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In what follows ( , )X T  stands for a topological space.  The symbols ( ) and ( )cl Int  

denote the closure and interior in a topological space respectively.  

a) Preliminaries

1.1 Definition:  Let A be a subset of X .  A  is said to be     

      (i)    semi-open in ( , )X T  if ( ( ))A cl Int A⊆ .

      (ii)   semi-closed if  X - A is semi-open in ( , )X T .     

(iii)  semi-neighborhood of a point x ∈	X  if  x ∈ A 	and A is semi-open in ( , ) .X T  

1.2 Definition:  The semi-closure of a set A  in ( , )X T  denoted by ( )scl A , is the    

intersection of all semi-closed supersets of A . 

A point x X∈ is said to be a semi-limit point of a set A  in ( , )X T , if    

every semi-neighborhood of  x contains a point of A  different from  x  in X . 

      1.3 Definition:  
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In 1963, Norman Levin introduced the concept of semi-open sets in his paper [2].  It 
has drawn the attention of various authors including Crossley, Hildebrand and Dorsett and 
they have probed deeply into this area and developed many interesting concepts like semi-
closed sets, semi-compactness etc.  In this present paper, we introduce the concepts of semi-
limit and semi-separability and prove that semi-separability is equivalent to separability.  
Also we construct a topology using semi-open sets and we call this topology a semi-
topology.
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2.1 Definition:  Let x X∈ and let { xλ / � ϵ ∆ } be a net in ( , )X T .  We say that x is a 

       semi-limit of { }/xλ λ ∈∆ and we write x = .lims xλ
λ∈∆

 if for every semi-neighborhood A       

        of  x in X there exists a Aλ ∈∆
  
such that x Aλ ∈

  
.Aλ λ∀ ≥
     

2.2 Proposition:  For A X⊂  and x X∈ , the following are equivalent.  

(i) x  is a semi-limit point of A

(ii)  there exists a net { / }xλ λ ∈∆  in A such that .limx s xλ
λ∈∆

=

(iii) ( )x scl A∈

2.3 Remark:  Let ( )S T  be the collection of all semi-open sets in ( , )X T . The set ( )S T

clearly contains T and is closed under arbitrary unions. However, being not closed 

under finite intersections, ( )S T is not a topology on X . However, if A T∈ and 

( )B S T∈ then A B∩ ( )S T∈ . 

      2.4 Definition:  We define { }0 ( ) ( ) / ( ) ( )S T A S T A B S T B S T= ∈ ∈ ∀ ∈∩
  
and       

      { }00 0 0 0( ) ( ) / ( ) ( )S T A S S A B S S B S S= ∈ ∈ ∀ ∈∩  where 0( )S S is  the collection of all   

      semi-open sets in the topological space 0( , ( )).X S T  

       2.5 Proposition:  

      (a)  0 ( )S T and 00 ( )S T  are topologies on X .

      (b)  0 ( ) ( ).T S T S T⊆ ⊆

      (c)  0( )S S ⊆ ( ) .S T

      (d)  0 ( )S T = 00 ( ) .S T

      2.6 Remark:  We call the topology 0 ( )S T , a semi-topology on  X . 

      2.7 Notation:  We denote the closure of a subset A of X in the topological space  

       ( , ( ))oX S T by the symbol 0cl ( )A  and interior of A by ( )oInt A . 

      2.8 Proposition: For ,A X⊆   0( ) ( ) ( )scl A cl A cl A⊆ ⊆ . 

      3.1 Definition:   ( , )X T  is said to be separable if there exists a countable     

      subset A of X such that ( )cl A X= .                                     

b) Semi-Limit and Semi-Topology

c) Semi-Separability
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      3.2 Definition: ( , )X T  is said to be semi-separable if there exists a countable subset A of   

      X  such that ( )scl A X= .                                         

      3.3 Proposition: ( , )X T  is separable if and only if  it is semi-separable.                                         

      Proof:  Suppose that ( , )X T  is separable.  

      ⇒   there exists a countable subset A  of X  such that ( )cl A X= .                  

      Let x X∈  and G  be a semi-neighborhood of x in ( , )X T                                                            

      ⇒ x G∈  and G  is semi-open in ( , )X T                                                                    

      ⇒  there exists O T∈  such that ( )O G cl O⊆ ⊆ .                                                        

      Assume that G A φ=∩ ⇒ A X G X O⊆ − ⊆ −
                                                                 

                                             ( )cl A X O⇒ ⊆ −   X X O⇒ = −     

                                             O φ⇒ = G φ⇒ =

 

which is a contradiction.                                              

      Hence  G A φ≠∩ .                                                                                    

      Thus each semi-neighborhood of x

 

in ( , )X T  intersects A    

      
⇒   ( )x s cl A∈ .  Hence ( )s cl A X=   ⇒ X  is semi-separable.  

      The converse follows from the definitions 3.1, 3.2  and the proposition 2.8.  

                                                     

      3.4 Proposition: 0( , ( ))X S T  is semi-separable  ⇔ ( , )X T  is semi-separable.                                         

      Proof:  Suppose that 0( , ( ))X S T  is semi-separable                                 

      ⇒   there exists a countable subset A  of X  such that 0( )cl A X=                                              

      ( )cl A X⇒ =   ( , )X T⇒  is separable and hence it is semi-separable.            

      Conversely suppose that ( , )X T  is separable ( , )X T⇒  is semi-separable                                          

      ⇒   there exists a countable subset A  of X  such that ( )scl A X=                                

      
⇒    0( )cl A X= ⇒ 0( , ( ))X S T  is separable and hence it is semi-separable. 

            I  sincerely thank my Professor,  Dr. I. Ramabhadrasarma  for his guidance 

and encouragement in making this paper.

Notes
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