

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH MATHEMATICS AND DECISION SCIENCES Volume 13 Issue 8 Version 1.0 Year 2013 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896

On the Maximal Ideals in the Banach Space of ⁺Quasicontinuous Functions

By V. Srinivasa Kumar

JNTUH College of Engineering India

Abstract - In this paper some interesting properties of ⁺Quasicontinuous functions are presented. The maximal ideals in the Banach space of bounded real valued ⁺Quasicontinuous functions defined on [0,1] are investigated.

Keywords : +quasicontinuity, maximal ideal, space of maximal ideals, weak* topology, compact hausdorff space, bounded linear functional, cliquish function.

GJSFR-F Classification : MSC 2010: 13A15, 26A15, 26A48, 46J10, 46J20

ON THE MAXIMAL IDEALS IN THE BANACH SPACE OF +QUASICONTINUOUS FUNCTIONS

Strictly as per the compliance and regulations of :

© 2013. V. Srinivasa Kumar. This is a research/review paper, distributed under the terms of the Creative Commons Attribution. Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 \mathbf{R}_{ef}

ш.

Borsik, J., Points of continuity, Quasicontinuity and Cliquishness, Pervento

edazoine, pp. 5 – 20, 1993

On the Maximal Ideals in the Banach Space of ⁺Quasicontinuous Functions

V. Srinivasa Kumar

Abstract : In this paper some interesting properties of ⁺Quasicontinuous functions are presented. The maximal ideals in the Banach space of bounded real valued ⁺Quasicontinuous functions defined on [0,1] are investigated. *Keywords :* ⁺*quasicontinuity, maximal ideal, space of maximal ideals, weak* topology, compact hausdorff space, bounded linear functional, cliquish function.*

I. INTRODUCTION

In this paper, it is shown that the set of all bounded real

⁺Quasicontinuous functions defined on [0,1] forms a commutative Banach algebra with identity under the supremum norm. The maximal ideals in this Banach algebra are identified to be of the form $M_x = \{f \mid f(x) = 0\}$ or

 $M_x^+ = \{ f \mid f(x+) = 0 \}$ for $x \in [0,1]$.

In what follows \mathbb{R} , *I* and *J* stand for the real line, the unit closed interval [0,1] and any closed and bounded interval [a,b] respectively.

a) Preliminaries

1.1 Definition: Let $f: J \to \mathbb{R}$. We define f(a-) = f(a) and f(b+) = f(b). We say that f(p+) exists at $p \in [a,b)$ and we write f(p+) = L, where $L \in \mathbb{R}$ if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $|f(x)-L| < \varepsilon \forall x \in (p, p+\delta) \subset J$ Similarly for $p \in (a,b]$ we write $f(p-) = l \in \mathbb{R}$ if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $|f(x)-l| < \varepsilon \forall x \in (p-\delta, p) \subset J$

1.2 Definition: A function f: J → R is said to be ⁺Quasicontinuous on J if
(i) f(p+) exists at every p∈[a,b)

Author : Assistant Professor, Department of Mathematics, JNTUH College of Engineering, JNTU, Hyderabad-500085, A.P., India. E-mail : srinu_vajha@yahoo.co.in

(ii) f(b-) = f(b)

1.3 Definition: A function $f: J \to \mathbb{R}$ is said to be cliquish at a point $p \in J$ if for every $\varepsilon > 0$ and every neighborhood U of p in J there exists a non-empty open set $W \subset U$ such that $|f(x) - f(y)| < \varepsilon \quad \forall x, y \in W$. We say that f is cliquish on J if it is cliquish at every point of J.

1.4 Definition: A mapping T from a linear space \mathscr{V} into a linear space \mathscr{W} is said to be linear if T(cx+dy) = cT(x) + dT(y) for all x and y in \mathscr{V} and constants c and d.

1.5 Definition: Let \mathscr{V} and \mathscr{W} be normed linear spaces. A linear map $T: \mathscr{V} \to \mathscr{W}$ is said to be bounded if there exists a real number $K \ge 0$ such that $||T(x)|| \le K ||x|| \quad \forall x \in \mathscr{V}$.

1.6 Definition: A linear functional on a vector space \mathscr{V} over a field \mathscr{K} is a linear mapping from \mathscr{V} to \mathscr{K} .

b) Properties of ⁺Quasicontinuous functions

2.1 Proposition: Let $c \in \mathbb{R}$. If $f: J \to \mathbb{R}$ and $g: J \to \mathbb{R}$ are

- ⁺Quasicontinuous on J then f + g, cf, fg, $f \lor g$ and $f \land g$ are
- ⁺Quasicontinuous on J, where $(f \lor g)(x) = \max \{f(x), g(x)\}$ and

 $(f \wedge g)(x) = \min\left\{f(x), g(x)\right\}.$

Proof: Let $p \in [a,b)$. (i) Let $\varepsilon > 0$ be given. Then there exist $\delta_1 > 0$ and

$$\delta_2 > 0$$
 such that $|f(x) - f(p+)| < \frac{\varepsilon}{2} \quad \forall x \in (p, p+\delta_1) \subset J$ and

$$|g(x)-g(p+)| < \frac{\varepsilon}{2} \quad \forall x \in (p, p+\delta_2) \subset J$$
. Put $\delta = \min\{\delta_1, \delta_2\}$.

Then
$$x \in (p, p+\delta) \implies |(f+g)(x) - (f(p+)+g(p+))| \le |f(x) - f(p+)| +$$

 $|g(x) - g(p+)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

Thus for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$\left| (f+g)(x) - (f(p+) + g(p+)) \right| < \varepsilon \quad \forall \quad x \in (p, p+\delta)^{-1}$$

Notes

Hence (f+g)(p+) exists and (f+g)(p+) = f(p+) + g(p+). Since f and g are continuous at b, f+g is continuous at b.

Hence f + g is ⁺Quasicontinuous on J.

(*ii*) If c = 0 then cf = O, where $O: J \to \mathbb{R}$ is defined by O(x) = 0.

Then cf is ⁺Quasicontinuous on J. Now suppose that $c \neq 0$.

Let $\varepsilon > 0$ be given. Then there exists a $\delta > 0$ such that

$$\begin{split} \left| f(x) - f(p+) \right| < &\frac{\varepsilon}{|c|} \quad \forall \ x \in (p, p+\delta) \subset J \\ \Rightarrow \quad \left| (cf)(x) - (cf)(p+) \right| < \varepsilon \quad \forall x \in (p, p+\delta) \end{split}$$

Hence (cf)(p+) exists and (cf)(p+) = c f(p+). Since f is continuous at b, cf is continuous at b. Hence cf is ⁺Quasicontinuous on J.

(*iii*) Since f and g are ⁺Quasicontinuous at p, for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $|f(x) - f(p+)| < \varepsilon$ and $|g(x) - g(p+)| < \varepsilon \quad \forall x \in (p, p+\delta) \subset J$ $\Rightarrow |(fg)(x) - f(p+)g(p+)| = |f(x)g(x) - f(x)g(p+) + f(x)g(p+) - f(p+)g(p+)|$ $\leq |f(x)||g(x) - g(p+)| + |g(p+)||f(x) - f(p+)|$ $< |f(x)|\varepsilon + |g(p+)|\varepsilon \quad \forall x \in (p, p+\delta)$ $= |f(x) - f(p+) + f(p+)|\varepsilon + |g(p+)|\varepsilon$ $< \varepsilon (\varepsilon + |f(p+)| + |g(p+)|) \quad \forall x \in (p, p+\delta).$

Hence (fg)(p+) exists and (fg)(p+) = f(p+)g(p+). Since f and g are continuous at b, fg is continuous at b.

Hence fg is ⁺Quasicontinuous on J.

It is easy to verify that $f \lor g$ and $f \land g$ are ⁺Quasicontinuous on J and we have the following.

 $(f \lor g)(p+) = \max \{f(p+), g(p+)\} \text{ and } (f \land g)(p+) = \min \{f(p+), g(p+)\}.$

2.2 Proposition: Let $f_n: J \to \mathbb{R}$, n = 1, 2, 3, ..., be ⁺Quasicontinuous on J and $f_n \to f$ uniformly on J. Then f is ⁺Quasicontinuous on J.

$R_{\rm ef}$

Notes

Proof: Let $p \in [a,b)$. Let $\mathcal{E} > 0$ be given. Then there exists an integer N such

that
$$n \ge N \implies |f_n(x) - f(x)| < \frac{\varepsilon}{2} \quad \forall x \in J$$
.

Since f_N is ⁺Quasicontinuous at p, there exists a $\delta > 0$ such that

$$\begin{split} \left| f_N(x) - f_N(p+) \right| < \varepsilon \ \forall \ x \in (p, p+\delta) \subset J \\ x \in (p, p+\delta) \implies \left| f(x) - f_N(p+) \right| = \left| f(x) - f_N(x) + f_N(x) - f_N(p+) \right| \\ \leq \left| f(x) - f_N(x) \right| + \left| f_N(x) - f_N(p+) \right| \\ < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

Thus for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$|f(x)-f_N(p+)| < \mathcal{E} \quad \forall x \in (p, p+\delta) \subset J.$$

Hence f(p+) exists for every $p \in [a,b)$.

Since each f_n is continuous at b and $f_n \to f$ uniformly on J, f is continuous at b. Hence f is ⁺Quasicontinuous on J.

2.3 Remark: It is not necessary that a ⁺Quasicontinuous function defined on a compact domain is bounded. It can be seen from the following example.

2.4 Example: Define
$$f:[-1,1] \to \mathbb{R}$$
 by $f(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ \frac{1}{x} & \text{if } -1 \le x < 0 \end{cases}$

This function f is ⁺Quasicontinuous on [-1,1] but it is not bounded.

2.5 Remark: We denote the set of all bounded real valued ⁺Quasicontinuous functions defined on *I* by the symbol $\mathscr{CC}^+(I)$. By the propositions 2.1 and 2.2 it follows that $\mathscr{CC}^+(I)$ forms a commutative Banach algebra with identity under the supremum norm, where the identity $e: I \to \mathbb{R}$ is defined by $e(x) = 1 \forall x \in I$.

2.6 Proposition: Let $f: J \to \mathbb{R}$ and $p \in J$. If f(p+) exists then f is cliquish at p.

Proof: Let $\varepsilon > 0$ be given and let U be a neighborhood of p in J. Then there exists a $\delta_1 > 0$ such that $(p - \delta_1, p + \delta_1) \cap J \subset U$.

Given f(p+) exists. So there exists $\delta_2 > 0$ such that

$$|f(x)-f(p+)| < \frac{\varepsilon}{2} \quad \forall x \in (p, p+\delta_2) \subset J.$$

Put $\delta = \min{\{\delta_1, \delta_2\}}$ and $W = (p, p + \delta)$.

Then for
$$x, y \in W$$
, we have $|f(x) - f(y)| = |f(x) - f(p+) + f(p+) - f(y)|$

$$\leq |f(x) - f(p+)| + |f(y) - f(p+)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus for every $\varepsilon > 0$ and every neighborhood U of p, there exists a non-empty open set $W \subset U$ such that $|f(x) - f(y)| < \varepsilon \quad \forall x, y \in W$

 \Rightarrow f is cliquish at p.

2.7 Remark: From the above proposition it is clear that every ⁺Quasicontinuous function is cliquish. The converse is not true as is evident from the following example.

2.8 Example: Define $f: [-1,1] \rightarrow \mathbb{R}$ as follows.

$$\mathbf{f}(x) = \begin{cases} \frac{1}{x} & \text{if } 0 < x \le 1\\ 0 & \text{if } -1 \le x \le 0 \end{cases}$$

Clearly f is cliquish at x = 0 but it is not ⁺Quasicontinuous.

2.9 Theorem [2]: If $f: J \to \mathbb{R}$ is ⁺Quasicontinuous then the set of points of discontinuity of f is atmost countable.

c) Maximal Ideals in $\mathcal{CC}^+(I)$

3.1 Definition: For each $x \in I$, we define the following.

(a)
$$M_x = \{ f \in \mathcal{QC}^+(I) / f(x) = 0 \}$$
 (b) $M_x^+ = \{ f \in \mathcal{QC}^+(I) / f(x+) = 0 \}.$

3.2 Proposition: For each $x \in I$, the sets M_x and M_x^+ are maximal ideals in the commutative Banach algebra $\mathcal{CC}^+(I)$.

Proof: For $x \in I$, define F_x and F_x^+ on $\mathcal{CC}^+(I)$ by $F_x(f) = f(x)$ and $F_x^+(f) = f(x+)$ for $f \in \mathcal{CC}^+(I)$.

$R_{\rm ef}$

Clearly F_x and F_x^+ are multiplicative linear functionals in the dual space \mathcal{B}_+ with kernels M_x and M_x^+ respectively. Hence M_x and M_x^+ are ideals. Moreover M_x and M_x^+ are maximal ideals in $\mathcal{CC}^+(I)$.

3.3 Proposition: If *M* is a maximal ideal in $\mathcal{CC}^+(I)$ then either $M = M_x$ or

 $M = M_x^+$ for some $x \in I$.

Proof: For $x \in I$, define F_x and F_x^+ on $\mathcal{CC}^+(I)$ by $F_x(f) = f(x)$ and $F_x^+(f) = f(x+)$ for $f \in \mathcal{CC}^+(I)$.

Clearly F_x and F_x^+ are multiplicative linear functionals in the dual space \mathcal{B}_+ with kernels M_x and M_x^+ respectively. Hence M_x and M_x^+ are ideals. Moreover M_x and M_x^+ are maximal ideals in $\mathcal{CC}^+(I)$.

3.3 Proposition: If *M* is a maximal ideal in $\mathcal{CC}^+(I)$ then either $M = M_x$ or $M = M_x^+$ for some $x \in I$.

Proof: Assume that $M \neq M_x$ and $M \neq M_x^+$ for any $x \in I$.

Then there exist f_x and g_x in M such that $f_x \notin M_x$ and $g_x \notin M_x^+$.

Define $\varphi_x: I \to \mathbb{R}$ by $\varphi_x(t) = f_x^2(t) + g_x^2(t+) \quad \forall t \in I$.

Clearly $\varphi_x \in \mathscr{CC}^+(I)$. Since φ_x is ⁺Quasicontinuous at x and $\varphi_x(x) > 0$, there exists $\delta_x > 0$ such that $\varphi_x(t) > 0 \quad \forall t \in [0, \delta_x)$ and for $x \neq 1$

We have $\varphi_1(t) = f_1^2(t) + g_1^2(t+) \quad \forall t \in I$.

Since φ_1 is continuous at 1 and $\varphi_1(1) > 0$ there exists a $\delta > 0$ such that

 $\varphi_1(t) > 0 \quad \forall t \in (1-\delta,1].$ Then $[0,1] = \left(\bigcup_{x \neq 1} [0,\delta_x)\right) \cup (1-\delta,1].$ Since *I* is compact,

there exists $x_1 \neq 1$ in *I* such that $[0,1] = [0,\delta_{x_1}) \bigcup (1-\delta,1]$.

Put $\varphi = \varphi_{x_1}^2 + \varphi_1^2$. Then $\varphi \in M$ and $\varphi(t) > 0 \ \forall t \in I \implies \frac{1}{\varphi} \in M$

Then $e = \varphi$. $\frac{1}{\varphi} \in M$. This is a contradiction.

Hence it follows that $M = M_x$ or $M = M_x^+$ for some $x \in I$.

Notes

3.4 Remark: Let \mathcal{M}_+ be the space of all maximal ideals in $\mathcal{CC}^+(I)$. Then \mathcal{M}_+ is a compact Hausdorff space with the weak^{*} topology on $\mathcal{CC}^+(I)$. Hence $\mathcal{M}_+^2 = \mathcal{M}_+ \times \mathcal{M}_+$ is a compact Hausdorff space with the product topology on $\mathcal{CC}^+(I) \times \mathcal{CC}^+(I)$.

3.5 Proposition: Let $\mathscr{A}^+ = \{(M_x, M_x^+) \mid x \in I\}$. Then there exists a one-to-one correspondence between I and \mathscr{A}^+ .

Proof: Define $\Psi^+: I \to \mathscr{A}^+$ by $\Psi^+(x) = (M_x, M_x^+)$.

Clearly Ψ^+ is surjective. If $0 \le s < t \le 1$, the function

$$\Psi_0^+(p) = \begin{cases} 0 & \text{if } t \le p \le 1\\ \frac{1}{x-t} & \text{if } 0 \le p < t \end{cases}$$

satisfies $\Psi_0^+ \in M_t$ and $\Psi_0^+ \notin M_s$.

$$\Rightarrow M_s \neq M_t$$
$$\Rightarrow (M_s, M_s^+) \neq (M_t, M_t^+)$$
$$\Rightarrow \Psi^+(s) \neq \Psi^+(t)$$

Hence Ψ^+ is 1-1.

Hence Ψ^+ is a one-to-one correspondence between I and \mathscr{A}^+ .

3.6 Remark: Each maximal ideal in $\mathscr{CC}^+(I)$ is the kernel of some multiplicative linear functional on $\mathscr{CC}^+(I)$, hence can be identified with a multiplicative linear functional on $\mathscr{CC}^+(I)$. Let M_x and M_x^+ be identified with the multiplicative linear functional F_x and F_x^+ respectively. So we can write

 $\mathscr{A}^{+} = \{(F_x, F_x^{+}) \mid x \in I\}.$

3.7 Proposition: \mathscr{A}^+ is closed in $\mathscr{B}^2_+ = \mathscr{B}_+ \times \mathscr{B}_+$ and hence compact.

Proof: We prove that \mathscr{A}^+ is closed. Compactness is an immediate consequence of the Banach – Alaoglu theorem [5]. If $F = (F_1, F_2) \in \mathscr{B}^2_+$, we define

 $||F|| = \max\{||F_1||, ||F_2||\}.$ Then \mathcal{B}_+^2 is a Banach space under the above norm. Let $S = \{F \mid ||F|| \le 1\} \subset \mathcal{B}_+^2.$ Put $\mathcal{A} = \mathscr{A}^+ \bigcup \{O\}.$ The $\mathscr{A}^+ \subset \mathscr{M}_+^2 \subset \mathscr{A} \subset S \subset \mathscr{B}_+^2$.

Define $\mathcal{P}^+: \mathcal{A} \to \mathbb{R}$ by

$$\mathcal{P}^{+}(F) = \begin{cases} 1 & \text{if } F \in \mathcal{A} \text{ and } F \neq O \\ 0 & \text{if } F = O \end{cases}$$

Notes

Since \mathcal{P}^+ is continuous, \mathscr{A}^+ and \mathcal{A} are closed in \mathcal{B}^2_+ .

d) Further Properties

4.1 Proposition: Fix $f \in \mathscr{CC}^+(I)$. Define $\psi_f : I \to \mathbb{R}^2$ by $\psi_f(x) = (f(x), f(x+))$, where $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ is considered with the norm $||(x_1, x_2)|| = \max\{|x_1|, |x_2|\}$. Then ψ_f is continuous on I if and only if f is continuous on I. **Proof:** Assume that ψ_f is continuous on I. Let $p \in I$ and let $\varepsilon > 0$ be given. Since ψ_f is continuous at p, there exists a $\delta > 0$ such that $||\psi_f(x) - \psi_f(p)|| < \varepsilon \, \forall \, x \in (p - \delta, p + \delta) \cap I$. $\Rightarrow ||(f(x), f(x+)) - (f(p), f(p+))|| < \varepsilon \, \forall \, x \in (p - \delta, p + \delta) \cap I$ $\Rightarrow ||(f(x) - f(p), f(x+) - f(p+))|| < \varepsilon \, \forall \, x \in (p - \delta, p + \delta) \cap I$ $\Rightarrow \max\{|f(x) - f(p)|, |f(x+) - f(p+)|\} < \varepsilon \, \forall \, x \in (p - \delta, p + \delta) \cap I$ $\Rightarrow ||f(x) - f(p)| < \varepsilon \, \forall \, x \in (p - \delta, p + \delta)$ $\Rightarrow f$ is continuous at p. Thus if ψ_f is continuous at p then f is continuous at p. Conversely suppose that f is continuous on I.

Then
$$\Psi_f(x) = (f(x), f(x)) \quad \forall x \in I$$
.

Hence Ψ_f continuous on I.

4.2 Proposition: Let $\mathbf{B} = \{ \Psi_f \mid f \in \mathscr{CC}^+(I) \}$. Define $F : \mathscr{CC}^+(I) \to \mathbf{B}$ by

 $F(f) = \psi_f$. Then *F* is a one-to-one continuous multiplicative linear mapping from $\mathcal{CC}^+(I)$ onto **B**.

© 2013 Global Journals Inc. (US)

Proof: Clearly $F : \mathscr{CC}^+(I) \to \mathbf{B}$ is surjective. For $f, g \in \mathscr{CC}^+(I)$, $\psi_{f+g}(x) = ((f+g)(x), (f+g)(x+))$ = (f(x), f(x+)) + (g(x), g(x+)) $= \psi_f(x) + \psi_g(x) \quad \forall \ x \in I$ Hence $\psi_{f+g} = \psi_f + \psi_g \quad \forall \ f, g \in \mathscr{CC}^+(I)$

$$\Rightarrow F(f+g) = F(f) + F(g) \quad \forall \quad f,g \in \mathscr{CC}^+(I).$$

Let $c \in \mathbb{R}$.

Ref

Then it is easy to see that $F(cf) = \psi_{cf} = c\psi_f = cF(f) \quad \forall f \in \mathscr{CC}^+(I)$.

Hence F is linear.

Also we have $\Psi_{fg}(x) = ((fg)(x), (fg)(x+))$

$$= (f(x), f(x+)) (g(x), g(x+))$$
$$= \psi_f(x) \psi_g(x) \quad \forall x \in I.$$

Hence $F(fg) = \psi_{fg} = \psi_f \psi_g = F(f)F(g)$.

 $\Rightarrow F \text{ is multiplicative now we prove that } F \text{ is } 1-1. \text{ For this, suppose that}$ F(f) = F(g) $\Rightarrow \quad \psi_f = \psi_g$ $\Rightarrow \quad \psi_f(x) = \psi_g(x) \quad \forall \ x \in I$ $\Rightarrow \quad (f(x), f(x+)) = (g(x), g(x+)) \quad \forall \ x \in I$ $\Rightarrow \quad f(x) = g(x) \quad \forall \ x \in I$ $\Rightarrow \quad f(x) = g(x) \quad \forall \ x \in I$ $\Rightarrow \quad f = g.$ Hence F is 1-1.Suppose that $f_n \in \mathscr{CC}^+(I), \ n = 1, 2, 3, ..., \text{ and } f \in \mathscr{CC}^+(I).$ Let $f_n \to f$ uniformly on I. Then for a given $\varepsilon > 0$ there exists an integer

N > 0 such that $|f_n(x) - f(x)| < \frac{\varepsilon}{3}$ for all $n \ge N$ and all $x \in I$.

Fix $x \in I$ and $n \ge N$. Since f_n is ⁺Quasicontinuous there exists a $\delta_1 > 0$ such that $|f_n(t) - f_n(x+)| < \frac{\varepsilon}{3} \quad \forall t \in (x, x + \delta_1)$.

Notes

Since f is also ⁺Quasicontinuous at x, there exists a $\delta_2 > 0$ such that

$$\left|f(t)-f(x+)\right| < \frac{\varepsilon}{3} \quad \forall \ t \in (x,x+\delta_2).$$

Put $\delta = \min{\{\delta_1, \delta_2\}}$. Then for $t \in (x, x + \delta)$ and $n \ge N$,

$$\begin{split} \left| f_n(x+) - f(x+) \right| &= \left| f_n(x+) - f_n(t) + f_n(t) - f(t) + f(t) - f(x+) \right| \\ &\leq \left| f_n(x+) - f_n(t) \right| + \left| f_n(t) - f(t) \right| + \left| f(t) - f(x+) \right| \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \,. \end{split}$$

Hence $|f_n(x+) - f(x+)| < \varepsilon$ for all $n \ge N$ and all $x \in I$.

$$n \ge N \implies ||F(f_n) - F(f)|| = ||\psi_{f_n} - \psi_f||$$
$$= \sup\{||\psi_{f_n}(x) - \psi_f(x)|| / x \in I\} < \varepsilon.$$

 $\Rightarrow F(f_n) \rightarrow F(f)$ uniformly on I.

Hence F is continuous on $\mathcal{CC}^+(I)$.

4.3 Proposition: The set $\mathbf{B} = \{ \psi_f \mid f \in \mathcal{CC}^+(I) \}$ is a commutative Banach

algebra with identity ψ_e under the norm defined by $\|\psi_f\| = \sup\{\|\psi_f(x)\| | x \in I\}$,

where $\Psi_e(x) = (1,1) \quad \forall x \in I$.

References Références Referencias

- Borsik, J., Points of continuity, Quasicontinuity and Cliquishness, Pervento in redazoine, pp. 5 – 20, 1993.
- Gal, I. S., on the Continuity and Limiting Values of functions, Proc. American Math. Soc, 86, pp. 321 – 334, 1957.
- 3. Goffman, C. And Pedrick, G., *First Course in Functional Analysis*, Prentice Hall of India Pvt., Ltd., New Delhi, 1974.
- Ramabhadrasarma, I. and Srinivasa kumar, V., on the Maximal Ideals in the Banach space of Quasicontinuous functions, International Review of Pure and Applied Mathematics, Vol. 6, No. 1, pp. 41 – 45, 2010.
- 5. Rudin, W., Functional Analysis, Tata McGraw Hill, New York, 1974.
- 6. Van Rooij, A. C. M. and Schikhof, W. H., A second Course on Real functions, Cambridge University Press, Cambridge, 1982.