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Abstract -

 

This paper describes method for modelling of helical-n-revolutional cyclical surfaces. The axis of the cyclical 
surface     1

 

is the helix s1 created by revolving the point about n each other revolving axes 

 

(n = 1,2,3), that move 
together with Frenet-Serret moving trihedron along the cylindrical helix s. Particular evolutions are determined by its 
angular velocity and orientation. The moving circle along the helix s or

 

s1, where its center lies on the helix and circle lies 
in the normal plane of the helix creates the cyclical surface.
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Let thre-dimensional Euclidean space E3 is determined by Cartesian coordinate system 
( )zyx0 ,,, . In this space is given cylindrical helix s with axis identical with coordinate axis z 
determined by vector function (Fig.1) 

( ) ( ) ( )1,,sin,cos1,,, bvmvasgmvazyxv sss ==r , π∈ 2,0v , (1) 

where parameter a is radius of the helix, b is the reduced pitch, sg determined orientation of the helix, 
( 1+=sg  for right-handed and 1−=sg  for left-handed revolution), m is number of pitches. Let 
( )tbn0 ,,,′  be Frenet-Serret moving trihedron of the cylindrical helix s represented by regular square 
matrix  

( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1000
0
0
0

vtvtvt
vbvbvb
vnvnvn

v
zyx

zyx

zyx

M , (2) 

where the matrix elements are the coordinates of unit vectors of the principle normal n, binormal b and 
tangent t of the helix s in the point s0 ∈′  in the coordinate system ( )zyx0 ,,,

( ) ( ) ( ) ( )( ) ( )
( )v
vvtvtvtv zyx r

rt
′
′

== ,, ,  (3)

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )vv

vvvbvbvbv zyx rr
rrb
′′×′
′′×′

== ,, , (4)

( ) ( ) ( ) ( )( ) ( ) ( )vvvnvnvnv zyx tbn ×== ,, . (5)

Φ on

Notes
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Helical-One, Two, Three-Revolutional Cyclical Surfaces

Transformations of revolutions about coordinate axes x, y, z are represented by matices 
( )ψϕ, xT , ( )ψϕ, yT , ( )ψϕ, zT , where ϕ is angle and ψ is orientation of the revolution, 

transformation of translation is represented by matrix ( )zyx d,d, d ±±±T , where 

( )zyx d,d, d ±±±  is translation vector determined by its coordinates (6), (7): 

( )
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

ϕϕψ−
ϕψϕ

=ψϕ

1000
0cossin0
0sincos0
0001

, xT , ( )
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

ϕϕψ−

ϕψϕ

=ψϕ

1000
0cos0sin
0010
0sin0cos

, yT , (6) 

( )
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
ϕϕψ−
ϕψϕ

=ψϕ

1000
0100
00cossin
00sincos

, zT , ( )
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

±±±

=±±±

1
0100
0010
0001

zyx

zyx

ddd

d,d, dT . (7)

The moving circle ( )r0c ,′=  along the helix s, where its center 0′  lies in the normal plane 
determined by principal normal n and binormal b of the helix in the point s0 ∈′  creates the cyclical 
surface Φ. The vector function of this surface is 

( ) ( ) ( ) ( )vuvvu McrP ., += , π∈ 2,0u , π∈ 2,0v , (8)

where ( )vr  is vector function of the helix s expressed in equation (1), ( )vM  is transformation matrix 
of the coordinate system ( )tbn0 ,,,′  into coordinate system ( )zyx0 ,,,  (2) and 
( ) ( ) π∈= 2,0,1,0,sin ,cos uururuc  is vector function of the circle c determined by its center 0′

and radius r (Fig.2). In Fig.3 there are displayed two screws of the right-handed cyclical surface Φ
together with the cylindrical surface on which helix s is wound. 

                        
           Helix s with Trihedron                            Cyclical Surface Φ                    Surface Φ and Cylinder 

s s c 

Φ

Φ

II. Cyclical Helical Surface Created by One Revolution 

The helix 1s  created by revolution of the point ( )1,,, 000 zyxP  about the axis 1o  connected to the 
moving trihedron of the helix s, is represented by vector function 

( ) ( ) ( ) ( ) ( )vsvmzyxvv MTrr .g,.1,,, 1110001 +=  (9) 

Notes

Fig. 1 : Fig. 2 : Fig. 3 :
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Helical-One, Two, Three-Revolutional Cyclical Surfaces

and cyclical surface Φ1 created in a similar way as surface Φ by vector function

( ) ( ) ( ) ( )vuvvu 1111 ., McrP += , π∈ 2,0u , π∈ 2,0v , (10)

where ( )v1r  is vector function of the helix 1s expressed in equation (9), ( )v1M  is transformation 
matrix of the coordinate system ( )tbn0 ′′′′′ ,,,  into coordinate system ( )zyx0 ,,,  (11), 
( ) ( ) π∈= 2,0,1,0,sin ,cos 111 uururuc  is vector function of the circle c1 determined by center 

1s0 ∈′′  and radius r1

( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

′′′
′′′
′′′

=

1000
0
0
0

1 vtvtvt
vbvbvb
vnvnvn

v
zyx

zyx

zyx

M . (11) 

Elements of this matrix are coordinates of unit vectors of the principle normal n′ , binormal b′  and 
tangent t′ of the helix 1s  in the point 1s0 ∈′′  in the coordinate system ( )tbn0 ,,,′

( ) ( ) ( ) ( )( ) ( )
( )v
vvtvtvtv zyx

1

1,,
r
rt
′
′

=′′′=′ (12) 

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )vv

vvvbvbvbv zyx
11

11,,
rr
rrb
′′×′
′′×′

=′′′=′ , (13)

( ) ( ) ( ) ( )( ) ( ) ( )vvvnvnvnv zyx tbn ′×′=′′′=′ ,, . (14)

The helix created by the revolution of the point P about the axis to =1  is expressed by vector 
function (9), in which matrix ( ) ( )11111 g,g, svmsvm zTT = . In Fig.4 is displayed cyclical surface Φ, 
whose axis is helix s with parameters 1,2 +== sgm  and surface Φ1, whose axis is helix 1s  created by 
revolution of the point ( )1,0,0,dP =  about tangent t of the helix s with parameters 1,8 11 +== sgmm . 

                       
           Cyclical Surfaces Φ, Φ1                   4 Surfaces iΦ1                Left-handed Surfaces Φ,iΦ1

Φ

Φ1 1Φ1 

2Φ1 

3Φ1 

4Φ1 

a) Revolution about tangent t of the helix s 

Notes

Fig. 4 : Fig. 5 : Fig. 6 :
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Helical-One, Two, Three-Revolutional Cyclical Surfaces

In Fig.5 are displayed 4=k  surfaces iΦ1, whose axes are helix 1s
i , ki ,...,1=  created by 

revolution of the points ( )1,0,sin,cos αα= ididPi , k/2π=α  about tangent t of the helix s with 
parameters 1,4 11 +== sgmm , in Fig.6 are displayed the same surfaces with altered orientation of the 
revolution 1,2 −== sgm , 1,4 11 −== sgmm . 

                      

              Normal Surface Φ1                           4 Surfaces iΦ1                        Normal Surfaces 1Φ1, 3Φ1 

The helix s1 created by the revolution of the point P about the axis no =1  is expressed by vector 
function (9), in which matrix ( ) ( )11111 g,g, svmsvm xTT = . In Fig.7 is displayed helix s with parameters 

1,2 +== sgm  and normal surface Φ1, whose axis is helix 1s  created by revolution of the point 

b) Revolution about principal normal n of the helix s

( )1,0,,0 dP =  about normal n of the helix s with parameters 1,10 11 +== sgmm , in Fig.8 are displayed 
4=k  normal surfaces iΦ1, whose axes are helix 1s

i , ki ,...,1=  created by revolution of the points 
( )1,sin,cos,0 αα= ididPi , k/2π=α  about normal n of the helix s with parameters 

1,7 11 −== sgmm , in Fig.9 are displayed surfaces 1Φ1, 3Φ1 with altered orientation of the revolution 
11 ±=sg . 

c) Revolution about binormal b of the helix s
The helix created by the revolution of the point P about axis bo =1  is expressed by vector 

function (9), in which matrix ( ) ( )11111 g,g, svmsvm yTT = . In Fig.10 is displayed helix s with parameters 

1,2 +== sgm  and binormal surface Φ1, whose axis is helix 1s  created by revolution of the point 
( )1,0,0,dP =  about binormal b of the helix s with parameters 1,10 11 +== sgmm , in Fig.11 is 

displayed binormal surface with parameters 1,8 11 −== sgmm , in Fig.12 are surfaces
 
1Φ1, 3Φ1 created

 

by revolution of the points ( )1,0,sin,cos αα= ididPi , k/2π=α  about binormal b of the helix with 
altered orientation of the revolution 11 ±=sg . 

Notes

Fig. 7 : Fig. 8 : Fig. 9 :
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Helical-One, Two, Three-Revolutional Cyclical Surfaces

                         

  Binormal Surface Φ1        4 Surfaces iΦ1             Binormal Surfaces 1Φ1,3Φ1

The helix 1s  created by revolution of the point ( )1,,, 000 zyxP  about axis 2o , which revolves 
about the axis

 
1o  identical with one edge of the moving trihedron of the helix s is represented by 

vector function 

( ) ( ) ( ) ( ) ( ) ( )vsvmsvmzyxvv MTTrr .g,.g,.1,,, 1112220001 += , (15) 

where matrix ( )222 g, svmT  represents revolution of the point P about the axis 2o  and matrix 
( )111 g, svmT  represents revolution of the axis 2o  about the axis 1o . 

III. Cyclical Helical Surface Created by Two Revolutions

a) Revolution about two parallel axes

n 
b 

1ot =
2o

d 

d1 0´ 

P
               1on =

b

t 

2o d
d1 

0´

P

               n 1ob =

t 

2o
d 

d1 

0´ 

P

                                                  

If the helix 1s  is created by revolution of the point P about two parallel axes 2o ׀׀ 1o  and to =1 , 
where 211 ood =  is the distance between them, then (Fig.13) 

( ) ( ) ( ) ( )0,0,.g,.0,0,g, 1221222 dsvmdsvm +−= TTTT z , ( ) ( )11111 g,g, svmsvm zTT = . (16)

 

In Fig.16 is displayed this surface Φ1 with parameters 1,8 11 +== sgmm , 1,4 212 +== sgmm . 
If the helix 1s  is created by revolution of the point P about parallel axes 2o ׀׀ 1o  and no =1 , 

where 211 ood = , then (Fig.14) 

( ) ( ) ( ) ( )1221222 ,0,0.g,.,0,0g, dsvmdsvm x +−= TTTT , ( ) ( )11111 g,g, svmsvm xTT = . (17)

Notes

Fig. 10 : Fig. 11 : Fig. 12 :

Fig. 13 Fig. 14 Fig. 15
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2o ׀׀ 1o , to =1 2o ׀׀ 1o , no =1 2o ׀׀ 1o , bo =1

In Fig.17 is displayed this surface Φ1 with parameters 1,6 11 +== sgmm , 1,4 212 +== sgmm . 
If the helix 1s  is created by revolution of the point ( )1,,0,0 dP =  about parallel axes 2o ׀׀ 1o

and bo =1 , where 211 ood = , then (Fig.15) 

( ) ( ) ( ) ( )1221222 ,0,0.g,.,0,0g, dsvmdsvm y +−= TTTT , ( ) ( )11111 g,g, svmsvm yTT = . (18) 

In Fig.18 is displayed this surface Φ1 with parameters 1,8 11 −== sgmm , 1,5 212 +== sgmm . 

                    
( ) ( )noto =⊥= 12 ( ) ( )tono =⊥= 12 ( ) ( )bono =⊥= 12

In Fig.19 is displayed surface created by revolution of the point ( )1,0,2,2=P  about mutually 
perpendicular axes ( ) ( )noto =⊥= 12  determined by the parameters 1,6 11 −== sgmm , 

1,4 212 −== sgmm , where matrices ( ) ( )22222 g,g, svmsvm zTT = , ( ) ( )11111 g,g, svmsvm xTT = , in Fig.20 

b) Revolution about two intersecting axes

is displayed surface created by revolution of the point ( )1,0,2.1,2.2=P  about mutually perpendicular 
axes ( ) ( )tono =⊥= 12  determined by parameters 1,6 11 +== sgmm , 1,6 212 +== sgmm , and matrices 

( ) ( )22222 g,g, svmsvm xTT = , ( ) ( )11111 g,g, svmsvm zTT = , here we see action of changing the order of 

the revolutions to form of the surfaces. In Fig.21 is displayed surface created by revolution of the point 

( )1,0,5.2,5.2=P  about mutually perpendicular axes ( ) ( )bono =⊥= 12  determined by parameters 

Notes

Fig. 16 : Fig. 17 : Fig. 18 :

Fig. 19 : Fig. 20 : Fig. 21 :
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Helical-One, Two, Three-Revolutional Cyclical Surfaces

1,5 11 −== sgmm , 1,3 212 +== sgmm , ( ) ( )22222 g,g, svmsvm xTT = , ( ) ( )11111 g,g, svmsvm yTT = .In 
Figs.22,23 is displayed surface created by revolution of the point ( )1,0,0,dP =  about intersecting axes 

( )too =× 12  determined by the parameters 1,6 11 +== sgmm , 1,6 212 −== sgmm , 
( ) ( )11111 g,g, svmsvm zTT = , ( ) ( ) ( ) ( )1,.g,.1,g, 22222 −α+α= yxy svmsvm TTTT . 

c) Revolution about two skew axes

In Figs.24,25 is displayed surface created by revolution of the point ( )1,0,0,dP =  about 
mutually skew axes (o2 ׀׀ n) / ( )to =1 , determined by parameters 1,4 11 +== sgmm , 

1,8 212 +== sgmm , where transformation matrices of two revolutions are  

( ) ( )11111 g,g, svmsvm zTT = , ( ) ( ) ( ) ( )1221222 ,0,0.g,.,0,0g, dsvmdsvm x +−= TTTT .  

In Figs.26,27 is displayed surface created by revolution of the point ( )1,0,0,dP =  about mutually skew 
axes ( )noto ×× 22 ,  / ( )to =1  determined by parameters 1,6 11 +== sgmm , 1,4 212 −== sgmm , and 
transformation matrices ( ) ( ) ( ) ( )1,.g,.1,g, 22222 −α+α= yxy svmsvm TTTT , ( ) ( )11111 g,g, svmsvm yTT = . 

          
n b 

to =1
2o

d1 
0´

P
d2 

α

         

 

( )too =× 12                              o2 ׀׀ n) / ( )to =1

1ot =

n b
2o

d d1 
0´

P

                       
n 

t 

bo =1

2o

d1 
0´ 

P
d2 

α

  ( )noto ×× 22 ,  / ( )to =1

Notes

Fig. 22 : Fig. 23 Fig. 24 :

Fig. 25 Fig. 26 : Fig. 27
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The helix 1s  created by the revolution of the point ( )1,,, 000 zyxP =  about the axis 3o , which 
revolves about the axis 2o  and this revolves about the axis 1o  identical with any edge of the moving 
trihedron of the helix s is represented by vector function 

( ) ( ) ( ) ( ) ( ) ( ) ( )vsvmsvmsgvmzyxvv MTTTrr .g,.g,.,.1,,, 1112223330001 += , (19) 

where matrix ( )333 g, svmT  represents revolution of the point P about the axis 3o , matrix ( )222 g, svmT
represents revolution of the axis 3o  about the axis 2o  and matrix ( )111 g, svmT  represents revolution of 
the axis 2o  about the axis 1o . 

IV. Cyclical Helical Surface Created by Three Revolutions

In Fig.28 is displayed surface created by revolution about three parallel axes 3o ׀׀ 2o ׀׀ to =1

determined by parameters 1,4 11 +== sgmm , 1,4 212 +== sgmm , 1,3 123 +== sgmm , matrices 
( ) ( ) ( ) ( )0,0,.g,.0,0,g, 2332333 dsvmdsvm +−= TTTT z , ( ) ( ) ( ) ( )0,0,.g,.0,0,g, 1221222 dsvmdsvm +−= TTTT z , 
( ) ( )11111 g,g, svmsvm zTT = . In Fig.29 is displayed surface created by revolution about three parallel axes 

3o ׀׀ 2o ׀׀ no =1  determined by parameters 1,4 11 +== sgmm , 1,4 212 +== sgmm , 1,4 123 +== sgmm
and by transformation matrices ( ) ( )11111 g,g, svmsvm xTT =

( ) ( ) ( ) ( )1221222 ,0,0.g,.,0,0g, dsvmdsvm +−= TTTT z , ( ) ( ) ( ) ( )2332333 ,0,0.g,.,0,0g, dsvmdsvm x +−= TTTT .  

               
          

3o ׀׀ 2o ׀׀ to =1                3o ׀׀ 2o ׀׀ no =1           3o ׀׀ 2o ׀׀ bo =1

In Fig.30 is displayed surface created by revolution about three parallel axes 3o ׀׀ 2o ׀׀ bo =1

determined by parameters 1,3 11 +== sgmm , 1,3 212 +== sgmm , 1,3 123 +== sgmm  and 
transformation matrices ( ) ( ) ( ) ( )2332333 ,0,0.g,.,0,0g, dsvmdsvm y +−= TTTT , 

( ) ( ) ( ) ( )1221222 ,0,0.g,.,0,0g, dsvmdsvm y +−= TTTT , ( ) ( )11111 g,g, svmsvm yTT = .

b)

a) Revolution about three parallel axes

Revolution about three perpendicular axes
In Figs.31,32,33 are displayed surfaces

 

created by revolution of the point ( )1,0,,ddP =  about 
three perpendicular axes with common point 123 ooo ⊥⊥ , which are identical with edges of the 
trihedron of the helix s, where parameters are the same 1,3 11 +== sgmm , 1,3 212 +== sgmm , 

1,3 123 +== sgmm , but the order of the revolutions changes. 

Notes

Fig. 28 : Fig. 29 : Fig. 30 :
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c) Revolution about three skew axes

V. Conclusion

            
  tobono === 123 ,, botono === 123 ,, tonobo === 123 ,,  

In Fig.34 are displayed surfaces created by revolution of the point ( )1,0,0,0=P  about three 
skew axes 123 // ooo , which are parallel with edges of the trihedron of the helix s, 3o n, 2o׀׀ b, 3o׀׀  ,t׀׀
where parameters are 1,4 11 +== sgmm , 1,2 212 +== sgmm , 1,6 123 +== sgmm , transformation 
matrices of three revolutions are 

( ) ( ) ( ) ( )3333333 ,0,0.,.,0,0, dsgvmdsgvm x +−= TTTT , ( ) ( ) ( ) ( )0,0,.,.0,0,, 2222222 dsgvmdsgvm y +−= TTTT , 
( ) ( ) ( ) ( )0,,0.,.0,,0, 2111111 dsgvmdsgvm z +−= TTTT . 

          
3o n, 2o׀׀ b, 3o׀׀ t׀׀ 3o ,n׀׀ no =2 , bo =1 3o ,n׀׀ no =2 , to =1

In Figs.35,36 are displayed surfaces created by revolution about the axes 3o ,n׀׀ no =2 , bo =1

or axes 3o ,n׀׀ no =2 , to =1 . 

The described method of modeling of the helical-n-revolutional cyclical surfaces makes it 
possible to model different interest surfaces simply by changing the parameters. 
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