

Definition2.9. A P; - lattice is a poset for which sup exist for any countable collection of
its partial lattices.

Example2.9. R = v (-n, n) is a p, -lattice.

Definition2.10. A P; - lattice is a poset for which inf exist for any countable collection of
its partial lattices.

Example2.11. (i) il (-n, n) = (-1, 1) and (ii) il (-%%) — {0} are P; — lattices.
Definition2.11.Countable join property (CJP): If { E, } is monotonic increasing
sequence of partial lattices of a lattice L and E = 1;21 E, . Then p (E) = HEEO WE,).
Definition2.12.Countable meet property (CMP): If { E, } is a monotonic decreasing
sequence of partial lattices of a lattice L and E = Z\l E,. Then p(E) = nEtw mE, ).
Result2.1.[1]. If E is measurable lattice sois E°.

1. p,-LATTICE AND P, -LATTICE

Theorem3.1. Every P; - lattice is lattice measurable.

Proof. LetE,E,...... are pair wise disjoint measurable partial lattices and E = M E,,
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Evidently,

bV E) S SuE,) (1)
and _
b(v E)Zu(v E,) @)

From definition 2.3. We have p (E,VvE,) = p (E,) + pn (E,). By the principle of
mathematical induction on number of pair wise disjoint measurable partial lattices, n, we

have p (v E,) = dWE,) . As n - oo, from (2) it follows that
k=1
n(v E)= ;mEk) (3)

From (1) and (3), we have p (;;Z E ) = Zp(Ek). Now E =

k=1

T< 8

E, =

n-1
E,Vv(E, AE))Vv..v(E, /\(k\:lEi)v.... Since E,,E, AEj,... are disjoint measurable

partial lattices, we have, kvl E, is a measurable partial lattice. Hence every P; - lattice is a

lattice measurable.

Theorem3.2. Every P - lattice satisfies CJP.

Proof. Suppose that { E, } is monotonic increasing sequence of partial lattices of a ¢ (L)

0 n—1
andE=k\f1 E,.WriteE= E, V(E, AE)) V..V (E, /\(k\flEi)v...

Sowehave E= E, v (SZ(Ek+l AE;) (adisjoint joint). By Theorem 3.1.

n

Now, p (B) = 1 (B)) + D (E,, ~E)=p(E)+ Lt > [u(E,)-n(E)]=p(E)

k=1 k=1

+ Lt [UE) —pE ) + oo E)—uE, DT =p (E) + Lt [-pE)+uE,)] = p
(E)-n(E)+ Lt w(E)) = Lt WE,).

Theorem3.3. Every P; -lattice is lattice measurable.

Proof. Let E ,E, .... are measurable partial lattices.

0

By theorem 3.1. E = v E, is a measurable partial lattice. Let G = 1(/—\1Ek .

o0

Then G° = (AE))® = kYIE; . Given that each E, is a measurable partial lattice.

Hence by Result 2.1., each E; is a measurable partial lattice. Which implies k\{lEi isa

measurable partial lattice (Every P; - lattice is a measurable partial lattice). This leads to
G° is measurable partial lattice. Hence G is measurable partial lattice (By Result 2.1.).
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Theorem 3.4.Every P; -lattice satisfies CMP.

Proof. Suppose that { E, } is a monotonic decreasing sequence of partial lattices of ¢ (L)

and E :k/—\lEk' LetE :k/_\lEk. Evidently E, =EV (E, AE5)V(E, AES) V...

Then w(E,) = (B)+ D p(E,) ~p(E,,) =u B+ Lt Y u(E,)—u(E,.,)

k=1

=un(E)+ HEEO[“(E‘)_ME»_'_ .......... +wWE ))-WE, . )]=n(E)+ HISEO[“(E‘)_“(E“”)]
=u(E)+u(E,)- Lt W(E, ). Which implies p (E) = Lt pu(E,).

IV.  THE INJECTIVE AND PROJECTIVE PROPERTIES OF LATTICE M EASURABLE
FuNcTIONS

Definition4.1. An extended real value function f defined on a lattice measurable E is said
to be lattice measurable function if the set {x € E/f(x)> a} is lattice measurable for all real
numbers o.

Exampled4.1. Constant functions, Continuous functions and Characteristic functions are
lattice measurable functions.

Result4.1. If f and g are lattice measurable functions thenf v gandf A gare also lattice
measurable functions.

Proof. For any real number a we have {x eL/(f v g2(x)> a}=
{x elL/f(x)> a}v{x elL/g(x)> a}land {x eL/(f A g2x)> a}={x eL/f(x)
>aja{x eL/gx)> a}.Since { x e L/f(x)> a}and { x e L/g(x)> a} are lattice
measurable sets implies the sets of RHS are lattice measurable implies f v gandf A g
are lattice measurable functions.

The following interesting property can easily be verified from the works of [6] by
considering lattice measurable functions f and g defined over countable Boolean lattice.

Proporty4.1. A Countable Boolean lattice A is a Retrace of Countable Boolean lattice B
if there exist homomorphism g: A — B and f: B — A such that fg is the identity on A.
Here g and f are necessarily a monomorphism (injection) and epimorphism(projective)
respectively. That is A Countable Boolean lattice is Retrace injective if it is a Retrace of
every Countable Boolean lattice that contains it

V.  CONCLUSION
New concepts like countable join property, countable meet property, P,—lattice and
Ps—lattice are introduced. Characterized partial lattices of a lattice through countable join

and meet properties and proved that P,—lattice and Ps—lattice are measureable partial
lattices. Interesting result on the injective property of the lattice measurable functions

defined over Countable Boolean lattices are established.
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