

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH MATHEMATICS AND DECISION SCIENCES Volume 13 Issue 11 Version 1.0 Year 2013 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Con-s-k-EP Generalized Inverses

By G. Ramesh & B. K. N. Muthugobal

Govt. Arts College(Autonomous), India

Abstract- In this paper, equivalent conditions for various generalized inverses of a con-s-k-EPr matrix to be con-s-k-EPr are determined. Generalized inverses belonging to the sets A $\{1,2\}$, A $\{1,2,3\}$ and A $\{1,2,4\}$ of a con-s-k-EPr matrix A are characterized.

Keywords: Con-s-k-EP matrix, generalized inverse.

GJSFR-F Classification : MSC 2010: 15A09

Strictly as per the compliance and regulations of:

© 2013. G. Ramesh & B. K. N. Muthugobal. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 \mathbf{R}_{ef}

Its

"Generalized Inverse of Matrices and

Applications", Wiley and Sons, New York, 1971

S.K.,

and Mitra,

C.R.

Rao,

i,

Con-s-k-EP Generalized Inverses

G. Ramesh $^{\alpha}$ & B. K. N. Muthugobal $^{\sigma}$

Abstract- In this paper, equivalent conditions for various generalized inverses of a con-s-k-EPr matrix to be con-s-k-EPr are determined. Generalized inverses belonging to the sets A{1,2}, A{1,2,3} and A{1,2,4} of a con-s-k-EPr matrix *A* are characterized.

Keywords: Con-s-k-EP matrix, generalized inverse.

I. INTRODUCTION

Let c_{nxn} be the space of nxn complex matrices of order n. let C_n be the space of all complex n tuples. For $A \epsilon c_{nxn}$. Let $\overline{A}, A^T, A^*, A^S, \overline{A}^S, A^{\dagger}$, R(A), N(A) and $\rho(A)$ denote the conjugate, transpose, conjugate transpose, secondary transpose, conjugate secondary transpose, Moore Penrose inverse range space, null space and rank of A respectively. A solution X of the equation AXA = A is called generalized inverse of A and is denoted by A^- . If $A \epsilon c_{nxn}$ then the unique solution of the equations A XA = A, XAX = X, $[AX]^* = AX$, $(XA)^* = XA$ [2] is called the Moore-Penrose inverse of A and is denoted by A^{\dagger} . A matrix A is called con-s-k-EP_r if (A)=r and N(A) = N(A^TVK) (or) R(A)=R(KVA^T). Throughout this paper let "k" be the fixed product of disjoint transposition in $S_n = \{ 1, 2, ..., n \}$ and k be the associated permutation matrix.

Let us define the function $\mathbf{k}(\mathbf{x}) = (x_{k(1)}, x_{k(2)}, \dots, x_{k(n)})$. A matrix $\mathbf{A} = (a_{ij}) \epsilon c_{nxn}$ is s-k-symmetric if $a_{ij} = a_{n-k(j)+1,n-k(i)+1}$ for i, j = 1,2,....n. A matrix $\mathbf{A} \epsilon c_{nxn}$

Author a : Associate Professor, Ramanujan Research Centre, Department of Mathematics, Govt. Arts College(Autonomous), Kumbakonam-612 001, India.

Author 5: Research Scholar, Ramanujan Research Centre, Department of Mathematics, Govt. Arts College(Autonomous), Kumbakonam-612 001, India. e-mail: bkn.math@gmail.com

is said to be Con-s-k-EP if it satisfies the condition $A_x = 0 \iff A^s \And (x) = 0$ or equivalently N(A) =N(A^T VK). In addition to that A is con-s-k-EP $\iff KVA$ is con-EP or AVK is con-EP and A is con-s-k-EP $\ll A^T$ is con-s-k-EP_r moreover A is said to be Con-s-k-EP_r if A is con-s-k-EP and of rank r. For further properties of con-s-k-EP matrices one may refer [1].

In **Theorem (2.11) [1]**, it is shown that *A* is con-s-k-EP_r, if and only if A^{\dagger} is con-s-k-EP_r. Thus the con-s-k-EP_r property of complex matrices is preserved for its Moore-Penrose inverses. However, all other generalized inverses of a con-s-k-EP_r

matrix need not be con-s-k-EP_r. For instance, let $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ for k=(1,2)(3), the

associated permutation matrix be $K = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and $V = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. Here, A is

con-s-k-EP₁. But $A^- = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ is a inverse of A which is not con-s-k-EP₁.

A generalized inverse $A^{=} \in A\{1,2\}$ is shown to be con-s-k-EP_r whenever *A* is con-s-k-EP_r under certain conditions in the following way.

Theorem 2.1

Let $A \in C_{n \times n}$, $X \in A\{1,2\}$ and AX, XA are con-s-k-EP_r matrices. Then A is con-s-k-EP_r $\Leftrightarrow X$ is con-s-k-EP_r.

Proof

Since AX and XA are con-s-k-EP_r, by **Theorem (2.11) [1]**, we have $R(AX) = R(KV(AX)^T)$ and $R(KV(XA)^T) = R(XA)$. Since $X \in A\{1,2\}$ we have AXA = A, XAX = X.

matrices

Applications, Vol. 5, No.1, 2011, 353 -

364

Sciences

and

Engineering

Now,

$$R(A) = R(AX)$$
$$= R(KV(AX)^{T})$$
$$= R(KVX^{T}A^{T})$$
$$= R(KVX^{T})$$

 $N_{\rm otes}$

$$R(KVAT) = R(KVATXT)$$
$$= R(KV(XA)T)$$
$$= R(XA)$$
$$= R(X)$$

Now, A is con-s-k-EP_r $\Leftrightarrow R(A) = R(KVA^T)$ and (A) = r $\Leftrightarrow R(KVX^T) = R(X)$ and $(A) = (X) = r \Leftrightarrow X$ is con-s-k-EP_r.

Remark 2.2

In the above Theorem, the conditions that both AX and XA to be con-s-k-EP_r are essential. Let $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ for k=(1,2)(3), the associated permutation matrix $K = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and $V = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. A is con-s-k-EP₁.

$$X = A^{-} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A\{1, 2\} \quad AX = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; XA = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \quad AX \text{ and } XA$$

are not con-s-k-EP₁. Also X is not con-s-k-EP₁.

Now, we show that generalized inverses belonging to the sets A{1,2,3} and A{1,2,4} of a con-s-k-EP_r matrix *A* is also con-s-k-EP_r, under certain conditions in the following Theorems.

Theorem 2.3

Let $A \in C_{n \times n}$, $X \in A\{1,2,3\}$, $R(X) = R(A^T)$. Then A is con-s-k-EP_r $\Leftrightarrow X$ is con-s-k-EP_r.

Proof

Since
$$X \in A\{1,2,3\}$$
, we have $AXA = A, XAX = X, (AX)^T = AX$. Therefore,

Notes

$$R(X) = R(A^{T}) \Longrightarrow XX^{\dagger} = A^{T}(A^{T})^{\dagger}$$

$$\Longrightarrow XX^{\dagger} = A^{T}(A^{\dagger})^{T}$$

$$\Longrightarrow XX^{\dagger} = (A^{\dagger}A)^{T}$$

$$\Longrightarrow XX^{\dagger} = A^{\dagger}A$$

$$\Longrightarrow KVXX^{\dagger}VK = KVA^{\dagger}AVK$$

$$\Longrightarrow (KVX)(KVX)^{\dagger} = (AVK)^{\dagger}AVK$$

$$\Longrightarrow R(KVX) = R((AVK)^{T})$$

$$\Longrightarrow R(KVX) = R(KVA^{T})$$

 $R(A) = R(AX) = R((AX)^{T}) = R(X^{T})$

A is con-s-k-EP_r $\Leftrightarrow R(A) = R(KVA^T)$ and $(A) = r \Leftrightarrow R(X^T) = R(KVX)$ and $(A) = (X) = r \Leftrightarrow X$ is con-s-k-EP_r.

Theorem 2.4

Let $A \in C_{n \times n}$, $X \in A\{1, 2, 4\}$, $R(A) = R(X^T)$. Then A is con-s-k-EP_r $\Leftrightarrow X$ is con-s-k-EP_r.

Proof

Since $X \in A\{1,2,4\}$, we have $AXA = A, XAX = X, (XA)^T = XA$ and $R(A) = R(X^T)$. Now, $R(KVA^T) = R(KVA^TX^T)$ $= R(KV(XA)^T)$ = R(KVXA)= R(KVXA) A is con-s-k-EP_r $\Leftrightarrow R(A) = R(KVA^T)$ and $(A) = r \Leftrightarrow R(X^T) = R(KVX)$ and $(A) = (X) = r \Leftrightarrow X$ is con-s-k-EP_r.

Remark 2.5

Notes In particular, if $X = A^{\dagger}$ then $R(A^{\dagger}) = R(A^{T})$ holds. Hence A is con-s-k-EP_r is equivalent to A^{\dagger} is con-s-k-EP_r.

References Références Referencias

- 1. Krishnamoorthy, S., Gunasekaran, K. and Muthugobal, B.K.N., "Con-s-k-EP matrices", *Journal of Mathematical Sciences and Engineering Applications*, Vol. 5, No.1, 2011, 353 – 364.
- 2. Rao, C.R. and Mitra, S.K., "Generalized Inverse of Matrices and Its Applications", *Wiley and Sons, New York*, 1971.