On the Maximal Ideals in the Banach Space of +Quasicontinuous Functions

By V. Srinivasa Kumar
JNTUH College of Engineering India

Abstract - In this paper some interesting properties of +Quasicontinuous functions are presented. The maximal ideals in the Banach space of bounded real valued +Quasicontinuous functions defined on [0,1] are investigated.

Keywords : +quasicontinuity, maximal ideal, space of maximal ideals, weak* topology, compact hausdorff space, bounded linear functional, cliquish function.

On the Maximal Ideals in the Banach Space of \(^{+}\)Quasicontinuous Functions

V. Srinivasa Kumar

Abstract: In this paper some interesting properties of \(^{+}\)Quasicontinuous functions are presented. The maximal ideals in the Banach space of bounded real valued \(^{+}\)Quasicontinuous functions defined on [0,1] are investigated.

Keywords: \(^{+}\)Quasicontinuity, maximal ideal, space of maximal ideals, weak* topology, compact hausdorff space, bounded linear functional, cliquish function.

I. Introduction

In this paper, it is shown that the set of all bounded real \(^{+}\)Quasicontinuous functions defined on [0,1] forms a commutative Banach algebra with identity under the supremum norm. The maximal ideals in this Banach algebra are identified to be of the form \(M_x = \{ f / f(x) = 0 \} \) or \(M^+_x = \{ f / f(x+) = 0 \} \) for \(x \in [0,1] \).

In what follows \(\mathbb{R}, \mathbb{I}\) and \(J\) stand for the real line, the unit closed interval [0,1] and any closed and bounded interval \([a,b]\) respectively.

a) Preliminaries

1.1 Definition: Let \(f : J \to \mathbb{R}\). We define \(f(a-) = f(a)\) and \(f(b+) = f(b)\). We say that \(f(p+)\) exists at \(p \in [a,b]\) and we write \(f(p+) = L\), where \(L \in \mathbb{R}\) if for every \(\epsilon > 0\) there exists a \(\delta > 0\) such that \(|f(x) - L| < \epsilon \ \forall \ x \in (p, p+\delta) \subset J\)

Similarly for \(p \in (a,b]\) we write \(f(p-) = l \in \mathbb{R}\) if for every \(\epsilon > 0\) there exists a \(\delta > 0\) such that \(|f(x) - l| < \epsilon \ \forall \ x \in (p-\delta, p) \subset J\)

1.2 Definition: A function \(f : J \to \mathbb{R}\) is said to be \(^{+}\)Quasicontinuous on \(J\) if

(i) \(f(p+)\) exists at every \(p \in [a,b]\)
(ii) \(f(b-) = f(b) \)

1.3 Definition: A function \(f : J \to \mathbb{R} \) is said to be cliquish at a point \(p \in J \) if for every \(\varepsilon > 0 \) and every neighborhood \(U \) of \(p \) in \(J \) there exists a non-empty open set \(W \subset U \) such that \(|f(x) - f(y)| < \varepsilon \ \forall \ x, y \in W \). We say that \(f \) is cliquish on \(J \) if it is cliquish at every point of \(J \).

1.4 Definition: A mapping \(T \) from a linear space \(\mathcal{V} \) into a linear space \(\mathcal{W} \) is said to be linear if \(T(cx + dy) = cT(x) + dT(y) \) for all \(x \) and \(y \) in \(\mathcal{V} \) and constants \(c \) and \(d \).

1.5 Definition: Let \(\mathcal{V} \) and \(\mathcal{W} \) be normed linear spaces. A linear map \(T : \mathcal{V} \to \mathcal{W} \) is said to be bounded if there exists a real number \(K \geq 0 \) such that \(\|T(x)\| \leq K\|x\| \ \forall \ x \in \mathcal{V} \).

1.6 Definition: A linear functional on a vector space \(\mathcal{V} \) over a field \(\mathcal{K} \) is a linear mapping from \(\mathcal{V} \) to \(\mathcal{K} \).

b) Properties of \(^+\)Quasicontinuous functions

2.1 Proposition: Let \(c \in \mathbb{R} \). If \(f : J \to \mathbb{R} \) and \(g : J \to \mathbb{R} \) are

\(^+\)Quasicontinuous on \(J \) then \(f + g, cf, fg, f \lor g \) and \(f \land g \) are

\(^+\)Quasicontinuous on \(J \), where \((f \lor g)(x) = \max\{f(x), g(x)\} \) and \((f \land g)(x) = \min\{f(x), g(x)\} \).

Proof: Let \(p \in [a, b] \). (i) Let \(\varepsilon > 0 \) be given. Then there exist \(\delta_1 > 0 \) and \(\delta_2 > 0 \) such that \(|f(x) - f(p+)| < \frac{\varepsilon}{2} \ \forall \ x \in (p, p + \delta_1) \subset J \) and

\[|g(x) - g(p+)| < \frac{\varepsilon}{2} \ \forall \ x \in (p, p + \delta_2) \subset J . \]

Put \(\delta = \min\{\delta_1, \delta_2\} \).

Then \(x \in (p, p + \delta) \Rightarrow |(f + g)(x) - (f(p+) + g(p+))| \leq |f(x) - f(p+)| + |g(x) - g(p+)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \).

Thus for every \(\varepsilon > 0 \) there exists a \(\delta > 0 \) such that

\[|(f + g)(x) - (f(p+) + g(p+))| < \varepsilon \ \forall \ x \in (p, p + \delta) . \]
Hence \((f + g)(p+)\) exists and \((f + g)(p+) = f(p+) + g(p+)\). Since \(f\) and \(g\) are continuous at \(b\), \(f + g\) is continuous at \(b\).

Hence \(f + g\) is \(Q^{+}\)Quasicontinuous on \(J\).

(ii) If \(c = 0\) then \(cf = O\), where \(O : J \to \mathbb{R}\) is defined by \(O(x) = 0\).

Then \(cf\) is \(Q^{+}\)Quasicontinuous on \(J\). Now suppose that \(c \neq 0\).

Let \(\varepsilon > 0\) be given. Then there exists a \(\delta > 0\) such that

\[
|f(x) - f(p+)| < \frac{\varepsilon}{|c|} \quad \forall x \in (p, p+\delta) \subset J
\]

\[
\Rightarrow \quad |(cf)(x) - (cf)(p+)| < \varepsilon \quad \forall x \in (p, p+\delta)
\]

Hence \((cf)(p+)\) exists and \((cf)(p+) = c f(p+)\). Since \(f\) is continuous at \(b\), \(cf\) is continuous at \(b\). Hence \(cf\) is \(Q^{+}\)Quasicontinuous on \(J\).

(iii) Since \(f\) and \(g\) are \(Q^{+}\)Quasicontinuous at \(p\), for every \(\varepsilon > 0\) there exists a \(\delta > 0\) such that

\[
|f(x) - f(p+)| < \varepsilon \quad \text{and} \quad |g(x) - g(p+)| < \varepsilon \quad \forall x \in (p, p+\delta) \subset J
\]

\[
\Rightarrow \quad |(fg)(x) - f(p+)g(p+)| = |f(x)g(x) - f(x)g(p+) + f(x)g(p+) - f(p+)g(p+)|
\]

\[
\leq \left|f(x)\right| |g(x) - g(p+)| + |g(p+)| \left|f(x) - f(p+)\right|
\]

\[
< \left|f(x)\right| \varepsilon + |g(p+)| \varepsilon \quad \forall x \in (p, p+\delta)
\]

\[
= \left|f(x) - f(p+) + f(p+)|\varepsilon + |g(p+)|\varepsilon
\]

\[
< \varepsilon \left(\varepsilon + |f(p+)| + |g(p+)|\right) \quad \forall x \in (p, p+\delta).
\]

Hence \((fg)(p+)\) exists and \((fg)(p+) = f(p+)g(p+)\). Since \(f\) and \(g\) are continuous at \(b\), \(fg\) is continuous at \(b\).

Hence \(fg\) is \(Q^{+}\)Quasicontinuous on \(J\).

It is easy to verify that \(f \vee g\) and \(f \wedge g\) are \(Q^{+}\)Quasicontinuous on \(J\) and we have the following.

\((f \vee g)(p+) = \max \{f(p+), g(p+)\}\) and \((f \wedge g)(p+) = \min \{f(p+), g(p+)\}\).

2.2 **Proposition:** Let \(f_n : J \to \mathbb{R}\), \(n = 1, 2, 3, \ldots\), be \(Q^{+}\)Quasicontinuous on \(J\) and \(f_n \to f\) uniformly on \(J\). Then \(f\) is \(Q^{+}\)Quasicontinuous on \(J\).
Proof: Let \(p \in [a, b) \). Let \(\varepsilon > 0 \) be given. Then there exists an integer \(N \) such that \(n \geq N \Rightarrow |f_n(x) - f(x)| < \frac{\varepsilon}{2} \quad \forall \ x \in J \).

Since \(f_N \) is \(^+ \) Quasicontinuous at \(p \), there exists a \(\delta > 0 \) such that
\[
|x - p| < \delta \quad \Rightarrow \quad |f(x) - f_N(p)| < \varepsilon \quad \forall \ x \in (p, p + \delta) \subset J.
\]

Thus for every \(\varepsilon > 0 \) there exists a \(\delta > 0 \) such that
\[
|f(x) - f_N(p)| < \varepsilon \quad \forall \ x \in (p, p + \delta) \subset J.
\]
Hence \(f(p+) \) exists for every \(p \in [a, b) \).

Since each \(f_n \) is continuous at \(b \) and \(f_n \to f \) uniformly on \(J \), \(f \) is continuous at \(b \). Hence \(f \) is \(^+ \) Quasicontinuous on \(J \).

2.3 Remark: It is not necessary that a \(^+ \) Quasicontinuous function defined on a compact domain is bounded. It can be seen from the following example.

2.4 Example: Define \(f : [-1,1] \to \mathbb{R} \) by \(f(x) = \begin{cases} 1 & \text{if} \quad 0 \leq x \leq 1 \\ x & \text{if} \quad -1 \leq x < 0 \end{cases} \)

This function \(f \) is \(^+ \) Quasicontinuous on \([-1,1] \) but it is not bounded.

2.5 Remark: We denote the set of all bounded real valued \(^+ \) Quasicontinuous functions defined on \(I \) by the symbol \(\mathcal{CE}^+(I) \). By the propositions 2.1 and 2.2 it follows that \(\mathcal{CE}^+(I) \) forms a commutative Banach algebra with identity under the supremum norm, where the identity \(e : I \to \mathbb{R} \) is defined by \(e(x) = 1 \quad \forall \ x \in I \).

2.6 Proposition: Let \(f : J \to \mathbb{R} \) and \(p \in J \). If \(f(p+) \) exists then \(f \) is cliquish at \(p \).

Proof: Let \(\varepsilon > 0 \) be given and let \(U \) be a neighborhood of \(p \) in \(J \). Then there exists a \(\delta_i > 0 \) such that \((p - \delta_i, p + \delta_i) \cap J \subset U \).
Given \(f(p+) \) exists. So there exists \(\delta_2 > 0 \) such that
\[
|f(x) - f(p+)| < \frac{\varepsilon}{2} \quad \forall \ x \in (p, p + \delta_2) \subset J.
\]

Put \(\delta = \min\{\delta_1, \delta_2\} \) and \(W = (p, p + \delta) \).

Then for \(x, y \in W \), we have
\[
|f(x) - f(y)| = |f(x) - f(p+) + f(p+) - f(y)|
\leq |f(x) - f(p+)| + |f(y) - f(p+)|
\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

Thus for every \(\varepsilon > 0 \) and every neighborhood \(U \) of \(p \), there exists a non-empty open set \(W \subset U \) such that \(|f(x) - f(y)| < \varepsilon \quad \forall \ x, y \in W \)

\(\Rightarrow f \) is cliquish at \(p \).

2.7 Remark: From the above proposition it is clear that every \(^+ \)Quasicontinuous function is cliquish. The converse is not true as is evident from the following example.

2.8 Example: Define \(f : [-1,1] \to \mathbb{R} \) as follows.
\[
f(x) = \begin{cases}
1 & \text{if } 0 < x \leq 1 \\
x & \text{if } -1 \leq x \leq 0 \\
0 & \text{if } x = 0
\end{cases}
\]

Clearly \(f \) is cliquish at \(x = 0 \) but it is not \(^+ \)Quasicontinuous.

2.9 Theorem [2]: If \(f : J \to \mathbb{R} \) is \(^+ \)Quasicontinuous then the set of points of discontinuity of \(f \) is atmost countable.

c) **Maximal Ideals in \(\mathcal{C}^+(I) \)**

3.1 Definition: For each \(x \in I \), we define the following.
(a) \(M_x = \{f \in \mathcal{C}^+(I) \mid f(x) = 0\} \) (b) \(M_x^+ = \{f \in \mathcal{C}^+(I) \mid f(x+) = 0\} \)

3.2 Proposition: For each \(x \in I \), the sets \(M_x \) and \(M_x^+ \) are maximal ideals in the commutative Banach algebra \(\mathcal{C}^+(I) \).

Proof: For \(x \in I \), define \(F_x \) and \(F_x^+ \) on \(\mathcal{C}^+(I) \) by \(F_x(f) = f(x) \) and \(F_x^+(f) = f(x+) \) for \(f \in \mathcal{C}^+(I) \).
Clearly F_x and F_x^+ are multiplicative linear functionals in the dual space \mathcal{B}_x with kernels M_x and M_x^+ respectively. Hence M_x and M_x^+ are ideals. Moreover M_x and M_x^+ are maximal ideals in $\mathcal{C}^+(I)$.

3.3 Proposition: If M is a maximal ideal in $\mathcal{C}^+(I)$ then either $M = M_x$ or $M = M_x^+$ for some $x \in I$.

Proof: For $x \in I$, define F_x and F_x^+ on $\mathcal{C}^+(I)$ by $F_x(f) = f(x)$ and $F_x^+(f) = f(x^+)$ for $f \in \mathcal{C}^+(I)$.

Clearly F_x and F_x^+ are multiplicative linear functionals in the dual space \mathcal{B}_x with kernels M_x and M_x^+ respectively. Hence M_x and M_x^+ are ideals. Moreover M_x and M_x^+ are maximal ideals in $\mathcal{C}^+(I)$.

3.3 Proposition: If M is a maximal ideal in $\mathcal{C}^+(I)$ then either $M = M_x$ or $M = M_x^+$ for some $x \in I$.

Proof: Assume that $M \neq M_x$ and $M \neq M_x^+$ for any $x \in I$.

Then there exist f_x and g_x in M such that $f_x \notin M_x$ and $g_x \notin M_x^+$.

Define $\varphi_x : I \to \mathbb{R}$ by $\varphi_x(t) = f_x^2(t) + g_x^2(t^+) \ \forall \ t \in I$.

Clearly $\varphi_x \in \mathcal{C}^+(I)$. Since φ_x is $^+$ Quasicontinuous at x and $\varphi_x(x) > 0$, there exists $\delta_x > 0$ such that $\varphi_x(t) > 0 \ \forall \ t \in [0, \delta_x)$ and for $x \neq 1$

We have $\varphi_1(t) = f_1^2(t) + g_1^2(t^+) \ \forall \ t \in I$.

Since φ_1 is continuous at 1 and $\varphi_1(1) > 0$ there exists a $\delta > 0$ such that $\varphi_1(t) > 0 \ \forall \ t \in (1 - \delta, 1]$. Then $[0, 1] = \bigcup_{x \neq 1} [0, \delta_x) \cup (1 - \delta, 1]$. Since I is compact, there exists $x_i \neq 1$ in I such that $[0, 1] = [0, \delta_{x_i}) \cup (1 - \delta_i, 1]$.

Put $\varphi = \varphi_n^2 + \varphi_1^2$. Then $\varphi \in M$ and $\varphi(t) > 0 \ \forall \ t \in I \Rightarrow \frac{1}{\varphi} \in M$.

Then $e = \varphi \cdot \frac{1}{\varphi} \in M$. This is a contradiction.

Hence it follows that $M = M_x$ or $M = M_x^+$ for some $x \in I$.
3.4 Remark: Let \(\mathcal{M}_x \) be the space of all maximal ideals in \(\mathcal{C}^* \). Then \(\mathcal{M}_x \) is a compact Hausdorff space with the weak* topology on \(\mathcal{C}^* \). Hence \(\mathcal{M}_x^2 = \mathcal{M}_x \times \mathcal{M}_x \) is a compact Hausdorff space with the product topology on \(\mathcal{C}^* \times \mathcal{C}^* \).

3.5 Proposition: Let \(\mathcal{A}^+ = \{(M_x, M^+_x) / x \in I\} \). Then there exists a one-to-one correspondence between \(I \) and \(\mathcal{A}^+ \).

Proof: Define \(\Psi^+: I \rightarrow \mathcal{A}^+ \) by \(\Psi^+(x) = (M_x, M^+_x) \).

Clearly \(\Psi^+ \) is surjective. If \(0 \leq s < t \leq 1 \), the function

\[
\Psi^+_0(p) = \begin{cases}
0 & \text{if } t \leq p \leq 1 \\
1 & \text{if } 0 \leq p < t \\
x - t & \text{if } \Psi^+(s) \neq \Psi^+(t)
\end{cases}
\]

satisfies \(\Psi^+_0 \in M_t \) and \(\Psi^+_0 \notin M_s \).

\(\Rightarrow \) \(M_s \neq M_t \)

\(\Rightarrow \) \((M_x, M^+_x) \neq (M_t, M^+_t) \)

\(\Rightarrow \) \(\Psi^+(s) \neq \Psi^+(t) \)

Hence \(\Psi^+ \) is 1-1.

Hence \(\Psi^+ \) is a one-to-one correspondence between \(I \) and \(\mathcal{A}^+ \).

3.6 Remark: Each maximal ideal in \(\mathcal{C}^* \) is the kernel of some multiplicative linear functional on \(\mathcal{C}^* \), hence can be identified with a multiplicative linear functional on \(\mathcal{C}^* \). Let \(M_x \) and \(M^+_x \) be identified with the multiplicative linear functional \(F_x \) and \(F^+_x \) respectively. So we can write

\(\mathcal{A}^+ = \{(F_x, F^+_x) / x \in I\} \).

3.7 Proposition: \(\mathcal{A}^+ \) is closed in \(\mathcal{B}^2 = \mathcal{B}_x \times \mathcal{B}_x \) and hence compact.

Proof: We prove that \(\mathcal{A}^+ \) is closed. Compactness is an immediate consequence of the Banach – Alaoglu theorem [5]. If \(F = (F_x, F^+_x) \in \mathcal{B}^2 \), we define

\[
\|F\| = \max \{|\|F_x\|, |\|F^+_x\|\}
\]

Then \(\mathcal{B}^2 \) is a Banach space under the above norm.

Let \(S = \{F / \|F\| \leq 1\} \subset \mathcal{B}^2 \). Put \(\mathcal{A} = \mathcal{A}^+ \cup \{O\} \).
The \(\mathcal{A}^+ \subset \mathcal{M}_+^2 \subset \mathcal{A} \subset S \subset B_+^2 \).

Define \(\mathcal{P}^+: \mathcal{A} \rightarrow \mathbb{R} \) by
\[
\mathcal{P}^+(F) = \begin{cases}
1 & \text{if } F \in \mathcal{A} \text{ and } F \neq O \\
0 & \text{if } F = O
\end{cases}
\]

Since \(\mathcal{P}^+ \) is continuous, \(\mathcal{A}^+ \) and \(\mathcal{A} \) are closed in \(B_+^2 \).

d) Further Properties

4.1 Proposition: Fix \(f \in \mathcal{CE}^+(I) \). Define \(\psi_f : I \rightarrow \mathbb{R}^2 \) by
\[
\psi_f(x) = (f(x), f(x^+)), \quad \text{where } \mathbb{R}^2 = \mathbb{R} \times \mathbb{R} \text{ is considered with the norm }
\]

\[
\|(x_1, x_2)\| = \max \{|x_1|, |x_2|\}.
\]
Then \(\psi_f \) is continuous on \(I \) if and only if \(f \) is continuous on \(I \).

\[\text{Proof:}\] Assume that \(\psi_f \) is continuous on \(I \). Let \(p \in I \) and let \(\varepsilon > 0 \) be given.

Since \(\psi_f \) is continuous at \(p \), there exists a \(\delta > 0 \) such that
\[
\|\psi_f(x) - \psi_f(p)\| < \varepsilon \quad \forall \ x \in (p - \delta, p + \delta) \cap I.
\]
\[
\Rightarrow \|f(x) - f(p)\| < \varepsilon \quad \forall \ x \in (p - \delta, p + \delta) \cap I
\]
\[
\Rightarrow \|f(x^+) - f(p)\| < \varepsilon \quad \forall \ x \in (p - \delta, p + \delta) \cap I
\]
\[
\Rightarrow \max \{|f(x) - f(p)|, |f(x^+) - f(p)|\} < \varepsilon \quad \forall \ x \in (p - \delta, p + \delta) \cap I
\]
\[
\Rightarrow |f(x) - f(p)| < \varepsilon \quad \forall \ x \in (p - \delta, p + \delta)
\]
\[
\Rightarrow f \text{ is continuous at } p.
\]

Thus if \(\psi_f \) is continuous at \(p \) then \(f \) is continuous at \(p \).

Conversely suppose that \(f \) is continuous on \(I \).

Then \(\psi_f(x) = (f(x), f(x)) \quad \forall \ x \in I \).

Hence \(\psi_f \) continuous on \(I \).

4.2 Proposition: Let \(B = \{\psi_f / f \in \mathcal{CE}^+(I)\} \). Define \(F : \mathcal{CE}^+(I) \rightarrow B \) by
\[
F(f) = \psi_f.
\]
Then \(F \) is a one-to-one continuous multiplicative linear mapping from \(\mathcal{CE}^+(I) \) onto \(B \).
Proof: Clearly $F : \mathcal{C}^+(I) \to \mathcal{B}$ is surjective.

For $f, g \in \mathcal{C}^+(I)$, $\psi_{f+g}(x) = ((f + g)(x), (f + g)(x+))$

$= (f(x), f(x+)) + (g(x), g(x+))$

$= \psi_f(x) + \psi_g(x) \quad \forall \ x \in I$

Hence $\psi_{f+g} = \psi_f + \psi_g \quad \forall \ f, g \in \mathcal{C}^+(I)$

$\Rightarrow F(f + g) = F(f) + F(g) \quad \forall \ f, g \in \mathcal{C}^+(I)$.

Let $c \in \mathbb{R}$.

Then it is easy to see that $F(cf) = \psi_{cf} = c\psi_f = cF(f) \quad \forall \ f \in \mathcal{C}^+(I)$.

Hence F is linear.

Also we have $\psi_{fg}(x) = ((fg)(x), (fg)(x+))$

$= (f(x), f(x+)) (g(x), g(x+))$

$= \psi_f(x) \psi_g(x) \quad \forall \ x \in I$.

Hence $F(fg) = \psi_{fg} = \psi_f \psi_g = F(f)F(g)$.

$\Rightarrow F$ is multiplicative now we prove that F is $1 - 1$. For this, suppose that $F(f) = F(g)$

$\Rightarrow \psi_f = \psi_g$

$\Rightarrow \psi_f(x) = \psi_g(x) \quad \forall \ x \in I$

$\Rightarrow (f(x), f(x+)) = (g(x), g(x+)) \quad \forall \ x \in I$

$\Rightarrow f(x) = g(x) \quad \forall \ x \in I$

$\Rightarrow f = g$.

Hence F is $1 - 1$.

Suppose that $f_n \in \mathcal{C}^+(I)$, $n = 1, 2, 3, \ldots$, and $f \in \mathcal{C}^+(I)$.

Let $f_n \to f$ uniformly on I. Then for a given $\varepsilon > 0$ there exists an integer $N > 0$ such that $|f_n(x) - f(x)| < \frac{\varepsilon}{3}$ for all $n \geq N$ and all $x \in I$.

Fix $x \in I$ and $n \geq N$. Since f_n is $+\text{Quasicontinuous}$ there exists a $\delta > 0$ such that $|f_n(t) - f_n(x+)| < \frac{\varepsilon}{3}$ $\forall \ t \in (x, x + \delta)$.
Since \(f \) is also \(+\) Quasicontinuous at \(x \), there exists a \(\delta > 0 \) such that
\[
|f(t) - f(x+)| < \frac{\varepsilon}{3} \quad \forall \ t \in (x, x + \delta).
\]
Put \(\delta = \min\{\delta_1, \delta_2\} \). Then for \(t \in (x, x + \delta) \) and \(n \geq N \),
\[
|f_n(x+) - f(x+)| = |f_n(x+) - f_n(t) + f_n(t) - f(t) + f(t) - f(x+)|
\leq |f_n(x+) - f_n(t)| + |f_n(t) - f(t)| + |f(t) - f(x+)|
< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.
\]
Hence \(|f_n(x+) - f(x+)| < \varepsilon \) for all \(n \geq N \) and all \(x \in I \).

\[
n \geq N \implies \|F(f_n) - F(f)\| = \|\psi_{f_n} - \psi_f\|
= \sup\{\|\psi_{f_n}(x) - \psi_f(x)\| / x \in I\} < \varepsilon.
\]

\(\Rightarrow F(f_n) \to F(f) \) uniformly on \(I \).

Hence \(F \) is continuous on \(\mathcal{C}^+(I) \).

4.3 Proposition: The set \(\mathcal{B} = \{\psi_f / f \in \mathcal{C}^+(I)\} \) is a commutative Banach
algebra with identity \(\psi_e \) under the norm defined by \(\|\psi_f\| = \sup\{\|\psi_f(x)\| / x \in I\} \).

where \(\psi_e(x) = (1,1) \quad \forall \ x \in I \).

References