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Klein-Gordon Equation for a Particle in Brane 
Model

S.N. Andrianov α, R.A. Daishev σ & S.M. Kozyrev ρ

Abstract-  Brane model of universe is considered for a free 
particle. Conservation laws on the brane are obtained using 
the symmetry properties of the brane. Equation of motion is 
derived for a particle using variation principle from these 
conservation laws. This equation includes terms accounting 
the variation of brane radius. Its solution is obtained at some 
approximations. Dispersion relation for a particle and formula 
for variation of its speed at variation of brane curvature are 
derived. 

I. Introduction 

he Klein-Gordon equation describing motion of a 
scalar particle is known in quantum field theory 
that does not account the changes of space 

metrics and changes of particles behavior connected 
with it [1]. These changes can be accounted by 
Einstein’s equation. Wheeler - deWitt equation occupies 
the place of Einstein’s equation in quantum theory [2]. 
The approach of Wheeler - de Witt is applied to brane 
theory of Universe [3], [4] in papers [5, 6]. 

In present paper, we will derive starting from the 
symmetry properties of the brane [7, 8, 9] the equation 
of motion for a particle in the framework of brane model 
with the account of its radius variation in universal 
space. This equation has a form of Klein-Gordon 
equation in curved space [10] accounting the field of 
brane fluctuations and describes particle temporal 
behavior with Einstein’s or time dependent Wheeler - de 
Witt equation [11]. 

II. Energy Conservation Law 

Let’s consider our space as four dimensional 
hyper-surface that is the insertion in the space of higher 
dimension (Fig. 1). Then interval for a moving particle in 
normal Gauss coordinates can be written as                         
 
 

                                                                               
(2.1) 

 
where gi j is metric tensor dxi, dx j are differentials 

of coordinates (i, j = 0,1,2,3) on brane, dt is differential 
of universal time that is proportional to extra dimensional 
coordinate. Greek symbols will  denote  all  indexes (a = 
0,1,2,3,4). Then action can be written as 
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(2.2)
 

where m is mass of particle, c is speed of light, 
 
                                                                                 (2.3)

 
 
 
is Lagrangian, T is current value of universal time in 
multidimensional space (proportional to the brane 
radius). Let’s introduce the symmetry of configuration 
space as single parametric transformation group f (q      ,ε): 
                                   
                                                                                  (2.4) 
 
 
                                                                                  (2.5) 
 
conserving Lagrangian (2.3). According to Netter’s 
theorem, first integral 
 
                                                                                (2.6) 
 
 
where 
 
                                                                                    (2.7) 
 
 can be put in correspondence to each symmetry. Then

                    
                                                                                  (2.8)

 
 
or 

 
                                                                                (2.9) 

 
If the particle moves uniformly and rectilinearly 

on the background of Lorenz’s metrics than we can 
choose reference system where ·x 

(1)

 =·x 
(2)

 =·x(3)= 0 
and ·x(0)= c when brane is expanding with velocity c. 
Then Eq. (2.9) yields 

 
                                                                              (2.10) 
 
 

T 
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ds=
√

gi j dxidxj −c2dt2,

S= mc
∫ T

0
ds=

∫ T

0
Ldt,

L =
√

gi j (m
·
x

i
)(m

·
x

j
)−m2c2,

t → t + ε,xi → xi(t + ε),

f (qi ,ε) = xi(t + ε), f (qi ,0) = xi(t)

I =
∂L

∂
·
xi

hi ,

hi =
∂ f i

∂ε|ε=0
,

I =
1
L

gi j m
2 ·

x
j
{∂xi(t + ε)

∂(t + ε)
∂(t + ε)

∂ε
}|ε=0,

gi j m
·
x

i
m

·
x

j
= const,

gi j m
·
x

i
m

·
x

j
= m2c2.

The same equation can be derived in the 
framework of quantum mechanical treatment. The wave 
function of particle in quasi-classical approximation is



  
 
                                                                               

(2.11)

 

where a is slowly varying amplitude, S is action 
expressed by formulas (2.2),

 

(2.3). Let’s differentiate 
both sides of

 

expression (2.11) by T neglecting the 
dependence of amplitude on time

 
                                                                               

(2.12)

 
 

   
                                                                                (2.13)

 
 
 
 

 
III.

 
Klein-Gordon Equation

 
Expression (2.13) can be rewritten in the following form:

 
 
                                                                                  

(3.1)
 

 Let’s consider functional variation [1] of relation 
(3.1) in the vicinity of x. Complete variation of 
momentum vector

 
can be written as the sum of 

functional variation δp
 
of vector p

 
at the comparison of p0

 
of with p00

 
in the vicinity of

 
p
 
at the parallel transfer of 

momentum vector in universal space and ordinary 
variation d p. Then, it can be written

 
that

 
 

 

 
                                                                                                                                                                           

  

 

(3.2)

 
 
 

Where

 
 
                                                                              

 

(3.3)

 
 

And

 
 

                                                                               

(3.4)

 
 

 

is momentum vector at its parallel 
transfer in the universal space from point 

 

   
to point 

 

If trajectory of particle is geodetic 
one then according [1].

 
 

                                                                                   (3.5)

 
 
 

                                                                                 

 

(3.6)

 
 

where .   Rome   indexes 
numerate here coordinates of usual four-coordinate 
space and Greek

 

indexes numerate coordinates of 
universal five-coordinate space. It was assumed at 
formulation of (3.6) that 0.

 

Then, it can be written, omitting stroked index of 
momentum vector,

 
 
                                                                                   

(3.7)

 
 At the transform 

 
relation (3.1) is 

transforming accounting (3.7) to the following form:
 

 
 
                                                                                 (3.8)

 
 

Let’s pass in relation (3.8) to operators acting in 
Hilbert space of wave functions . We represent for 
this sake

 

the components of vector p as

 
 
 
                                                                             

 

  (3.9)

 
 

 

and rewrite relation (3.6) as

 
                                                                                   

(3.10)

 
 

assuming that 

 

is a covariant derivative 
because of brane curvature.

 

Let’s consider the first term in the left side of 
equation (3.8). For this purpose, we represent it in the 
form

                                             
                                                                            

 

  (3.11)

 
 
Using expression (3.9), we get

 
 

                  

 
                                                                              

(3.12)
 

 
Let’s use well known relation 
 
                                                                                (3.13) 
 
Then 
 

                                                                                (3.14) 
 

Changing indexes of summation, we get
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2

Ψ = ae
iS
~ ,

dΨ
dt

= a
i
~

e
iS
~

dS
dT

= i
c
~

√
gi j pi p j −m2c2Ψ,

gi j p
i p j = m2c2.

If evolution of particle in brane does not depend 
on brane radius then 0 anddΨ

dT = dS
dT =

pi p
j = m2c2.

4p = p′
(
x′
)
− p

(
x′′
)

= p′
(
x′
)
−

∼
p
(
x′
)
+

∼
p
(
x′
)
− p

(
x′′
)

= δp+dp,

δp = p′
(
x′
)
−

∼
p
(
x′
)

dp=
∼
p
(
x′
)
− p

(
x′′
)
,

∼
p (x′)

x′′ = x−δx
x′ = x+δx.

dpi =
∂pi

∂xk dxk = 0,

δpi =
∼
pk Γk

iαδxα,

δxα = 1
2(x′α − x′′α)

Γ4
iα =

p
(
x′
)

= p(x)+
1
2

δp.

x→ x’ ,

pi p
i +

1
2

(
piδpi +δpi p

i)+ 1
4

δpiδpi = m2c2.

pi =−i~
∂

∂xi ,

δpi =−i~
{

Γk
iαδxα

}
;k

,

ψ(x)

p̃k

pi p
i = pig

i j p j .

pi p
i =−~2

(
∂gi j

∂xi

∂
∂x j +gi j ∂2

∂xi∂x j

)

∂gi j

∂xk =−Γi
mkg

m j−Γ j
mkg

im.

pi p
i =−~2

(
gi j ∂2

∂xi∂x j −gm jΓi
mi

∂
∂x j −gimΓ j

mi
∂

∂xi

)
.



 
                                                                              (3.15)

 
 

Let’s consider second term in the left side of equation (3.2), rewriting it in the form 

 
 

                                                                               

(3.16)

 

Using formula (3.13), we get

 
 

                                                                                                                                                                   

  

  

 

(3.17)

 
 

Let’s write in its direct form the covariant derivative in the expression (3.10):

 

                                                                                                                                                                         
(3.18)
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pi p
i =−~2gi j

(
∂2

∂xi∂x j −Γk
ik

∂
∂x j −Γk

i j
∂

∂xk

)
.

piδpi = pig
i j δp j .

piδpi = gi j (piδp j)+ i~
(

gi j Γm
im +gimΓ j

im

)
δp j +gi j δp j pi .

δp j =−i~ Γk
jk +

∂Γk
jα

∂xk δxα−Γk
lkΓk

lαδxα +Γk
lkΓl

jαδxα

)
.)

We get from formula (3.18)

                                                                           (3.19)

It can be shown that 0 (see Appendix). Then

                                                                                (3.20)

Substituting expression (3.20) into formula (3.17), we get

                                                                                                                                                                                                                                                          (3.21)
And
                                                                                                                                                                          

(3.22)

Where δpl = 0 was assumed after taking the derivatives. From now up to the end of paper, we will denote by 
α only the extra dimensional coordinate.
Obviously,                                                                             

(3.23)

Using equations (3.8, 3.15, 3.21, 3.22, 3.23), we get

                                                                            (3.24)

where ψ is a wave function. Equation (3.24) can be rewritten as

                                                                                                                                                                           (3.25)

where Di,Dj are covariant derivatives and R is scalar curvature.

δp j =−i~
1
2

Γk
jk +Rjαδxα +

∂Γk
jk

∂xα δxα

)
,)

δpl =

δp j =−i~Riαδxα.

piδpi =−~2gi j
(

∂Rjα

∂xi δxα−Γl
i j Rlαδxα +Riαδxα ∂

∂x j −
1
2

Ri j

)

δpi p
i =−~2gi j Riαδxα ∂

∂x j

δpiδpi =−~2gi j RiαRjα′δxαδxα′

~2gi j ( ∂2

∂xi∂x j −Γk
i j

∂
∂xk + 1

2δxα
(

∂Rjα
∂xi −Γl

i j Rlα +2Riα
∂

∂xl

)
+

+1
4RiαRjα′δxαδxα′ − 1

4Ri j )ψ+m2c2ψ = 0

gi j
(

Di +
1
2

δxαRiα

)(
D j +

1
2

δxαRjα

)
ψ =

{
1
4

R−
(mc

~

)2
}

ψ,

IV. Approximate Solutions

Assuming that the metrics of space-time is almost Galileo’s one, we can rewrite equation (3.25) in single 
dimensional approximation for brane as

                                                                                                                                                                      
    (4.1)

where

                                                                                                                                                                          
(4.2)

                                                                                                                                                                            
(4.3)

{(g11
0 +h11)

∂2

∂x2 +2h10 ∂2

∂x∂t
+(g11

0 +h11)γ
∂
∂x

+a}ψ =−(g00
0 +h00)

1
c2

∂2ψ
∂t2

γ = R1αδxα,

a =
1
2
(g11

0 +h11){
(

∂
∂x

R1α

)
δxα +

1
2

R1αR1αδxαδxα− 1
2

R11}+
(mc

~

)2
,
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Taking    we get

                                                                                  (4.4)

Looking for the solution in the form of plane wave

                                                                             
(4.5)

we obtain the following dispersion equation:

                                                                                (4.6)

It has a solution

                                                                              (4.7)

Assuming that h, a and γ are small, we 
approximately get

                                                                             (4.8)

So, we have for the frequency shift

                                                                            (4.9)

Using expressions (4.27,4.28), we get

                                                                            (4.10)

where

                                                                            (4.11)

For a photon at m = R = 0 we have
                                                                             

(4.12)

The first term in (4.37) is usual gravitational shift 
while the other two terms are connected with variation of 
external brane curvature.

Also, we get from the formula (4.36) the 
expression for the group speed of a particle

                                                                             (4.38)

For a photon, we have

                                                                             (4.39)

We see that the group speed of light is less than 
c when the variation of external brane curvature is 
negative but is more than c when the external brane 
curvature is positive. So, formula (4.39) shows that the 

change of light speed depends on the external brane 
curvature variation.

V. Conclusion

Thus, we have derived Klein-Gordon equation 
for a particle on brane using variation principle. It can be 
verified that the Dirac decomposition of obtained Klein-
Gordon equation yields Dirac-Fock-Ivanenko equation 
[12] at zero external curvature that can be solved with 
Einstein’s equation [13]. Indeed, squaring Dirac-Fock-
Ivanenko equation gives wave equation [14, 15] 
coinciding in its main part with that obtained in the 
present paper but we have obtained additional brane 
curvature depending terms. Solution of this equation for 
a photon on the background of almost Galileo’s metrics 
yields the changes in frequency and speed of particle’s 
wave packet depending on external curvature that can 
be verified experimentally.
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VII. Appendix

If the wave function were vector ψn the first 
order covariant derivative on ψn will be

                                                                             
(A.1)

Let’s denote the ”geometrical” part of partial 
wave function derivative as

                                                                            (A. 2)

Then we can write using orthogonal character of 
wave functions

                                                                               

(A. 3)

And

                                                                               
(A. 4)

But    the    wave    function    is    a   scalar   and 

Hence,
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