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Abstract -

  

When

 

heat flow is subject to temperature 
dependent thermal potential at the boundary, the associated 
local temperature field responds significantly, while the 
neighboring field is marginally influenced. This response 
results into effects quite intriguing. This

 

paper examines these 
effects over a pure metallic plate. By considering both linear 
and non-linear thermal potentials induced at the edge of the 
plate as test cases, governed by Poisson Equation in 2-
dimensions, finite element algorithm is employed to compute 
the temperature profiles. A control model is set-up, which 
admits Laplace Equation in 2-dimensions, and the outputs 
from the test models and the control model are examined and 
compared. The MATLAB results show notable effects. These 
results are discussed which are invaluable design factors for 
optimum efficiency of thermally driven systems such as in 
nuclear power plants, thermo-chemical plants, thermo-
mechanical industries, lacers, solid state plasma, e.t.c. This 
paper, when incorporated with our previous work [9], serves 
as good theoretical grounds for believing the notable physical 
anomalies in heat transfer processes, such as the paradox of 
moving medium detected in the non-Fourier DPL heat 
conduction model [10].

 
I.

 

Introduction

 
he response of heat flow to any external thermal 
field is best understood at the molecular level. The 
original heat flow profile is significantly influenced 

by the particular form of induced potential at the 
boundary. Ideally these external thermal fields must 
cause significant changes to the system under study. 
Such changes yield certain effects which require 
qualitative treatments and analytic studies, either by 
laboratory experiments or by computer simulations.

 

Analysis of heat flow problems in the presence 
of external thermal fields finds applications in numerous 
systems. Thermal effects on Magnetohydrodynamics 
Rayleigh flow were studied [1] by varying the radiation-
conduction parameter which significantly alters the heat 
flux and temperature. Heat reservoir for real transformer 
was shown to provide guidance for optimum design of 
absorption heat transformer [2] in which the resultant 
heat sink was found to decrease cost and noise and 
increasing reliability. The ground, as a source of heat 
pump systems and as a loop heat exchanger has been 
demonstrated to be efficient [3] that allows connection 
to both heating and chilled water plant loops. Induced 
Gaussian bump was shown to have yielded the shifting 

surface kinks [4] that yield discontinuous changes in the 
interface orientation. Thermal resonances were 
observed in signal transmission [5], in neutron capture 
[6] and in energy propagation in oscillators [7]. Non-
linear temperature dependent magnetization is used [8] 
in the study of Biomagnetic fluid flow. Thermal stability in 
response to non-linear potential was recently studied [9] 
in which the simulations pose strong stability due to the 
insufficiency of the applied potentials to permanently 
distort the saddle point. It is worth pointing out that all 
these researches conducted were centered on thermal 
radiation. 

The primary goal of this paper is to complement 
our previous work [9] so as pave way for understanding 
some noticeable physical anomalies of heat flow. 
Closely similar to the earlier literatures, this paper 
includes both linear and logarithmic potentials, in 
addition to the radiation potential studied in our previous 
work, aimed at exploring more potential effects of heat 
flow in response to boundary formulations. The main 
appealing feature of this study is its mathematical 
simplicity and elegance, in that similar effects observed 
in the literatures have been achieved without necessarily 
employing any mathematical rigor.  Based on previous 
experience, we have adopted similar computational data 
and numerical results obtained [9]. The remanding part 
of this paper is structured as follows: In section 2, the 
mathematical problem is formulated. The finite element 
theory is discussed and the basic mathematical 
equations employed are transformed into finite element 
numerical scheme, in section 3. In sections 4, the 
simulation test is discussed and the results presented in 
graphic form. The effects observed are also discussed 
explicitly.  

II. The Mathematical Problem 

Consider a solid plate bounded by a surface S 
as shown in fig 1 below. At any point in the plate the rate 
of heat flow per unit area in any given direction is 
proportional to the temperature gradient in that 
direction. The 2-dimensional steady state heat diffusion 
in the presence of heat sources is known to follow the 
familiar Poisson's equation in two dimensions given as;                                    

𝜕𝜕2Θ
𝜕𝜕𝑥𝑥2 + 𝜕𝜕2Θ

𝜕𝜕𝑦𝑦2 =  𝜌𝜌(𝑟𝑟),.                  (1a) 

In the absence of heat source term, 𝜌𝜌(𝑟𝑟), the 
equation reduces into Laplace's equation                            

T
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      𝜕𝜕
2Θ
𝜕𝜕𝑥𝑥2 + 𝜕𝜕2Θ

𝜕𝜕𝑦𝑦2 =  0                          (1b) 

The boundary fixed temperatures are as follows:,    

Θ(1,1) = 750𝐾𝐾,Θ(1,6) = 700𝐾𝐾, Θ  (1,12) = 700𝐾𝐾, Θ  (1,19) = 700𝐾𝐾,        (2a) 

Θ (2,6) = 700𝐾𝐾,Θ(1,11) = 700𝐾𝐾,Θ (2,1) = 800𝐾𝐾,Θ (3,1) = 800𝐾𝐾, 

Θ (4,1) = 800𝐾𝐾,Θ (5,1) = 800𝐾𝐾,Θ (2,33) = 500𝐾𝐾,Θ (3,34) = 500𝐾𝐾, 

Θ
 

(4,35) = 500𝐾𝐾, Θ
 

(5,36) = 500,
 

Θ  (11,37) = 600𝐾𝐾
 

 
The imposed linear, radiation and logarithmic differential boundary conditions are as follows: 
                                              

 

 

 

 

 

(2b)

 

 

 

Figure 1

 

:

 

The physical hexagonal pure metal for the simulation of heat flow
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                                            −𝑀𝑀Θ+𝑆𝑆
𝜅𝜅

, 

             

𝜕𝜕Θ
𝜕𝜕𝜕𝜕

=
              

4E𝜎𝜎Θ𝑟𝑟3(Θ − Θ𝑟𝑟),              

−ℎΘ
𝑏𝑏

ln(1 + 𝑏𝑏𝑏𝑏
𝐾𝐾𝑜𝑜Θ𝑜𝑜

)

From equation (2a) above we have as follows: 
𝐸𝐸 is surface emissivity, ℎ is thermal conductivity, 𝜎𝜎 is 
Stefan-Boltzmann constant, Θ𝑟𝑟 is the temperature of 
external radiation source, Θ𝑜𝑜 assumed lower limit 
temperature and 𝑀𝑀, 𝑆𝑆, 𝑏𝑏,𝑔𝑔,𝐾𝐾0 are constants.

III. Finite  Element Formulation

A class of physical problems arising in realistic 
systems can be expressed in terms of quantity 
minimization. These variational problems must be 
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stationary and must be of second order in their 
differential forms. Such a variational problem can be 
expressed

 

as the functional 

 

   I (Θ) =∫ 𝑓𝑓(𝑟𝑟,Θ,Θ′)𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎

 

,                   

 

(3)

 

where Θ

 

is the temperature field,

 

Θ′

 

is the temperature 
derivative, I is the integrable functional, 𝑓𝑓

 

is a continuous 
function of temperature and position which minimizes 
the integral, a and b are extremities of the element.

 

The crux is to determine the solution of equation 
(3) in some closed bounded region. To achieve this, the 
finite element method is a very convenient tool.  The use 
of finite element methods to simulate heat flow has 
gained attention over its finite difference counterpart. 
The popularity in the finite element methods comes from 
the fact that it is suitable in solving problems of higher 
dimensions with complex boundaries and little 
symmetry, contrary to the finite

 

difference methods. In 
the Finite Element (FE) theory, it is usual to set-up the 
interpolation scheme and to choose the appropriate 
shape function, 𝑁𝑁,

 

for the domain problem [11]. Also 
suitable element is used to span the entire domain. 

 

To obtain the corresponding 2-D finite element 
scheme for the heat flow problem defined in Equations 
(1) and (2) we have as follows. As a strategy, we have 
simulated the finite element domain using triangular 
elements spanning the plate shown in Figure (1)

 

thereby 
looping over the elements in a counterclockwise sense. 
From equation (3) we have the action,

 

   𝑑𝑑𝑑𝑑 = ∫ (𝜕𝜕𝜕𝜕
𝜕𝜕Θ

 

𝑑𝑑Θ + 𝜕𝜕𝜕𝜕
𝜕𝜕Θ′

𝑑𝑑Θ′)dS𝑏𝑏
𝑎𝑎 = 0

 

,𝑎𝑎 < 𝑆𝑆 < 𝑏𝑏.                          (4)

 

To preserve the boundary conditions we have  
∆Θ(𝑎𝑎) = ∆Θ(𝑏𝑏) = 0

 

.             

                                                               

We employ the general functional for heat flow 
given [12] as;                

 

       G(x, y,Θ,Θ′) = 1
2
𝛾𝛾 ��dΘ

dy
�

2
� − 1

2
HΘ2 + 1

k
QΘ.      (5)                                   

 

Putting Equation (5) into (3) and carrying out the 
integration gives,  

 

 

𝐼𝐼 = ∬ 1
2
𝛾𝛾∇2Θ𝑑𝑑𝑑𝑑 + ∫ 1

2
𝐻𝐻Θ2𝑑𝑑𝑑𝑑 −∬ 1

𝑘𝑘
𝑄𝑄Θ𝑑𝑑𝑑𝑑𝐴𝐴𝑆𝑆𝐴𝐴 ,

                                                                                         

(6)

 

for some edge

 

𝑆𝑆

 

over which the plate losses heat to the 
surrounding,

 

𝐴𝐴

 

is the plate area,

 

γ

 

is some constant 
coefficient, ∇2

 

is Laplacian operator,

 

𝑘𝑘

 

is thermal 
diffusivity.                             

 
 

The following relations follow:

                                   
  

𝑥𝑥 = ∑ 𝑁𝑁𝑖𝑖3
𝑖𝑖=1 𝑥𝑥𝑖𝑖 ,

 

𝑦𝑦 = ∑ 𝑁𝑁𝑖𝑖3
𝑖𝑖=1 𝑦𝑦𝑖𝑖

 

and in the natural 

coordinate we have 𝑥𝑥 = ∑ ℎ𝑖𝑖3
𝑖𝑖=1 𝑥𝑥𝑖𝑖

 

, 𝑦𝑦 = ∑ ℎ𝑖𝑖3
𝑖𝑖=1 𝑦𝑦𝑖𝑖 ,

 

ℎ1 =
1 − 𝑟𝑟 − 𝑠𝑠,ℎ2 = 𝑟𝑟,ℎ3 = 𝑠𝑠, 

 

provide

 

∑ ℎ𝑖𝑖3
𝑖𝑖=1 = 1

 

ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.

 

Several algorithms have been discussed to 
assemble the resultant equations [12-17]. 

 

In the present 
work, it is convenient and consistent to strictly adhere to 
the principle of virtual temperature, discussed in the 
standard text book [18], and obtain the following 
equilibrium equation.
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[h∬

⎝

⎜
⎛

𝜕𝜕ℎ1
𝜕𝜕𝑥𝑥

0

0 𝜕𝜕ℎ1
𝜕𝜕𝑦𝑦

𝜕𝜕ℎ1
𝜕𝜕𝑦𝑦

𝜕𝜕ℎ1
𝜕𝜕𝑥𝑥

𝜕𝜕ℎ2
𝜕𝜕𝑥𝑥

0

0 𝜕𝜕ℎ2
𝜕𝜕𝑦𝑦

𝜕𝜕ℎ2
𝜕𝜕𝑦𝑦

𝜕𝜕ℎ2
𝜕𝜕𝑥𝑥 ⎠

⎟
⎞

𝑇𝑇

�
𝜅𝜅 0 0
0 𝜅𝜅 0
0 0 𝜅𝜅

�

⎝

⎜
⎛

𝜕𝜕ℎ1
𝜕𝜕𝑥𝑥

0

0 𝜕𝜕ℎ1
𝜕𝜕𝑦𝑦

𝜕𝜕ℎ1
𝜕𝜕𝑦𝑦

𝜕𝜕ℎ1
𝜕𝜕𝑥𝑥

𝜕𝜕ℎ2
𝜕𝜕𝑥𝑥

0

0 𝜕𝜕ℎ2
𝜕𝜕𝑦𝑦

𝜕𝜕ℎ2
𝜕𝜕𝑦𝑦

𝜕𝜕ℎ2
𝜕𝜕𝑥𝑥 ⎠

⎟
⎞

�
𝜕𝜕𝑥𝑥
𝜕𝜕𝑟𝑟

𝜕𝜕𝑦𝑦
𝜕𝜕𝑟𝑟

𝜕𝜕𝑥𝑥
𝜕𝜕𝑠𝑠

𝜕𝜕𝑦𝑦
𝜕𝜕𝑠𝑠

� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦]�
Θ𝑖𝑖
Θ𝑗𝑗
Θk

� =

h∬�ℎ1 0
0 ℎ1

ℎ2 0
0 ℎ2

�
𝑇𝑇
𝑄𝑄 �

𝜕𝜕𝑥𝑥
𝜕𝜕𝑟𝑟

𝜕𝜕𝑦𝑦
𝜕𝜕𝑟𝑟

𝜕𝜕𝑥𝑥
𝜕𝜕𝑠𝑠

𝜕𝜕𝑦𝑦
𝜕𝜕𝑠𝑠

� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 +

∫ �ℎ1 0
0 ℎ1

ℎ2 0
0 ℎ2

�
𝑇𝑇
𝜕𝜕Θ
𝜕𝜕𝜕𝜕
�
𝜕𝜕𝑥𝑥
𝜕𝜕𝑟𝑟

𝜕𝜕𝑦𝑦
𝜕𝜕𝑟𝑟

𝜕𝜕𝑥𝑥
𝜕𝜕𝑠𝑠

𝜕𝜕𝑦𝑦
𝜕𝜕𝑠𝑠

� 𝑑𝑑𝑠𝑠 +𝑆𝑆

∑ �ℎ1 0
0 ℎ1

ℎ2 0
0 ℎ2

�
𝑇𝑇
𝑄𝑄𝑝𝑝

Θ𝑝𝑝
𝑘𝑘

.𝑖𝑖 (7)

                                                                                         
The above equilibrium equation can be written in compact form as 

                          [h∬𝐵𝐵(𝑒𝑒)𝑇𝑇𝐶𝐶𝐵𝐵𝑒𝑒 |𝐽𝐽𝑒𝑒 |𝑑𝑑𝑑𝑑]Θ =h∬𝐻𝐻(𝑒𝑒)𝑇𝑇𝑄𝑄|𝐽𝐽𝑒𝑒 |𝑑𝑑𝑑𝑑+∫ 𝐻𝐻(𝑒𝑒)𝑇𝑇 𝜕𝜕Θ
𝜕𝜕𝜕𝜕

|𝐽𝐽𝑒𝑒|𝑑𝑑𝑠𝑠𝑆𝑆 +∑ 𝐻𝐻(𝑒𝑒)𝑇𝑇𝑄𝑄𝑝𝑝
Θ𝑝𝑝
𝑘𝑘

.𝑖𝑖 (8)



 
 

 

    

                                                                                                                             
               

 

The term enclosed in the left hand side 
constitute the stiffness matrix. The terms in the

 

right 
hand side are the contributions from the extended heat 
source, the applied thermal potential and the point 
sources, respectively. The matrices embedded in these 
terms are computed and defined [18]

 

as follows: 𝐵𝐵𝑒𝑒

 

is 
the temperature gradient interpolation matrix,

 

𝐶𝐶

 

is the 
material property matrix, 𝐽𝐽𝑒𝑒

 

is the Jacobian and 𝐻𝐻

 

is the 
generalized element temperature matrix. The other 

matrices are: 𝑄𝑄

 

the extended heat source, 𝑄𝑄𝑝𝑝

 

the point 

source, and  𝜕𝜕Θ
𝜕𝜕𝜕𝜕

 

the applied potential (defined in 
equation 2),

  

𝐻𝐻𝑇𝑇

 

is the transpose of 𝐻𝐻.

 

Contrary to the test models, we ignore the 
applied external thermal potentials and the heat sources 
for the control mode, thus resulting into Laplace's 
equation as

 
 
      
    

          

 

h∬

⎝

⎜
⎛

𝜕𝜕ℎ1
𝜕𝜕𝜕𝜕

0

0 𝜕𝜕ℎ1
𝜕𝜕𝜕𝜕

𝜕𝜕ℎ1
𝜕𝜕𝜕𝜕

𝜕𝜕ℎ1
𝜕𝜕𝜕𝜕

   

𝜕𝜕ℎ2
𝜕𝜕𝜕𝜕

0

0 𝜕𝜕ℎ2
𝜕𝜕𝜕𝜕

𝜕𝜕ℎ2
𝜕𝜕𝜕𝜕

𝜕𝜕ℎ2
𝜕𝜕𝜕𝜕

   

⎠

⎟
⎞

𝑇𝑇

�
𝜅𝜅 0 0
0 𝜅𝜅 0
0 0 𝜅𝜅

�

⎝

⎜
⎛

𝜕𝜕ℎ1
𝜕𝜕𝜕𝜕

0

0 𝜕𝜕ℎ1
𝜕𝜕𝜕𝜕

𝜕𝜕ℎ1
𝜕𝜕𝜕𝜕

𝜕𝜕ℎ1
𝜕𝜕𝜕𝜕

   

𝜕𝜕ℎ2
𝜕𝜕𝜕𝜕

0

0 𝜕𝜕ℎ2
𝜕𝜕𝜕𝜕

𝜕𝜕ℎ2
𝜕𝜕𝜕𝜕

𝜕𝜕ℎ2
𝜕𝜕𝜕𝜕

   

⎠

⎟
⎞
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�
Θ𝑖𝑖
Θ𝑗𝑗
Θk

� = �
0
0
0
�   (9)

 
 

Equations (7) and (9) give the contributions for 
the individual element. To obtain the resultant system of 
linear equations, we carry out the iterations for the entire 
elements, and thereafter assemble the equations. In 
practice, the finite element scheme results into large

 

system of equations. Within this general arrangement, 
some additional steps must be taken to reduce the 
computational load. In particular, by judicious selection 
of the node numbers the stiffness matrix can be 
arranged into a symmetric band of finite width about the 
diagonal with zeros elsewhere. This can be used to 
reduce both the required memory and the 
computational load needed to solve the simultaneous 
equations. To solve the resultant set of linear equations, 
we have employed the well known Gauss-Jordan 
algorithm. However computer programs have been 
designed to ease the difficulty in handling finite element 
problems for large domain. Sample of these programs 
can be found in reference [19].

 

IV.

 

Simulation  Results and Discussion

 

We employed the simulation data used in our 
earlier work following our previous experience. The 
radiation potential is approximated using Newton's law 
of cooling similar to that used in [16] and suggested in 
[19], rather than the traditional 4th

 

power law, so as the 
preserve the linearity of the resultant system of 
equations. However, this approximation is precise only 
for specific range of temperature difference between the 
interacting thermal fields. In the standard text [19], it is 
specified that this temperature difference be at most 
10%.To permit this approximation we have arbitrarily 
taken the value of the external radiation temperature to 
be 820K.  

 

The results for the simulation are firstly obtained 
numerically and then we used Matrix Laboratory to 
obtain the graphs (Figure 3). While solving the resultant 
system of equations, we have simplified redundancies 
by eliminating any equation that resurfaced. For details 

of the computational data and the numerical results 

           

see [9].

 

The finite element methods have been shown to 
give efficient, reliable, stable and converging solutions. 
The temperature profiles for the test cases have been 
computed and presented in tabular form shown in 
reference [9]. These results yield significant variations 
when compared with that of the control model as shown 
in the graphs (fig.3 data 4). The resultant variations are 
thus examined as effects manifesting due to the 
induction of the potential at the boundary. These effects 
are explicitly pointed out and discussed as follows.

 

Inducing the linear thermal potential at the 
boundary on the hexagonal plate has yielded results 
quite interesting. The temperature limits for the control 
model (Fig.3, data 4) have been significantly deviated as 
exhibited by the test models (Fig.3, data 1, 2 and 3). The 
linear potential (data 1) induces an 'artificial sink' at node 
28 where the temperature drops to 483.45K. In principle 
since heat flow in the direction of lower temperature 
limit, this drop in the lower temperature limit for the 
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control model could induce thermal cold reservoir.  In 
the realm of Statistical Mechanics, the associated local 
fields are considered as system while the other particles 
and their degrees of freedom are considered as heat 
reservoirs, thus resulting into heat sinks.

Contrary to the graph (data 4) for the control 
model, the graphs for the test cases (data 1, 2 and 3) 
show deviations in the upper limit temperature at nodes 
7, 8, 13, 14 and 19 due to the induced potentials. Ideally 
the deviations could have been expected at only the 
nodes where the potential is concentrated. However the 
deviations posed by the internal nodes, as well, 
confirms that the induced external thermal field also 
influences the neighborhood particles. These results are 
in agreement with the theoretical treatments discussed 
in the text book [20]. Depending on physical properties 
of the material solid (such as thermal resistivity, 
elongation temperature and melting point), these 



 

deviations can pose overheating of the material surface 
which in turn pose the tendency of formation of surface 
bumps or deformation on cooling. Cad

 

well and Kwan 
[21] predicted that such cooling or solidification 
primarily results to boundary perturbation.

 

Heat in certain continuous processes is studied 
[22] and it was noted that the difficulty is due to 
interaction of fluid flow and heat conduction. The non-
linear potentials exhibit strong non-linearity. These are 
simply likened to the oscillatory behavior in thermally 
interacting packets in the direction of the heat flux, 
influenced by the induced potentials which results into 
locally flute-clarinet-like nascent marginally unstable 
heat flux (figure 3 data 2 and 3).

 

Our results are strongly 
in confirmation of earlier results obtained [22-24].

 

More interestingly is the double peaks exhibited 
by the induction of the non-linear potentials. In particular 
the logarithmic potential exhibits the peaks at nodes 22 
and 28, where the upper temperature limits are largely 
deviated giving the magnitudes of 1035.88 K and 
1150K, respectively.

 

The peaks result due to high pulse 
heating thermal resonances, a notable effect very useful 
in lacers and thin films, in which the thermal waves travel 
with finite speed and extreme temperature gradient at 
the lowest possible spatial mode. Obviously every

 

oscillating system is capable of exhibiting resonance. 
The resonance occurs in the event that thermal energy 

of the applied potential equals the spontaneous internal 
energy of the system, thereby temporarily eliminating 
nascent flute-clarinet like modes manifesting due to 
marginally unstable vibration at the nodal points closer 
to the boundary. 

 

V.

 

Conclusion

 

The finite element method is employed to 
compute the temperature profiles.

 

We have assessed 
the response of heat flow profiles to boundary 
formulations.

 

By comparing the results from the test 
cases and a control model, significant effects are 
observed. The associated local fields have been 
significantly influenced while the neighboring fields are 
marginally influenced. It could be deduced that the 
influenced packet is excited thereby interacting with 
other neighboring packets. We propose the results of 
this study as invaluable design consideration for 
optimum efficiency of thermally driven systems such as 
in nuclear power plants, thermo-chemical plants, 
thermo-mechanical industries, lacers, plasma e.t.c. This 
paper, when incorporated with our previous work [9], 
serves as good theoretical grounds for believing the 
notable physical anomalies in heat transfer processes, 
such as the paradox of moving medium detected in the 
non-Fourier DPL heat conduction model [10].
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Figure 3 : MATLAB simulation results of the temperature Vs node numbers. Data 1 is the graph for the linear 
potential; Data 2 is the graph for the radiation potential; Data 3 is the graph for the logarithmic potential; Data 4 is the 

graph for the control model
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