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In this paper, an application of Intuitionistic Fuzzy Multiset in Robotics is discussed. The basic operations on 
Intuitionistic Fuzzy Multisets such as union, intersection, addition, multiplication etc. are discussed. Accuracy of 
Collaborative Robots using the concept of Intuitionistic Fuzzy Multiset is discussed.
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I.

 

Introduction

 
Modern set theory formulated by George Cantor is

 

fundamental for the whole 
Mathematics. One issue associated with the notion of a set is the concept of vagueness. 
Mathematics requires that all mathematical notions including set must be exact. This 
vagueness or the representation of imperfect knowledge has been a problem for a long 
time for philosophers, logicians and mathematicians. However, recently it became a 
crucial issue for computer scientists, particularly in the area of artificial intelligence. To 
handle situations like this, many tools were suggested. They include Fuzzy sets, Multi 
sets, Rough sets, Soft sets and many more.

 

Considering the uncertainty factor, Lofti Zadeh [1] introduced Fuzzy sets

 

in 1965, 
in which a membership function assigns to each element of the universe of discourse, a 
number from the unit interval  [0,1] to indicate the degree of belongingness to the set 
under consideration. In 1983, Krassimir. T. Atanassov [2,3] introduced the concept of 
Intuitionistic Fuzzy sets (IFS) by introducing a non-membership fuction together with 
the membership function of the fuzzy set. Among the various notions of higher-order 
Fuzzy sets, Intuitionistic Fuzzy sets proposed by Atanassov provide a flexible framework 
to explain uncertainity and vagueness. IFS reflect better the aspects of human behavior. 

 

A human being who expresses the degree of belongingness of a given element to a 
set, does not often expresses the corresponding degree of non-belongingness as the 
complement. This psychological fact states that linguistic negation does not always 
coincides with logical negation. This idea of Intuitionistic fuzzy sets, which is a natural 
generalization of a standard Fuzzy set, seems to be useful in modelling many real life 
situations, like negotiation processes, psychological investigations, reasoning etc. The 
relation between Intuitionistic Fuzzy sets and other theories modeling imprecision can be 
seen in [4,5].

 

Many fields of modern mathematics have been emerged by violating a basic 
principle of a given theory only because useful structures could be defined this way. Set is 
a well-defined collection of distinct objects, that is, the elements of a set are pair wise 
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different.  If we relax this restriction and allow repeated occurrences of any element, then 
we can get a mathematical structure that is known as Multisets or Bags. For example, 

the prime factorization of an integer n>0 is a Multiset whose elements are primes. The 

number 120 has the prime factorization 120 = 233151  which gives the Multiset {2, 2, 2, 3, 

5}. A complete account of the development of multiset theory can be seen in [6,7]. As a 
generalization of multiset, Yager [8] introduced the concept of Fuzzy Multiset (FMS). An 
element of a Fuzzy  Multiset can occur more than once  with possibly the same  or different 
membership values.  

This paper explains how the concept of Intuitionist Fuzzy Multisets can be applied 
in the field of Robotics. Robots are machines which reduces human effort. Robots can be 
given intelligence to perform tasks that humans can and cannot do. They can be 
programmed for doing a task monotonously or they can work intelligently or dynamically 
according to the situations around them. Some of the applications of a mobile Robot 
include mine detection, surveillance, bomb detection, remote surgery, welding, cleaning 
small pipes, window panes and glass doors of buildings using snake-like Robots etc. 

A Robot mainly contains: sensors, actuators and a controller. An accelerometer 
sensor is used for detecting shock/vibration, a temperature sensor can detect the 
temperature variations, an ultrasonic sensor/Infra-Red sensor/PIR sensor is used to detect 
obstacles, bump sensor senses a bump (collision), cliff sensor senses the presence of a cliff 
and so on. With the help of these sensors a Robot moves easily through its programmed 
path. iRobot Create is one such mobile robot as shown in Figure 1. 

 

Figure 1 : iRobot Create. 

When multiple Robots are used for completing a task, the system is called a multi-
Robot system. Task accomplished by multiple Robots saves time and cost. To explain the 
concept of IFMS, a multi Robot scenario is considered consisting of a central server and a 
group of mobile Robots patrolling a given area for surveillance application. 

Using the distance function, the sensor readings were properly interpreted for 
proper identification of the problem faced by the Robot. 

II. Preliminaries 

2.1 Definition [1] Let X be a nonempty set. A Fuzzy set A drawn from X is defined 

as A = {< x : µA(x) > : x ϵ X}.Where : X →[0,1] is the membership function of the Fuzzy 
Set A. 

2.2. Definition [8] Let X be a nonempty set. A Fuzzy Multiset (FMS) A drawn 

from X is characterized by a function, ‘count membership’ of A denoted by CMA such 

that CMA : X → Q where Q is the set of all crisp multisets drawn from the unit interval 

Notes
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[0,1].  Then for any x ∈ X, the value CMA (x) is a crisp multiset drawn from [0,1].  For 

each x ∈X, the membership sequence is defined as the decreasingly ordered sequence of 

elements in CMA(x). It is denoted by (µ 1
A(x), µ 2

A(x),..., µ P
A(x)) where µ 1

A(x) >

A complete account of the applications of Fuzzy Multisets in various fields can be 
seen in [9].  

 µ 2
A(x) 

>,..., > µ P
A(x). 

2.3 Definition [3] Let X be a nonempty set. An Intuitionistic Fuzzy Set (IFS) A is 

an object having the form A = {< x : µA(x), vA(x) > : x ϵ X}, where the functions µA: X→ 

[0,1] and vA: X→[0,1] define respectively the degree of membership and the degree of non 

membership of the element x∈X to the set A with 0 < 
2.4 Remark Every Fuzzy set A on a nonempty set X is obviously an IFS having the form 

µA(x) + vA(x) < 1 for each x ϵ X. 

A = { < x : µA(x), 1 -  µA(x) > :  x ϵ X } 

Using the definition of FMS and IFS, a new generalized concept called 
Intuitionistic Fuzzy Multiset (IFMS) is defined in [10]. 

III. Intuitionistic Fuzzy Multiset 

3.1 Definition
 
Let X

 
be a nonempty set. An Intuitionistic Fuzzy Multiset

 
A 

denoted by IFMS drawn from X
 
is characterized by two functions: ‘count membership’

 
of 

A
 
(CMA) and ‘count non

 
membership’

 
of A (CNA)

 
given respectively by CMA

 
: X→

 
Q 

and CNA
 : X→

 
Q

 
where Q

 
is the set of all crisp multisets drawn from the unit interval 

  

[0, 1] such that for each x ϵ X, the membership sequence is defined as a decreasingly 

ordered sequence of elements in CMA(x) which is denoted by (µ
 
1
A(x), µ

 
2
A(x),...,

 
µ

 
P

A(x)) 

where (µ
 
1
A(x) >

 
µ

 
2
A(x) >,... >,

 
µ

 
P

A(x) and the corresponding non membership sequence 

will be denoted by (v1
A(x), v2

A(x),...,vP
A(x)) such that 0 <

  
µ

 
i
A(x) + v i

A(x)  <
  
1 for every x 

ϵ X 
and i

 
= 1,2,...,p.

 
 

An IFMS A is denoted by
 

A = { <
 
x: (µ

 
1
A(x), µ

 
2
A(x),...,

 
µ

 
P

A(x)), (v 1
A(x), v 2

A(x), ... ,v P
A(x))  >

 
: x ϵ X 

}
 

3.2. Remark
 
We arrange the membership sequence in decreasing order but the 

corresponding non membership sequence may not be in decreasing or increasing order.
 

3.3. Definition
 
Length of an element x in an IFMS A is defined as the Cardinality 

of CMA

 
(x) or CNA(x) for which 0 <

 
µ j

A(x) + v j
A(x) <

 
1
 
and it is denoted by L(x: A). That 

is
 

L(x:A) = |CMA(x)| = |CNA(x)|
 

3.4 Definition
 
If A

 
and B

 
are IFMSs drawn from X

 
then

 
L(x:A,B) = Max

 
{L(x

 
: A), 

L(x
 
: B)}. Alternatively we use L(x) for L(x :A, B).

 

33.5.Example
 
Consider the set X

 
= {x, y, x, w} with

 
A= {< x

 
: (0.3, 0.2), (0.4, 0.5) >, < 

y
 
: (1,0.5,0.5), (0.0.5,0.2) >,   < z

 
: (0.5, 0.4, 0.3, 0.2), (0.4, 0.6, 0.6, 0.7)>},

 
B= {< x

 
: (0.4), (0.2) 

>, < y
 
: (1,0.3, 0.2), (0,0.4, 0.5) >,  < w

 
: (0.2, 0.1), (0.7, 0.8) >}.
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Now we define basic operations on IFMS. Note that we can make L(x : A) = L(x : 

B) by appending sufficient number of 0’s and 1’s with the membership and non 
membership values respectively. 

3.6 Definition Let A and B be two IFMS. The distance function is defined as              

𝑑𝑑(𝐴𝐴,𝐵𝐵) = (1
2
 ∑ ((𝑖𝑖 µ𝐴𝐴

𝑖𝑖 (𝑥𝑥) −µ 𝐵𝐵
𝑖𝑖 (𝑥𝑥))2 + (ν 𝐴𝐴

𝑖𝑖 (𝑥𝑥)−ν 𝐵𝐵
𝑖𝑖 (𝑥𝑥))2 + (Π 𝐴𝐴

𝑖𝑖 (𝑥𝑥) −Π 𝐵𝐵
𝑖𝑖 (𝑥𝑥))2))

1
2 

where Πi
A = 1 -  µi

A(x) - vi
A(x) called the IFMS index or hesitation margin. 

   
      

   

1. Inclusion 

A ⊂ B  ⇔ µ j
A(x) < µ j

A(x) and v j
A(x) > 

j = 1,2,..., L(x), x ϵ X 

v j
B(x);   

A = B  ⇔ A ⊂ B and B ⊂ A 
 

2. Complement 

¬A = {< x : (v 1
A(x),...,v P

A(x)), (µ1
A(x),……. ..., µP

A(x)) > : x ϵ X} 

3. Union (A ∪ B) 

In A ∪ B the membership and non membership values are obtained as follows. 

µ j
A∪B(x) = µ j

A(x) ∨ µ j
B(x) 

v j
A∪B(x) = v j

A(x)∧v j
B(x) 

j = 1, 2,...,L(x), x ∈ X. 

4. Intersection (A ∩ B) 

In A∩B the membership and non membership values are obtained as follows. 
 

µ j
A∩B(x) = µ j

A(x)∧ µ j
B(x) 

v j
A∩B(x) = v j

A(x) ∨ v j
B(x) 

j = 1, 2,...,L(x), x ∈ X. 

5. Addition (A ⊕ B) 

In A⊕B the membership and non membership values are obtained as follows. 

µ j
A⊕B(x) = µ j

A(x) + µ j
B(x) - µ j

A(x). µ j
B(x) 

 
v j

A⊕B(x) = v j
A(x). v j

B(x) 
 

Notes
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3.7 Definition For any two IFMSs A and B drawn from a set X, the following operations 
and relations will hold. Let A = {< x : (µ1

A(x), µ2
A(x),...,µP

A(x)), (v 1
A(x), v 2

A(x),...,v P
A(x)) > : x ϵ

X} and B = {< x : (µ1
B(x), µ2

B(x),..., µP
B(x)), (v1

B(x), v 2
B(x),...,v P

B(x)) > : x ϵ X} then
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j = 1, 2,...,L(x), x ϵ X. 
 

6. Multiplication (A ⊗ B) 

In A⊗B the membership and nonmembership values are obtained as follows. 

µ j
A⊗B(x) = µ j

A(x). µ j
B(x) 

v j
A⊗B(x) = v j

A(x) + v j
B(x) - v j

A(x). v j
B(x) 

j = 1, 2,...,L(x), x ϵ X. 

here ∨, ∧ , . , +, - denotes maximum, minimum, multiplication, addition, subtraction of 
real numbers respectively. 

IV. Ifms Theory for Multi Robot System 

Most of human reasoning involves the use of variables whose values are fuzzy sets. 
This is the basis for the concept of a linguistic variable, that is, a variable whose values 
are words rather than numbers. But in some situations like decision making problems 
(such as Medical diagnosis, Sales analysis, Marketing etc.) the description by a linguistic 
variable in terms of membership function only is not adequate. There is chance of existing 
a non-null complement. IFS can be used in this context as a proper tool for representing 
both membership and non-membership of an element to a set. Such situations are 
explained in [11]. But there are situations that each element has different membership 
values. In such situations IFMS is more adequate. Here we present IFMS as a tool for 
reasoning such a situation.  

An example of a multi Robot system is presented. The multi Robot system [12] 
considered consists of a central controller and four patrolling Robots in a large area. The 
total area is divided into four equal parts and assigned to each Robot. The Robot patrols 
in its assigned area. Each Robot is equipped with ultrasonic sensor, accelerometer sensor, 
cliff sensor, bump sensor and temperature sensor and is wirelessly controlled by the 
controller. The controller makes decisions depending upon the sensor readings. For 
example, if the cliff sensor value in Robot1 indicates the presence of a cliff, the controller 
can change the commands that are sent to the Robot1; that is, the controller can direct 
the Robot1 towards the right, left or backward directions. Similar is the case with every 
other sensor reading. 

Let R = {R1, R2, R3, R4} be a set of four Robots, C = {Fire, Obstacle, Bump, 

Cliff, Vibration} be a set of situations or conditions and S = {Temperature sensor, 

Ultrasonic sensor, Bump sensor, Cliff sensor, Accelerometer sensor} be a set of sensors 
deployed on each Robot. A single Robot can be assigned different membership and non 
membership values for the five different sensor readings. This is where IFMS comes into 
picture. 
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Figure 2 : A multi robot system with three patrolling robots 

Whether from a single reading can we conclude what are the situations faced by 
the Robots? The sensor readings from the Robots have to be monitored for a particular 
time, say for three minutes. If for example, the ultrasonic sensor in Robot1 indicates an 
obstacle, it sends a message to the controller so that the corrective measure could be 
taken. The controller has to make sure whether the Robot1 is really faced with an 
obstacle or not. For that purpose, the controller monitors the ultrasonic sensor reading for 
three minutes. Depending upon the consistency of the readings, the controller identifies 
the situation. 

To understand IFMS theory, let us consider the situation where the Robot1 faces 
an obstacle, Robot2 experiences a shock/vibration, Robot3 faces a bump and Robot4 
detects a cliff. Thus whenever

 
the ultrasonic sensor detects an obstacle and the 

accelerometer sensor detects a vibration, alert is sent to the controller and the controller 
monitors the situation for 3 minutes.

 

In Table-I each sensor reading is described by three numbers: Membership µ,
 
non-

membership v
 
and hesitation margin Π.

 

Table II shows the Robots and the corresponding membership functions to the 
sensor values.

 

Table 1
 

 

 
 
 
 
 
 
 
 
 
 

 
 The objective is to make a proper decision for each Robot. Hence the readings are 

monitored for a particular interval time (3 minutes).
 

 Fire Obstacle Bump Cliff Shock/Vibration 

Temperature 
sensor 

(0.8,0.,1,0.1) (0.2,0.7,0.1) (0.1,0.7,0.2) (0.2,0.5,0.3) (0.5,0.2,0.3) 

Ultrasonic sensor (0.2,0.,7,0.1) (0.8,0.1,0.1) (0.6,0.3,0.1) (0.2,0.,7,0.1) (0.1,0.7,0.2) 

Bump sensor (0.1,0.7,0.2) (0.1,0.7,0.2) (0.9,0.1,0.0) (0.1,0.7,0.2) (0.2,0.5,0.3) 

Cliff sensor (0.2,0.5,0.3) (0.1,0.7,0.2) (0.1,0.7,0.2) (0.7,0.1,0.2) (0.1,0.7,0.2) 

Accelerometer 
sensor 

(0.1,0.7,0.2) (0.2,0.5,0.3) (0.1,0.7,0.2) (0.1,0.7,0.2) (0.8,0.2,0.0) 

Notes
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Table II  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table III shows the sensor readings monitored for 3 minutes, one reading per minute.  
Table IV shows the distances of each Robot to the situation considered. Thus, using this 
distance function, IFMS theory is able to make out the correct situation of each Robot. 
 

Table III  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table IV

 
 
 
 

 
 
 
 
 
 

 

Temperature
 

sensor
 

Ultrasonic 
sensor

 
Bump sensor

 
Cliff sensor

 
Accelerometer 

sensor
 

R1 
 

(0.8,0.1, 0.1)
 

 

(0.8, 0.1, 0.1)
 

(0.1, 0.9, 0.0)
 

(0.2, 0.8,0.0)
 

(0.3, 0.6, 0.1)
 

R2 
 

(0.4, 0.5, 0.1)
 

 

 
(0.3, 0.7,0.0)

 
 

 
(0.1, 0.7, 0.2)

 
 

 
(0.2, 0.6, 0.2)

 
 

 
(0.8, 0.1, 0.1)

 
 

R3 
 

(0.1, 0.8, 0.1)
 

 

(0.6, 0.4,0.0)
 

 
(0.8, 0.1, 0.1)

 
 

 
(0.1, 0.9, 0.0)

 
 

(0.2, 0.7, 0.1)
 

R4 
(0.1, 0.7, 0.2)

 
 

(0.3, 0.6, 0.1)
 

 

 
(0.2, 0.7, 0.1)

 
 

 
(0.7, 0.2, 0.1)

 
 

 
(0.1, 0.7, 0.2)

 
 

 

Temperature

 
sensor

 

Ultrasonic 
sensor

 

Bump sensor

 

Cliff sensor

 

Acceleromet
er sensor

 
R1

 

(0.8,0.7, 0.9)

 
(0.1, 0.2, 0.0)

 
(0.1, 0.1, 0.1)

 

(0.8, 0.8, 0.9)

 
(0.1, 0.1, 0.1)

 
(0.1, 0.1, 0.0)

 

(0.1, 0.2, 0.0)

 
(0.9, 0.7, 0.8)

 
(0.0, 0.1, 0.2)

 

(0.2, 0.1, 0.0)

 
(0.8, 0.6, 0.7)

 
(0.0, 0.3, 0.3)

 

(0.3, 0.3, 0.4)

 
(0.6, 0.4, 0.4)

 
(0.1, 0.3, 0.2)

 
R2

 

(0.4, 0.3, 0.3)

 
(0.5, 0.4, 0.6)

 
(0.1, 0.3, 0.1)

 

(0.3, 0.2, 0.3)

 
(0.7, 0.6, 0.1)

 
(0, 0.2, 0.7)

 

(0.1, 0.2, 0.4)

 
(0.7, 0.6, 0.4)

 
(0.2, 0.2, 0.2)

 

(0.2, 0.5, 0.2)

 
(0.6, 0.4, 0.7)

 
(0.2, 0.1, 0.1)

 

(0.8, 0.7, 0.6)

 
(0.1, 0.2, 0.3)

 
(0.1, 0.1, 0.1)

 
R3

 

(0.1, 0.2, 0.1)

 
(0.8, 0.6, 0.9)

 
(0.1, 0.2, 0.0)

 

(0.6, 0.2, 0.1)

 
(0.4, 0.0, 0.7)

 
(0, 0.8, 0.2)

 

(0.8, 0.7, 0.8)

 
(0.1, 0.1, 0.1)

 
(0.1, 0.2, 0.1)

 

(0.1, 0.2, 0.2)

 
(0.9, 0.7, 0.6)

 
(0.0, 0.1, 0.2)

 

(0.2, 0.3, 0.2)

 
(0.7, 0.7, 0.7)

 
(0.1, 0.0, 0.1)

 
R4

 

(0.1, 0.4, 0.5)

 
(0.7, 0.4, 0.3)

 
(0.2, 0.2, 0.2)

 

(0.3, 0.3, 0.4)

 
(0.6, 0.3, 0.5)

 
(0.1, 0.4, 0.1)

 

(0.2, 0.1, 0.0)

 
(0.7, 0.6, 0.7)

 
(0.1, 0.3, 0.3)

 

(0.8, 0.6, 0.9)

 
(0.2, 0.3, 0.0)

 
(0, 0.1, 0.1)

 

(0.1, 0.5, 0.4)

 
(0.7, 0.4, 0.3)

 
(0.2, 0.1, 0.3)

 

 
 

Fire

 

Obstacle

 

Bump

 

Cliff

 

Shock/Vib
ration

 
R1

 

0.72

 

0.65

 

1.07

 

1.06

 

0.90

 
R2

 

0.84

 

0.79

 

0.97

 

0.83

 

0.52

 
R3

 

1.07

 

0.89

 

0.50

 

1.03

 

1.02

 
R4

 

0.79

 

0.84

 

1.07

 

0.46

 

0.87
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In the above table the lowest distance point gives the accuracy of the Robot. 
Robot R1  is near an obstacle, R2 experiences a vibration, R3 is bumped and R4 is near a 
cliff.  

V.  CONCLUSIONS  

In this paper, we have discussed the various basic operations of Intuitionistic 
Fuzzy Multiset and its application in Robotics. In the proposed method, we measured the 
distances of each Robot from each situation by considering the sensor readings. The 
concept of multiness is incorporated by taking the samples from the same Robot for a 
particular time.  
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