
© 2013. Dr. D. Prabhakar & Dr. G. Prabhakararao. This is a research/review paper, distributed under the terms of the Creative 
Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non 
commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

Global Journal of Science Frontier Research 
Physics and Space Science 
Volume 13  Issue 6 Version 1.0 Year  2013 
Type : Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals Inc. (USA) 
Online ISSN: 2249-4626 & Print ISSN: 0975-5896 

 
 
 
Natural Convection of Heat Transfer in a Vertical Conical 
Annular Porous Medium          

By Dr. D. Prabhakar & Dr. G. Prabhakararao 
     

Abstract - In this chapter, we study the natural convection heat transfer in a saturated porous 
medium confined in a vertical annular porous medium. In this study Finite Element Method (FEM) 
has been used to solve governing partial differential equations. Results are

 
presented interms of 

average Nusselt number (Nu), streamlines and Isothermal lines for various values of Rayleigh 
number (Ra), Cone angle (CA) and Radius ratio (Rr).

 

Keywords :
 
porous medium, pressure, Rayleigh number, boundary-layer, flux. 

 

GJSFR-A Classification : FOR Code: 091505
 

 

Natural Convection of Heat Transferin a Vertical Conical Annular Porous Medium  
 
 
 
 

                                
                                  Strictly as per the compliance and regulations of : 

 

 

 

Fire Institution, India



Natural Convection of Heat Transfer in a Vertical 
Conical Annular Porous Medium

Dr. D. Prabhakar α & Dr. G. Prabhakararao σ 

Author α :

 

Department of Fire Office, Yemmiganuru, Kurnool-District-
Andhra Pradesh-India.

 

E-mail

 

:

 

dprabhakar1234@gmail.com

 

Author σ

 

:

 

Lecturer in Mathematics SVGM Government Degree 
College, Kalyandurg, Anantapur-Dist, Andhra

 

Pradesh-India.

 

E-mail

 

:

 

nari.prabhu@gmail.com

 
 

Abstract 

 

-

  

In this chapter, we study the natural convection 
heat transfer in a saturated porous medium confined in a 
vertical annular porous medium. In this study Finite Element 
Method (FEM) has been used to solve governing partial 
differential equations. Results are

 

presented interms of 
average Nusselt number

 

(Nu), streamlines and Isothermal 
lines for various values of Rayleigh number

 

(Ra), Cone angle 
(CA) and Radius ratio (Rr).
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I.

 

Introduction

 

atural convection heat transfer in a saturated 
porous medium has a number of

 

important and 
geophysical applications, such as nuclear 

reactor cooling system and

 

underground energy 
transport. The problems of free convection about a 
vertical

 

impermeable flat plate are studied by cheng and 
Minkowycz [1], Cheng [2], Na and

 

Pop [3] Gorla and 
Zinalabedini [4]. The vertical cylinder cases are 
investigated by

 

Minkowycz and Cheng [5], Kumari etal 
[6], Markin [7] and Basson et.al [8] Cheng et

 

al. [9] use 
the local non-similarity method to analyze the natural 
convection of Darcial

 

fluid about a cone.

 

The effect of surface mass flux on a vertical flat 
plate [10] the similarity

 

solution is possible only when 
the variations of the wall temperature and the

 

transpiration rate are proportional to power-law of x 
measured from the leading edge.

 

From practical point of view, however, the uniform mass 
flux may be easily realized.

 

The effect of uniform surface 
mass flux on a vertical flat plate with uniform wall

 

temperature is investigated by Merkin [11] and 
Minkowycz and Cheng [12]. Yücel

 

[13], and Hwang and 
Chen [14] numerically study the vertical cylinder case.

 

Khan and Zebib [15] studied the double –

 

diffusive instability of the double

 

boundary –

 

layer 
structure

 

that forms near a vertical wall immersed in 
temperature

 

and concentration stratified porous 
medium. Raptis et al. [16] constructed similarity

 

solutions of boundary -

 

layer near a vertical surface wall 
in porous medium with

 

constant temperature and 
concentration. Bejan and Khair [17] used Darcy’s law to

 

study the vertical natural convective flows driven by 

temperature and concentration gradients. Lal and 
Kulacki [18] studied the natural convection boundary 
layer flow along a vertical surface with constant heat and 
mass flux including the effect of wall injection. 
Nakayama and Hossain [19], and Singh and Queeny 
[20] applied the integral method to obtain the heat and 
mass transfer by free convection from a vertical surface 
with constant wall temperature and concentration. Yih 
[21] studied the heat and mass transfer characteristics 
in natural convection flow over a truncated cone 
subjected to variable wall temperature and 
concentration or variable heat and mass flux embedded 
in porous medium. 

Comprehensive review on this phenomenon 
has been recently reported by Trevisan and Bejan [22] 
for various geometries. Bejan and khair [23] investigated 
the vertical natural convection boundary – layer flow in a 
saturated porous medium due to the combined heat 
and mass transfer. Jang and Chang [24] studied the 
buoyancy – induced inclined boundary - layer in porous 
medium resulting from combined heat and mass 
buoyancy effects. 

Heat and mass transfer about vertical cylinder 
in saturated porous media is analyzed by Yücel [25] 
[26]. Nakayama and Hossain [27], and Singh and 
Queeny [28] used an integral method to solve the 
problem of Bejan and khair [23]. Lai et al [29] 
investigated the coupled heat and mass transfer by 
natural convection from horizontal line sources in 
saturated porous media. Nakayama and Ashizawa [32] 
performed a boundary layer analysis of combined heat 
and mass transfer by natural convection from a 
concentrated source in a saturated porous medium. 

In this chapter, we study the natural convection 
heat transfer in a saturated porous medium confined in 
a vertical annular porous medium. In this study Finite 
Element Method (FEM) has been used to solve 
governing partial differential equations. Results are 
presented interms of average Nusselt number (Nu), 
streamlines and Isothermal lines for various values of 
Rayleigh number (Ra), Cone angle (CA) and Radius ratio 
(Rr). 

II. Mathematical Formulation 

A vertical annular cone of inner radius ri and 
outer radius r0

 as depicted by schematic diagram as 
shown in figure (A) is considered to investigate the heat 
transfer behavior. The co-ordinate system is chosen 

N
 

© 2013  Global Journals Inc.  (US)

  
 

  
 

  
  

 

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
III

 I
ss
ue

  
  
 e

rs
io
n 

I
V

V
I

Y
ea

r
  

 
(

)
A

  
2 0

13



such that the r-axis points towards the width and z-axis 
towards the height of the cone respectively. Because of 
the annular nature, two important parameters emerge 
which are Cone angle (CA) and Radius ratio (Rr) of the 
annulus. They are defined as 

 
 
 
 

where Ht  is the height of the cone. 
The inner surface of the cone is maintained at 

isothermal temperature Th and outer surface is at 
ambient temperature T  . It may be noted that, due to 
axisymmetry, only a section on the annulus is sufficient 
for analysis purpose. 
Following assumptions are made: 
 The flow inside the porous medium obeys Darcy 

law and there is no phase change of fluid. 
 Porous medium is saturated with fluid. 
 The fluid and medium are in local thermal 

equilibrium in the domain. 
 The porous medium is isotropic and 

homogeneous. 
 Fluid properties are constant except the variation of 

density. 
With the above assumptions, the governing 

equations are given by continuity equation: 

                                

 

 

(1.2.1)

 The velocity in r and z directions can be 
described by Darcy law as

  Velocity in horizontal direction
 

  
 
 

(1.2.2)

 velocity in vertical direction
 

 
 
 

 

(1.2.3)

 the
 
permeability K of porous medium can be expressed 

as Bejan (33)
 

 
 
 

 

(1.2.4)

 The variation of density with respect to 
temperature can be described by Boussinesq approximation as 

 
 

 

(1.2.5)

 

Momentum Equation: 

(1.2.6)

 
 
 
 
Energy equation: 

    
 (1.2.7)
 

 
The continuity equation (1.2.1) can be satisfied 

by introducing the stream function      as 
 
 (1.2.8)
 
 
 
 

 

(1.2.9)

 
 

The corresponding dimensional boundary 
conditions are

 
                                                                       
 

  

(1.2.10a)

 
                                                                       
 
 

  

(1.2.10b)

 

(except at z = 0)

 

The new parameters arising due to cylindrical 
co-ordinates system are

  

Non-dimensional Radius

 
 
 

 

(1.2.11a)

 

Non-dimensional Height

 
 
 

 

(1.2.11b)

 

Non-dimensional stream function

 
 
 

 

(1.2.11c)

 

Non-dimensional Temperature

 
 
 

 

(1.2.11d)

 

Rayleigh number

 
 
 
 

 

(1.2.11e)

 

The non-dimensional equations for the heat 
transfer in vertical cone are

 

Momentum equation:
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Energy equation: 
 
 (1.2.13)
 

The corresponding non-dimensional boundary 
conditions are

 
 

at                             (1.2.14)
 

 

at                                        
 

(1.2.15)
 

 

III. Solution of Governing Equations 

The partial differential equations, which 
describe the heat and fluid flow behavior in the vicinity of 
porous medium are given earlier. There are various 
numerical methods available to achieve the solution of 
these equations, but the most popular numerical 
methods are Finite difference method, Finite volume 
method and the Finite element method. The selection of 
these numerical methods is an important decision, 
which is influenced by variety of factors amongst which 
the geometry of domain plays a vital role. Other factors 
include the ease with which these partial differential 
equations can be transformed into simple forms, the 
computational time required and the flexibility in 
development of computer code to solve these 
equations. 

In the present study, we have used Finite 
Element Method (FEM). The following sections briefly 
described the Finite Element Method and present its 
application to solve the above mentioned equations. 

The Finite Element Method is a popular method 
amongst scientific community. This method was 
originally developed to study the mechanical stresses in 
a complex air frame structure Clough (36) and 
popularized by Zienkiewicz and Cheung (37) by 
applying it to continuum mechanics. Since then the 
application of finite element method has been exploited 
to solve the numerous problems in various engineering 
disciplines. 

The great thing about finite element method is 
its ease with which it can be generalized to engineering 
problems comprised of different materials. Another 
admirable feature of the Finite Element Method (FEM) is 
that it can be applied to wide range of geometries 
having irregular boundaries, which is highly difficult to 
achieve with other contemporary methods. FEM can be 
said to have comprised of roughly 5 steps to solve any 
particular problem. The steps can be summarized as : 

 Descritizing the domain: This step involves the 
division of whole physical domain into smaller 
segments known as elements, and then identifying 
the nodes, coordinates of each node and ensuring 
proper connectivity between the nodes. 

 Obtaining the characteristics of the element which 
is written in terms of nodal values 

 Development of Global matrix: The equations are 
arranged in a global matrix which takes into 
account the whole domain 

 Solution: The equations are solved to get the 
desired variable at each node in the domain 

 Evaluate the quantities of interest: After solving the 
equations a set of values are obtained for each 
node, which can be further processed to get the 
quantities of interest. 

There are varieties of elements available in FEM, 
which are distinguished by the presence of number of 
nodes. The present study is carried out by using a 
simple 3- noded triangular element as shown in figure 
(1). 

 

 

 

 

 

 

 

 

 
Figure 1 : Typical triangular element

 
Let us consider that the variable to be 

determined in the triangular area as “T”.
 The polynomial function for “T” can be expressed as:

 
  
 

 

(1.2.15)

 The variable T has the value Ti, Tj

 
& Tk

 
at the 

nodal position i, j & k of the
 
element. The r and z co-

ordinates at these points are ri, rj, rk

 
and zi, zj, zk

 respectively.
 
Substitution of these

 
nodal values in the 

equation (1.2.15) helps in determining the
 
constants a1, 

a2

 
, a3

 
which are:

 
 

 
(1.2.16) 

  

(1.2.17) 
  

(1.2.18) 
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k



where A is area of the triangle given as 
 
 
 
 
 

(1.2.19)

 

Substitution of a1, a2, a3

 
in the equation (1.2.15) 

and mathematical
 
arrangement of the terms results into

 
 

 
 (1.2.20) 

In equation (1.2.20) Ni, Nj, Nk
 are the shape 

functions give by 
 
 
 
 

(1.2.21)

 

The constants can be expressed in terms of coordinates as 
  
 
 
 

 (1.2.22) 
 
 

Good insight into the FEM is given in Segerland 
(35); Elshayed and Beng (33)

 
Lewis et al. (34). Galerkin 

method is employed to convert the partial differential
 

equations into matrix form of equation for an element. 
The steps involved are as given

 
below.

 

Please note that the nodal terms i, j & k are 
replaced by 1,2 & 3 respectively in

 
subsequent 

discussions for simplicity.
 

Applying of Galerkin method to momentum 
equation (1.2.12) yields

 

(1.2.23)

 
 
 

 

(1.2.24)

 
 
 
 
 
where Re is the residue. Considering individual terms of 
equation (1.2.24) 
The differentiation of following term results into 
 

(1.2.25)
 

 

Thus                 
(1.2.26)

 
 
 
 

The first term on right hand side of equation 
(1.2.26) can be transformed into

 

surface integral by the 
application of Greens theorem and leads to inter-
element

 

requirement at boundaries of an element. The 
boundary conditions are incorporated in

 

the force 
vector.

 

Making use of (1.2.20) produces

 
 
 

(1.2.27)

 
 

 

Substitution of (1.2.21) into (1.2.27) gives

 
 
 

(1.2.28)

 
 
 
 
 
 
 

Similarly
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Figure 2 :

  

Showing the sub triangular areas

 

Defining the new area ratios as

 
 
 
 
 

It can be shown Elshyab and Beng (33) that

 
 
 
 

(1.2.31)
 

Replacing shape functions in equation (1.2.30) by (1.1.31) yields

 
 
 
 
 
 
 

(1.2.32)
 

The area integration can be evaluated by a 
simple relation Segerland (35).

 
 
 

(1.2.33)
 

Application of equation (1.2.33) into (1.2.32) 
gives rise to:

 
 
 

 

(1.2.34)

 

(1.2.35)

 
 
 
 
 
 
 

Now the momentum equation (1.2.12) can be written in the matrix form as

  
 
 
 
 
 
 
 

(1.2.36)

 

In simple form the above equation can be represented as:

 
 
 
 

(1.2.37)

 

where KS

 

is stiffness matrix and f

  

is the force vector. For equation (1.2.12) they are:

 
 
 
 
 

(1.2.38a)
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In order to get the matrix equation of (1.2.30), 
the following method can be applied. The triangular 
element can be subdivided into three triangles with a 
point in the center of original triangle as shown in figure 
(2).

The third term of equation (1.2.24) is
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The radial distance R to the centroid of an element is given by relation

 
 

 
 
 

 
 
 
 
 
 
 
 

Similarly application of Galerkin method to Energy equation (1.2.13) gives

 
 
 

(1.2.39)

 
 
 

Considering the terms individually of the above equation
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The remaining two terms of Energy equation can be evaluated in similar fashion of equation (1.2.24)



  
 
 
 
 
 
 
 
 
 
 
 
 
 

Thus the stiffness matrix of Energy equation is given by

 
 
 
 
 
 
 
 
 
 
 
 

(1.2.43)

 

IV.

 

Results and Discussion

 

Results are obtained in terms of Nusselt 
number (Nu) at hot wall for various

 

parameters such as 
Cone angle (CA), Radius ratio (Rr) and Rayleigh number 
(Ra),

 

when heat is supplied to vertical conical annular.

 

The average Nusselt number (Nu) is given by
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Figure 1.4.1

 

:

 

Streamlines(left) and Isotherms(Right) for Ra=50, Rr=1

 

a) CA

 

=15 b) CA =45 c) CA

 

=75
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Figure (1.4.1) shows the evaluation of 
streamlines and isothermal lines inside the porous
medium for various values of Cone angle (CA) at Ra = 
50, Rr = 1. The magnitude of the streamlines decreases 
with the increase in Cone angles (CA). The thermal 
bounded layer thickness decreases with the increase of 
Cone angles (CA). It can be seen from streamlines and 
isothermal lines that the fluid movements shifts from 

lower portion of the hot wall to upper portion of the cold 
wall of the vertical annual cone with the increase of
Cone angles (CA). The circulation of the fluid covers 
almost whole domain at both lower and higher values of 
Cone angles (CA) at 15o. Where the relation inversely 
proportion exists between streamlines and Cone angles 
(CA). This trend is also observed with isothermal lines.

Figure  1.4.2 : Nu variation with Ra at hot surface for different values of CA at Rr=1

Figure (1.4.2) illustrates the effect of Rayleigh 
number (Ra) on the average Nusselt number (Nu). This 
Figure is obtained for value of Rr = 1. When cone angle 
is increased from 15 to 75, at the hot wall of the vertical 
annular cone, it is found that the average Nusselt
number (Nu) at Ra = 10 is increased by 23.3%. The 
corresponding increase in average Nusselt number (Nu) 
at Ra = 100 is found to be 26.3%. The difference 

between the average Nusselt number (Nu) at two 
different values of Cone angle (CA) increases with 
increase in Cone angle (CA). This is due to the reason 
that high cone angle produces high buoyancy force, 
which leads to increased fluid movements and thus 
increased the average Nusselt number (Nu) with 
Rayleigh number (Ra) as expected. This increase is
almost linear for Cone angles (CA) 15 & 45 degrees.
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Figure  1.4.3 : Streamlines(left) and Isotherms(: Right) for Ra=50, CA =15

a) Rr=1 b) Rr=5 c) Rr=10
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Figure  1.4.4 : Streamlines(left) and Isotherms(: Right) for Ra=100, CA =15

a) Rr=1 b) Rr=5 c) Rr=10
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Figure (1.4.4) shows the streamlines and 
isothermal lines inside the porous medium for various 
values of Radius ratio (Rr) at Ra = 50 and CA = 15. It 
can be observed that be horizontal scale changes for 
various values of Radius Ratio (Rr). The magnitude of
the streamlines decrease with the increase in Radius 
ratio (Rr). The thermal boundary layer thickness 

decreases with the increase in Radius ratio (Rr). It can 
be seen from the streamlines and isothermal lines that 
the fluid movement shifts from lower portion of the hot 
wall to the upper portion of the cold of the vertical 
annular cone with the increase in Radius ratio (Rr). The 
circulation of fluid covers almost whole domain at both 
lower and higher values of Radius ratio (Rr).

Figure 1.4.5 : Nu variation with Ra at hot surface for different values of Rr at CA = 75

Figure (1.4.5) shows the variation of average 
Nusselt number (Nu) at hot wall with respect to Rayleigh 
number (Ra). This Figure is obtained for the value of CA

= 75. When Radius ratio (Rr) is increased from 1 to 10 at 
the hot wall of the vertical annular cone, it is found that 
the average Nusselt number (Nu) at Ra = 10 is 
increased by 20%. The corresponding increases in 
average Nusselt number (Nu) at Ra = 100 is found to 
be 21%. The difference between the average Nusselt 
number (Nu) at two difference values of Radius ratio (Rr) 
increases with increase in Radius ratio (Rr). High Radius 

ratio (Rr) produces high buoyancy force, which leads to 
faster fluid movements and thus increased the average 
Nusselt number (Nu). i.e., for a given Rayleigh number 
(Ra) Nusselt number (Nu) increases with Radius ratio 
(Rr).

Figure (1.4.5) shows the streamlines and 
isothermal lines inside the porous medium for various 
values of Radius ratio (Rr) at Ra = 100 and CA = 75. 
Though the value of Rayleigh number increases (Ra = 
100), the streamlines and isothermal lines appears
almost same as in Figure (1.4.7).

        














Figure 1.4.6 : Nu variation with Rr at hot surface for different values of CA at Ra = 50



 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4.7 :

 

Nu variation with Rr

 

at hot surface for different values of CA

 

at Ra = 100

 

Figure (1.4.7) illustrates the effect of Radius 
ratio (Rr) on average Nusselt number

 

(Nu). This Figure 
corresponds to the value Ra = 50. It is seen that the 
average

 

Nusselt number (Nu) at hot wall of the vertical 
annular cone increases with increase

 

in Radius ratio (Rr). 
It is found that the average Nusselt number (Nu) at Rr

 

= 
1

 

increases by 9% when Cone angle (CA) increased 
from 15 to 45. the corresponding

 

increase in average 
Nusselt number (Nu) at Rr

 

= 10 is found to be 9.4%. 
This

 

difference becomes more prominent with the 
increase in Radius ratio (Rr) for higher

 

values of cone 
angle. For a given Radius ratio

 

(Rr) as the Cone angle 
(CA) increases,

 

the average Nusselt number (Nu) 
increases. The increase is marginal when the Cone

 

angle (CA) is increased from 15o

 

to 45o

 

when as we 
increases is substantial when we

 

Cone angle (CA) 
increases from 45o

 

to 75o.

 

Figure (1.4.10) illustrates the effect of Radius 
ratio (Rr) on the average Nusselt

 

number (Nu). This 
Figure corresponds to the value Ra = 100. It is seen that 
the

 

average Nusselt number (Nu) at hot wall of the 
vertical annular cone increases with

 

increase in Radius 
ratio (Rr). It is found that the average Nusselt number 
(Nu) at Rr

 

=

 

1 increased by 9.2% when Cone angle (CA) 
increased from 15 to 45. The

 

corresponding increase in 
average Nusselt number (Nu) at Rr

 

= 10 is found to be

 

9.8%. This difference between the average Nusselt 
number (Nu) at two different

 

value of Cone angle (CA) 
increases with increase Cone angle (CA). This difference

 

becomes more prominent with the increase in Radius 
ratio (Rr) for higher values of

 

Cone angle (CA).
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