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l. INTRODUCTION

Feynman path integrals are reformulation of quantum mechanics and are more
fundamental than the conventional one in terms of operators because in the domain of
quantum cosmology the conventional formulation may fail but Feynman path integrals
still apply [6]. Inayat-Hussain [9] has pointed out the usefulness of Feynman integrals in
the study and development of simple and multiple variable hypergeometric series which in
turn are very useful in statistical mechanics. Hussain has introduced in another paper [10]

the H -function which is a new generalization of the familiar H-function of Fox [4]. The

H -function contains the exact partition function of the Gaussian model in statistical
mechanics, functions useful in testing hypothesis and several others as its special cases.

The H -function has been defined and represented as follows [2].

= —unl @A) (@ a) e | 1 TF
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which contains fractional powers of some of the gamma functions. Here, and
throughout the paper a,(j=1..,P), and b/(j=1..,Q)are complex parameters,

a;>20(j=L1..,P), B;20(j=1..,Q) (not all zero simultaneously) and the exponents
A(j=1..,N)and B;(j =M +1,...,Q) can take non-integer values.
The contour in (1.1) is along imaginary axisRe(£)=0. It is suitably indented in

order to avoid the singularities of the gamma functions and to keep those singularities on
appropriate sides. Again, for A(j=1..,N) not an integer, the poles of the gamma
functions of the numerator in (1.2) are converted to branch points. However, as long as
there is no coincidence of poles from any I'(b, - 5,¢) (j = 1,...,M) and T'(l-a,-a;&) (] =

1,...,N) pair, the branch cuts can be chosen so that the path of integration can be
distorted in the usual manner.

Evidently, when the exponents A and B, all take an integer values, the H -

function reduces to the well known Fox's H-function [4].
The following sufficient conditions for the absolute convergence of the defining
integral for

H -function given by equation (1.1) have been given by Buschman and
Srivastava[2].

M N Q P (1.3)
9=Z|ﬂi|+Z|AJaJ'|_ Z |Bjﬂj|_ Z |0‘i|> 0,
j=1 j=1 j=M+1 j=N+1
and
|arg Z|<%l972'. (1.4)

where 0 is given by (1.3).
The behaviour of the H -function for small values of |Z| follows easily from a result

recently given by Rathie [13, p. 306, eq. (6.9)], we have

Hpo' [Z]:o(|z|“) , @ =Min.{Re(b, / g )} for small [2]. (1.5)

1<j<M

Investigations of the convergence conditions, all possible types of contours, type of
critical points of the integrand of (1.1), etc. can be made by an interested reader by
following analogous techniques given in the well known works of Braaksma [1], Hai and
Yakubovich [8]. We however omit the details.

Srivastava ([14], P.185,eq.(7)) has defined and introduced the generalized
polynomials (multivariable)
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(1.6)

where n; = 0,1,2,...(I = 1,...,r) , m,,...,m, are an arbitrary positive integers and

Notes the coefficients An,K;...;n ,K ] are arbitrary constants, real or complex .

[I. INTEGRALS REQUIRED

The following integrals will be required in our results

b
j X (b-x)"tdx=b"""B(1,7) ; Re(1)>0, Re(n)>0
0

J-X”_l (U — X)U_l e dx= B(U, ,U) usret 1F1(:u; HFU, au) ;
0
Re(u) >0, Re(v) >0

Ix‘”‘l (U-x)*tedx=a“u“'T(u)e“" ; Re(u)>0,u>0
0
1. MAIN INTEGRALS
a) First Integral
We shall establish the following integral formulas :

(ai IE Al )l,N ’(ai 1 )N+1,P o

b
X" (b—x)" A | 2¢ (b-x)"
J(; o (bi’ﬁi )l,M '(bVﬂj;Bj)MﬂQ

M., 1Ty |:21in (b_ X)/‘l,'"’ Zr)()»r (b— X)”f:ldX

..... n

p+0+zr:(ﬂ1-+/ti)ki—l [n/m] [nr/”}](—nl) (—nr) r
- = "y 'mlkl '”‘k' An,k;..n,k1T1z"
ko ko k! k! i=1

[1_,)-24&,u;1j,(1—o—_2r)uil@,v;l],(aj @A), (@),

I__|M,N+2 Zbu+v
(b51),,, (b 5B, )M+1,Q’£1_p_o-_;(ﬂ" “‘i)K’UH’;lj

P+2,Q+1
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valid under the conditions

(i) u=0,v>0 (not both zero simultaneously

(i) Re(p)+ iﬁ,, [%J+ u min [Re(b;/3,)]>0

i=1 1<j<M

Re(o)+ r 1 (%]+v min [Re(bj/ﬂj)]>0

1<j<M

(iii) The H - function occurring in (3.1) satisfy conditions corresponding appropriately to
those given by (1.3) and (1.4).

b) Second Integral

b (ai’ai;Ai)l,N ’(ai’aj )N+1,P y

xp‘l(b—x)‘”’*le”’xl—TM"N 2 (b—x)' ™
J(; " (bj’ﬂj)l,M ’(bi"BJ';BJ )M+1,Q

......

p+o‘+i(ﬂi +u)k -1 [nllnl] [nr/mr] (—nl) (—I’lr ) bt r
—p = Sy e AN K KT T3
o ko K! k! t! =1

(1—/3—2% —t,u;lj,(l—a—iﬂiki,V;lj,(—a,é‘;r),(aj,aj;Al.)lN (a.a) .
Ay ) e |
(bJ"Bi )w ’(bi’ﬁi;Bi)Mﬂ,Q ’(1_0"5”),(1—,0—0—2(21 + 1)K —t,u+v;1j

(3.2)

where the H -function occurring in the left hand side of (3.2) stands for the new
generalized H-function defined by (1.1) and ~ §}" [X,...,% | stands for the generalized
polynomials given in(1.6).

The above integral holds true under the following conditions:-

(i) Re(p,0)>0,u,v >0, [J
(ii) when min(,4 ) >0 for allI = 1,...,r (not all zero simulteneously).

n .
I Re(p)+). [H}+ugu§u Re(b, /B;)>0

i=1

© 2013 Global Journals Inc. (US)
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IT Re(a)+z,u[ }+vmln Re(b, /B;)>0

(i) when max(g,4) <0 for all I = 1,....,r (not all zero simulteneously).

1<j<M

I Re(p)+z/?[ }u min Re(b, / B;) >0
Notes

IT Re(a)+z,u[ }rvmln Re(b, /B,)>0

Kj<M

(iv) when A >0and g <O inequalities I and IV are satisfied.

(v) when A <Oand g 20 inequalities IT and III are satisfied.

¢) Third Integral

b

(A, (3))
x " L(h-x)" —a/xHQ/IN 2679/ N+LP
I o= ) (bj,ﬂj )1,M '(bj'ﬂj;Bj)

M+1Q '

M m*[zlxﬂi(b X)*, ... ;x’“(b—x)&]dx

p+§rjﬂm—1 [m/m] [n/m] (- — «
= b= et D (t),”‘“l---( K),“ AN K ,r,kr]HZ“F(p+Z/1K)><
k=0 k. =0 :

(1—a,5ip+zﬂﬁkij’(aj’aj;Ai )1,N ’(al"ai)N+1,P
HM N+1 mu+v i=1

P+1,Q+1
(bj'ﬁj )1,M '(bJ’IBJ;BJ)

M+1,Q

,(—a,é;p+2&iﬁ)

The above result is valid under the following conditions :-
(i) Re(a)>0,6>0
(ii)) when A4 >0,p>0

when A <0,p+zr:/?,I {i}>
i |[M
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PROOF :- To establish the integral (3.1), we express the generalized polynomials

occurring in the left hand side in the series form given by (1.6) and the H -function in
terms of Mellin-Barnes contour integral given by (1.1) and then interchanging the order of
summation and integration (which is permissible under the conditions stated with (3.1))

so that the left hand side of (3.1) (say A) assume the following after little simplification

R I My 1
A = k;;) kl!ml k,!m A[nl,lq,...,nr,k,]g; 2_7ri-i[oe(s)z

b +iﬂ1vki+us—1 U+Zr: .k +vs—1
[xX 57 -x 5 dxlds (3.4)

0

On evaluating the inner integral occurring in (3.4) by using Eulerian integral (2.1)

and on reinterpreting the Mellin-Barnes contour integral in terms of the H- function
given by (1.1), we easily arrive at the desired result (3.1).

Similarly the integrals (3.2) and (3.3) can also be established in the same manner
by using the integral (2.2) and the integral (2.3) respectively.

IV.  SpeciaL CASE

(i) If we take A(n,k;..;n k) =T]AM,k)in the definition of generalized polynomials
i-1

occurring in the left hand side of the integral (3.1), we get

v (aj’aj;Aj)l,N ’(aj’aj)l\Hl,P « ﬁSrT [ZiXﬂi (b_x)ﬂi:'dx

b
X" (b-x)"" Hpg' | ¢ (b-x)
! h (b5 )1,M ’(bwﬁi;Bi)Mm "

proy kL [mm] [ /m ] —n, -n, r r
— p z...z( T TTA(n.k)I1z*
k=0 k =0 ki! kr! i=1 i=1

(1—,0—2/111(1,U;lj,(l—ﬁ_zr:ﬂiki’\/;lj’(aj ’aj;AJ' )1,N ’(ai’aj )N+1,P

(bj’ﬂj )1,M ’(bj’ﬂi; BJ' )M+1,Q ’(1_:0_0'_2(21 +ﬂi)ki’U+V;1j

i=1

I__|M N+2 mu+v

P+2,Q+1

(4.1)

(a) Taking i = 2 in our result (4.1), we obtain the result discussed by Gupta and Soni [7,
p.100, eq.(2.1)].
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g M2 | e (1= p =2k = Tk, ), (L0 = k= ok Vi) (3 s AV ) (),
P+2,Q+1 . .
2 (bj ’IBJ‘ )l,M 1(bj UBJ' ’ Bj )M+1,Q ’(1_p_o-_(j‘.|.+/u1)k1_(j“2 +/u2)k2’u+v’1)
=
E
B (4.1.1)
[CNep)
20 =
<5}
e g (b) Taking i = 1 in the result (4.1), we obtain the result discussed by Gupta and Soni [7,
O p.101, eq.(3.1)]. )
R
=] .
o b (a.,a-;Ai) ,(a-,a.)
2% I G g G R
—‘SE 0 ( i'ﬁi)l,M’( i’ﬂi’ i)MJrl,Q
(<5}
B
§OO Sr“f[zlx‘i(b—x)“l]dx
= Q
A
2O
% = LY iyt )k
20 bret Y, — e Al Kz b
D A k=0 k1
o
<)
5B
20 % |__|MVN+2 u+v (1_p_/’llk1’u’1)’(1_G_ﬂlkl’v,1),(aj’aj’Aj )l.N ’(aj’aj)NJrl,P
L P+2,Q+1 . .
z 5 (b, 5 )m (b, 5, B, )M+1,Q (1-p—o— (4 + )k, u+v;2)
g
3 % (4.1.2)
iﬁ Z In the similar manner if we put i = 2 and i = 1 in both the integrals (3.2) and
g g (3.3), we obtain the known results given by Mishra Rupakshi [11, p.42, eq.(1.3.1)] and
@ < [11, p.43, eq. (1.3.2)].
M= _
= = (iv) Taking the exponents A =B, =1 in the H - function occurring in the left hand side
S
(_%é? of the integrals (3.1), (3.2) and (3.3) we get the results in terms of well known Fox’s H-
function.
= The importance of the main integral of the present paper lies in its many fold

generality. Again several integrals obtained by various authors and lying scattered in the

literature also follow as simple special cases of our findings. Thus, if we reduce theH -
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function occurring on the left hand side of (4.1.1) to the Fox’sH function and the
generalized polynomials §*" [%,...X.] occurring therein to unity, we get a known
integral [5,p.202].

V.  APPLICATIONS

We shall define the Rieman — Liouville fractional derivative of a function f(x) of
order o (or, alternatively, —o " order fractional integral) [3,p.181;12,p.49] by (5.1)

1
F(—G)
d¢

v Dy { f(x)},(a-1)<Re(c)<aq,

[(x=t) 7" £ (t)ct, Re(c") <O,

where q is a positive integer and the integral exists.

For simplicity the special case of the fractional derivative operator ,D; when a =

0 will be written as D; . Thus we have

Dy = ,Dy (5.2)

X

Now by setting b = x and x = t in the main integral (3.1), it can be written as the
following fractional integral formula :

v (ai ’ai;Ai )l,N ’(ai ’aj)N+1yp

e
P (bj’ﬁi )1,M ’(bi’ﬂi;Bi)MﬂvQ’

X

xerot iyl ml(-n) (=)

~ T(o) kzo &2 Il k!

T A i T2
i=1

(1—,0—21,'&,U;lJ.(l—O'__Zr:ﬂiK'V;lj'(ai ’ai;Ai )1,N ’(aj & )N+1,P

(bj’ﬂj )1,M ’(bi’ﬂj; Bi)Mﬂ,Q’[l‘P—G—i(i. +ﬂi)K,U+V;1j

i=1

1M ,N+2 U-+Vv
H P+2,Q+1 X

(5.3)

where Re(c) >0 and all the conditions of validity mentioned with (3.1) are satisfied.
The fractional integral formula given by (5.3) is also quite general in nature and
can easily yield Riemann-Liouville fractional integrals of a large number of simpler

functions polynomials merely by specializing the parameters of H -function and
1o T [xl,...,xr], occurring in it which may find applications in electromagnetic theory

and probability.
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