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Hydrology (from Greek : Yδωρ, hudōr, "water"; and λόγoς, logos, "study")  

 
is the 

study of the movement, Distribution, and quality of water throughout the Earth and thus 

addresses both the hydrologic cycle and water resources. So in the broadest sense it is the 

study of water in all its phases and includes hydraulics, the physics and chemistry of 

water, meteorology, geology and biology. But the word as used by the scientists and 

engineers usually has a considerably narrower connotation. In this more limited sense, 

“Hydrology can be defined as that branch of physical geography, which is concerned with 

the origin. distributaries movement and properties of the waters of the Earth”. The study 

of hydrology thus concerns itself with the occurrence and transportation of the
 
waters 

through air, Over the ground and through the strata of the earth and this includes three 

important phases of what is known as the hydrological cycle, namely rainfall, runoff and 

evaporation. Hydrology
 
is therefore, bounded above by meteorology, below by geology 

and at land’s end by oceanology. Engineering hydrology includes those segments of 

hydrology pertinent to the design and operation of engineering projects for the control 

and use of water. Hydrology means the science of water. It is a branch of earth science. 

Basically it is an applied science. 
 Domains of hydrology include hydrometeorology, surface hydrology, hydrogeology, 

drainage basin management and water quality, where water plays the central role. In 

general sense
 
hydrology deals with (i)

 
Water resources estimation (ii) Acquisition of 

processes such as precipitation, runoff and evapo-transporation. 
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Abstract - The Various Numerical Methods are applied to solve the spatially varied unsteady flow equations (Kinematic 
Wave) in predicting the discharge, depth and velocity in a river. Solutions of Kinematic Wave equations through finite 
difference method (Crank Nicolson) and finite element method are developed for this study. The computer program is 
also developed in Lahey ED Developer and for graphical representation Tecplot 7 software is used. Finally some 
problems are solved to understand the method.



 

 

 

a)
 
Kinemtic Wave Equations From Saint Venant Equations

 

The St. Venant equations characterizing the dynamic flow can be written as:
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The equation (1) may be rewritten in the following form for a ready reference to 

the various types of wave models that are recognized.
 

Term: I II III IV
 
Equation of motion: 
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Local Convective Depth acceleration acceleration slope                 
 

Wave model and terms used to describe it are:
 

Kinematics wave only term        IV= 0
 

Diffusion wave                        III+ IV=0
 

Steady dynamic wave            
 
  II+III+IV=0

 

Dynamic wave                        I+II+III+IV=0
 

Gravity wave                         
 
I+II+III= 0

 

and other terms are neglected.
 

 

 

 

b) Hydrodynamic Theory And Kinematic Wave Equations 

The hydrodynamic theory for incompressible fluid flows gives the following set of 

equations (also known as the Navier-Stokes’ equations): 
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and continuity equation:                    0
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 the mass density ; 
 

u, v and w are the velocity components in the x, y and z direction
 
respectively;

 

X, Y, Z are the body forces per unit volume;
 

P = pressure and  viscosity.
 

c)

 

Elements Used In Kinematics Wave Models 

 

In this work, for computational purpose, the following two types of elements have 

been identified:

 

(i)

 
Overland flow elements and

 

(ii)

 

Channel flow elements (Fig. 3.1)

 

 

 

d)

 

Trapezoidal Channel Cross Section

 

A trapezoidal cross-section is the most general type of channel cross-section. It is 

defined by the cannel side slope (Z), and the channel bottom width (B) (Fig.3.2). 
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e)
 

The Final Form of Kinematic Wave Equations For The Channel Flows
 

The unknown parameters for the channel shapes under consideration i.e.  k

 
and

 

km
 
being the unknown functions. The KW equation for the channel flow can be written 

by combining equations (3.19) and (3.20) as given below:
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If  k

 
is independent of x, then the equation becomes:
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Crank-Nicolson and other methods:

 

First Order one-way wave equation

 

The first order wave equation in one-dimensional space is as follows:

 

𝑢𝑡 = 𝑐𝑢𝑥

 

where c is a positive constant, and u(x, t) is subject to the initial condition

 

u(x, 0) = f (x),      -∞

 

< 

 

x < 

 

∞.

 

The solution for t ≥

 

0 and all x is a family of characteristics, which are straight 

lines shifted to the left in the x, t-

 

plane, inclined to the x-axis at an angle

 

Ɵ

 

= tan−1(
1

𝑐
).

 

The explicit solution is 

 

u(x, t) = 𝑓 𝑥 + 𝑐𝑡 .
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Finite Element Formulation for Solving KW Equation:
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Channel Discretization and Selection of Approximations Functions 

The flow equations are one-dimensional. The channel is divided into small reaches 

called elements. Each element will be modeled with the same flow equations but with 

different channel geometry and hydraulic parameters. The elements equations are later 

assembled into global matrix equations for solution. By applying the Galerkin’s principle 

to the continuity equation the following equation is obtained:
 

 

 

 

 

 

 

 

Figure (A)
 
:
 
Finite Difference Computational Mesh

 

 

 

Figure (B) : Finite Element Computational Mesh 
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Where 
1

1

K

is the expression for summary individual element equation from 1 to   

(k-1) elements; NT transpose to the shape functions.
 

Using the shape functions, Equations may be written as
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Figure

 

:

  

Natural Idealized Flow Sections (a) Longitudinal Profile (b) vertical Cross 

sectional Area Flow (c) Longitudinal Channel discretized into finite elements.

 

 

Evaluating each term of Equation (5.24) the following elements equation may be written:
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Similar way the momentum Equation for an element can be derived as
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The element properties originally expressed in local coordinates need to be 

transformed into global coordinates before a solution algorithm is initated. Based on the 

node to node relationship, it is possible to generate an overall element property matrix for 

the entire domain, a process called assembling of element equations.

 

The concept of discreatization employed earlier is based on the fact that a domain 

with varying geometric and hydraulic properties can be treated independently as 

subdomains but systematically from one subdomain to another. Considering N number 

elements of varying lengths the assembled global matrix equations for continuity and 

momentum equations become:
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In matrix form the global continuity equation can be written as

 

        0
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Where A, B are the matrices and C is the column vector, Y is the dependent 

variable. The global momentum equation can be formed similarly.

 

The Solution of time dependent global matrix Equation is sought through a semi 

discrete approach, This approach requires the time derivative of the dependant variable 

at each node to be replaced by finite difference scheme (in time domain). Such as the 

forward, backward, and central differences and are given below with time level k as:

 

Forward difference, 
t

yy

dt

dy kk






1

 

Backward difference, 
t

yy

dt

dy kk






1

 

Central difference, 
t

yy

dt

dy kk








2

11

 

 

 

Notes

© 2013   Global Journals Inc.  (US)

  
 

     

31

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
III

 I
ss
ue

  
  
  
 e

rs
io
n 

I
V

V
I

Y
ea

r
  

2 0
13

  
 F
)

)



 

 

An implicit equation will be generated from this Equation with the aid of the time 

weighting factor in the next section.

 

Development of the Numerical models

 

The deterministic stream flow models are investigated with three distinct options: 

(1) the kinematic flow models comprises (a) the simplified version of momentum equation 

that neglects pressure and inertia terms are compared to friction and gravity terms and 

(b) the complete form of continuity equation; (2) the diffusion flow models comprises (a) 

the simplified momentum equation that accounts only for pressure, friction, and gravity 

terms and (b) the complete form of continuity equation; and (3) the complete flow model 

comprises (a) the complete form of momentum equation and (b) the complete continuity 

equation.

 

The kinematic flow model is investigated in both explicit and implicit sense. The 

explicit kinematic flow model leads to linear equations. They are solved using a direct 

method similar to the tridiagonal matrix algorithm set up by varga (1962). The solution 

proceeds by matrix reduction similar to Gaussian elimination. In contrast the explicit 

model, the implicit kinematic model yields a set of non-linear tridiagonal matrix equations 

which are solved by the functional Newton-Raphson iterative method.

 

The diffusion model as well as the complete flow model each results in a non-linear  

bitridiagonal matrix equation. The functional Newton-Raphson’s method, along with the 

direct solution algorithm, triangular decomposition technique that yields a recursion 

algorithm (Douglas, et al, 1959, Von Rosenberg, 1969), is utilized to predict depth and 

velocity of flow for each option.

 

 

Finite Element Kinematic Wave Model 

 

Explicit Model:

 

The non-linear continuity equation is easily converted to linear form by use of 

geometric and flow relations:
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𝑞 𝑥, 𝑡 = 0

 

Where, A = Area of flow,

 

𝐿2

 

;

 

          Q = volumetric flow rate, 
𝐿3

𝑇

 

The appropriate simplified momentum equation for coupling with the continuity 

equation has been obtained and is presented below
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These equations are written in matrix units. For fps units first equation to be 

divided by 2.216 and the second equation to be multiplied by 1.486.
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Substitution of Equation (5.29a) in Equation (5.28) yields

        0
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For total length of the stream reach the assembled matrix equation becomes:
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The above Equation is expressed in a matrix form:

 

      0








FD
dt

dy
K

 

The solution of this Equation is possible upon implementation of the forward 

differencing in time derivative.

 

          NnNN
DtFtAKAK 

1

 

The solution of the area of flow at various nodes proceeds forward in time with the 

right hand side evaluated at a previous time level, n. Thus, the Equation can be 

expressed in more compact form:

 

     NN
XAK 

1

 

Where X is the known column vector at previous time level. The matrix, K is a 

linear and tridiagonal type that easily leads to direct solution algorithm. The computer 

program solving Equation is facilitated by the use of the compact tridiagonal algorithms 

proposed by Varga (1962). The computed area of flow at current time level, n+1, is used 

to update cycle is repeated as new time level is reached. The coded

 

explicit finite element 

scheme exhibits dynamic instability to restriction on the step. This drawback is inherent 

in explicit numerical schemes, is expected regardless of the finite element approach. 

 

To solve the KW model through the above finite element

 

method one can study 

the flow problem of  overland flow as well as channel flow by using practical data 

collecting from any river in Bangladesh.

  

 

Notes
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Applying the Galerkin’s weighted residual method results in the following liner 

first order ordinary differential equation.



 

 

that the dynamic approached are the best to account for the physical processes associated 

with the runoff mechanics of the watersheds. Among these approaches, the kinematic 

wave theory is the best suited to the prevailing condition.

 

A further work can be done by developing computer program using these methods 

to solve KW equation for channel

 

and overland flows for various practical data set 

collecting from any small river in Bangladesh
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