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Notes

1. Notations.- 
 is a bounded and connected open set of Rn (n =
2; 3) with boundary � = �1 [ �2; a lipschitzian manifold of dimension n � 1,
were �i � �; i = 1; 2, with mes(�1) > 0 and �1 \ �2 = �:
2. Position of the Problem.-We consider �rstly the mathematical model

of the perturbed Lamé system :

�Lpu+ F (u);

were F (u) is the perturbation and

Lpu =

n

�
X
i=1

@
@xi

���� @u@xi ���p�2 @u
@xi

�
+ (�+ �)r(div(u));

p, q are two real numbers such that p 2 ]1;1[ and 1
p +

1
q = 1;

� and � are the Lamé coe¢ cients subjected to the constraint �+ � � 0 and
� > 0,
� denotes the outgoing normal vector to �2:
For p = 2; we recover the classical dynamical Lamé system.

Given f and ' = ('i;j)1<i;j<n;such that 'i;j = 'j;i 2 C0;1(
) and 'i;j(x) >
0;8 x 2 �2:We study the existence, the uniqueness and the regularity of the
complex-valued solution u = u(x); x 2 
; for the following problem :

(P )

8<: �Lpu+ F (u) = f; in Q
u = 0; on �1

�(u):� + '(x) u = 0; on �2

(2:1)
(2:2)
(2:3)

Here �(u) = (�ij(u))1<i;j<n is the matrix of the constraints tensor �ij(u) =

�div(u)�ij +2� "ij(u), were "ij(u) = 1
2 (
@ui
@xj

+
@uj
@xi
); 1 � i; j � n; are the compo-

nents of the deformation tensor.
In this work, we consider the cases F (u) = 0; F (u) = juj� u with � = p�2 >

0; F (u) = u3 and F (u) � a (x; t) :
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We distinguish the cases:
when �2 = �; (P ) becomes a Dirichlet problem,
when �1 = �; and ' � 0 on �2, (P ) becomes a Neumann problem,
when , �2 6= � and ' � 0 on �2; (P ) becomes a mixed problem : Dirichlet-

Neumann,
when �1 , �2 6= � and '(x) 6= 0 on �2; (P ) becomes a mixed problem :

Dirichlet-(2:3).
Of course, when it is question of a Neumann problem (�1 = � and ' � 0 on

�2); we suppose veri�ed the necessary condition of existence that is, the data
are orthogonal to the rigid displacements :Z




f:vdx =

Z
�

0:vds = 0;

for any v of the form

v(x; y) =

�
a+ cy
b� cx

�
;

with a; b; c arbitrary real numbers.
In the remaining part of this paper we study with details the last cas with

F (u) = juj� u:
The main result is
Theorem 2.1.- We suppose that

f 2 (W�1;q(
))n):

Then, there exist a function u = u(x) solution of the problem (P ) with :

u 2 (W 1;p(
))n );

Before giving the proof, we make the following remarks :
Remark 2.1.- The space V = (H1

0 (
))
n \ (Lp(
))n; were p = � + 2; is

separable ( i.e. admits a countable dense subset).

In fact, V is identi�ed, by the application v !
n
v; @v@x1 ;

@v
@x2
; :::; @v@xn

o
, to a

closed subspace of
(Lp(
))n�(L2(
))n�:::�(L2(
))n;separable and uniformly convex, in such

way that it possible to project a countable dense set on this subspace.

Remarque 2.3.- The application de�ned on (Lp(
))n by u �! jujp�2 u; is
(Lq(
))n-valued, moreover it is continuous. To see that, if
u 2 (Lp(
))n; jujp�2 u est mesurable andZ




���jujp�2 u���q dx = Z



jujp dx <1 =) u 2 (Lq(
))n:

We deduce that 8u 2 (W 1;p(
))n; 8 i; 1 � i � n;��� @u@xi ���p�2 @u
@xi

2 (Lq(
))n:

So, it is possible to de�ne the real-valued application :�
(W 1;p(
))n

�2 �! R; (u; v) 7�! ap(u; v):

ap(u; v) =

n

�
X
i;j=1

Z



��� @u@xi ���p�2 @uj@xi

@vj
@xi

dx+ (�+ �)

Z



div(u) div(v) dx:
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For any u in (W 1;p(
))n; the application (W 1;p(
))n �! R; v �! ap(u; v);
is a continuous linear form. then c:f: [5] there exist a unique element A(u) of
(W�1;q(
))n; such that

a(u; v)p = hA(u); vi ; 8v 2 (W 1;p
0 (
))n:

The application (W 1;p(
))n �! (W�1;q(
))n; u �! A(u); is noted :

�Lpu =
n

��
X
i=1

@
@xi

���� @u@xi ���p�2 @u
@xi

�
� (�+ �)r(div(u));

and is called a p-Lamé application.
The following proposition gives some properties of �Lp :
Proposition 2.1.- The operator �Lp : (W 1;p(
))n ! (W�1;q(
))n is

bounded, hemicontinuous, monotone and coercitive.

Demonstration: Using the expression of the norm in dual space espace dual
and Lebesgue�s dominated convergence theorem, we prove that �Lp is bounded
and hemicontinuous. From the convexity of the real application t �! jtjp ; we
deduce the monotonicity of �Lp:

Proposition 2.2.- The problem (P ) and the variational problem (P:V ) :

ap(u; v) + (jujp�2 u; v) = (f; v) + (�'(x) (u; v); 8v 2 (W 1;p(
))n;

are equivalent.
Demonstration: Indeed, it su¢ ces to observe that u = 0 on �1 = 0 ,2

(W 1;p
0 (
))n;and the variationnal equality is then equivalent to

�Lpu+ jujp�2 u = f in 
;

because (D(
))n is dense in (W 1;p
0 (
))n:

Let us return to the demonstration of Theorème2.1.

(i) Construction of approximated solutions :

We look for um =
nX
i=1

�ivi solution of the following problem (Pm) :

8j; 1 � j � m :

ap(um; vj) + (jumjp�2 um; vj) = (f; vj) + (�'(x) (um; vj)

We obtain a second order nonlinear di¤erential system. Let be the function

F : Rm �! Rm

F (�1; :::; �m) =

 *
A(

nX
i=1

�ivi); vj

+
� ((f; vj) + (�'(x)(um; vj)):

!
1�j�m

(ii) Establishment of priori estimates.-
- Of the coercivité of to one deducts that jjumjj is a bounded;
- The operator has a bounded =) (A(um)) m2N is a bounded in V 0;

- 9u 2 V;9� 2 V 0 =)
�

up * u; �(V; V 0);
A(um)* �; �(V 0; V ):

(iii) Passage to the limit via compactness.
- The monotony and the hemicontinuous =) � = A(u):
What �nishes the demonstration of the Theorem 2.1.
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