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  In this paper, it is shown that the set of all bounded real 

Quasicontinuous+  functions defined on [0,1] forms a commutative Banach 

algebra with identity under the supremum norm.  The maximal ideals in this 

Banach algebra are identified to be of the form { }/ ( ) 0xM f f x= =  or 

{ }/ ( ) 0xM f f x+ = + =  for [0,1]x ∈ . 

 In what follows , I  and J  stand for the real line, the unit closed 

interval [0,1]  and any closed and bounded interval  [a,b]  respectively. 

1.1 Definition:  Let :f J → .  We define ( ) ( )f a f a− =  and ( ) ( )f b f b+ = .  

We say that  exists at [ , )p a b∈  and we write , where L∈  if 

for every  there exists a  such that ( ) ( , )f x L x p p Jε δ− < ∀ ∈ + ⊂

Similarly for ( , ]p a b∈  we write ∈  if for every  there exists a 

 such that ( ) ( , )f x l x p p Jε δ− < ∀ ∈ − ⊂

( )f p+ ( )f p L+ =

0ε > 0δ >

( )f p l− = 0ε >

0δ >

1.2 Definition:  A function :f J →  is said to be  on J  if  

(i)  exists at every   

Quasicontinuous++

( )f p+ [ , )p a b∈1
.
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(ii)   ( ) ( )f b f b− =    

1.3 Definition:   A function :f J →   is said to be cliquish at a point p J∈ if 

for every 0ε >  and every neighborhood U  of p  in J  there exists a non-empty 

open set W U⊂  such that ( ) ( ) ,f x f y x y Wε− < ∀ ∈ .  We say that f  is 

cliquish on J  if it is cliquish at every point of J . 

1.4 Definition:  A mapping T  from a linear space  into a linear space is 

said to be linear if  ( ) ( ) ( )T cx dy cT x dT y+ = +  for all x  and y  in  and 

constants c  and  d . 

1.5 Definition:  Let  and  be normed linear spaces.  A linear map 

:T →   is said to be bounded if there exists a real number   

such that  . 

1.6 Definition:  A linear functional on a vector space over a field  is a 

linear mapping from   to .   

2.1 Proposition:  Let .  If  :f J →  and :g J →  are 

 on J  then , , ,  and  are 

 on J , where { }( )( ) max ( ), ( )f g x f x g x∨ =  and 

{ }( )( ) min ( ), ( )f g x f x g x∧ = . 

Proof:  Let [ , )p a b∈ .    (i)   Let  be given.  Then there exist  and 

 such that 1( ) ( ) ( , )
2

f x f p x p p J
ε

δ− + < ∀ ∈ + ⊂  and

2( ) ( ) ( , )
2

g x g p x p p J
ε

δ− + < ∀ ∈ + ⊂ .  Put .  

Then    

                                                                                         

0K ≥

( )T x K x x≤ ∀ ∈

∈c

Quasicontinuous+ +f g cf fg ∨f g ∧f g

Quasicontinuous+

0ε > 1 0δ >

2 0δ >

1 2min{ , }δ δ δ=

( , )δ∈ +x p p ( )( ) ( ( ) ( ))+ − + + +f g x f p g p ( ) ( )≤ − +f x f p +

( ) ( )− +g x g p

b) Properties of +Quasicontinuous functions

                                                   

                                 . 

Thus for every  there exists a  such that    

                     . 

2 2

ε ε
ε< + =

0ε > 0δ >

( )( ) ( ( ) ( ))+ − + + +f g x f p g p ε< ∀ ( , )δ∈ +x p p
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Hence  exists and .  Since f  and g

are continuous at b , f g+  is continuous at b .  

Hence  is Quasicontinuous+  on J . 

(ii)   If   then , where :O J →  is defined by .   

Then  is Quasicontinuous+  on J .  Now suppose that . 

Let  be given.  Then there exists a  such that  

               ( ) ( ) ( , )f x f p x p p J
c

ε
δ− + < ∀ ∈ + ⊂

   

Hence  exists and . Since f  is continuous at b , 

cf  is continuous at b . Hence  is Quasicontinuous+  on J  . 

(iii)   Since  and  are Quasicontinuous+  at , for every  there exists a 

 such that  and  ( , )x p p Jδ∀ ∈ + ⊂   

                                           

                                                 

                                            

                                             . 

Hence  exists and .  Since f  and g  are 

continuous at b , fg  is continuous at b .  

Hence  is Quasicontinuous+  on J . 

( )( )+ +f g p ( )( ) ( ) ( )+ + = + + +f g p f p g p

+f g

0=c =cf O ( ) 0=O x

cf 0≠c

0ε > 0δ >

( )( ) ( )( ) ( , )ε δ− + < ∀ ∈ +cf x cf p x p p

( ) ( )+cf p ( ) ( ) ( )+ = +cf p c f p

cf

f g p 0ε >

0δ > ( ) ( ) ε− + <f x f p ( ) ( ) ε− + <g x g p

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )fg x f p g p f x g x f x g p f x g p f p g p− + + = − + + + − + +

( ) ( ) ( )≤ − +f x g x g p ( ) ( ) ( )+ + − +g p f x f p

< ( ) ( ) ( , )f x g p x p pε ε δ+ + ∀ ∈ +

= ( ) ( ) ( ) ( )ε ε− + + + + +f x f p f p g p

< ( )( ) ( )ε ε + + + +f p g p ( , )δ∀ ∈ +x p p

( )( )+fg p ( )( ) ( ) ( )+ = + +fg p f p g p

fg

It is easy to verify that  and  are Quasicontinuous+  on J and 

we have the following. 

  and  .   

2.2  Proposition: Let :nf J → ,  be  on J  and  

 uniformly on J . Then  is  on J . 

∨f g ∧f g

( )( ) max { ( ), ( )}f g p f p g p∨ + = + + ( )( ) min { ( ), ( )}f g p f p g p∧ + = + +

1, 2,3,...,n = Quasicontinuous+

nf f→ f Quasicontinuous+
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Proof:  Let [ , )p a b∈ . Let  be given.  Then there exists an integer  such 

that     x J∀ ∈ . 

Since  is  at , there exists a  such that  

                   ( ) ( ) ( , )N Nf x f p x p p Jε δ− + < ∀ ∈ + ⊂

        

                                                                

                                                               . 

Thus for every  there exists a  such that          

                      ( ) ( ) ( , ) .Nf x f p x p p Jε δ− + < ∀ ∈ + ⊂

Hence ( )f p+ exists for every [ , )p a b∈ .   

Since each nf  is continuous at b and  nf f→  uniformly on J , f  is continuous 

at b .  Hence  is  on J .    

2.3 Remark:  It is not necessary that a Quasicontinuous+ function defined on a 

compact domain is bounded.  It can be seen from the following example. 

2.4 Example: Define :[ 1,1]f − →  by  
1 0 1

( ) 1
1 0

if x
f x

if x
x

≤ ≤

=
− ≤ <

   

This function f  is  Quasicontinuous+ on [ 1,1]−  but it is not bounded.      

0ε > N

n N≥ ( ) ( )
2nf x f x
ε

− <

Nf Quasicontinuous++++ p 0δ >

( , )x p p δ∈ + ( ) ( ) ( ) ( ) ( ) ( )N N N Nf x f p f x f x f x f p− + = − + − +

( ) ( ) ( ) ( )N N Nf x f x f x f p≤ − + − +

2 2

ε ε
ε< + =

0ε > 0δ >

f Quasicontinuous++

2.5 Remark:  We denote the set of all bounded real valued Quasicontinuous+

functions defined on I  by the symbol ( )I+ .  By the propositions 2.1 and 2.2 it 

follows that ( )I++++ forms a commutative Banach algebra with identity under the 

supremum norm, where the identity : I →e  is defined by ( ) 1x x I= ∀ ∈e .  

2.6 Proposition:  Let :f J →  and p J∈ .  If   exists then  is cliquish 

at .   

( )f p+ f

p

Proof:  Let  be given and let  be a neighborhood of  in J . Then there 

exists a  such that 1 1( , )p p J Uδ δ− + ⊂ .   

0ε > U p

1 0δ >
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Given  exists.  So there exists  such that     

                              J⊂ . 

Put  and  . 

Then for , we have 

                                                                    

                                                                   . 

Thus for every  and every neighborhood  of , there exists a non-empty 

open set  such that  

 is cliquish at . 

2.7 Remark:  From the above proposition it is clear that every Quasicontinuous+

function is cliquish. The converse is not true as is evident from the following 

example. 

2.8 Example:  Define :  as follows.

   

( )f p+ 2 0δ >

2( ) ( ) ( , )
2

f x f p x p p
ε

δ− + < ∀ ∈ +

1 2min{ , }δ δ δ= ( , )W p p δ= +

,x y W∈ ( ) ( ) ( ) ( ) ( ) ( )f x f y f x f p f p f y− = − + + + −

( ) ( )f x f p≤ − + ( ) ( )f y f p+ − +

2 2

ε ε
ε< + =

0ε > U p

W U⊂ ( ) ( ) ,f x f y x y Wε− < ∀ ∈

f p

[ 1,1]− →

( )x
1

if 0 1

0 if 1 0

x
x

x

< ≤
=

− ≤ ≤

Clearly    is cliquish at 0x = but it is not  Quasicontinuous+  .   

2.9 Theorem [2]:  If :f J →  is    then the set of points of 

discontinuity of  is atmost countable. 

3.1 Definition:  For each ,   we define the following.  

(a)     (b)   . 

3.2 Proposition:  For each , the sets   and   are maximal ideals in

the commutative Banach algebra .

Proof:  For , define  and  on by    and   

  for  . 

Quasicontinuous++

f

( )I++++

∈x I

{xM f= ∈ ( )I++++ / ( ) 0}=f x {xM f+ = ∈ ( )I++++ / ( ) 0}+ =f x

∈x I xM xM +

( )I++++

x I∈ xF xF + ( )I++++ ( ) ( )xF f f x=

( ) ( )xF f f x+ = + f ∈ ( )I++++

c) Maximal Ideals in
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Clearly and  are multiplicative linear functionals in the dual space  with 

kernels   and  respectively.  Hence  and  are ideals.  Moreover  

and   are maximal ideals in .   

3.3 Proposition:  If M is a maximal ideal in ( )I++++ then either xM M=  or 

xM M +=  for some x I∈ . 

Proof:  For , define  and  on by    and   

  for  . 

Clearly and  are multiplicative linear functionals in the dual space  with 

kernels   and  respectively.  Hence  and  are ideals.  Moreover  

and   are maximal ideals in .   

3.3 Proposition:  If M is a maximal ideal in ( )I++++ then either xM M=  or 

xM M +=  for some x I∈ . 

Proof:  Assume that xM M≠ and xM M +≠  for any x I∈ .   

Then there exist xf  and  xg  in M  such that x xf M∉  and x xg M +∉ .  

xF xF +

+

xM xM +

xM xM +

xM xM + ( )I++++

x I∈ xF xF + ( )I++++ ( ) ( )xF f f x=

( ) ( )xF f f x+ = + f ∈ ( )I++++

xF xF +

+

xM xM +

xM xM +

xM xM + ( )I++++

Define :x Iϕ →  by 2 2( ) ( ) ( )x x xt f t g tϕ = + +   t I∀ ∈ . 

Clearly ( )x Iϕ ∈ ++++ .  Since xϕ  is Quasicontinuous+ at x  and  ( ) 0x xϕ > , there 

exists 0xδ >  such that ( ) 0x tϕ >   [0, )xt δ∀ ∈  and for 1x ≠

We have 2 2
1 1 1( ) ( ) ( )t f t g t t Iϕ = + + ∀ ∈ .   

Since 1ϕ is continuous at 1 and 1(1) 0ϕ >  there exists a 0δ >  such that 

1( ) 0 (1 ,1]t tϕ δ> ∀ ∈ − .  Then ( ) ( ]
1

[0,1] [0, ) 1 ,1x
x

δ δ
≠

= − .  Since I  is compact, 

there exists 1 1x ≠  in I  such that 
1

[0,1] [0, ) (1 ,1]xδ δ= − .                       

Put 
1

2 2
1xϕ ϕ ϕ= + .  Then Mϕ ∈  and  ( ) 0t t Iϕ > ∀ ∈

1
M

ϕ
∈

Then 
1

Mϕ
ϕ

∈e = . .  This is a contradiction.                        

Hence it follows that M M=  or M M +=  for some x I∈ .       
x x
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3.4 Remark:  Let  be the space of all maximal ideals in .  Then  

is a compact Hausdorff space with the weak* topology on .  Hence  

  is a compact Hausdorff space with the product topology on 

.        

3.5 Proposition:  Let  .  Then there exists a one-to-one 

correspondence between  and  . 

Proof:  Define      by   .   

Clearly   is surjective.  If  , the function  

satisfies   and  . 

    

+ ( )I++++

+

( )I++++

2
+ + +×

( ) ( )I I×+ ++ ++ ++ +

{( , ) / }x xM M x I+ += ∈

I +

: I+ +Ψ → ( ) ( , )x xx M M+ +Ψ =

+Ψ 0 1≤ < ≤s t

0

0 if     1
( ) 1

if     0

t p
p

p t
x t

+

≤ ≤

Ψ =
≤ <

−

0 tM+Ψ ∈ 0 sM+Ψ ∉

s tM M≠

    

    

Hence     is  1 – 1.    

Hence    is a one-to-one correspondence between   and  . 

3.6 Remark:  Each maximal ideal in is the kernel of some multiplicative 

linear functional on , hence can be identified with a multiplicative linear 

functional on .  Let  and   be identified with the multiplicative 

linear functional   and   respectively.  So we can write  

.    

3.7 Proposition:   is closed in    and hence compact.      

Proof:  We prove that   is closed.  Compactness is an immediate consequence 

of the Banach – Alaoglu theorem [5].  If  ,  we define  

( , ) ( , )s s t tM M M M+ +≠

( ) ( )s t+ +Ψ ≠ Ψ

+Ψ

+Ψ I +

( )I++++

( )I++++

( )I++++

xM xM +

xF xF +

{( , ) / }x xF F x I+ += ∈

+ 2
+ + += ×

+

2
1 2( , )F F F += ∈

.  Then  is a Banach space under the above norm. 

Let  .  Put  { }O+= .   

{ }1 2max ,F F F= 2
+

{ } 2/ 1S F F += ≤ ⊂
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The . 

Define   by 

Since   is continuous,   and    are closed in . 

4.1 Proposition:  Fix  f ∈ ( )I++++ .  Define 2:f Iψ →   by  

( ) ( ( ), ( ))f x f x f xψ = + , where 2 = ×  is considered with the norm 

2 2S+

+ +⊂ ⊂ ⊂ ⊂

:+ →

1 if and   
( )

0 if    

F F O
F

F O
+

∈ ≠
=

=

+ + 2
+

d) Further Properties

{ }1 2 1 2( , ) max ,x x x x= .  Then fψ  is continuous on I  if and only if f  is 

continuous on I . 

Proof:  Assume that fψ  is continuous on I .  Let  and let  be given.  

Since   is continuous at , there exists a 0δ >  such that

( ) ( ) ( , )f fx p x p p Iψ ψ ε δ δ− < ∀ ∈ − + . 

( ( ), ( )) ( ( ), ( ))f x f x f p f p+ − + ( , )x p pε δ δ< ∀ ∈ − + I

( ( ) ( ), ( ) ( )) ( , )f x f p f x f p x p pε δ δ− + − + < ∀ ∈ − + I

{ }max ( ) ( ) , ( ) ( ) ( , )f x f p f x f p x p pε δ δ− + − + < ∀ ∈ − + I

    is continuous at .   

Thus if  fψ  is continuous at  then  is continuous at .  

Conversely suppose that  is continuous on . 

Then ( ) ( ( ), ( ))f x f x f x x Iψ = ∀ ∈ .    

Hence fψ  continuous on I .  

p I∈ 0ε >

fψ p

( ) ( ) ( , )f x f p x p pε δ δ− < ∀ ∈ − +

f p

p f p

f I

4.2 Proposition:  Let  / ( )}f f Iψ ∈ ++++ .  Define ( )I++++   by  

.  Then  is a one-to-one continuous multiplicative linear mapping 

from ( )I++++ onto .   

:F →

( ) fF f ψ= F
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Proof:  Clearly  ( )I++++   is surjective.  

For ( )I++++ , ( ) (( )( ), ( )( ))f g x f g x f g xψ + = + + +   

                                               ( ( ), ( )) ( ( ), ( ))f x f x g x g x= + + +   

                                                   

Hence    ( )I++++

    ( )I++++ . 

Let .   

:F →

,f g ∈

( ) ( )f gx xψ ψ= + x I∀ ∈

f g f gψ ψ ψ+ = + ,f g∀ ∈

( ) ( ) ( )F f g F f F g+ = + ,f g∀ ∈

c ∈

Then it is easy to see that  ( )I++++ . 

Hence   is linear.   

Also we have ( ) (( )( ), ( )( ))fg x fg x fg xψ = +

                                  ( ( ), ( ))f x f x= + ( ( ), ( ))g x g x+

                                  ( ) ( )f gx x x Iψ ψ= ∀ ∈ . 

Hence  ( ) ( ) ( )fg f gF fg F f F gψ ψ ψ= = = . 

F  is multiplicative now we prove that  is 1 – 1.  For this, suppose that  

   

     

     

  ( ( ), ( )) ( ( ), ( ))f x f x g x g x x I+ = + ∀ ∈

      

. 

Hence  is 1 – 1. 

Suppose that  ( )I++++ ,   and  ( )I++++ . 

Let    uniformly on .  Then for a given  there exists an integer 

0N >  such that   for all  and all . 

( ) ( )cf fF cf c cF fψ ψ= = = f∀ ∈

F

F

( ) ( )F f F g=

f gψ ψ=

( ) ( )f gx xψ ψ= x I∀ ∈

( ) ( )f x g x= x I∀ ∈

f g=

F

nf ∈ 1, 2,3,...,n = f ∈

nf f→ I 0ε >

( ) ( )
3nf x f x
ε

− < n N≥ x I∈

Fix    and .  Since  is Quasicontinuous+  there exists a  such 

that . 

x I∈ n N≥ nf 1 0δ >

1( ) ( ) ( , )
3n nf t f x t x x
ε

δ− + < ∀ ∈ +
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F
)

)

Since  is also Quasicontinuous+  at , there exists a  such that    

                      .   

Put .  Then for  and ,

f x 2 0δ >

2( ) ( ) ( , )
3

f t f x t x x
ε

δ− + < ∀ ∈ +

1 2min{ , }δ δ δ= ( , )t x x δ∈ + n N≥

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n n n nf x f x f x f t f t f t f t f x+ − + = + − + − + − +

                           

                           . 

Hence   for all  and all . 

     

                                             { }sup ( ) ( ) /
nf fx x x Iψ ψ ε= − ∈ < . 

   uniformly on . 

Hence  is continuous on ( )I++++ .     

4.3 Proposition:  The set  { / ( )}f f Iψ= ∈ ++  is a commutative Banach 

algebra with identity  ψ e  under the norm defined by { }sup ( ) /f f x x Iψ ψ= ∈ , 

where ( ) (1,1)xψ =e   x I∀ ∈ . 

( ) ( ) ( ) ( ) ( ) ( )n n nf x f t f t f t f t f x≤ + − + − + − +

3 3 3

ε ε ε
ε< + + =

( ) ( )nf x f x ε+ − + < n N≥ x I∈

n N≥ ( ) ( )nF f F f−
nf fψ ψ= −

( ) ( )nF f F f→ I

F
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