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I. [NTRODUCTION

Basic hypergeometric functions are among the most important functions with
very diverse applications to Engineering,Physics and Mathematical Analy-
sis.Nowadays, the importance of basic hypergeometric function and its unique
role as the strategic resource in the Ramanujan’s Mathematics became more
important than the past time. The importance given to the Ramanujan’s
Mathematics has increased considerably in recent years and great deal of at-
tention in basic hypergeometric function’s literature is being given for the
numerous topics that have been addressed by mathematicians working in the
field of Basic hypergeometric functions, notably R.P Agarwal [1], G.E. An-
drews and B.C. Berndt [2], G.E. Andrews [3, 4], R.Askey [5, 6], W.N. Bailey
[7], S. Bhargava and Chandrashekar Adiga [8], R.Y.Denis [9], R.Y. Denis et
al. [10], G.Gasper [11], V.Kjain [12, 13], M.S. Mahadeva Naika and B.N.
Dharmendra [14], TH.M.Rassias and S.N. Singh [15], L.J.Slater [16], Pankaj
Srivastava [17, 18], Pankaj Srivastava and Mohan Rudravarapu [19], A. Verma
[20], G.N.Watson [21] and many others published large number of studies.In
this paper, we are interested to develop certain new transformation formula
for the basic hypergeometric function of n variable with the help of technique
developed by Andrews [4], special cases also developed.

II.  NOTATIONS AND DEFINITIONS

A basic hypergeometric series of n-variables is defined as

(ap) : (bag,); (03,)5 -5 ()
¢ y L1, L2y -5 Ty

(ct) : (diy); (dRy, )i - -5 (diy,)
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Where (a,) stands for p-parameters aq, as, . .., a,. For the convergence of this
series we require max(|q|, |x1], ..., |za|) < 1. The g-shifted factorial is defined
as
1, n=20
(a;9), = { 1—a)(l—aq)...(1—aqg"'),n=1,2,3.... (2:2)
We also define
(@)oo = (a:q) = [ [(1 = ag), for |q| < 1. (2.3)
k=0
The infinite product diverges when a # 0.
Also
(a1, a2, ..., ar;@)n = (a15¢)n(a2; @)n - - - (@r; @) (2.4)
And
(az;q)o
5= = <1 < 1. 2.5
1¢0 [CL, 4, Z] (27 q>oo ) ’Z‘ ) |Q| ( )
The product formula
100 (a3 =3¢, 2) 160 (b; =3 ¢, a2) = 190 (ab; —; ¢, 2) . (2.6)
(c/a; @)oo
o1 las ¢ q,¢/al = : 2.7
141 [ / ] (C; Q)oo ( )
I1I.  MAIN RESULTS
In this section we shall establish the following main result .
a, (ap) : (03, ) (Bg)s - -5 (D)
¢ y L1, 25 -5 T
¢, (ce) : (dy,); (diy,)s- -3 (dR,)
[a] o © [¢/a],a” (ap) : (b}wl)? i () ) ) )

=0 (ce) : (diy); - -5 (dy,)
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IV. PROOF OF (3.1)

By using (2.1) the left hand side of (3.1) can be put in the following form

@)y +mot..mn [(@p) gt ot
Z > [q]m1 S [q]mn [C]ml-i—mz—s—..,—s—mn[(Ct)]m1+mz+..,+mn

N (s s [ o
ores s o - (5 T

- % i [(ap)]m1+m2+u-+mn[(b}\/h)]nu ce [(bnMn>]mn

[alma - - (@ [(€O)matma e 4m,

X

(cqmitetmn) gt g

(@ s~ (@ N (agmFme et
e S () st B (O @2
N [c]o m ,.;T?O [y - - [q]mn[<ct)]m1+m2+-..+mn[(d}\fl)]rm cee [(d’ffl\fn)]mn

q (m1+ma+..4mn)

" = (c/a),a”
TZ; [q],

By changing the order of summation in the above equation, the right hand
side of (3.1) can be obtained.

V.  PARTICULAR CASES

Puttingp=t=M;=...=M,=N;=...= N, =01in (3.1), we get
a: —; 3 )
11 121, T2, ... 7Ty
Comi

_ lals — [¢/a],a” T "
= [C]m; il X 000 [—; 19" 0%0 [ =3 nq]

a]oo Z c/a

xlq [an ]oo

B aooz c/a Ao P o
[ o

qlr[*1] oo - - [xn]oo

N [ ]oo[xl]oo c [l‘n]oon+1¢0 [Il’ e -xn,c/a; _;CL] ,

which is valid if |a| < 1. (5.1)
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Puttingp =t =N, = ... =N, =0, M, = ... = M,, = 1,b} = b,0? =
by, ..., b7 =b, in (3.1), we get:

Notes

e < [e/alar o o
- [C] Z [Q]r X1¢0[b17 ) IQ]"'1¢0[bnv 5 nQ]

oo - C/CL ra b1I1q ] [bnanr]oo

,Z T e
_a]eo[b171] oo - - - [Brn] oo " 2 [¢/a) a"[x1], .. . [zn),
a [C]Oo[xl] [xn 9] Z bll'l .. [bnxn]r

r=

— [a]a[bﬁjm E"]x”]oo X ni1Pn [T1, - o Ty cfasbymy, .. b al, (5.2)

Putting 3 =24 = ... =, = 0in (5.2), we get
a:byibo;. ..
¢ 1 X1, T2 | = ¢(1) [a; by, by; ¢; w1, o)
c:—...—
CLOObJ} oob-r - ml,xg,c/a;
:HH[I[ 1]] [[2]2] X 302 a |, (5.3)
Cloo L1 )00 |T2]c0 bix1, ot

This is the result due to Denis ([9],5.5).
Now, putting by = 1 /29, b1x1 = cxo in (5.3) and evaluating o¢; series on the
right hand side with the help of Slater ([16];Appendix.IV.2), we get

[x2a]oo

¢(1) [a; cxy /21, 21/ 705 €5 1, T2] = : (5.4)
[xZ]oo
Now, substitutingp =t =0, Ny =...=N,=1,M, = ... = M, = 1,b} =
b1, b = by, ..., 00 =b,,dl =dy,d? =ds,...,d} =d, in (3.1), we get:
a:by;...;b,
¢ 7L, L2y -5 Tn
c:dy;...;dy,
Qoo = [c al,a” N r
= [[C]] > | /[q]] X191 [br;dis1q"] 160 b dis wag'], (5.5)
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Taking dy = byz1q", ds = boxoq”, ..., d, = byz,q” in (5.5), we get the following
result after simplification

a:by;...;b,
¢ ; L1, T2, 3 L
c:bixq”; .. bpxng”
[a]oo[1]o0 - - - [Tn]oo
= n nb ;---vbn n ; yoee sy Lny ) 5.6
[C]oo[blxl]oo o [bn«rn]oo X +1¢ [ 121 T C/a I T CL] ( )
Now, putting 23 = x4 = ... =z, = 0 in (5.6), we get
a : bl;bg
¢ ;1,5 T2

c:bix1q"; bawag”

B 0 N P blf”l’bm’c/“ia (57)

[c]oo[blflil]oo[beQ]OO T1,T2

Now, substituting byz1 = 2, bxo = x1/c in (5.7) and evaluating 2¢; series in
the right hand side with the help of Slater ([16]:Appendix IV.2), we get

a:xy/r1;21/C20 (az1/c;q)

¢ y X1, T2 | = . (5-8)
CZZL‘QQT;J}qu/C ($1/07Q>oo

A variety of similar interesting results can be scored.
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