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⊆ 〈V−S〉

In this paper we follow the notations of [3]. As usual n = |V | and m = |E|
denote the number of vertices and edges of a graph G respectively.

The graphs considered here have at least one component which is not com-
plete or at least two non trivial components.

For any graph G(V,E), the line graph L(G) whose vertices correspond
to the edges of G and two vertices in L(G) are adjacent if and only if the
corresponding edges in G are adjacent. The distance d(u, v) between two
vertices u and v in a connected graph G is the length of a shortest u− v path
in G. It is well known that this distance is a metric on the vertex set V (G).
For a vertex v of G, the eccentricity e(v) is the distance between v and a vertex
farthest from v. The minimum eccentricity among the vertices of G is radius,
rad G, and the maximum eccentricity is the diameter, diam G. A u−v path of

length d(u, v) is called a u− v geodesic. We define I[u, v] to the set (interval)
of all vertices lying on some u− v geodesic of G and for a nonempty subset S
of V (G), I[S] =

⋃
u,v∈S I[u, v]. A set S of vertices of G is called a geodetic set

in G if I[S] = V (G), and a geodetic set of minimum cardinality is a minimum
geodetic set. The cardinality of a minimum geodetic set in G is called the
geodetic number of G, and we denote it by g(G).

Non split geodetic number of a graph was studied by in [5]. A geodetic set
S of a graph G = (V,E) is a non split geodetic set if the induced subgraph
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< V − S > is connected. The non split geodetic number gns(G) of G is the
minimum cardinality of a non split geodetic set. Geodetic number of a line
graph was studied by in [4]. Geodetic number of a line graph L(G) of G is a set
S

′
of vertices of L(G) = H is called the geodetic set in H if I(S

′
) = V (H) and

a geodetic set of minimum cardinality is the geodetic number of L(G) and is
denoted by g[L(G)]. Now we define non split geodetic number of a line graph.
A set S

′
of vertices of L(G) = H is called the non split geodetic set in H if

the induced subgraph V (H)− S ′
is connected and a non split geodetic set of

minimum cardinality is the non split geodetic number of L(G) and is denoted
by gns[L(G)].

A vertex v is an extreme vertex in a graph G, if the subgraph induced by
its neighbors is complete. A vertex cover in a graph G is a set of vertices that
covers all edges of G. The minimum number of vertices in a vertex cover of G
is the vertex covering number α0(G) of G. An edge cover of a graph G without
isolated vertices is a set of edges of G that covers all the vertices of G. The
edge covering number α1(G) of a graph G is the minimum cardinality of an
edge cover of G.

For any undefined term in this paper, see [2] and [3].

II. Preliminary Notes

We need the following results to prove further results.

Theorem 2.1 (1) Every geodetic set of a graph contains its extreme ver-
tices.

Proposition 2.2 For any graph G, g(G) ≤ gns(G).

Proposition 2.3 For any tree T of order n and number of cut vertices ci

then the number of end edges is n− ci.

III. Main Results

Theorem 3.1 For any tree T with k end edges and ci be the number of cut

vertices, then gns[L(T )] = n− ci.
Proof. Let S be the set of all extreme vertices of a line graph L(T ) of a

tree T . By Theorem 2.1 gns[L(T )] ≥ |S|. On the other hand, for an internal
vertex v of L(T ), there exists x, y of L(T ) such that v lies on the unique x− y
geodesic in L(T ). The end edges of T are the extreme vertices of L(T ) and
the induced subgraph V − S is connected. Thus gns[L(T )] ≤ |S|. Also every
split geodetic set S1 of L(T ) must contain S which is the unique minimum
split geodetic set. Thus |S| = |S1| = k, by proposition 2.3 |S1| = n− ci. Hence
gns[L(T )] = n− ci.

Corollary 3.2 For any path Pn, n ≥ 6, gns[L(Pn)] = 2.

Proof. Clearly the set of two end vertices of a path Pn is its unique geodetic
set. From Theorem 3.1 the results follows.
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Theorem 3.3 For the wheel Wn = K1 + Cn−1 (n ≥ 6),

gns[L(Wn)] =

 n
2

if n is even

n+1
2

if n is odd.

Proof. Let Wn = K1 + Cn−1(n ≥ 6) and let V (Wn) = {x, v1, v2, ..., vn−1},
where deg(x) = n − 1 > 3 and deg(vi) = 3 for each i ∈ {1, 2, ..., n − 1}. Now

U = {u1, u2, ..., uj} are the vertices of L(Wn) formed from edges of Cn−1, i.e

U ⊆ V [L(Wn)] and Y = {y1, y2, ..., yj} are the vertices of L(Wn) formed from

internal edges of Wn, i.e Y ⊆ V [L(Wn)].

We have the following cases

Case 1. For n is even.

Let H ⊆ U , now S = H ∪ {yj} forms a minimum geodetic set of L(Wn) and

V − S is connected. Thus S itself is the minimum non split geodetic set of

L(Wn). Clearly |H ∪ {yj}| = n
2
. Therefore gns[L(Wn)] = n

2
.

Case 2. For n is odd.

Let H ⊆ U , now S = H ∪ {yj, yj−1} forms a minimum geodetic set of L(Wn)

and V − S is connected. Thus S itself is the minimum non split geodetic set

of L(Wn). Clearly |H ∪ {yj, yj−1}| = n+1
2

. Therefore gns[L(Wn)] = n+1
2

.

As an immediate consequence of the above theorem we have the following.

Corollary 3.4 For the wheel Wn = K1 + Cn−1 (n ≥ 6),

gns[L(Wn)] =

 ∆
2

if n is even

∆+1
2

if n is odd.

Proof. Maximum degree(∆) of L(Wn) is equal to n. i,e number of vertices
in Wn.

Case 1. For n is even.

We have from case 1. of Theorem 3.3 gns[L(Wn)] = n
2
.

gns[L(Wn)] = ∆
2

.

Case 2. For n is odd.

We have from case 2. of Theorem 3.3 gns[L(Wn)] = n+1
2

.

gns[L(Wn)] = ∆+1
2

.

Theorem 3.5 For any tree T , with m edges, gns[L(T )] ≤ m− dα1(T )
2
e+ 2.

Where α1 is the edge covering number.

Proof. Suppose S = {e1, e2, ..., ek} be the set of all end edges in T . Then

S ∪ J where J ⊆ E(T ) − S, be the minimal set of edges which covers all
the vertices of T and is not covered by S, such that |S ∪ J | = α1(T ). Now
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without loss of generality in L(T ), let S
′

= {u1, u2, ..., un} ⊆ V [L(T )] be the

set of vertices in L(T ) formed by the end edges in T and V − S ′
is connected

which is the minimal non split geodetic set of L(T ). Clearly it follows that

gns[L(T )] ≤ |E(T )| − |dS∪J
2
e|+ 2 ⇒ gns[L(T )] ≤ m− dα1(T )

2
e+ 2.

Theorem 3.6 For any connected graph G of order n, gns(G)+gns[L(G)] ≤

2n.

Proof. Let S = {v1, v2, ..., vn} ⊆ V (G) be the minimum non split geodetic

set of G. Now without loss of generality in L(G), if F = {u1, u2, ..., uk} be

the set of all end vertices in L(G). Then F ∪ H where H ⊆ V [L(G)] − F

forms a minimum non split geodetic set of L(G). Since each vertex in L(G)

corresponds to two adjacent vertices of G, it follows that |S| ∪ |F ∪H| ≤ 2n.

Therefore gns(G) + gns[L(G)] ≤ 2n.

Theorem 3.7 Let G be a connected graph of order n and diameter d. Then

gns[L(G)] ≤ n− d+ 1.

Proof. Let u and v be vertices of L(G) for which d(u, v) = d and let

u = v0, v1, ..., vd = v be the u − v path of length d. Now let S = V [L(G)] −
{v1, v2, ..., vd−1}. Then I(S) = V [L(G)], V [L(G)]−S is connected and gns[L(G)] ≤
|S| = n− d+ 1.

Observation 3.8 For cycle Cn of order n gns[L(Cn)] = n− d+ 1.

Theorem 3.9 For cycle Cn of order n > 3

gns[L(Cn)] =

 n+2
2

if n is even

n+3
2

if n is odd.

Proof. Line graph of a cycle is again a cycle of same order and d be the
diameter. We have the following cases.
Case 1. If n is even. Let n be the number of vertices of L(Cn) and diameter of
L(C2n) is n

2
. Hence by Theorem 3.7 and Observation 3.8, gns[L(Cn)] = n−d+1.

Now we have

gns[L(Cn)] = n− n
2

+ 1.

⇒ gns[L(Cn)] = n
2

+ 1.

⇒ gns[L(Cn)] = n+2
2

.

Case 2. If n is odd. Let n be the number of vertices of L(Cn) and diameter
of L(C2n+1) is n−1

2
. Hence by Theorem 3.7 and Observation 3.8, gns[L(Cn)] =

n− d+ 1. We have

gns[L(Cn)] = n− n−1
2

+ 1.
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IV. Adding an End Edge

⇒ gns[L(Cn)] = n
2

+
2

+ 1.

⇒ gns[L(Cn)] = n+3
2

.

Theorem 3.10 For any integers r, s > 2, gns[L(Kr,s)] ≤ rs− 1.

Proof. Let r + s and rs be the number of vertices and edges of the given

graph Kr,s and d be the diameter. Since diameter of L(Kr,s) = 2, the number

of vertices in L(Kr,s) is rs. Hence by Theorem 3.7 gns[L(G)] ≤ n−d+ 1. Now

we have gns[L(Kr,s)] ≤ rs− 2 + 1. ⇒ gns[L(Kr,s)] ≤ rs− 1.

Theorem 3.11 For any integer n ≥ 4, gns[L(Kn)] ≤ (n+1)(n−2)
2

.

Proof. Let n ≥ 4 be the vertices of the given graph Kn and d be the

diameter. Since diameter of L(Kn) is 2 and the number of vertices in L(Kn)

is n(n−1)
2

, hence by Theorem 3.7 gns[L(G)] ≤ n− d+ 1. We have

gns[L(Kn)] ≤ n(n−1)
2
− 2 + 1.

⇒ gns[L(Kn)] ≤ n(n−1)
2
− 1.

⇒ gns[L(Kn)] ≤ n2−n−2
2

.

⇒ gns[L(Kn)] ≤ (n+1)(n−2)
2

.

For an edge e = (u, v) of a graph G with deg(u) = 1 and deg(v) > 1, we call e

an end-edge and u an end-vertex.

Theorem 4.1 G
′
be the graph obtained by adding k end edges {(u, v1), (u, v2), ...,

(u, vk)} to a cycle Cn = G of order n > 3, with u ∈ G and {v1, v2, ..., vk} /∈ G
Then

gns[L(G
′
)] =

 k + n
2

+ 1 if n is even

k + 1 if n is odd.

Proof. Let {e1, e2, ..., en, e1} be a cycle with n vertices and let G
′

be the

graph obtained from G = Cn by adding end edges (u, vi), i = 1, 2, ..., k. Such

that u ∈ G and vi /∈ G.

Case 1. If n is even.

.

By the definition of line graph, L(G
′
) has 〈Kk+2〉 as an induced subgraph.

Also the edges (u, vi), i = 1, 2, ..., k becomes vertices of L(G
′
) and it belongs

to some geodetic set of L(G
′
). Hence {e1, e2, ..., ek, el, em} are the vertices of

L(G
′
) where el, em are the edges incident on the antipodal vertex of u in G

′

and these vertices belongs to some geodetic set of L(G
′
). L(G

′
) = Cn ∪Kk+2.

 1
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LetS = {e1, e2, ..., ek, el, em} be the minimum geodetic set. Consider H ⊆
V − S, now S

′
= S ∪ H1 where H1 ⊆ H forms minimum non split geodetic

number of L(G
′
). Therefore gns[L(G

′
)] = k + n

2
+ 1.

Case 2. If n is odd.

By the definition of line graph, L(G
′
) has 〈Kk+2〉 as an induced subgraph, also

the edges (u, vi) = {e1, e2, ..., ek} becomes vertices of L(G
′
). Let el = (a, b) ∈ G

such that d(u, a) = d(u, b) in the graph L(G
′
). Let S = {e1, e2, ..., ek, el} be

the minimum geodetic set. Since V − S is connected S is the minimum non

split geodetic set. Therefore gns[L(G
′
)] = k + 1.

Theorem 4.2 Let G
′
be the graph obtained by adding end edge (ui, vj),

i = 1, 2, ..., n, j = 1, 2, ..., n to each vertex of G = Cn of order n > 3 such that

ui ∈ G, vj /∈ G. Then gns[L(G
′
)] = n.

Proof. Let {e1, e2, ..., en, e1} be a cycle with n vertices and G = Cn. Let G
′

be the graph obtained by adding end edge (ui, vj), i = 1, 2, ..., n, j = 1, 2, ..., n

to each vertex of G, such that ui ∈ G, vj /∈ G. Clearly n be the number of end

vertices of G
′
. By the definition of line graph L(G

′
) have n copies of K3 as an

induced subgraph. The edges (ui, vj) = ej for all j, becomes n vertices of L(G
′
)

and those lies on geodetic set of L(G
′
). Since they forms the extreme vertices

of L(G
′
). By Theorem 2.1 S = {e1, e2, ..., en} forms minimum geodetic set.

Since V − S is connected S is the minimum non split geodetic set. Therefore

gns[L(G
′
)] = n.

V. Cartesian Product

The cartesian product of the graphs H1 and H2, written as H1 × H2, is the

graph with vertex set V (H1) × V (H2), two vertices u1, u2 and v1, v2 being

adjacent in H1 × H2 if and only if either u1 = v1 and (u2, v2) ∈ E(H2), or

u2 = v2 and (u1, v1) ∈ E(H1).

Theorem 5.1 For any path Pn of order n,

gns[L(K2 × Pn)] =


3 for n = 2

4 for n = 3

5 for n > 3.

Proof. Let K2 × Pn be formed from two copies of G1 and G2 of Pn.

Now L(K2 × Pn) formed from two copies of G
′
1, G

′
2 of L(Pn). And let U =

{u1, u2, ..., un} ∈ V (G
′
1), W = {w1, w2, ..., wn} ∈ V (G

′
2). We have the follow-

ing cases.

Case 1. If n = 2.
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Let S = {u1, w2} forms minimum geodetic set of L(K2 × P2). Consider

H = {u2, w1} ⊆ V − S. Now S
′

= S ∪ {w1} or {u2}, where w1, u2 are

isolated vertices in V −S forms minimum non split geodetic set of L(K2×P2).

Therefore gns[L(K2 × P2)] = 3.

Case 2. If n = 3.

Let S = {u2, w1, w3} forms minimum geodetic set of L(K2 × P3). Consider

H = {u1, u3, u4, w2} ⊆ V − S. Now S
′

= S ∪ {u1}, where u1 is a isolated ver-

tex in V − S forms minimum non split geodetic set of L(K2 × P3). Therefore

gns[L(K2 × P2)] = 4.

Case 3. Suppose n > 3. Let S be the non split geodetic set of L(K2 × Pn).

We claim that S = {u1, un, w1, wn−1, wn} and V − S is connected. Since

I(S) = V [L(K2 × Pn)], it follows that gns[L(K2 × Pn)] = 5. If S
′

is a

four element subset of V [L(K2 × Pn)] then V − S is disconnected. It re-

mains to show that if S
′

is a three element subset of V [L(K2 × Pn)] then

I(S
′
) 6= V [L(K2×Pn)]. First assume that S

′
is a subset U orW , say the farmer.

Then I(S
′
) = S

′ ∪W 6= V . Therefore, we may take that S
′ ∩U = {ui, uj} and

S
′ ∩W = {wk}. Then I(S

′
) = {ui, uj} ∪W 6= V [L(K2 × Pn)].
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