

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH MATHEMATICS AND DECISION SCIENCES

Volume 13 Issue 1 Version 1.0 Year 2013

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Some Results on a Lorentzian Para Sasakian Manifolds

By Mobin Ahmad, Archana Srivastava & Amit Prakash

Integral University

Abstract - The object of this paper is to study a type of non-flat differentiable manifold called Generalized Pseudo Symmetric, Generalized Pseudo Ricci symmetric, Generalized Ricci Recurrent, Semi pseudo symmetric and Semi pseudo Ricci symmetric manifold in a Lo rentzian para-Sasakian manifold.

Keywords: ip-sasakian manifold, generalized pseudo symmetric, generalized pseudo ricci symmetric, generalized ricci recurrent, semi pseudo symmetric.

GJSFR-F Classification: MSC 2010: 53C25, 22E43

Strictly as per the compliance and regulations of :

© 2013. Mobin Ahmad, Archana Srivastava & Amit Prakash. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

2013

 ${
m R}_{
m ef}$

Some Results on a Lorentzian Para Sasakian Manifolds

Mobin Ahmad ^a, Archana Srivastava ^a & Amit Prakash ^b

Abstract - The object of this paper is to study a type of non-flat differentiable manifold called Generalized Pseudo Symmetric, Generalized Ricci Recurrent, Semi pseudo symmetric and Semi pseudo Ricci symmetric manifold in a Lorentzian para-Sasakian manifold.

Keywords and phrases: ip-sasakian manifold, generalized pseudo symmetric, generalized pseudo ricci symmetric, generalized ricci recurrent, semi pseudo symmetric.

I. Introduction

A non-flat differentiable manifold (M^n, g) (n > 3), is called generalized pseudo symmetric $G(PS)_n$, if there exits a vector field P and 1- form A, B, C, D on M Such that

$$(D_X S)(Y, Z) = 2A(X)S(Y, Z) + B(R(X, Y), Z) + C(Y)S(X, Z) + D(Z)S(X, Y) + p(R(X, Z)Y).$$
(1.1)

In 1993, Chaki and Koley [6] introduced another type of non-flat differentiable manifold (M^n, g) (n > 2), satisfies the condition

$$(D_X S)(Y, Z) = 2A(X)S(Y, Z) + B(Y)S(X, Z) + C(Z)S(X, Y),$$
(1.2)

where A,B,C are three non-zero 1-form and D denotes the operator of covariant differentiation with respect to g. Such a manifold were called by them a generalized pseudo Ricci-symmetric manifold and an n - dimensional manifold of this kind were denoted by G(PRS)n.

De, Guha and Kamilya [7] introduced and studied a type of differentiable manifold (M^n, g) (n>2), whose Ricci tensors of type (0,2) satisfies the condition

$$(D_X S)(Y, Z) = A(X)S(Y, Z) + B(X) g(Y, Z),$$
 (1.3)

Author a: Department of Mathematics Integral University, Kursi Road Lucknow, 226 026, India. E-mail: mobinahmad@rediffmail.com
Author a: Department of Mathematics S. R. Institute of Management & Technology, BKT Lucknow, 227 202, India.

Author of Department of Mathematics S. H. Institute of Management & Technology, BKT Lucknow, 227 202, I.

E-mail: archana.srivastava13@gmail.com

Author p : Department of Mathematics Allenhouse Institute of Technology, Rooma, Kanpur – 208008 (U.P.) India. E-mail : apoct0185@rediffmail.com

where A and B are two non-zero 1-forms, P,Q are two vector fields such that

$$g(X,P)=A(X),$$

$$g(X,Q)=B(X),$$

such a manifold were called by them a generalized Ricci-recurrent manifold and an n-dimensional manifold of this kind were denoted by $(GR)_n$.

Tarafdar and Jawarneh [4] introduced a type of non-flat differentiable manifold (M^n, g) (n > 3), whose curvature tensor R satisfies the condition

$$(D_X R)(Y, Z)W = 2A(X)R(Y, Z)W + A(Y)R(X, Z)W + A(Z)R(Y, X)W + A(W)R(Y, Z)X + A(W)R(Y, Z)X,$$
(1.4)

where A is a non-zero 1-form and g(X,P)=A(X),

Such a manifold were called by them a Semi pseudo symmetric and an n-dimensional manifold of this kind is denoted by (SPS)n.

Tarafdar and Jawarneh [5] introduced another type of non - flat Riemannian manifold (M^n, g) (n > 3), Whose Ricci- tensor of type (0,2) satisfies the condition

$$(D_X S)(Y, Z) = A(Y)S(X, Z) + A(Z)S(X, Y),$$

$$(1.5)$$

Ref.

Mihai, I and Rosca,

World scientific Publi.Singapore (1992), 155-169.

R.: On Lorentzian P - Sasakian manifolds, Classical Analysis

where A is a non zero 1-form, such a manifold were called by them Semi pseudo Ricci -symmetric and an n - dimensional manifold of this kind is denoted by (SPRS)n.

II. Preliminaries

An *n*-dimensional differentiable manifold M^n is a Lorentzian para – Sasakian (*LP*-Sasakian) manifold if it admits a (1,1) – tenser field ϕ , a contravariant vector field ξ , a covariant vector field η and a Lorentzian metric g which satisfy ([2], [3])

$$\phi^2 X = X + \eta(X)\xi,\tag{2.1}$$

$$\eta(\xi) = -1, \tag{2.2}$$

$$g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y), \tag{2.3}$$

$$g(X,\xi) = \eta(X),\tag{2.4}$$

$$(D_X \phi)(Y) = g(X, Y)\xi + \eta(Y)X + 2\eta(X)\eta(Y)\xi, \tag{2.5}$$

and

$$D_X \xi = \phi X , \qquad (2.6)$$

for any vector fields X and Y, where D denotes covariant differentiation with respect to g([1],[2],[3]).

In an LP-Sasakian manifold M^n with structure (ϕ, ξ, η, g) , it is easily seen that

(a)
$$\phi \xi = 0$$
 (b) $\eta(\phi X) = 0$ (c) $rank(\phi) = n - 1$. (2.7)

Let us put

Notes

$$F(X,Y) = g(\phi X, Y). \tag{2.8}$$

Then the tensor field F is symmetric (0, 2) tensor field i.e.,

 $F(X,Y) = F(Y,X), \tag{2.9}$

and $F(X,Y) = (D_X \eta)(Y)$. (2.10)

Also in an LP-Sasakian manifold, the following relation holds:

$$(R(X,Y,Z,\xi)=g(Y,Z)\eta(X)-g(X,Z)\eta(Y),$$
 (2.11)

$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y, \tag{2.12}$$

$$R(\xi, X)Y = g(X, Y)\xi - \eta(Y)X, \tag{2.13}$$

$$S(\phi X, \phi Y) = S(X, Y) + (n - 1)\eta(X)\eta(Y), \tag{2.14}$$

and

$$S(X,\xi) = (n-1)\eta(X)$$
, (2.15)

for any vector fields X,Y,Z, Where R(X,Y)Z is the Riemannian curvature tensor, S is the Ricci tensor.

III. GENERALIZED PSEUDO SYMMETRIC LP- SASAKIAN MANIFOLD

Suppose that M^n is a generalized pseudo symmetric LP-sasakian manifold Putting $Z=\xi$ in (1.1), we get

$$(D_X S)(Y,\xi) = 2A(X)S(Y,\xi) + B(R(X,Y)\xi) + C(Y)S(X,\xi) + D(\xi)S(X,Y) + p(R(X,\xi)Y).$$
(3.1)

Using (2.2), (2.12) and (2.15) in (3.1), we get

$$(D_XS)(Y,\xi) = 2(\text{n-1})A(X)\eta(Y) + \eta(Y)B(X) - \eta(X)B(Y) + (\text{n-1})C(Y)\eta(X)$$

$$+D(\xi)S(X,Y) + \eta(Y)p(X) - g(X,Y)p(\xi).$$
 (3.2)

We know that

$$(D_X S)(Y, \xi) = (n-1)g(\phi X, Y) - S(Y, \Phi X),$$
 (3.3)

Therefore, from (3.2) and (3.3), we get

$$2(n-1)A(X)\eta(Y) + \eta(Y)B(X) - \eta(X)B(Y) + (n-1)C(Y)\eta(X) + D(\xi)S(X,Y)$$

$$+\eta(Y)p(X) - g(X,Y)p(\xi) = (n-1)g(\phi X, Y) - S(Y, \Phi X).$$
 (3.4)

Therefore, putting $X=Y=\xi$ in (3.4) and using (2.1) and (2.15), we get

(n-1)[
$$2A(\xi)+C(\xi)+D(\xi)$$
]=0.

Since $n \ge 3$, we obtain

$$2A(\xi) + C(\xi) + D(\xi) = 0.$$
 (3.5)

So, the vanishing of the 1-form 2A+C+D over the vector field ξ is necessary in order that M be an LP-Sasakian manifold.

Now we will show that 2A+C+D=0 holds for all vector fields on M.

Putting $Y = \xi$ in (1.1), we get

$$(D_X S)(\xi, Z) = 2(n-1)A(X)\eta(Z) + \eta(Z)B(X) - g(X, Z)B(\xi) + C(\xi)S(X, Z) + (n-1)D(Z)\eta(X) + \eta(Z)p(X) - \eta(X)p(Z).$$
(3.6)

Also, We know that

$$(D_X S)(\xi, Z) = (n-1)g(\phi X, Z) - S(\phi X, Z).$$
 (3.7)

From (3.6) and (3.7), We get

$$2(n-1)A(X)\eta(Z) + \eta(Z)B(X) - g(X,Z)B(\xi) + C(\xi)S(X,Z) + (n-1)D(Z)\eta(X) + \eta(Z)p(X) - \eta$$

$$(X)p(Z) = (n-1)g(\phi X, Z) - S(\phi X, Z).$$
(3.8)

Putting $Z = \xi$, in (3.8), we get

$$-2(n-1)A(X) - B(X) - \eta(X)B(\xi) + (n-1)C(\xi)\eta(X) + (n-1)D(\xi)\eta(X)$$
$$-p(X) - \eta(X)p(\xi) = 0. \tag{3.9}$$

Putting $X=\xi$ in (3.8), we get

$$2(n-1)A(\xi)\eta(X) + (n-1)C(\xi)\eta(X) - (n-1)D(X) + p(X) + \eta(X)p(\xi) = 0.$$
 (3.10)

Adding (3.9) and (3.10) and using (3.5), we get

$$-2(n-1)A(X) - \eta(X)B(\xi) - B(X) + (n-1)C(\xi)\eta(X) - (n-1)D(X) = 0.$$
 (3.11)

Now, Putting $X = \xi$ in (3.4), and replacing Z with X, we get

$$2(n-1)A(\xi)\eta(X) + B(\xi)\eta(X) + B(X) - (n-1)C(X) + (n-1)D(\xi)\eta(X) = 0.$$
(3.12)

Adding (3.11) and (3.12) and using (3.5), we get

$$(n-1)[2A(X) + C(X) + D(X)] = 0$$

Since $n \geq 3$, Hence we get

$$2A(X) + C(X) + D(X) = 0$$
, for all X

Hence, we can state the following theorem:

Theorem 3.1 .There exists no generalized pseudo symmetric LP - Sasakian manifold (M^n, g) , $n \ge 3$, if 2A+C+D is not every where zero.

IV. GENERALIZED PSEUDO RICCI SYMMETRIC LP - SASAKIAN MANIFOLD

Suppose that M^n is a generalized pseudo Ricci symmetric LP - Sasakian manifold then

$$(D_X S)(Y, Z) = 2A(X)S(Y, Z) + B(Y)S(X, Z) + C(Z)S(X, Y). \tag{4.1}$$

Putting $Z = \xi$, in (4.1) and using (2.15), we get

$$(D_X S)(Y, \xi) = 2(n-1)A(X)\eta(Y) + (n-1)B(Y)\eta(X) + C(\xi)S(X, Y). \tag{4.2}$$

Also, we know that

 N_{otes}

$$(D_X S)(Y, Z) = (n-1)g(\emptyset X, Y) - S(Y, \emptyset X). \tag{4.3}$$

From (4.2) and (4.3), we get

$$2(n-1)A(X)\eta(Y) + (n-1)B(Y)\eta(X) + C(\xi)S(X,Y) = (n-1)g(\emptyset X,Y) - S(Y,\emptyset X).$$
(4.4)

Putting $X = Y = \xi$ in (4.4), we get

$$(n-1)[2A(\xi) + B(\xi) + C(\xi)] = 0.$$

Which gives (since $n \ge 3$),

$$[2A(\xi) + B(\xi) + C(\xi)] = 0. \tag{4.5}$$

Putting $X = \xi$ in (4.4), we have

$$(n-1)\eta(Y)[2A(\xi) + C(\xi)] - (n-1)B(Y) = 0.$$

So, By virtue of (4.5) this yields

$$(n-1)[\eta(Y)B(\xi) + B(Y)] = 0,$$

Which gives us (since
$$n \ge 3$$
), $B(Y) = -\eta(Y)B(\xi)$. (4.6)

Similarly, Taking Y= ξ in (4.4), we get

$$-2A(X) + \eta(X)[B(\xi) + C(\xi)] = 0.$$

Hence applying (4.5), we get

$$A(X) = -\eta(X)A(\xi) . \tag{4.7}$$

2013

Since $(\nabla_{\xi} S)(\xi, X) = 0$, then from (1.2), we obtain

$$(n-1)\eta(X)[2A(\xi) + B(\xi)] - (n-1)C(X) = 0.$$
(4.8)

So, by making the use of (4.5), the equation (4.8) reduces to

$$C(X) = -C(\xi)\eta(X) \tag{4.9}$$

Adding equation (4.6), (4.7) and (4.9), we get

$$2A(X) + B(X) + C(X) = -[2A(\xi) + B(\xi) + C(\xi)]\eta(X)$$
(4.10)

And then, from (4.5), it follows that

$$2A(X)+B(X)+C(X)=0$$
, for all X,

Thus
$$2A+B+C=0$$
.

Hence, we can state the following theorem:

Theorem 4.1. There exists no generalized Pseudo Ricci-Symmetric LP-Sasakian manifold (M^n, g) , $n \ge 3$ if 2A + B + C is not everywhere zero.

V. Generalized Ricci Recurrent Lp- Sasakian Manifold Admitting Codazzi Type Ricci Tensor

We know that

$$(D_X S)(Y, Z) = D_X S(Y, Z) - S(D_X Y, Z) - S(Y, D_X Z).$$
(5.1)

Then, from (5.1) and (1.3), we get

$$A(X)S(Y,Z) + B(X)g(Y,Z) = D_X S(Y,Z) - S(Y,D_X Z).$$
 (5.2)

Putting $Z = \xi$ in above relation, we get

$$(n-1)A(X)\eta(Y) + B(X)\eta(Y) = (n-1)g(\emptyset X, Y) - S(Y, \emptyset X).$$
 (5.3)

Putting $Y = \xi$ in (5.3), we have

$$(n-1)A(X) + B(X) = 0. (5.4)$$

Here we assume that a generalized Ricci recurrent manifold admits Codazzi type Ricci tensor

i.e.
$$(D_X S)(Y, Z) = (D_Y S)(X, Z)$$
. (5.5)

Then by virtue of (1.3), it follows from (5.5) that

$$A(X)S(Y,Z) + B(X)g(Y,Z) = A(Y)S(X,Z) + B(Y)g(X,Z).$$
 (5.6)

Putting $X = \xi$ in above, we get

$$A(\xi)S(Y,Z) + B(\xi)g(Y,Z) = [(n-1)A(Y) + B(Y)]\eta(Z). \tag{5.7}$$

$$S(Y,Z) = \lambda g(Y,Z)$$
, where $\lambda = -\frac{B(\xi)}{A(\xi)}$.

i.e. M^n is an Einstein manifold.

Notes

Hence, we can state the following theorem:

Theorem 5.1. If a generalized Ricci recurrent LP - Sasakian manifold admits a Codazzi type Ricci tensor, then it is an Einstein manifold with constant $\lambda = -\frac{B(\xi)}{A(\xi)}$.

VI. Semi Pseudo Symmetric LP - Sasakian Manifold (SPS)N $(M^n, g), n > 3$

Suppose that M^n is a Semi pseudo symmetric LP-Sasakian manifold then from (1.4), we obtain

$$(D_X S)(Y, \xi) = (2n-1)A(X)\eta(Y) + (n-2)A(Y)\eta(X) + A(\xi)S(X,Y).$$
 Since $g(X, P) = A(X) \Rightarrow A(\xi) = g(\xi, P) = \eta(P)$ (6.1)

This implies
$$(D_X S)(Y, \xi) = (2n-1)A(X)\eta(Y) + (n-2)\eta(X)A(Y) + \eta(P)S(X, Y).$$
 (6.2)

We also know that

$$(D_X S)(Y, \xi) = (n-1)g(\emptyset X, Y) - S(Y, \emptyset X).$$
(6.3)

From equation (6.2) and (6.3), we get

$$(2n-1)A(X)\eta(Y) + (n-2)\eta(X)A(Y) + \eta(P)S(X,Y) = (n-1)g(\emptyset X,Y) - S(Y,\emptyset X).$$
(6.4)

Putting $X = \xi$ in (6.4), we get

$$(3n-2)\,\eta(P)\eta(Y) - (n-2)A(Y) = 0. \tag{6.5}$$

Putting $Y = \xi$ in (6.5), we get

$$\eta(P) = 0 \tag{6.6}$$

Hence, from (6.5) and (6.6), we get

$$A(Y)=0.$$

Which is inadmissible by the definition of (SPS)n.

Hence, we can state the following theorem:

Theorem 6.1. A $(SPS)_n$ (n > 3), cannot be an LP sasakian manifold.

In this section we assume that a $(SPRS)_n$ is an LP sasakian manifold then from (1.5), we obtain

$$(D_X S)(Y, \xi) = (n-1)A(Y)\eta(X) + A(\xi)S(X, Y). \tag{7.1}$$

Also we know that

Notes

$$(D_X S)(Y, \xi) = (n-1)g(\emptyset X, Y) - S(Y, \emptyset X). \tag{7.2}$$

From (7.1) and (7.2), we get

$$(n-1)A(Y)\eta(X) + A(\xi)S(X,Y) = (n-1)g(\emptyset X,Y) - S(\emptyset X,Y). \tag{7.3}$$

Putting $X = \xi$ in (7.3), we get

$$A(Y) = A(\xi)\eta(Y). \tag{7.4}$$

Putting $Y = \xi$ in (7.4), we get

$$A(\xi) = 0. \tag{7.5}$$

Using (7.5) in (7.4), we get

$$A(Y)=0.$$

Which is inadmissible by the definition of $(SPRS)_n$.

Hence, we can state the following theorem ::

Theorem 7.1. A $(SPRS)_n$ (n > 3) can not be an LP sasakian manifold.

References

- 1. Mihai, I and Rosca, R.: On Lorentzian P Sasakian manifolds, Classical Analysis, World scientific Publi.Singapore (1992), 155-169.
- 2. Matsumoto, K.: On Lorentzian para-contact manifolds, Bull. Of Yamagata Univ. Nat. Sci. 12 (2) (1989), 151-156.
- 3. Matsumoto, K. and Mihai, I.: On a certain transformation in a Lorentzian para-Sasakian manifold, *Tensor*, N. S. 47 (1988), 189-197.
- 4. M. Tarafdar and A.A. Musa Jawarneh, Semi Pseudo symmetric manifolds, Annalele Stiintifice Univer. AL I. CUZA, Iasi XLI, (1995), 145-152.
- 5. M. Tarafdar and A.A. Musa Jawarneh, Semi Pseudo Ricci-symmetric manifolds, J. Indian Inst. Sci., 73 (6), (1993), 591-596.
- 6. M.C.Chaki and S.Koley, On generalized Pseudo Ricci-symmetric manifolds, Periodica Mathematica Hungarica, 28 (2), (1993), 123-129.
- U.C.De, N, Guha and D, Kamilya, On generalized Ricci recurrent manifolds, Tensor (N.S.), 56(1995), 312-317.