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Abstract - In classical mechanics, the system of coupled harmonic oscillators is shown to possess the symmetry
applicable toa six-dimensional space in complex coordinates, two-dimensional phase space consisting of two position
and twomomentum variables. In search into the features of a dynamical system, with the possibility of its complex
invariant,we explore this dynamical systems. Dynamical algebraic approach is used to study two-dimensional complex
systems(coupled oscillator system) on the extended complex phase plane (ECPS). Scope and importance of invariants
in theanalysis of complex trajectories for dynamical systems is discussed.
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The coupled oscillator provides many soluble models ifiedent branches of physics because of its mathz
ematical simplicity. It stays with us in manyftirent forms because it provides the mathematical basis for many
soluble models in physics, including the Lee model in quantum field thelgrytfe Bogoliubov transformation in ~
superconductivity, relativistic models of elementary particBs [n physics coupled harmonic oscillator system in-.
two-dimensions 3], in the Bells inequality experiments employing coupled harmonic oscillatgrsThis also has —
been used for description of motion of a charged particle in a magneticSigdtidr . They are also studied in contextS
of electrical circuits with time-varying capacitors and inductors, particularly with reference to their memory prop@rty,
has become of considerable interest in recent yeqr8J@soneet al [8] studied momentum-dependent terms in the
Hamiltonian structure in the context of the so-called holographic principle and in the treatment of quantum gravuy as

a dissipative and deterministic system. Hamiltonian for such system is given by

Frontie,

H = Zlap + s + B + Bo] + as(piy + X0). )

ence

Invariants for above Hamiltonian provided they exist and can be computed, and even the complex in@éxnts [

ist, are a very useful tool to understand the theoretical structure of this dynamical systems. Since invariants of real
Hamiltonian systems have been played a vital role in understanding the underlying dynamics of the systems and so
we expect that the complex invariants can also be helpful in exploring some deep insights into features of complex
dynamical systems. In the past, complex invariants have been discussed in context of understanding fermion @asses
and quark mixing, and CP-conserving two-Higgs-doublet model scalar potentials in the Particle ghydidk [ -

In this paper, we construct a complex invariants corresponding coupled oscillators based on the ECPS apprEach in
complex domain12]. Recently, with a view to explore some role of invariants for complex systems, Kaushacl—et

al. [13] found invariants for some one dimensional systems within the framework of an ECPS. Some quantum me-
chanical studies within the ECPS are also reporfefl [But most of such studies are restricted in one dimension
only. Such studies in higher dimensions is desirable from the intrinsic mathematical interest, to check the validity of
various methodtheories and to find solutions of some realistic physical problems. With this motivation, recently'we
generalized the ECPS in two dimensions and studied the coupled oscillator.

T. D. Lee, Some special examples in renormalizable field theory, Phys. Rev. 95, 1329 (1954).
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We make use of the Lie algebraic approach to derive at least one invariant for the TD versions of above coupled
oscillator system. In fact, the Lie algebraic approach (ref thers}) Fommands several advantages over the ratio-
nalization method, particularly for the TD systems, not only in terms of the closure property of the Poisson bracket
algebra of phase space functions but also for its straightforward extension to the corresponding quantum system.

a) Lie algebraic approach
If we define

X=X +ips; Y=Xe+ipa; Px=p1+iXs; Py = P2 +iXs 2) }{d'

then, a two dimensional real phase spacg,(px. py, t), may be transformed into the corresponding extended complex
phase plane (ECPS)4(, ps, X2, P4, P1, X3, P2, X4, t) The above transformations add four additional degrees of freedom,
(X3, X4, P3, P4, ), which can make mathematical analysis of a problem a bit more involved. But nevertheless, these
type of transformations are used in many studie 13, 14, 13]. From eq.R) one can easily obtain one can easily

b) Example

Consider a coupled harmonic oscillator systems in two-dimensions, whose Hamiltonian is giienUsirig
(2), the above Hamiltonian (se&Z] for detail method) can be expressed as

obtain :
9 _0 ;0.0 _ 9 0.9 _0 ;0. 0 _ 0 .0 @ | B

OX Ox1  Ops’ 9y 0% Ops’ Ipx Opr  Ox3 Apy 0Pz OXa g

5.

Now consider a complex phase space functieay, px, py, t) as =
<

I'=11(X1, P3, X2, Pa, P1, X3, P2, X4, t) + il 2(X1, P3, X2, P4, P1, X3, P2, Xa, 1). (4) é’

Further, the invariance of | implying ;
o

dl  al =

—=—+][I,H]=0 5 @

qi = gt TLHI=0 ©) %

where [, .] is the Poisson bracket, which in view of the definition, &).{urns out to be g
Z

(1 Hlxp) = 1 Hloapy = i1 Hl ) = 1 Hlpapn = [ Hl paxe) z

+[1, Hl o) = 11 Hlpex) = i1 Hl(papo) = [1 Hl(pyxa)- (6) -
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[e41 aq . a1 aq . a2 a2 .
H=22pi - )G +imapixe + — p5 = -G +laapoxa + =X — -5 + iaaPexa s
+?x2 — 7p4 + iaoXe + az(PiXe + iP1Pa + IX3X2 — X3Pg + X1 P2 + iX1Xq + iP2P3 — P3Xa)
20 @)
= Z hm(t)rm(xl, p3, XZ, p4, pl’ X3a pZa X4)’
m=1
and the variou$’s and h(t)’s for the above compléx are given as
pi 5 P X X s
I'N=—=;T=—=;I3= Ty ==;I5=—; I = == ITg=—;
1 2,2 2,3 P1X3; 14 2,5 2,6 P2Xa; 17 2,8 >
x 2
I'g = x1p3; I'io = E; N1 = Xops; T'12 = ?4; '3 = p1Xo; T'ia = P1Pa; T'is = XaXo;
g = X3Pa, I'i7 = XeP2; T'1ig = XaXs; T'ig = Pa3p2; 20 = P3Xs. 8)
B with
hi=hy =01, ha=lia1; ha=hs=ay; he =iaz; hr =hg=p1; hg=iB1;, hio=h1=25
hi2 = iB2; hia = his = i3, iz = as3; hie = —a3; 7 = a3; hig = hig = ias; hyo = —aa. 9
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J.S. Virdi, and S.C. Mishra, Exact complex integrals in two dimensions for shifted harmonic

oscillators, Pramana J. Phys. 79 (2012) 19-40; J.S. Virdi, F. Chand, C.N. Kumar, and S.C. Mishra,
Complex dynamical invariants for two-dimensional complex potentials, Pramana J. Phys. 79, (2012)

173-183.

12.

The dynamical algebra in this case is not closed. To find closure property for the above system, we have to add sixteen
more phase space functiod$)(s. The additionalX))’s are as follow

I'21 = p1Ps3; T22 = PaXe; T2z = XoP1; 24 = P1Pa, T'os = Pa3Xa; I'og = X1 Xz; T'27 = XoX3; T'og = X34,
I'29 = XoP2; I's0 = PaP2; T's1 = P2pP3; I'z2 = PoXi, I'33 = XoXa; 34 = X4Ps; '35 = X1X4; '3 = P3Xa, (10)

with correspondingp (t) = 0. Now in the light of Poisson brackeg)(for complex systems, we get large number (288
no. of) nonvanishing Poisson brackets (for more detail $2p.[ Therefore, their use5j yields the following set of
PDEs inA’s as described inX?) section two:

A1 = day(idon — A2z) — daz(dos — idoa), (11) =
<
A = —4(11(/125 + i/lze) - 4(13(i/127 + /128), (12) S
=
A3 = —2a1(Ao1 + idoz + idos — Azg) — 2a3(id2g + Aoa + A27 — id2g), (13)
Ay = —Aax(dag + idz0) + das(idar — A3o), (14) ;
_ 2
As = —4az(A34 + i33) — 4a3(A36 + id3s), (15) =
/.15 = —Zaz(i/lzg + /lgo - i/134 + /133) — 2(13(/131 + i/lgz + /135 - i/lgs), (16) i
A7 = —4B1(— A2z + 1426) + darg(Asz — id3s), an o
3
Ag = 4B1(id1 + Azs) + Aa(Azs + ida1), (18) i
(e
A = 281(Az1 + idoz — idos + A2g) + 2a3(Aa1 + idzz + Ags — i36), 19 -
10 = Aas( A2z — 1d27) — 4B2(A29 + A33), (20) .~
A1 = 2a3(idos + Apa + o7 — idog) — 23(Aag + idgo + Aza — idz3), (1) 5
(a9
Qa2 = Aas(idoa + Azg) — 4B2(Az0 + A34), (22) §
2
Az = 2a3(Ao2 — id33 — idos + A2) + 2B1(idos — id27) + 2B2(A32 — i Azs), (23) =
A1a = 2a3(A26 + A30 — id34 + id22) + 2B1(A24 — id28) + B2(—A32 + id35), (24) i
_ =
/115 = 20’3(/121 - i/lzs + /133 + i/lzg) + 251(”23 + /127) +ﬁ2(/131 - /136)3 (25) \—i
16 = 2B2(id21 + Aos + idz0 + id3a) + 2B1(id2a + A2g) — Ba(Aa1 + idz6), (26)
A17 = 203(id21 — A2z — Agg + id30) + 201 (i1 — A32) — 251 d23 + Aza), @n m
Qg = —2a3(Ao1 + idp2 + idag + A30) + 2a1(~A31 + id32) + @2(=idzs + A2a), (28)

© 2013 Global Journals Inc. (US)
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A19 = 2a3(id2s — Azg — idag — A30) — 2a1(Aa1 + idg2) + 2a2(—Aa7 + idzg),
A20 = —2a3(A2s + iz + id20 + Aso) — 201(Azy + id32) + 2aa(~id27 — Azs,)
Ag1 = 2B4(idy + A3) + 201(—Ag + idg) + 20r3(—id16 — A1s) + 203(ida7 + Ais),
A22 = 281(A1 — id3) + 2a1(ide + A7) + 2a3(ida — A13) + 2a3(17 — idsg),
Aoz = 2B2(1A17 — id18) + 2a1(—A13 + id15) + 2a3(—idz + A1) + 2a3(id11 — A10),
Aoa = 2a3(ids + A3) + 2a3(=A11 + i12) + 2a1(=id16 — A14) + 2B2(A1g — A17),
Ags = 2B1(=A2 — i3) — 201(ido + Ag) + 20r3(—A16 — id1s) + 23(i 10 + A20),
Ao = 2B1(=idp + A3) + 221(id7 — Ao) + 2a3(~id13 — A1a) + 2a3(Ad10 — id20),
A2z = 2a3(~idz + A3) + 2a3(~id1o — A11) — 201(id13 + Ais) + 2B2(Ad1e + id20).
Aog = 2a3(dp + id3) + 2a3(=ida1 — id12) — 201 (14 — id16) + 2B2(=A19 + i d20),
A29 = 2B5(Aa + A6) + 2ap(~A10 + iA11) + 2a5(id1s — A13) + 203(Aa7 — iA10),
Az0 = —203(A4 + i dg) + 2a2(—A11 — id12) + 203(~id16 — id1a) + 203(ida7 + Azo).
g1 = 203(i4 + Ag) + 2a2(idg + Ao) + 2a5(=ids6 — A15) + 2B1(ida7 + Ao).
Az2 = 2a3(ds — ide) + 203(A7 + ido) + 202(id14 — A13) + 2B1(A17 — id1g),
gz = 2B5(As + A6) + 2a5(—A10 — iA11) + 203(~id13 — A1s) + 203(A18 — id20).
Aza = 2B2(—A5 — Ap) + 202(—id11 + A12) + 23(~A14 — i16) + 2a3(id1s + A20),
Azs = 2B1(—A1g — A20) + 2a2(=id1z — A1a) + 2a3(—ids + A6) + 2a3(id7 - Ao),

A36 = 2a3(As + idg) — 2a3(idg + Ag) + 2a2(—A1e + idis) + 2B1(id1s + A20).

Ar = n1(t) + C; A2 = m(t) + ca.

Aq = m2(t) + Ca; As = m2(t) + Cs.

© 2013 Global Journals Inc. (US)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

As such the solution to these 36 coupled equation turns out tofbeutti Therefore, we make the following choices
aboutl’s which facilitate to find solutions of above equations.
From egs.11), (12) and (L3), we get 23 = iA1—i,. If we considerls = ¢ (a constant), and by taking = A, = n1(t);
which immediately gives

(47)

From egs.14), (15) and (L6), we get 2l = iA4—ils. If we considerls = cs (a constant), and by taking = As = n(t);
which immediately gives

(48)

Notes



Notes

Again From eqsX7), (18) and (L9), we get 2g = i17—ig. If we setly = g (a constant), and consider = g = ns(t);
which immediately gives

Az=n3t)+c7; g =na(t) + Cs. (49)

From eqs20), (21) and @2), we get 2111 = idio—id1o. If we setly; = ¢11 (a constant), and considérs = 1o = 7a(t);
which immediately gives

A12 = 14(t) + C12; A10 = n4(t) + Cro. (50)

Now, in order to find solutions falys, 114, 415 andA;6 we have to make simplification for complications of above set
of 24 eqs 23-46). (i.e. a1 = a2 = a3, andBy = B2 = a3). From eqs17), (20) and @3), we get 2313 = A7 + idgp. If we
considerl;z = ¢33 (a constant), and considering the eqn from above relation (with: n4(t) + 10, 47 = n3(t) + ¢7;)
gives

/1]_3 = T](t) + C13. (51)

E Year 2013

wheren(t) = [n4(t) + n3(t); ] is an another function of time, and; = ¢7 + ¢10; a constant.)
From egs. 18) (20) and @5), we get 2115 = 110 + ilg, If we considerl;s = ¢15 (a constant), and considering the eq
from above relation (withl1g = 74(t) + C10, Ag = n3(t) + Cg;) gives

A1s = () + Cys, (52)

I Versionl

wheren(t) = [n4(t) + n3(t)] is an another function of time angs = ¢y + Cg; @ constant.
In order to flnd solutions fonrie, from eqs.18), (22) and £6), we get 246 = g + A1o. If we considerlyg = Cyg; (a
constant), and considering the relation (wWith= n3(t) + Cs, 112 = 14(t) + C12;) gives

A16 = (1) + Cye, (53)

wheren(t) = %[m(t) +n3()]; andcy = Cg + C12; @ constant.
From eqs.17), (22) and Q4), we get 2114 = A7 + A1, If we considerlys = c14; (a constant), and considering relatio
(with 27 = n3(t) + 7, 12 = n4(t) + C12;) gives

/1]_4 = T](t) + C14, (54)

wheren(t) = [n4(t) + n3(t)]; andcyg = €7 + €12 @ constant.
Now, to find solutlons forly7, Aig, A19 and Az, refer from eqsil), (14) and @7), we get 237 = A3 + A4, and
considering the relationy = n1(t) + ¢1, A4 = n2(t) + Cc4; gives

A17 = ¢(1) + C17, (55)

whereg(t) = 2 [[iu(t) + 72(D)]dt; andcz = ¢ + ¢4, a constant. From eq), (15) and @8), we get 21 = id; — ils;
and considering the relation = n1(t) + ¢1, A5 = n2(t) + cs; will results

A18 = ¢(t) + Cys, (56)

wherep(t) = % f[i_i;l(t) —_iiyz(t)]dt; andc;g = €1 + Cs, a constant. Similarly to find solutions #fy, from egs.12), (14)
and R9), we get 219 = iy — i14; and considering the relatioty = n1(t) + 2, A4 = n2(t) + C4; gives

A19 = x(t) + C1o, (57)

Global Journal of Science Frontier Research (F ) ?()lumc XII Issue V

wherey(t) = 3 [[inu(t) — in2(t)dtandcye = ¢z + €4, @ constant.
Again from eqgs.12), (15) and @0), we get 2,9 = A2+ 14; and considering the relatio = n1(t)+c1, A4 = n2(t)+Cy;
gives

Ao = (1) + Coo, (58)

where ) = % f[iyl(t) + n2(t)]dt; andcyg = ¢, + ¢4, @ constant.
Solutions for Q21 — A2g) can be obtained respectively as from eqs.38), we obtain following equations

© 2013 Global Journals Inc. (US)
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i/-121 + /-122 = 2((11/17 - al/lg - (13/113 + ia/3/114 - ia/3/115 + (X3/116) =0.
Aoz + 124 = 2(~asdio + @3diz — a1di3 + i1 dis — i@y g + @1dz6) = O.
Aos — idgs = 2(@17 — @1dg — a3 diz + iasdia — iazdys + asdie) = 0.

o7+ idog = 2i(—aadip + aadio — a1 di3 + i@1dss — i@1d1a + a1dig) = O.
Since
A7 = Ag, 1o = A1z; A13 = A14 = A15 = A16 = (1),
or if we set

A1 = —idap = EQ);  Aaz = —idoa = O(1);
Aos = idoe = 8(t); Aoz = —idog = {(1).

which immediately gives

Ao1 = f(t) + Cp1; Ao = —if(t) + Cpo; Aoz = 9(t) +Cp3; Aog = —i@(t) + Coa,
A2s = 6(t) + Cos;  Aog = —id(t) + Cop;  A27 = () + Co7;  A2g = iL(t) + Cos.

Solutions for o9 — A36) can be obtained respectively as, from eqs48p we obtain following equations

/-131 - i/-l32 = —2(—ia/3/17 + ia3/lg + ia/2/113 + aodig — a2/115 - ia/2/116) =0.
/-129 + i/-l30 = 2(—(12/110 + apd1p — azdiz + ia/3/115 — i(13/114 + (113/116) =0.
/-133 + i/-134 =2i (—a’z/llo + apdi2 — a3d13 + i(13/115 — i(13/114 + (13/116) =0.

Azs + idzg = —2(—iaady + iasdg + i@od13 + @pdis — @2dis — iapdig) = 0.
Since
A7 = Ag, 410 = A1z; A13 = A14 = A15 = A1 = (1),
or if we set
Aog = —idz0 = ¥(t); As1=idg2 = u(t); Aza = —idza=p(t); Ass= —idgs = & (t).
Which immediately gives
A29 = y(t) + Cag; Azo = iy(t) + Cao; Az1 = u(t) + Ca1; Az = —iu(t) + Ca2;

A33 = p(t) + Ca3; Aza = ip(t) + Cas; Azs = o (t) + C35; Aze = io(t) + Cze.

where the arbitrary function's, ¢, ¢, v, ¥, &,6,6,¢,v, 1, p ando’s and integration constants;s, (i = 1,....36). are

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

obtained through the equations, when we have solved &d)s({6)]. Therefore, substitution of the solutions fiis

yield the, complex invariant for a two dimensional complex oscillator systems as

1 1 1 1
I = Eﬂl(pf +X5) + énz(pé +X5) + 5774(Xf +p3) + Ens(é + P3) + n(X1Xs + PaPa + X2P3 + X1Pa)
+PP1P2 + @P1Xa + xX3P2 +  X3Xa + E(P1P3 — iP1X1) + O(P1X2 — iP1Pa) + 6(P3X3 — iX1X3)

+{(ipaXs + XoX3) + ¥(ip2pPa + P2X2) + u(PaP2 — iX1P2) + p(iPaXa + X2Xa) + o (iP3Xa + X1 Xa).

is our desired invariant.

© 2013 Global Journals Inc. (US)
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[I. CONCLUSION

We have shown in this paper, the coupled harmonic oscillator system with two space and one time variable
share the same mathematical framework as the coupled harmonic oscillators in one dimension ECPS. The role of a
linear invariant designed, however, for a rotating TD harmonic oscillatdt-@imensions is investigated by Malkin
and Man’ko [L6] in the context of coherent states. While the use of the quantum analogue of such TD systems in one
dimension has been knowh{, 18] for more than three decades.
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