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Abstract

  
-
  

In this paper our attention is directed towards the discussion of phenomenon of stiffness and towards 

general purpose procedures for the solution of stiff differential equations. Our aim is to identify the problem area and the 

characteristics of the stiff differential equations for which the equations are distinguishable. Most realistic stiff systems
 do not have analytical solutions so that a numerical procedure must be used. Computer implementation of such 

algorithms is widely available e.g. DIFSUB, GEAR, EPISODE etc. The most popular methods for the solution of stiff initial 

value problems for ordinary differential equations are the backward differentiation formulae (BDFs). In this study we 

focus on a particularly efficient algorithm which is named as EPISODE, based on variable coefficient backward 

differentiation formula. Through this study we find that though the method is very efficient it has certain problem area for 

a new user. All those problem area have been detected and recommended for further modification.
 

 
A very important special class of differential equations

 
taken up in the initial value 

problems
 
termed

 
as stiff differential equations result from the phenomena with widely 

differing time scales. There is no universally accepted definition of stiffness.Stiffness is a 

subtle,
 
difficult and important concept in the numerical solution of ordinary differential

 equations. It depends on the differential equation, the initial condition and the interval 

under consideration.
 

  

 

  
A set of differential equations is “stiff”

 
when an excessively small step is needed to 

obtain correct integration. In other words we can say a set of differential equations is 

“stiff”
 
when it contains at least two “time constants”

 
(where time is supposed

 
to be the 

joint independent variable) that differ by several orders of magnitude.
 
A more rigorous 

definition of stiffness was also given by Shampine and Gear: “By a stiff problem we mean 

one for which no solution component is unstable (no eigenvalue of the Jacobian matrix 

has a real part which is at all large and positive) and at least some component is very 

stable (at least one eigenvalue has a real part which is large and negative). Further, we 
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The initial value problems with stiff ordinary differential equation systems occur in 
many fields of engineering science, particularly in the studies of electrical circuits, 
vibrations, chemical reactions and so on. Stiff differential equations are ubiquitous in 
astrochemical kinetics, many control systems and electronics, but also in many non-
industrial areas like weather prediction and biology.
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When solving the (vector) system of equations 

),,( ytfy                  aty )( 0 (given)                     (1) 
 

 

 

we must consider the behavior of solutions near to the one we seek. This is because as we 

step along from )( nn xyy   to 1ny  approximating )( hxy n   we make inevitable errors 

causing us to move from the desired integral curve to a nearby one. If we make no further 

errors, we follow this new curve so that the resulting error depends on the relative 

behavior of the two solution curves. Let us consider the example of the single equation 

),())(( tptpyAy                                  aty o )(              (2) 
 

where A is constant. The analytical solution is  

)()exp())0(()( tpAtpaty                                          (3) 
 

If A is large and positive, the solution curves for the various a  fan out and we say 

the problem is unstable. Such a problem, obviously, is difficult for any general numerical 

method, which proceeds in a step-by-step fashion. When A is small in magnitude, the 

curves are more or less parallel and such neutrally stable problems are easily handled by 

conventional means. When A is large and negative, the solution curves converge very 

quickly. In fact, whatever be the value of )( oty , the solution curve is virtually identical to 

the particular solution p(t) after a short distance called  an initial transient. This super-

stable situation is ideal for the propagation of error in a numerical scheme. The last class 

of problems is called stiff. 

If A is very negative and p (t) is slowly varying, equation (3) represents a stiff 

problem after the transient Ate  has died out (that is, Ate  is below the error tolerance of 

interest) but it is not be stiff in the transient region. If (1) is linear with a constant 

Jacobian J (where J = ∂f /∂y is the associated Jacobian matrix), it will not be stiff in the 

initial transient, but will be stiff after the fastest transient has died out. We see that in 

case of stiff differential equation problem the solution being sought is varying slowly, but 

there are nearby solutions that vary rapidly, so the numerical method must take small 

steps to obtain satisfactory results. Stiffness is an efficiency issue. If we were not 

concerned with how much time a computation takes, we would not be concerned about 

stiffness. Nonstiff methods can solve stiff problems, but take a long time to do it. 

 

As stiff differential equations occur in many branches of engineering and science, it 

is required to solve efficiently. Most realistic stiff systems do not have analytical solutions 

so that a numerical procedure must be used. Conventional methods such as Euler, explicit 

Runge-Kutta and Adams –Moulton are restricted to a very small step size in order to that 

the solution be stable. This means that a great deal of computer time could be required. 

In a number of areas, particularly in chemical applications one often encounters 

systems of ordinary differential equations which, although mathematically well 

conditioned, are virtually impossible to solve with traditional numerical methods because 

8

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
III

 I
ss
ue

  
  
  
 e

rs
io
n 

I
V

V
I

Y
ea

r
  

20
13

  
  

 
F

)

)

© 2013   Global Journals Inc.  (US)

will not call a problem stiff unless its solution is slowly varying with respect to most 

negative part of the eigenvalues. Consequently a problem may be stiff for some intervals 

and not for others.”

Notes



of the severe step
 

size constraint imposed by numerical stability. These stiff equations can 

be characterized by the presence of transient components which, although negligible 

relative to the numerical solution, constrain the step size of traditional numerical methods 

to be of the order of the smallest time constant of the problem.
 

Over the last three decades, there has been significant progress in the development 

of numerical stiff ODE solvers both in the areas of ODE solution algorithms and the 

associated linear algebra. Consequently, a wide variety of very efficient and reliable ODE 

solvers have been developed. In order to take full advantage of the available state-of-the-

art solvers, and
 
to handle computationally demanding various models

 
in the different field

 

both accurately and efficiently, a great deal of understanding is required for the 

formulation of the problem. The numerical solution algorithm of a standard stiff ODE 

solver package comprises two major components: one is the numerical solution method for 

the systems of ODEs and the other is for the solution of the resulting linear algebraic 

system that arises due to the ODEs solution technique. The structure of the resulting 

matrix associated with the linear system has significant computational consequence.
 

To better understand the advanced ODE solvers and their differences, we first 

need to briefly consider the solution methods underlying stiff systems of ODEs and their 

corresponding linear algebra. For the solution of a system of ODEs of size N of the form
 

(1) and a given initial condition, y
 
(t0) = a, some classes of multistep methods are 

generally used. To advance the solution in time t from one mesh point to the next, 

considering
 
a discrete time mesh ......,........, 10 nttt , multistep methods make use of several 

past values of the variable y and its rate of change f with respect to time t (i.e. the past 

values of the abundances and the rate equations). The general form of a k-step multistep 

method is
 

 
 

 
k

i

k

i
iniini h

0 0
fy                                   (4)

  

where αi

 
and βi

 
are constants depending on the order the method, h is the step size in 

time and n denotes the mesh number. The well-known Adams methods which use mostly 

the past values of f,
 




 
k

i
ininn h

0
1 fyy 

 
                              (5)

  

are the best-known multistep methods for solving nonstiff problems. Each step requires 

the solution of a nonlinear system and often a simple functional iteration with an initial 

guess, or predictor estimate, is used to advance the integration, which is terminated by a 

convergence test. For stiff problems, where sudden changes in the variables can occur (i.e. 

there are strong dependencies of the rate equations f upon abundances y in
 
small time 

intervals say), simple iteration leads to unacceptable restriction of the step size and 

functional iteration fails to converge. Thus, stiffness forces the use of implicit methods 

with infinite stability regions when there is no restriction on the step size. The backward 

difference formulae (BDF) methods with unbounded region of absolute stability were the 

first numerical methods to be proposed for solving stiff ODEs (Curtiss and Hirschfelder, 

1952). The BDF used in ODE solvers, are of the general form
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n
k

i
inin h fyy 0

0
  



                (6)  

where αi and β0 are coefficients of k th order, k-step BDF methods. As mentioned earlier, a 

simple functional iteration will usually fail to converge when problems are stiff and some 

form of Newton iteration is usually used for the solution of the resulting nonlinear system. 

The Newton iteration involves the solution of an N ×N matrix, P, 

P ≈ I − hβ0 J,                                             (7)  

where J = ∂ f /∂y is the associated Jacobian matrix, I is an N ×N identity matrix. The 

solution to this linear algebraic system contributes significantly to the total computational 

time for the solution of stiff problems, as well as affecting the accuracy of the solution 

(and hence, also affecting the computational time). For stiff problems the ODE solvers use 

a modified Newton iteration that allows time saving strategies for the computation, 

storage and the use of the Jacobian matrix. When solving a linear algebraic system, there 

are generally two classes of solution methods, direct methods and iterative methods. The 

most common direct method used to solve linear systems is the Gaussian elimination 

method based on factorization of the matrix in lower and upper triangular factors. The 

GEAR, LSODE and VODE solvers all use such a method for the solution of the resulting 

linear system. The simplest iterative scheme used to solve linear systems is the Jacobi 

iteration, although the more sophisticated iterative solution methods of Krylov subspace 

methods, based on a sequence of orthogonal vectors and matrix-vector multiplications, 

have been widely used in practical applications such as computational fluid dynamics 

(Saad, 2003a). The ODE solvers, LSODPK and VODPK implement Preconditioned 

Krylov iterative techniques for the solution of the resulting linear system. 

Some of the more readily available methods for stiff equations include: 

 Variable- order methods based on backward differentiation multistep formulas, 

originally analysed and implemented by Gear (1969,1971) and later modified and 

studied by Hindmarsh (1974) and Byrne and Hindmarsh (1975). 

 Methods based on trapezoidal rule, such as those proposed by Dahlquist (1963) and 

subsequently studied by Lindberg (1971, 1972). 

 Implicit Runge-Kutta methods suitable for stiff equations, such as those based on the 

formulas of Butcher (1964) and studied by Ehle (1968). 

 Methods based on the use of preliminary mathematical transformations to remove 

stiffness and the solution of the transformed problem by traditional techniques, such as 

those studied and implemented by Lawson and Ehle (1972). 

 Methods based on second derivative multistep formulas, such as those developed by 

Linger and Willoughby (1967) and Enright (1974). 

Unfortunately, although a number of methods have been developed, and many 

more basic formulas suggested for stiff equations, until recently there has been little 

advice or guidance to help a practitioner choose a good method for his problem. 

In case of stiff differential equations stability requirements force the solver to take 

a lot of small time steps; this happens when we have a system of coupled differential 

equations that have two or more very different scales of the independent variable over 

which we are integrating. Another way of thinking about this to consider what must 
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Notes



example, suppose our solution is the combination of two exponential decay curves, one 

that decays away very rapidly and one that decays away very slowly. Except

 

for the few 

time steps away from the initial condition, the slowly decaying curve dominate since the 

rapid curve will have decayed away. But because the variable time step routine to meet 

stability requirements for both components, we will be locked into small time steps even 

though the dominant component would allow much lager time steps. This is what we 

mean by stiff equations, we get locked into taking very small time steps for a component 

of the solution that makes infinitesimally small contributions to the solution. In other 

words, we are forced to move slowly when we could be leaping along to a solution.  

 

The specific methods that we assess in this study are the methods based on 

backward differentiation formulas, DIFSUB (Gear (1971a, 1971b)), GEAR.

 

Rev. 3 

(Hindmarsh (1974)) and EPISODE (Byrne and Hindmarsh (1975)). As general ODE 

packages, GEAR and EPISODE are quite useful for both Stiff and nonstiff problems. In 

the nonstiff case, with the nonstiff method option, they seem to perform competitively in

 

comparison with other sophisticated nonstiff system solvers. In the stiff case, these codes 

allow for the use of the Jacobian matrix, and contain routines for solving the associated 

linear systems, in full matrix form.

 

EPISODE is very similar to a package

 

called GEAR [8], which is a heavily 

modified form of C.W. Gear’s well-Known code, DIFSUB [9]. The GEAR package is 

based on fixed step formulas (Adams and BDF), and achieves changes in step size (when 

required) by interpolating to generate the multipoint data needed at the new spacing. In 

contrast, EPISODE is based on formulas that are truly variable-step, and step size 

changes can occurring as frequently as every step, with no interpolation involved. Like 

Gear, Episode varies its order in a dynamic way, as

 

well as its step size, in an effort to 

complete the integration with a minimum number of steps.

 

Lida A. M. Nejad

 

[13]

 

have 

summarized the functions of various packages in the following table

 

 

Table 1

 

:

 

An abridged list of general-purpose solver packages available 

 

for solving 

systems of ODEs
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Solver Comments

GEAR (1974) – standard 
(supersedes DIFSUB – Gear 1968) 
GEARB – for Banded Jacobian 
GEARS – Sparse Jacobian

For stiff and nonstiff problems;
for nonstiff problems-Adams methods, 
for stiff problems – fixed-coefficient form of BDF methods.

LSODE(1982) – standard 
LSODES – Sparse Jacobian 

LSODE (Livermore Solver for ODEs) Combines the capabilities 
of GEAR and GEARB.
Fixed-coefficient formulation of BDF methods.

LSODPK – with preconditioned 
Krylov iteration methods

LSODPK – uses a preconditioned Krylov iteration method for 
the solution of the linear system.

VODE (1989) – standard (supersedes 
EPISODE and EPISODEB)

VODE – variable-coefficient and fixed leading coefficient form of 
BDF for stiff systems.

VODPK (1992) – with preconditioned 
Krylov iteration methods

VODPK – uses preconditioned Krylov iteration methods for the 
solution of the linear system.

CVODE – in ANSI standard C CVODE – with VODE and VODPK options written in C.
PVODE (1995) – Parallel VODE in 
ANSI standard C with preconditioned 
Krylov iteration methods.

PVODE – implements functional iteration, Newton iteration 
with a diagonal approximate Jacobian and Newton iteration with 
the iterative method SPGMR (Scaled Preconditioned Generalized 
Minimal Residual).

happen when two different parts of the solution require very different time steps. For 
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Ref



 

The EPISODE program is a package of FORTRAN subroutines aimed at the 

automatic solution of problems, with a minimum effort required in the face of possible 

difficulties in the problem. The program implements both a generalized Adams method, 

well suited for nonstiff problems, and a generalized backward differentiation formula 

(BDF), well suited for stiff problems. Both methods are of implicit multistep type. In 

solving stiff problems, the package makes the heavy use
 
of the NN 

 
Jacobian matrix,

 

N

jij

iJ
1, 

























y

f

y

f  

the if
 
and jy

 
are the vector components of f

 
and y,

 
respectively.

 

A complete discussion of the use of EPISODE is given in [11]. However, a few basic 

parameter definitions are needed here, in order to present the examples. Beyond the 

specification of the problem itself, represented by example 1
 
and perhaps example 2, the 

most important input parameter to EPISODE is the method flag, MF. This has eight 

values-10, 11, 12, 13, 20, 21, 22, and 23. The first digit of MF, called METH, indicates the 

two basic methods
 
to be used

 
namely implicit Adams and BDF.

 
The second digit, called 

MITER, indicates the method of iterative solution of the implicit equations arising from 

the chosen formula. The parameter MITER takes four different values (0, 1, 2, 3) to 

indicate the following respectively
 

o

 
Functional (or fixed-point) iteration (no Jacobian

 
matrix used.).

 

o

 
A

 

chord method (or generalized Newton method,

 

or semi-stationary Newton iteration) 

with Jacobian given by a subroutine supplied by the user.

 

o

 
A

 

chord

 

method with Jacobian generated internally by finite differences.

 

o

 

A

 

chord method with a diagonal approximation to the Jacobian, generated internally 

(at less cost in storage and computation, but with reduced effectiveness).

 

The EPISODE package is used by making calls to a driver subroutine, EPSODE, 

which in turn calls other routines in the package to solve the problem. The function f

 

is 

communicated by way of a subroutine, DIFFUN, which the user must write. A subroutine 

for the Jacobian, PEDERV, must also be written. Calls to EPSODE are made repeatedly, 

once for each of the user’s output points. A value of t at which output is desired is put in 

the argument TOUT to

 

EPSODE, and when TOUT is reached, control returns to the 

calling program with the value of y at t =TOUT. Another argument to EPSODE, called 

INDEX, is used to convey whether or not the call is the first one for the problem (and 

thus whether to initialize various variables). It is also used as an output argument, to 

convey the success or failure of the package in performing the requested task. Two other 

input parameters. EPS and IERROR, determine the nature of the error control performed 

within EPISODE. 

 

The

 

EPISODE package consists of eight FORTRAN subroutines, to be combined 

with the user’s calling program and Subroutines DIFFUN and PEDERV. As discussed 

earlier, only Subroutine EPSODE is called by the user; the others are called within the 

package. The functions of the eight package routines can be briefly summarized as follows:

 

 
 

Ref.
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ii)

 

INTERP computes interpolated values of

 

y(t) at the user specified output points, 

using an array of multistep history data.

 

iii)

 

TSTEP performs a single step of the integration, and does the control of local error 

(which entails selection of the step size and order) for that step.

 

iv)

 

COSET sets coefficients that are used by TSTEP, both for the basic integration step 

and for error control.

 

v)

 

ADJUST adjusts the history array when the order is reduced.

 

vi)

 

PSET sets up the matrix JhIp 0 , where I

 

is the identity matrix, h

 

is the step 

size, 0

 

is a scalar related to the method, and J is the Jacobian matrix. It then 

processes P for subsequent solution of linear algebraic system with P for subsequent 

solution of linear algebraic systems with P as coefficient matrix.

 

vii)

 

  DEC performs an LU (lower-upper triangular) decomposition of an NN 

 

matrix.

 

viii)

 

SOL solves linear algebraic systems for which the matrix was factored by DEC.

 

The subroutine EPSODE based on variable coefficient backward differentiation 

formula can be used. The nonstiff option uses an Adams-Bashforth predictor and an 

Adams-Moulton corrector.

 

Predictor: 


 
k

i
ininn yhyy

1
11 

  

&   Corrector: 


 
k

i
ininn yhyy

0
11 

 

The order may vary from one to seven.

 

 

In order to illustrate how the EPISODE package can be used to solve stiff initial 

value problems, we give here an example, chosen from the areas of chemical kinetics. For 

each example problem, the appropriate FORTRAN coding for its solution, with 

EPISODE, is given, followed by the output generated by that coding.

 

Example 1:

 

A kinetics problem:

 

The following kinetics problem, given by Robertson, is 

frequently used as an illustrative example. It involves the following three nonlinear rate 

equations:

 

32
4

11 1004. yyyy                                             (8)

 
 

2
2

7
32

4
12 10.31004. yyyyy                                             (9)

 
 

2
2

7
3 10.3 yy                                           (10)

 
 

The initial values at t

 

=

 

0 are

 

,1)0(1 y     0)0()0( 32  yy               (11)

 
 

Since   ,0iy

 

the solution must satisfy   ,1iy

 

identically. This identity can 

be used as an error check.
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i) EPSODE sets up storage, makes calls to the core integrator, TSTEP, checks for and 

deals with error returns, and prints error message as needed.

Notes



size of

 

810H0  . The use of MITER=1 requires that the Jacobian yfJ  /

 

be 

calculated and programmed. This is given by

 



























010.60

1010.61004.

101004.

2
7

2
4

2
7

3
4

2
4

3
4

y

yyy

yy

J

 

The final value of t is 40. So we consider taking output at ,104 kt 

 

where k = 

-1, 0, 1, 2, …. These will be the values of the argument TOUT. 

 

The following coding, together with the EPISODE package, can be used to solve 

this problems with the options described above.

 

The output of the above program in 

tabular form is as follows:

 

Table 2

 

:

 

MF=21, EPS=10-6

 

T

 

H

 

Y1

 

Y2

 

Y3

 

SUM(Y)-

1

 

0.4E+00

 

0.16E+00

 

0.98517E+00

 

0.33864E-04

 

0.14794E-01

 

-0.4E-15

 

0.4E+01

 

0.56E+00

 

0.90552E+00

 

0.22405E-04

 

0.94462E-01

 

-0.5E-15

 

0.4E+02

 

0.23E+01

 

0.71582E+00

 

0.91851E-05

 

0.28417E+00

 

-0.3E-16

 

0.4E+03

 

0.20E+02

 

0.45051E+00

 

0.32228E-05

 

0.54949E+00

 

-0.5E-15

 

0.4E+04

 

0.24E+03

 

0.18320E+00

 

0.89423E-06

 

0.81680E+00

 

-0.2E-15

 

0.4E+05

 

0.33E+04

 

0.38986E-01

 

0.16219E-06

 

0.96101E+00

 

0.3E-15

 

0.4E+07

 

0.38E+06

 

0.50319E-03

 

0.20660E-08

 

0.99948E+00

 

0.3E-15

 

0.4E+10

 

0.12E+10

 

0.54561E-06

 

0.37316E-11

 

0.10000E+01

 

-0.1E-13

 

 

We see that the equilibrium values are

 

021  yy , 13 y

 

and that the approach 

to equilibrium is quite slow. Here we note that the time step, H, rises steadily with time, 

T. We also observe that the code generated negative and thus physically incorrect answers 

during the last decade. This reflects instability, or a high sensitivity of the problem to 

numerical errors at late t, and will, if the integration is continued, lead to answers 

diverging to  .

 

The accuracy of the above result can be verified in the usual way-

 

by re 

running the program with a smaller value of EPS=10-9 and nothing else changed, the 

output in the tabular form is as follows:
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Here we intend to solve this problem with the BDF method and use the chord of 

iteration method with the user-supplied Jacobian (MITER=1). Suppose a local error 

bound of 610EPS  , and control absolute error (IERROR=1). We choose an initial step 

Notes



0.4E+01

 

0.14E+00

 

0.905519E+00

 

0.224048E-04

 

0.944589E-01

 

0.5E-15

 

0.4E+02

 

0.13E+01

 

0.715827E+00

 

0.918552E-05

 

0.284164E+00

 

0.6E-15

 

0.4E+03

 

0.82E+01

 

0.450519E+00

 

0.322290E-05

 

0.549478E+00

 

0.8E-15

 

0.4E+04

 

0.76E+02

 

0.183202E+00

 

0.894237E-06

 

0.816797E+00

 

0.1E-14

 

0.4E+05

 

0.88E+03

 

0.389834E-01

 

0.162177E-06

 

0.961016E+00

 

0.9E-15

 

0.4E+07

 

0.20E+06

 

0.516813E-03

 

0.206835E-08

 

0.999483E+00

 

0.1E-14

 

0.4E+10

 

0.67E+09

 

0.522363E-06

 

0.208942E-11

 

0.999999E+00

 

0.1E-14
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Fig. 1

 

:

 

The graph of the approximated solution of Example 1 (by using log scale)

 

Now we consider another example of stiff system of differential equations which 

can be solved analytically.

 

Example

 

2: The

 

system of initial-value problems

 

,sin
3
1cos5249 211 ttuuu             

 

    
3
4)0(1 u                     (12)

 

 

,sin
3
1cos955124 212 ttuuu            

3
2)0(1 u                     (13)
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Table 3 : MF=21, EPS=10-9

T H Y1 Y2 Y3 SUM(Y)-

1
0.4E+00 0.34E-01 0.985172E+00 0.338641E-04 0.147940E-01 0.2E-15

Notes



The transient term te 39 in the solution causes this system to be stiff.

 

The results, 

obtained by EPISODE are summarized in the following table.

 

Table 4

  

t

 

h

 

Approximated

 

value of )(1 tu

 

Approximated

 

value of )(2 tu

 

Exact value 

of )(1 tu

 

Exact value

 

of )(2 tu

 

0.0

 

.40E-02

 

1.33333333

 

0.666666666

 

1.33333333

 

0.666666666

 

0 .1

 

.40E-02

 

1.79306146

 

-1.03200020

 

1.79306300

 

-1.03200200

 

0.2

 

.91E-02

 

1.42390205

 

-0.87468033

 

1.42390200

 

-0.87468100

 

0.3

 

.12E-01

 

1.13157624

 

-0.72499799

 

1.13157700

 

-0.72499860

 

0.4

 

.33E-01

 

0.90940824

 

-0.60821345

 

0.90940860

 

-0.60821420

 

0.5

 

.33E-01

 

0.73878794

 

-0.51565752

 

0.73878780

 

-0.51565770

 

0.7

 

.66E-01

 

0.49986115

 

-0.37740429

 

0.49986030

 

-0.37740380

 

1.0

 

.66E-01

 

0.27968063

 

-0.22989065

 

0.27967490

 

-0.22988780
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The graph of the solutions for u1

 

The graph of the solutions for u2
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has the unique solution

.cos
3
12)( 393

1 teetu tt  
                               (14)

     teetu tt cos
3
12)( 393

2  
                               (15)

Fig. 2(a) :  Fig. 2(b) :  

Notes



effective codes available to solve these problems, but it is necessary that the user may 

have some idea how they work in order to take full advantage of them. Although a 

number of methods have been developed, and many more basic formulas are suggested for 

stiff equations, until now there has been little advice or guidance to help a user choose a 

good method for his problem. In our study we focus on a particularly efficient program 

which is named as EPISODE. We explain the capabilities of this code and present few 

practical examples for which it is effective. However, this experimental package EPISODE 

requires some explanation. First of all, the program is relatively new and has not been 

used extensively, and so its position in the field of existing available ordinary differential 

equation software is not yet clear. Secondly we have shown that, for some types of 

problems, the program spends more time on the linear system of the algorithm than we 

feel it should. This behavior is related to the extent to which the matrix during the 

solution of a problem, and in this area improvement of the efficiency of the algorithm is 

required.
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