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Abstract - The aims of this paper is to prove existence and uniqueness of following integral boundary conditions mixed
problem for parabolic equation:
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B(x,0) =A(x), 0 <x<{

(0.1)

¢
J x0(x,t)dx =E(t), 0<t<T
0

{
J x20(x,t) dx = G(t), 0 <t < ¢,
0

The proofs are based on a priori estimates established in Sobolev function spaces and Fourier's method.
Keywords . fouriers method, a priori estimate, nonlocal conditions, mixed problem, parabolic, sobolev
espace.

l. |NTRODUCTION

This paper deals with existence and uniqueness of a class of parabolic equation
with time and space-variable characteristics, with a nonlocal boundary condition. The
precise statement of the problem is a follows: let ¢ >0, T>0, and Q ={(x,t) € R? :
0<x<{ 0<t< T} We shall determine a solution 0, in Q of the differential equation

00 a(t)i ,00
ot x2 0x

. &) £B1)8 =8(x,t), () €0, (1.1)
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satisfying the initial condition

0(x,0) =A(x), 0 <x <L (1.2)
and the integral conditions
¢
J x0(x,t)dx =E(t), 0<t<T (1.3)
0
¢
sze(x,t) dx =G(t), 0<t<T. (1.4)
0

where A, E, G, a,b and ¥ are known functions
Assumption 1.1
For all (x,t) € Q, we assume that

da(t)
a<alt)<a;, @< < as
dt
db(t
by <b(t) <b;, b, < dblt) < b3,
dt
bt
a(t)

where ay, a1, dz, az, by, by, by are positive constants.

The data satisfies the following compatibility conditions : For consistency, we have
¢

¢
J xA(x) = E(0), and J x*A(x) = G(0),
0 0

The importance of problems with integral conditions has been pointed out by Samarskii[11].
Mathematical modelling by evolution problems with a nonlocal constraint of the form

1
T J u(x,t) dx =x(t) is encountered in heat transmission theory, thermoelasticity,

chemical engineering, underground water flow, and plasma physic.

Many methods were used to investigate the existence and uniqueness of the solution of
mixed problems which combine classical and integral conditions. J. R. CANNON [7] used
the potentiel method, combining a Dirichlet and an intégral condition for a parabolic
equation. L. A. MOURAVEY and V. PHILINOVOSKI [10] used the maximum principle,
combining a Neumann and an integral condition for heat equation. IONKIN [8] and L.
BoUGOFFA[4] used the Fourier method for same purpose.

Recently, mixed problems with integral conditions for generalization of equation (1.1) have
been treated using the energy-integral method. See N. E. BENOUAR and N. I. YURCHUK
[1], N. E. BENOUAR and A. BouzIANt [2],[3], A. BouziaNi[5], [6], M. Z. DJIBIBE el al.
[12],[13], N. I. YUrRCHUK]14],[15], M. MESLOUB, A. BouzIiANI and N. KECHKAR[9]. Dif-
ferently to these works, in the present paper we combine a priori estimate and Fourier’s
method to prove existence and uniqueness solution of the problem (1.1)- (1.4).

The result of the paper are new. It is interesting to note that the application of Fourier
method to this nonlocal problem is made possible thanks, essentially, to the use of a
Sobolev function space.
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To this, we reduce the inhomogeneous boundary conditions (1.3) and (1.4) to homoge-
neous conditions, by introducing a new unknown function z by z(x,t) = 0(x, t) —n(x, t),
where

1012 — 12(1° 4+ 20)x + 31(1° + 60
nix,t) = ( 1023) ( )E(t) (1.5)

| 100 —12(¢ — 30)x + 3¢(1° — 80)
1004

Then, problem (1.1), (1.2), (1.3) and (1.4) is transformed into the following homogeneous
boundary value problem

G(t).

oz aft) o ,0z B
a — 7& (X a) + b(t)Z = E(X,t), (X, t) S Q, (].6)
z(x,0) = A(x), 0 <x <, (1.7)
¢
J xz(x,t)dx =0, 0<t<T, (1.8)
0
¢
J x*z(x,t)dx =0, 0 <t <T, (1.9)
0

where

1012 — 12(1° + 20)x + 31(1° + 60)

E(x,t) =d(x,t) — R E'(t)
1005%2 — 12(€5 — 30)x 4 3¢(1° — 80) _,
N 10¢4 G'(t)
6(0° 4 20) 6(£5 — 30)
S ) E 40 — =~ 77
+ a(t) (6€ % +) (t) + a(t) ( ( =il G(t)
4,2 5 5
10U — 12(1° 4 20)x + 31(1 +6O)b(t)E(t)
1003
100%2 — 12(£6 — 30)x + 3£(16 — 80)
— o b(t)G(t), (1.10)
1014%2 — 12(15 + 20)x + 31(15 + 60)
A(x) =A(x) — E(0)
1063
52 6 6 __
N 106%x2 —12(¢ 1§g)x+32(1 80)G(0). (.11)

Here, taking account assumption 1.1, we assume that the function A satisfy conditions of

(1.8) and (1.9), that is

r xA(x) dx = Je x*A(x) dx = 0. (1.12)
0 0

Instead of searching for the function 0, we search for the function z. So the solution of

problem (1.1), (1.2), (1.3) and (1.4) will be given by 0(x,t) = z(x,t) +n(x, t).
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The general difficult which arises to us is the presence of integral conditions which
complicates the application of standard methods. It may, however, be worth while if
this type of problem can be transformed into another equivalent problem which involves
no integral conditions. For this, we convert problem (1.6), (1.7), (1.8) and (1.9) to the
following classical problem.

Theorem 1.1
The problem (1.6), (1.7), (1.8) and (1.9) is equivalent to the following classical problem :

oz aft) o ,0z B

= _ab2 (x &) btz =Ext), (Xt €O, (1.13)

z(x,0) = A(x), 0 <x < ¢ (1.14)
(

z(t,£) —u(0,t) = tal) Jo(xz —x)E(x,t)dx, 0<t<T, (1.15)

0z 1 o

&(ﬂ,t) = _Bza(t) Lx E(x,t)dx, 0<t<T. (1.16)

Proof
Firstly, multiplying (1.6) with x, and integrating the obtained result with respect x over

(0,8), we obtain

i ¢ i i
EJ xzdx — a(t)J 1—2 (xz%) dx—i—bJ xz dx :J x&(x, t) dx. (1.17)

ot Jo 0 X 0X 0x 0 0
Integrating by parts the integrals on the left-hand side of (1.17), and taking into account
condition (1.8), we get

0z 1
L6t +2(61) —2(0,8) =~ L xE(x, 1) dx. (1.18)

Secondly, multiplying (1.6) with x* and integrating the result obtained over (0, £), he have

¢ ¢
0 0z
—a(t) L I (xza) dx = L x*E(x, 1) dx. (1.19)
Integrating by parts the integrals on the left-hand side of (1.19).
oz T
—(t) = ———— | ¥*E(x,t)d 1.2
aX( ) ) Eza(t) JOX E,(X, ) X ( 0)
Combining the equalities (1.19) and (1.20), we have
¢
z(L,t) —z(0,t) = () L (x? — Ix)E(x, 1) dx. (1.21)

¢ 4

xz(x,t) dx =0 and J x*z(x,t) dx = 0.

Finaly, it remains to prove that J
0

0

© 2013 Global Journals Inc. (US)

Notes



Notes

By using (1.6) and taking into account (1.18) and (1.20) we get

l

d 14
—J xz(x, t) dx—i—bJ xz(x,t)dx =0, 0<t<T
dt J, 0

{

i
iJ' x*z(x, t) dx-l—bJ x*z(x,t)dx =0, 0<t<T

By virtue of the compatibility of the conditions, it follows that

¢ (
J xz(x,t) dx = J x*z(x,t) dx = 0.
0 0

This complete the proof of Theorem (1.1).
By introducing the new unknown function

{ 4

X2E(x, 1) dx — B(x, 1) J XE(x,t) dx,

u(x,t) = z(x,t) — x(x, t) J
0

0

where
i, t) = —3x3 4+ 30x% + Pa(t)
T ta(t)
and
2x3 — 3% — Ba(t)
B(X»t) = )

Ba(t)

the problem (1.13), (1.14), (1.15) and (1.16) is transformed into the following local bound-
ary conditions problem,

ou af(t) 0 [ ,0u B
3% 2 oax <x ax) +bu = f(x,t), (x,t) € Q, (1.22)
u(x,0) = @(x), 0 <x <H{, (1.23)
z(4,t) =u(0,t), 0<t<T, (1.24)
0, 0<t<T (1.25)
a ) — Y =t=Dh .

where

B 3x3 =30 — ' (1) Y ,08 18(2x—0) (*,
f(x,t) =&(x,t) + Gt L pe a(x,t) dx — — L x“E(x,t) dx
(3x® — 362 — a(t)®)b(t) ', 6(4x —30) [
Falt) L x“E(x,t) dx + — 5 Jo x&(x,t) dx
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(2x3 — 3¢x%2 — Ba(t))b(t) (* 23 =32 —Ga'(t) ¢ 93¢
— Balt) Jo x&(x,t) dx — Ba(l) L xa(x, t) dx,
3 2 5 L Ix3 2 3 ¢
olx) =Al) + 2= SO | o0 a2 o “(O)ngzxx,o)dx.

[I.  MAaIN RESULTS

a) An Energy Inequality

The problem (1.17), (1.18), (1.19) and (1.20) can be considered as solving the following
operator equation :

Lu=(p,f) =F,

where L is an operator defined on E into F. E is the banach space of functions u € L*(Q),
satisfying conditions (1.19) and (1.20) with the norm
ul?
) dx

2 ¢
0
|2 =J <x2u2+ ) dxdt + sup J (quz+ X—
. 0<t<T Jo 0

X
and F is the Hilbert space L?(Q) x L%(0,{) which consists of elements F = (¢, f) with the

norm
{ d(p 2
|Vﬁ=j(¢m+(—)>awq‘#mﬂwa.
0 dx .

2
+

ou
X_

ot

Jou
0x

0 0 0
Let D(L) be the set of all function w, for which u, xu, Xzi € 1%(0,¢) and u, xa—z, xa—ltl,
ou 0 ou
2= = (=) e 12(Q).
Y ax(x ax>€ Q)
Theorem 2.1

There exists a positive constant ¢, such that for each function w € D(L) we have

[ulle < cfTuffe. (2.1)

Proof
We consider the scalar product in [2(Q.) with 0 < t < T of equation (1.22) and xu(x,t)+

0
xz—u, yields

ot
ou , (ou)? a(tju 0 [/ ,0u
J;)T Xua dxdt + J;) X (a) dxdt J ) X & X a dxdt

ou

0 ([ ,0u) ou ) J‘ )
LT a(t) ™ (x 6x> o dxdt + JQT b(t)xu” dxdt + o b(t)xu m dxdt
2 ou
= xuf(x,t) dxdt + x“f(x, t)a dxdt. (2.2)
T QT
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Integrating by parts certains integrals of left-hand side of (2.2), we get

ou Loy T,
xu— dxdt = | xu“(x,t)dx — = | x@~°(x) dx, (2.3)
0., Ot 0 2o
thu 0 d ou\’
—J a(thu 9 XY axdt :J a(t) x dxdt, (2.4)
.o X 0x 0x . 0x

Notes

¢ ¢
J b(’c)xzua—u dxdt = 1J b(0)x*u(x, ) dx — 1J b(0)x?@?(x) dx
0. ot 2, 2,
— % J b’ (t)x*u? dxdt, (2.5)

T

0 [ ,0ou\ du 1" ou\’ 1, de )\’
— t)— [ x'— | =— dxdt = = t) [ x=— — = t) [ x=—— (2.
JQTa()aX (x ax) m dxd zLa()(xax) dx 2Joa() * dx. (2.6)

Substituting the equalities (2.3), (2.4), (2.5) and (2.6) into (2.2), it follows that

1

2 2
7 J T(Zb(t)x — b/ (t)x*)u? dxdt + J ] a(t) (Xg_::) dxdt + L} (x?)—il) dxdt

t ¢ ¢ 2
+J xu?(x, 1) dx + MJ x*u(x, 1) dx + 1J a(t) xa—u dx = J xuf(x,t) dxdt
0 2 Jo 2 Jo X "

¢ ¢ ¢ 2
+ J x*f(x, ’c)a—u dxdt + ! J x@?(x) dx + b(0) J 2% (x) dx + 1 J a'(t) Xd_(p dx.
Tols ot 2 ) 2 o 2 Jo

Estimating the first and the two first integrals of the right-hand side of (2.7), by applying
elementary inequalities, we get

[ 1
xuf(x,t) dxdt < EJ xu? dxdt + —J xf(x,t) dxdt, (2.8)
Ja. 2 o, &1 Ja.
[ ou 1 ou\’ 1
2 °= < - o= R . 2.
JQTX f(x,t) ot dxdt < > JQT (x at> dxdt + ZJ Tx f2(x,t) dxdt (2.9)

Therefore, by formulas (2.7), (2.8) and (2.9), we obtain

2 )
1J (2b(t) — &7 — b’ (t)x)xu? dxdt + 1 J xa—u dxdt + J xu?(x, T) dx
2 o, 2)o U Ot 0

{ 1 { 2 1 2
+ wj x*u(x, T) dx + —J a(t) xa—u dx < +t J f2(x, t) dxdt
2 0 2 0 aX 28] -

¢ ¢ ¢ ?
+ % L x@*(x) dx + @ JO X2 @*(x) dx + % JO a'(t) (Xi—i) dx. (2.10)
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db
d

Hence, if ¢; > 0 satisfies ¢ < rrfllin {Zb(t) —X

T

t
Ec ) } , and choosing €; = 2by — ¢; — {bs,
then inequality (2.10) implies

13 u\? 1 ou\’
?2 J ] xu? dxdt + ag JQT <x§) dxdt + 7 JQ (xa> dxdt
2

2+ bl [ Y79 14 ¢
+ % szuz(x,T)dx+%J <x—u) dx < + J f2(x, t) dxdt

24 0 2 0 0x 28]
+]+b1erx 2(x)dx+5r e 2dx (2.11)
2 ), 2 J, Max ' ‘

Therefore, by formulas (2.11) and of assumption (1.1), we obtain

d 2 d 2 ¢
J xu? dxdt + J x—u) dxdt + J (x—u) dxdt + J x*u?(x, 1) dx+
. ox Ie) ot 0

+r xa—u 2dx<é
o U 0x B

where

2
J f2(x, t) dxdt + Jexcpz(x) dx + r (xd—(p> dx|, (2.12)

Q. 0 0 dx

2
A:mm(2+bo€ Qo 1 £2> B:max(l—’_e 1+b1€ E))

20 0 202 2 2¢, 0 2 2

The right-hand side of (2.12) is independent of T, replacing the left-hand side by the upper
with respect to T. Thus inequality (2.1) holds, where

. (2+b0€ a 1 Ez)
min -

. 20022 2
B . 1+ 14+byd a3
"\2e, 0 2 2

This completes the proof of Theorem (1.1).

b) Solvability of the Problem

Now we shall start to prove the existence of the boundary value problem (1.13), (1.14),
(1.15) and (1.16). We use the Fourier’s method.

Consider the fouction u,(x,t) = vy (x)wy(t), where v, (t) is a eigenfunction of the follow-
ing boundary value problem

© 2013 Global Journals Inc. (US)
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where «;, is the eigenvalue corresponding to the eigenfunction v, (x), and wy (t) satisfying
the initial problem

dwn (t) _
adt oWy (t) = f(t)
n(0) = @n.
Not "
o Here
(P(X) = Z (ann(x)
n=1
(p/(x) - Z pnvn(x)
n=0
f(X,t) = i fn(t)vn(x)
n=1

Lemma 2.1
Using the PARSEVAL-STEKLOV equality, we have

+oo

T
It @l =Y ( [Rwaors pi) .

n=1

The direct computation, the solution of the initial problem is giving by

t

wp(t) = @ne*t +J fo(t)es 7 dt,
0

By virtue principle of superposition, the solution of the boundary value problem (1.13),
(1.14), (1.15) and (1.16) is giving by the series

u(x,t) =Y va(xJwa(t). (2.13)

Theorem 2.2 d
Let assumption 1.1 be fulfilled. Then for any f € 12(Q) and ¢ € 1,(0,£) which d—(f: €

1%(0,0), problem(1.13), (1.14), (1.15) and (1.16) admits a unique solution and its repre-
sented by series (2.13) which converge in E.

Proof

n

Consider the partial sum S, (x,t) = ka(x)wk(t) of the series (2.13).
k=1

By applaying the Theorem 1.1, then it follows that

n +o0 T
Swbomedtl| <€ 3 ([ Bwars oi+ot) (2.14)
i=1 n=1
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+00 +o00
The series ZJ f2(t) dt = J 2(x, t) dxdt, Z @% and Z p? converge.
o)

0 n=1 n=1

n=1

Therefore, from (2.14) it follows that the series (2.13) converge in E.
This completes the proof of the Theorem 2.2.
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