

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH MATHEMATICS AND DECISION SCIENCES Volume 13 Issue 7 Version 1.0 Year 2013 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896

On Semi-Open Sets and Semi-Separability

By V. Srinivasa kumar INTU University, India

Abstract - In this paper, we introduce the concepts of semi-limit and semi-separability. We prove that separability and semi-separability are equivalent and also prove a few interesting results in this connection.

Keywords : semi-open, semi-closed, semi-closure, semi-neighborhood, semi-limit, semise-parability, sepa-rability, semi-topology.

GJSFR-F Classification : AMS Code: 54A10, 54A20, 54C08

Strictly as per the compliance and regulations of :

© 2013. V. Srinivasa kumar. This is a research/review paper, distributed under the terms of the Creative Commons Attribution. Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 $R_{\rm ef}$

On Semi-Open Sets and Semi-Separability

V. Srinivasa kumar

Abstract - In this paper, we introduce the concepts of semi-limit and semi-separability. We prove that separability and semi-separability are equivalent and also prove a few interesting results in this connection.

Keywords : semi-open, semi-closed, semi-closure, semi-neighborhood, semi-limit, semiseparability, separability, semi-topology.

I. INTRODUCTION

In 1963, Norman Levin introduced the concept of semi-open sets in his paper [2]. It has drawn the attention of various authors including Crossley, Hildebrand and Dorsett and they have probed deeply into this area and developed many interesting concepts like semiclosed sets, semi-compactness etc. In this present paper, we introduce the concepts of semilimit and semi-separability and prove that semi-separability is equivalent to separability. Also we construct a topology using semi-open sets and we call this topology a semitopology.

In what follows (X,T) stands for a topological space. The symbols cl() and Int()

denote the closure and interior in a topological space respectively.

a) Preliminaries

1.1 Definition: Let A be a subset of X. A is said to be

- (i) semi-open in (X,T) if $A \subseteq cl(Int(A))$.
- (ii) semi-closed if X A is semi-open in (X,T).
- (iii) semi-neighborhood of a point $x \in X$ if $x \in A$ and A is semi-open in (X,T).

1.2 Definition: The semi-closure of a set A in (X,T) denoted by scl(A), is the

intersection of all semi-closed supersets of A.

1.3 Definition: A point $x \in X$ is said to be a semi-limit point of a set A in (X,T), if every semi-neighborhood of x contains a point of A different from x in X.

Monthly, 70, pp. 36-41, 1963

Author : Assistant Professor, Department of Mathematics, JNTUH College of Engineering, JNTU, Hyderabad-500085, A.P., India. E-mail : srinu vajha@yahoo.co.in

b) Semi-Limit and Semi-Topology

2.1 Definition: Let $x \in X$ and let $\{x_{\lambda} / \lambda \in \Delta\}$ be a net in (X,T). We say that x is a semi-limit of $\{x_{\lambda} / \lambda \in \Delta\}$ and we write $x = s \lim_{\lambda \in \Delta} x_{\lambda}$ if for every semi-neighborhood A

of x in X there exists a $\lambda_A \in \Delta$ such that $x_{\lambda} \in A \quad \forall \lambda \ge \lambda_A$.

2.2 Proposition: For $A \subset X$ and $x \in X$, the following are equivalent.

- (i) x is a semi-limit point of A
- (ii) there exists a net $\{x_{\lambda} \mid \lambda \in \Delta\}$ in A such that $x = s \lim_{\lambda \to \infty} x_{\lambda}$
- (iii) $x \in scl(A)$

2.3 Remark: Let S(T) be the collection of all semi-open sets in (X,T). The set S(T) clearly contains T and is closed under arbitrary unions. However, being not closed under finite intersections, S(T) is not a topology on X. However, if $A \in T$ and $B \in S(T)$ then $A \cap B \in S(T)$.

2.4 Definition: We define $S_0(T) = \{A \in S(T) | A \cap B \in S(T) \forall B \in S(T)\}$ and

 $S_{00}(T) = \{A \in S(S_0) \mid A \cap B \in S(S_0) \forall B \in S(S_0)\}$ where $S(S_0)$ is the collection of all

semi-open sets in the topological space $(X, S_0(T))$.

2.5 Proposition:

- (a) $S_0(T)$ and $S_{00}(T)$ are topologies on X.
- (b) $T \subseteq S_0(T) \subseteq S(T)$.
- (c) $S(S_0) \subseteq S(T)$.
- (d) $S_0(T) = S_{00}(T)$.

2.6 Remark: We call the topology $S_0(T)$, a semi-topology on X.

2.7 Notation: We denote the closure of a subset A of X in the topological space $(X, S_o(T))$ by the symbol $cl_0(A)$ and interior of A by $Int_o(A)$.

2.8 Proposition: For $A \subseteq X$, $scl(A) \subseteq cl_0(A) \subseteq cl(A)$.

c) Semi-Separability

3.1 Definition: (X,T) is said to be separable if there exists a countable subset *A* of *X* such that cl(A) = X.

Notes

3.2 Definition: (X,T) is said to be semi-separable if there exists a countable subset A of X such that scl(A) = X.

3.3 Proposition: (X,T) is separable if and only if it is semi-separable.

Proof: Suppose that (X,T) is separable.

 \Rightarrow there exists a countable subset A of X such that cl(A) = X.

Let $x \in X$ and G be a semi-neighborhood of x in (X,T)

 $\Rightarrow x \in G$ and G is semi-open in (X,T)

 \Rightarrow there exists $O \in T$ such that $O \subseteq G \subseteq cl(O)$.

Assume that $G \cap A = \phi \implies A \subseteq X - G \subseteq X - O$

 $\Rightarrow cl(A) \subseteq X - O \quad \Rightarrow X = X - O$

 $\Rightarrow O = \phi \Rightarrow G = \phi$ which is a contradiction.

Hence $G \cap A \neq \phi$.

Notes

Thus each semi-neighborhood of x in (X,T) intersects A

 $\Rightarrow x \in s cl(A)$. Hence $s cl(A) = X \Rightarrow X$ is semi-separable.

The converse follows from the definitions 3.1, 3.2 and the proposition 2.8.

3.4 Proposition: $(X, S_0(T))$ is semi-separable $\Leftrightarrow (X, T)$ is semi-separable.

Proof: Suppose that $(X, S_0(T))$ is semi-separable

 \Rightarrow there exists a countable subset A of X such that $cl_0(A) = X$

 $\Rightarrow cl(A) = X \Rightarrow (X,T)$ is separable and hence it is semi-separable.

Conversely suppose that (X,T) is separable $\Rightarrow (X,T)$ is semi-separable

 \Rightarrow there exists a countable subset A of X such that scl(A) = X

 \Rightarrow $cl_0(A) = X \Rightarrow (X, S_0(T))$ is separable and hence it is semi-separable.

II. Acknowledgements

I sincerely thank my Professor, Dr. *I. Ramabhadrasarma* for his guidance and encouragement in making this paper.

References Références Referencias

- 1. Crossley, S., and Hildebrand, S. Semi-Closure, Texas J.Sci., 22, pp. 99-112, 1970.
- **2.** Levine, N. *Semi-open sets and semi-continuity in topological space*, Amer. Math Monthly, 70, pp. 36-41, 1963.
- **3.** Ramabhadra Sarma, I., and V. Srinivasa kumar *On Semi-Open Sets and Semi-Continuity*, Journal of Advanced Studies in Topology, Vol. 3, No. 3, pp. 06-102, 2012.