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Abstract- Analytical solution of flow of viscous incompressible fluid past a hot vertical porous wall in the presence of
transverse magnetic field with periodic temperature is discussed by using regular perturbation and Homotopy
Perturbation Method. The effect of various physical parameters on velocity and temperature of fluid are calculated
numerically and are shown through the graphs. The numerical values of the skin friction and Nusselt number are
calculated for various physical parameters.
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I. [NTRODUCTION

The phenomenon of free convection arises in the fluid when temperature varies,
this cause density variations leading to buoyancy forces acting on the fluid elements. This
process of heat transfer is encountered in aeronautics, chemical engineering and fluid fuel
nuclear reactor. But in case of fluid fuel nuclear reactors, the problems of heat transfer
become complicated due to variation in wall temperature. Kafoussias. et.al. (1992)
investigate the problem of MHD thermal-diffusion effects on free convective and mass
transfer flow over an infinite moving plate. Three-dimensional free convective flow and
heat transfer through a porous medium was discussed by Ahmed and Sharma (1997).
Unsteady free convective MHD flow of a viscous incompressible fluid in porous medium
between two long vertical walls discussed by Sarangi and Jose (1998).

Singh and Chand were consider the unsteady free convective MHD flow past a
vertical porous plate with variable temperature (2000). Flow of an electrically conducting
viscous incompressible fluid past a hot vertical porous wall in the presence of transverse
magnetic field with periodic temperature was studied by Sharma (2002). Jain,
Khendelwal and Goyal (2002) discussed MHD Three dimensional flow past a Vertical
Porous Plate with Periodic Temperature in slip flow Regime. Unsteady free convective
MHD flow past an infinite porous vertical plate with variable suction and heat absorbing
sink discussed by Sharma (2007).
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Homotopy Perturbation Method was discussed as ‘Applications of Homotopy

Perturbation Method to Nonlinear wave equations’ by J. H. He(2005). A. A. Hemeda
(2012) considered the Homotopy Perturbation Method for solving System of Nonlinear
Coupled Equations.

1. HoMoToPrY PERTURBATION METHOD

The Homotopy Perturbation Method is a combination of classical Perturbation
Technique and Homotopy Theory, which has eliminated the limitations of the traditional
perturbation methods. A brief introduction of Homotopy Perturbation Method is given
below:

Lw)+Nw)—f(r)=0,req (1)
with boundary conditions
du
B(u,g)=o,rer (2)

here L is the linear operator, N is Nonlinear operator, B is boundary operator and f(r) is
known analytic function and I' is the boundary of the domain € .

A Homotopy v(r,p): 2x[0,1] = R for the problem mentioned in equation (1) is
H,p) = (1 —=p)[L(v) — L(wp)] + p[L(v) + N(v) — f(r)] =0 (3)
Or

H(v,p) = L(v) = L(vo) + p[L(vo) + N(w) = f(N] =0 (4)

where p € [0,1] is an embedding parameter and v, is an initial approximation of equation
(1) which satisfies boundary conditions. It follows from equation (3) and equation (4) that

H(v,0) = L(v) — L(vy) and H(v,1) = L(v) + N(v) — f(r) (5)
The changing process of p from zero to unity is just that of v(r,p) from vy(r) to

v(r). In topology, this is called deformation and L(v) — L(vy) and L(v) + N(v) — f(r) are
called homotopic in topology.

Let

v =vy+pv; +piv, + (6)
And setting p =1 result in an approximate solution of equation (1)

u=limp_>1v=v0 +v+vy, + - (7)
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The series of equation (7) is convergent for most of the cases. However, the

convergent rate is depends upon the nonlinear operator N(v) , the following options are
already suggested by He (1999):

1. The second derivative of N(v) with respect to v must be small because the parameter
may be relatively large i.e. p = 1.

2. The norm of L~ ( au) must be smaller than one so that the series is convergent.

ITI. FORMULATION OF PROBLEM

Let the wall be along the x'z -plane and y axis to be taken normal to it. The
magnetic field B,is applied normal to the wall in the presence of constant suction velocity

v, Let the span-wise co-sinusoidal temperature be 8, = 6, (1 + ecos HL—Z), is taken at the

wall.
Where € (<<1) is a small positive value, L is the wave length and 6, is a constant

and using the Bousinesque approximation, the governing equations of the fluid flow are:

a) Fquation of Momentum

out (9% | 9%u” « OBgu*-U)
v =v (5 +5E) + gpet - =2 ®)
b) Equation of Energy
26" 226"
pCovo o = e (25 +22) + 1| E2)2 + C27 + 0B (" - VY] (9)

Where p is the density,u is the coefficient of viscosity,v is the kinematic
viscosity, g is the acceleration due to gravity, [ is the coefficient of volumetric
expansion, o is the coefficient of electrical conductivity, By is the coefficient of
electromagnetic induction, Cp the coefficient of specific heat, x is the thermal
conductivity, U is the free stream velocity in x*- direction, 8* the temperature at any
point and v, is the suction velocity.

The corresponding boundary conditions are
y*=0:u"=0,0" = 6(1 + e cos("?/,));
y* > oo:u* > U,0" >0 (10)

IV.  METHOD OF SOLUTION

Introducing the following dimensionless quantities:

u* y* z* 0* voL uc, gpBlyv vt
== ==, :_IBZ_!R = - :_!G = !E = lM
YEYY AT 6, ¢ v T T T T o T Ce,
_ 0BjL?
i
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Substituting the dimensionless quantities into equations (8) and (9) and
corresponding boundary conditions, we get

ou 1 (9%u | 9%u M*(u-1)

== (ay 22) — GrRe + 2 (11)
0 _ 1 (az_e_i_aze) _Ec (au) + (6_u)2 _ECMZ( _ 12 12
dy ~ PrRe \ay? = 9z2 dy 0z Re u ( )

where Pr is the Prandtl number, M the Hartmann number, Ec the Eckert number and Re
the Reynolds number.

The corresponding boundary conditions are
y=0u=0,0=1+¢€cos(nz),
y—oou—->160-0 (13)

Assuming that,
u(y,2) = ue(+e wy (v, 2) + 0(€?)

0(y,2) = p(y)+€ 6,(y,2) + 0(€?) (14)

Using these assumptions into equations (11) and (12) and equating the coefficients
of like powers of €, we get

a) Zeroth-Order Equations

d?u du
0 4+ Re—2

™ o M?uy = —GrRe*¢p — M? (15)

ZZT"; + PrReZ = —EcPr [(d—’;") + M2 (uy — 1)2] (16)
The corresponding boundary conditions are:
y=0:uy=0,¢0=1;
and y—>oouy—~> 190 (17)

b) First-Order Equations

9%u 9%u ou
6y21 +—+ Rea—y1 — M%u; = —GrRe?6, (18)
M + ﬂ + Prre 282 oL = —2EcPr a”“ aaul 2EcM?Pruy (uy — 1) (19)
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The corresponding boundary conditions are:
y=0:u, =0,0, =cosmnz;
y->o:u =00, =0 (20)

The Homotopy for zeroth order equations are following;:

Notes

H(up,p) = (1—p) [d - — M?uy + (1— Re — M)e™ + M?| +p [d “ 4 Re d%—
M?%uy + GrRe*¢ + Mz] =0, (21)

and

H(p.p) = (1= p)[S5+ PrRe 2 — (1 - PrRe)e ™| +p [_+ Priete + 5epr <(%)2 .

M2 (g — 1) )] =0 (22)
Let

Ug = Ugg + DUy + P2Uy +

® =@y +pps + 0 @y + (23)

Substituting the assumptions from equations (23) into the equations (21) and (22)
and comparing the coefficients of like powers of p, we get

2
p°: 'dd_zg‘) + Re 20 _ M2yg) + (1 —Re — M2)e™ + M2 =0, (24)
2
pt: dd;gl + Re dz;;,)l — M?ug; — (1 —Re — M?)e™ + GrRe*¢py =0, (25)
po: T 90 4 prRe%20 — (1 — PrRe)e™ = 0 (26)

pl:% + PrRedd% + (1 — PrRe)e™ + EcPr (d;%)z + EcPrM?(ug, — 1)> =0 (27)
Now, the corresponding boundary conditions are:
aty =0:upgy =0,ug; =0,... and @y=1,¢; =0, ...
aty = oo:uy = 1,up; =0,...and @q=0,901 =0, ... (28)

The solutions of equation (24) to equation (27) under the corresponding boundary
conditions are
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Ugg = 1—e™ (29)

Ugp = by(e™ —e ) (30)
po=e"” (31)
pr=—eV +ae”? + (1 —ay)e FrRey (32)

When embedding parameter p = 0, we get
Uy = 1+ (bl - 1)€_y - ble_aly (33)
o=0-a)e "Ry + qe™? + (1 — ay)e FRey (34)

Here aq,b; and a; are constants and are not mentioned here due to shake of
brevity.

To find the solution of first order equations, introducing
w1 (y,2z) =V(y)cosmnz ,

61(y,2) = Y (y) cosmz (35)

Substitute these values in equations (18) & (19), we get

av WV _ (M2 4+ 72)W = — 2
dy2+Redy (M* + n?)V = —GrRe“y , (36)

& 1” L+ PrRe S — m? = —2EcPr[(1 - be™ + alble—W]‘;—Z — 2EcPTM2[(by — 1)e™ —

. e—aly]V (37)
Now, the corresponding boundary conditions are:
y=0V=09y=1;
y—->o0:V=019=0 (38)

Following are the Homotopy for first order equation

HW,p) = (1-p) [22712’+ Reg—;— (M? + 2)v — (1 + Re + M? + 2)e™ + (4 + 2Re + M? +
2)9‘23’] +p [— + Re — (M? + %)y + GrRezlp] =0 (39)

H,p) = (1 —p) [—+PrRe w_ P — (1—PT‘R€—T[2)€_y] +p[ + PrRe—~ w

w2 + 2EcPr[(1—by)e™” + alble—W]E + 2EcPrM?[(by — 1)e™ — bye™%1Y] V] = 0 (40)
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Let
v =vy+pv; +piv, + -,

Y =1y + Py +p Py + - (41)

Substituting the assumptions made in equation (41) into the equations (39) & (40)
and comparing the coefficients of like powers of p, we get

Notes

po. & "°+R — (M? + *)vy — (1 — Re — M* —m*)e™ + (4 — 2Re — M* —

nz)e_zy = 0 (42)

p': d"1+R — (M? +n®)vy + (1 —Re —M? —n*)e™ — (4= 2Re — M* —

n?)e” 2y + GrRezlpO =0 (43)
0. d* ¢0 dyg 2.1 (1 _ 2N,y —

p°: + PrRe — oy T Yo—(1—PrRe—m“)e™” =0 (44)

2
pl: 2 ¢21 + PrRe L — 24, + (1 — PrRe — n2)e™ +
dy dy
2EcPr[(1—bye™ + alble_aly] + 2EcPrM?[(b; — 1)e ™ — bye™*Y ]y, = 0 (45)

Now, the corresponding boundary conditions are:

aty=0:vy=0,v; =0,...and Yy=1¢y;=0,...,

aty » o0:vy =0,v; =0,.. and Y, =0, =0, ... (46)
Solutions of equation (42) to equation (45) under the corresponding boundary

conditions

vo=eV —e % (47)

vy =P —(1+pe ™ +e ¥ (48)

Yo =¢e"” (49)

P1=—y1—v2—Vv3— Ve ™ —e™¥ +y1e™ +y,e7 +yze” Y 4y @ty

Taking limit on embedding parameter asp — 0, we get 0)

v=pre VY —pe?, (51)

Y= —yi—v2—y3—va)e ¥ +yie™? +ye”¥ +yze” T fyemtDy (59)
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Here aq,c1,¢2,01,Y1,Y2, Y3 and y, are constants but are not mentioned due to shake of
brevity.
Now, using equation (51) and equation (52) into equation (35), we have

w(y,z) = (Bre™ — pre™) cosmz, (53)

91(}7, Z) =
[(1 —y1—YV2—V3—Vae P +yie ¥ +ye Y +yze @Y 4 V49_(a1+2)y] cosmz (54)

Finally, we have
uly,z) =1+ by —1)e™” —bie ™ + e(B1e Y — f1e™Y) cosmz (55)

0(y,2) =1 —ap)e Y +aie™ +e[(l—y1—V2— V3 —Va)e ™ +y1e™ +y,e7% +

)/39_(a1 +1Dy + y4e_(a1 +2)3’] COSTTZ (56)

c¢) Skin Friction Coefficient
The coefficient of skin friction at the wall is given by

tw = (6_u) =—by+1+a;b; +€fy(1—c;)cosmz (57)
dy y=0

d) Heat Transter Coefficient (Nusselt Number)
The rate of heat transfer in terms of Nusselt Number at the wall is given by

N, = — (Z_f’)y=o =PrRe(1 —ay) + 20y —€[-c;(1—y1—Vv2—V3—Va) —2y1 —3y2 —
(a1 + Dyz — (a1 + 2)ys] cosmz (58)
Table 1 : The coefficient of skin-friction and Nusselt number
Re M Gr Ec Pr ™ ™ Ny Ny
z=1/4 z=1/3 z=1/4 z=1/3
1 0.1 5 0.001 0.7 6.05688 | 6.02876 | 0.88645 | 0.83201
2 0.1 5 0.001 0.7 22.3344 | 22.2089 | 1.67060 | 1.59138
1 0.2 5 0.001 0.7 5.94895 | 5.92087 | 0.93244 | 0.86454
1 0.1 6 0.001 0.7 7.06627 | 7.03253 | 0.87398 | 0.82320
1 0.1 5 0.002 0.7 6.05688 | 6.02876 | 0.82463 | 0.78848
1 0.1 5 0.001 | 0.75 | 6.05688 | 6.02876 | 0.93423 | 0.88044

© 2013 Global Journals Inc  (US)
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—*— Re=3,Gr=5,M=2
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y - axis ——>»

Figure 1.1 : Zeroth Order Velocity distribution versus y
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————— Re=3,Gr=6,M=1
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\\ ---------- Re=3,Gr=5,M=2
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Figure 1.2 : First Order Velocity distribution versus y
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Figure 1.4 : First Order Temperature distribution versus y
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Figure 1.7 : Velocity Distribution for various values of Grasoff Number
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Figure 1.8 : Temperature Distribution for various values of Reynold number
Figure 1.9 : Temperature Distribution for various values of Prandtl number
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Figure 1.10 : Temperature Distribution for various values of Grasoff Number
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Figure 1.11 : Temperature Distribution for various values of Hartman Number
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Figure 1.12 : Temperature Distribution for various values of Eckert Number

V. RESULTS AND DISCUSSIONS

It has been observed from the Table 1 that the coefficient of skin-friction increases
due to increase in Reynold Number and Grasoff Number and decreases due to increase in
Hartman number.

Again, it is observed that Nusselt number increases due to increase in Reynold
Number, Hartman number and Prandtl Number and decreases due to increase in Eckert
Number and Grasoff Number.

It has been observed from figure (1.1) and figure (1.2) that Zeroth Order Velocity
and First Order Velocity both increases due to increase in Reynold Number and Grasoff
Number and decreases due to increase in Hartman number. It has been observed from
figure (1.3) that Zeroth Order Temperature decreases due to increase in Reynold Number,
Eckert Number, Hartman number and Prandtl Number. Again, it is observed from figure
(1.4) that First Order Temperature increase due to increase in Grasoff Number and
Eckert Number and it decreases due to increase in Reynold Number, Hartman number
and Prandtl Number.
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It has been observed from figure (1.5), (1.6) and (1.7) that the velocity increases
due to increase in Reynold Number and Grasoff Number and decreases due to increase in
Hartman number. It has been observed from figure (1.8), (1.9), (1.10), (1.11) and (1.12)
that the temperature increases due to increase in Reynold Number and Grasoff Number
and it decreases due to increase in Hartman number, Prandtl Number and Eckert
Number.
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