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Abstract-

 

In this article, we apply the exp

 

(−Φ(η))-expansion 
method for seeking the exact

 

solutions of NLEEs via the 
(1+1)-Dimensional Compound KdvB equation. Plentiful 
traveling

 

wave solutions with arbitrary parameters are 
successfully obtained by this method and the

 

wave solutions 
are expressed in terms of the hyperbolic, trigonometric, and 
rational

 

functions. The obtained results show that exp(−Φ(η))-
expansion method is very powerful

 

and concise mathematical 
tool for nonlinear evolution equations in science and 
engineering.
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I.

 

Introduction

 
owadays NLEEs have been the subject of all-
embracing studies in various branches of

 

nonlinear sciences. A special class of analytical 
solutions named traveling wave solutions for

 

NLEEs has 
a lot of importance, because most of the phenomena 
that arise in mathematical

 

physics and engineering 
fields can be described by NLEEs. NLEEs are frequently 
used to

 

describe many problems of protein chemistry, 
chemically reactive materials, in ecology most

 

population models, in physics the heat flow and the 
wave propagation phenomena, quantum

 

mechanics, 
fluid mechanics, plasma physics, propagation of 
shallow water waves, optical

 

fibers, biology, solid state 
physics, chemical kinematics, geochemistry, 
meteorology,

 

electricity etc. Therefore investigation 
traveling wave solutions is becoming more and more

 

attractive in nonlinear sciences day by day. However, 
not all equations posed of these

 

models

 

are solvable. 
As a result, many new techniques have been 
successfully developed by diverse

 

groups of 
mathematicians and physicists, such as the sine-cosine 
method [1], the extended

 

tanh-function method [2, 3], 
the homogeneous balance method [4], the tanh-
function method

 

[5], the modified Exp-function method 
[6], the Exp-function method [7, 8], the generalized

 

Riccati equation [9], the Jacobi elliptic function 
expansion method [10, 11], the Hirota’s

 

bilinear method 
[12], extended (G´

 

/G) -expansion method [13], the   

(G´/G) –expansion method [14-18], the novel (G´/G) -
expansion method [19, 20], the modified simple 
equation method [21, 22], the improved (G´/G) -
expansion method [23], the inverse scattering transform 
[24], the Jacobi elliptic function expansion method [25, 
26], the new generalized (G´/G) -expansion method [27-
31], the exp(−Φ(η)) -expansion method [32, 33] and so 
on. 

The objective of this article is to apply the 
exp(−Φ(η)) -expansion method to construct the exact 
solutions for nonlinear evolution equations in 
mathematical physics via the (1+1)- dimensional 
compound KdVB equation. 

The outline of this paper is organized as follows: 
In Section 2, we give the description of the exp(−Φ(η)) -
expansion method. In Section 3, we apply this method 
to the (1+1)-dimensional compound KdVB equation, 
graphical representation of solutions. Conclusions are 
given in the last section. 

II. Description of the Exp (−Φ(η))                 

-Expansion Method 

Let us consider a general nonlinear PDE in the form 
 
                                                                                      (1) 
 

where is an unknown function, F is a 
polynomial in and its derivatives in which highest 
order derivatives and nonlinear terms are involved and 
the subscripts stand for the partial derivatives. In the 
following , we give the main steps of this method: 

Step 1: We combine the real variables x and t 
by a complex variable η 
 

                                                                                      (2) 
 

where is the speed of the traveling wave. The 
traveling wave transformation (2) converts Eq. (1) into an 
ordinary differential equation (ODE) for   
 

                                                                                      (3) 
 

where is a polynomial of v and its derivatives 
and the superscripts indicate the ordinary derivatives 
with respect to η. 
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Step 2. Suppose the traveling wave solution of 
Eq. (3) can be expressed as follows:

                                                                                     (4)

where  are constants to be 
determined, such that and  satisfies the 
following ordinary differential equation:

                                                                                   (5)

Eq. (5) gives the following solutions:
Family 1: When

                                                                                                                                                                                      (6)

Family 2 : When

                                                                                                                                                                                      
(7)

Family 3 :  and 

                                                                                                                                                                                      
(8)

Family 4 :  and  

                                                                                                                                               
                                       

(9)

Family 5 :  and    

                                                                                                                                                                                     

(10)

are constants to be determined 
latter, the positive integer N can be determined 
by considering the homogeneous balance between the 
highest order derivatives and the nonlinear terms 
appearing in Eq. (3).

Step 3: We substitute Eq. (4) into Eq. (3) and 
then we account the function exp(−Φ(η)) . As a result of 
this substitution, we get a polynomial of exp(−Φ(η)) . We 
equate all the coefficients of same power of exp(−Φ(η)) 
to zero. This procedure yields a system of algebraic 
equations whichever can be solved to find 
Substituting the values of into Eq. (4) 
along with general solutions of Eq. (5) completes the
determination of the solution of Eq. (1).

III. Application of the Method

In this section, we will present the exp (−Φ(η))                    
-expansion method to construct the exact solutions and 
then the solitary wave solutions of the (1+1)-
dimensional compound KdVB equation. Let us consider 
the (1+1)-dimensional compound KdVB equation,

(11)

We utilize the traveling wave variable 
Eq. (11) is carried to an
ODE                                                                                     (12)

Eq. (12) is integrable, therefore, integrating with respect 
to η once yields:

                                                                                    (13)

where P is an integration constant which is to be 
determined.

Taking the homogeneous balance between 
highest order nonlinear term 3 v and linear term of the 
highest order '  in Eq. (13), we obtain N =1. Therefore, 
the solution of Eq. (13) is of the form:

                                                                                    (14)

where are constants to be determined such that 
while are arbitrary constants.
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Substituting Eq. (14) into Eq. (13) and then equating the coefficients of exp(−Φ(η)) to zero, 
we get 
 
                                                                                                                                                                           (15) 
 
 
                                                                                                                                                                          (16) 
 
                  
                                                                                                                                                                          (17) 
 
 
                                                                                                                                                                           (18) 
 

Solving the Eq. (15)-Eq. (18) yields 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where 

 

are arbitrary constants.

 

Now substituting the values of 

 

into Eq. (14) yields

 

 
 

                                                                                                                                                                        
(19)

 
 
 
 
 

 
 

where 

 
 
 
 

Now substituting Eq. (6)-

 

Eq. (10) into Eq. (19) respectively, we get the following five

 

traveling wave solutions 
of the (1+1) dimensional compound KdVB equation.

 

When 

 
 
 
 

9

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
III

 I
ss
ue

  
  
  
 e

rs
io
n 

I
V

Y
ea

r
  

 
(

)
A

  
2 0

13
V
III

© 2013  Global Journals Inc.  (US)

Traveling Wave Solutions of the (1+1)-Dimensional Compound KdVB Equation by Exp (−Φ(η))-Expansion 
Method

02
3

1
1

3

1  AA        

03
2

1 2

1011

2

1  AAAAA        

02 11

2

01

2

110  VAAAAAAA 

0
3

1

2

1
1

3

0

2

010   AAAAVAP

 





 672

)288872(
372618

1

72

1 2222
32222

2


P

              


 22222 24326

12

1 
V









6

)3(62

2

1
0





A

1A  /6

))),((exp(/6
6

)3(

2

1
)( 








 


v    

tx





22222 24326

12

1 
 .

,0 ,042  

,

1,, AAV o

 
.

))(
2

4
tanh(4

/62

6

)3(

2

1
)(

2

2

2,1

























E

v 



where 

  

E is an arbitrary constant.
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IV. Graphical Representation of the Solutions

The graphical illustrations of the solutions are given below in the figures with the aid of Maple.

Fig. 1 : Traveling wave solution of  with

Fig. 3 : Traveling wave solution of   with  

2E , ,1 1,3,4,2   a , 

3 , 2 and .10,10  tx

2,1v

2E , ,1 ,2 ,4a 1 , ,3 0 , 10,9v

0 and .10,10  tx

4,3v

2E , ,1 ,2 ,4a ,3
1 , 1 , 2 and 10,10  tx

6, 5v

2E , ,1 1,3,4,2   a , 

1 , 0 and 10,10  tx

8,7v

2E , ,1 ,2 ,4a ,3

1 , 2 , 2 and 10,10  tx



  
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 

  
 

 
 

 
 

 
  

 
 

 

 
 

 

 
 

 
 

 
  

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

  
 

  
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

© 2013  Global Journals Inc.  (US)

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
  

 
(

)
A

  

12

X
III

 I
ss
ue

  
  
  
 e

rs
io
n 

I
V

Y
ea

r
2 0

13
V
III

Traveling Wave Solutions of the (1+1)-Dimensional Compound KdVB Equation by Exp (−Φ(η))-Expansion 
Method

V. Conclusion

In this article, the exp(−Φ(η))-expansion method 
has been successfully applied to find new traveling 
wave solutions for nonlinear wave equation via the 
(1+1)-dimensional compound KdVB equation. We 
obtain some new traveling wave solutions including 
hyperbolic function solutions, trigonometric function 
solutions and rational solutions. The results show that 
the method is trustworthy and helpful and gives more 
solutions. This method can be also applied to other 
method.
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