
© 2013. M. Sanaullah. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-
Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 
 

Global Journal of Science Frontier Research 
Physics and Space Science 
Volume 13  Issue 4 Version 1.0 Year  2013 
Type : Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals Inc. (USA) 
Online ISSN: 2249-4626 & Print ISSN: 0975-5896 

 
A Review of Higher Order Statistics and Spectra in 
Communication Systems          

By M. Sanaullah  
Purdue University Calumet USA 

Abstract - There are many statistical tools to extract information from random signals. They 
predominantly use first and second order statistics. However, in the presence of nonlinearity in 
systems, many signals cannot be analyzed adequately by second order statistical methods. For 
this reason, higher order statistical methods have been developed. These methods are very 
useful in problems where non-Gaussian, non-minimum phase, phase coupling or nonlinear 
behavior and robustness to additive noise are important. Detection and classification using 
higher order statistical and spectral techniques have been proposed for use in communication 
and pattern recognition. They have the potential to elicit better performance from sensors, sensor 
networks and channels with applications in coding, filtering and detection techniques. This paper 
provides an introduction to higher order spectra and reviews a number of these techniques.     

Keywords  :  higher order spectra, high order statistics, interference, bispectrum, invariant, 
entropy, fading. 

GJSFR-A Classification : FOR Code: 010401 
 

A Review of Higher Order Statistics and Spectra in Communication Systems
 
 

Strictly as per the compliance and regulations of
 

:
 

 



 

A Review of Higher Order Statistics and Spectra 
in Communication Systems 

M. Sanaullah 

Abstract - There are many statistical tools to extract 
information from random signals. They predominantly use first 
and second order statistics. However, in the presence of 
nonlinearity in systems, many signals cannot be analyzed 
adequately by second order statistical methods. For this 
reason, higher order statistical methods have been developed. 
These methods are very useful in problems where non-
Gaussian, non-minimum phase, phase coupling or nonlinear 
behavior and robustness to additive noise are important. 
Detection and classification using higher order statistical and 
spectral techniques have been proposed for use in 
communication and pattern recognition. They have the 
potential to elicit better performance from sensors, sensor 
networks and channels with applications in coding, filtering 
and detection techniques. This paper provides an introduction 
to higher order spectra and reviews a number of these 
techniques. 
Keywords : higher order spectra, high order statistics, 
interference, bispectrum, invariant, entropy, fading.  

I. Introduction 

 

Higher order spectra were originally introduced 
as spectral representations of cumulants or moments of 
ergodic random processes. They were used in the 
identification of nonlinear systems and non-Gaussian 
random processes and phase coupling in wave-wave 
interactions. Papers by Brillinger and Rosenblatt [1, 2] 
laid the theoretical foundations of the area and the 
paper by Hasselman et al [3] in 1963 that studied 
bispectra of ocean waves was one of the earliest 
applications.  Signal processing theory and applications 
of HOS grew with the excellent review paper in 1987 by 
Nikias and Raghuveer [4] and the books on HOS in 
1993 by Nikias and Petropulu [5] and in 1995 by 
Boashash, Powers and Zoubir [6]. 
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Over the years, HOS have been applied in 
many areas in a stochastic framework and their 
application has been extended to deterministic signals. 
Although there are similarities in the forms of analytical 
expressions for both the stochastic and the deterministic 
frameworks, there are important differences that must 
be understood in order to apply HOS effectively to 
practical problems. Many of the later contributions to 
application of HOS to practical problems are now 
scattered in various journals and proceedings of 
conferences. Techniques for detection and classification 
using HOS have been proposed and many application 
contributions have been published in journals that are 
outside the IEEE/IEE research collection. 

Higher order spectra have potential for 
application in continuing and recent research efforts in 
the fields of communication and pattern recognition. A 
communications engineer doing research on Multiple 
Input Multiple Output (MIMO) wireless communications 
could benefit from an understanding of the capabilities 
of HOS in order to make better use of phase 
information, adapt to non-Gaussian noise or adapt to 
non-linear channel characteristics. Similarly, a 
biomedical engineer can use HOS to derive features 
from EEG or ECG signals which represent output data 
from systems where the input is not known. Polyspectra 
play a key role in detecting and characterizing the type 
of nonlinearity in a system from its output data. Several 
signal processing methods for the detection and 
characterization of nonlinearities in time series using 
higher order spectra have been proposed. Some of the 
early developments are found in Rao and Gabr [14] and 
Nikias and Petropulu [5]. 

The paper is organized as follows. Section II 
provides definitions and properties. Section III provides 
a tutorial on the use of HOS. Section IV reviews 
contributions relevant to the chosen application areas. 
Research trends and potential for future applications are 
discussed in Section V followed by a conclusion in 
Section VI. 

II. Higher Order Statistics: Definitions 
and Properties 

Random variables Nx ℜ∈ (scalars or vectors) 
have probability densities )(xp X . If a probability density 
is Gaussian, 
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igher order statistics and spectra (HOS) play an 
important role in digital signal processing. They 
are extensions of the better known concepts of 

correlation (in time or space) and power spectra. Just as 
the power spectrum is the Fourier spectral 
representation of the autocorrelation function which is a 
second order moment of the probability density 
function, higher order spectra are higher order Fourier 
spectral representations of third and higher order 
correlations or moments.

H



 

 

(1) 
 
 

 

                              (2) 

In an estimate of the covariance, values of the 
random vector (or random vectors in the case of joint 
statistics) are considered in pairs. 

        (3) 

If the probability density function of the random 
variable is continuous and well behaved enough for a 
Fourier transform to exist in the form of a Fourier-
Stieltjes integral, its Fourier transform, called the 
characteristic function, can be represented in a power 
series expansion. Such an expansion has the mean and 
the covariance in its first two terms.

 
 

Φ(𝑓𝑓) = �
1
𝑘𝑘!
𝑚𝑚𝑋𝑋
𝑘𝑘(𝑗𝑗𝑓𝑓)𝑘𝑘

𝑛𝑛

𝑘𝑘=0

+ 𝑜𝑜𝑛𝑛(𝑓𝑓) 

= 1 + 𝑗𝑗𝑓𝑓𝑚𝑚1 −
𝑓𝑓2

2!
𝑚𝑚2 … … + (𝑗𝑗𝑓𝑓 )𝑘𝑘

𝑘𝑘!
𝑚𝑚𝑘𝑘 + ⋯             (4) 

where the remainder function 𝑜𝑜𝑛𝑛(𝑓𝑓) is such 
that 𝑜𝑜𝑛𝑛(𝑓𝑓) 𝑓𝑓𝑛𝑛⁄  goes to zero in the limit as f approaches 
zero.  

Subsequent terms are expected values of 
higher (than second) order products of samples of the 
random variable – referred to as the higher order 
moments of the distribution. It is often convenient to 
remove the mean value or first moment and expand the 
probability density function about the mean. This results 
in central moments of the distribution which have the 
useful property of being invariant to a shift of the origin. 

It is not necessary that moments of all orders 
exist and are finite. Some moments can be infinite. The 
distribution is not always uniquely determined by the 
moments either even when moments of all order exist. 
The log-normal distribution is an example. However, in 
general, the higher order moments serve to determine 
the distribution more accurately. 

Higher order moments for a Gaussian 
probability density are constant but not zero. If the 
logarithm of the characteristic function is expanded 
instead, the higher order terms represent expected 
values of combinations known as cumulants, and these 
are zero for a Gaussian density. 
 

                (5) 

 where 𝑐𝑐𝑥𝑥(𝑘𝑘) = (−𝑗𝑗)𝑘𝑘 �𝑑𝑑
𝑘𝑘Ψ(𝑓𝑓)
𝑑𝑑𝑓𝑓𝑘𝑘

�
𝑓𝑓=0

   𝑓𝑓𝑜𝑜𝑓𝑓
 
𝑘𝑘 = 1,2,3,

 
and 

Ψ(𝑓𝑓) = ln {Φ(𝑓𝑓)}
 

 The remainder function, 𝑜𝑜𝑛𝑛(𝑓𝑓)
 

,
 

is such that  
𝑜𝑜𝑛𝑛(𝑓𝑓) 𝑓𝑓𝑛𝑛⁄

 
goes to zero in the limit as f approaches zero.

 If the probability density is non-Gaussian it is not 
completely represented by its mean and covariance. 
The higher order cumulants are then non-zero.

 Random processes ℜ→ttx :)(
 

are random 
functions of some independent variable such as time. 
Each realization of the process is one of an ensemble of 
possible functions. If a vector of values, at different time 
delays from a reference variable time, is considered, 
there is

 
an ensemble of realizations of random vectors.

 
𝑥𝑥(𝑡𝑡) = �̅�𝑥(𝑡𝑡, 𝑡𝑡 + 𝜏𝜏1, 𝑡𝑡 + 𝜏𝜏2, … … , 𝑡𝑡 + 𝜏𝜏𝑛𝑛−1) ∈ ℜ𝑛𝑛    

   
(6)

 
For such a process, the joint density of the 

random vector represents the ensemble statistics and it 
can in general be a function of time t. For an n-th order 
stationary process, the joint density is independent of 
time. However, it still depends on the time lags or 
separations between the random variables. Again 
assuming that the joint probability density function is 
well behaved and a Fourier transform exists, the 
characteristic function can be expressed as 

 

                 (7) 

From the above formulation it can also be noted 
that the moments of this joint probability density are also 
the correlations in time of the underlying random 
process. The second moment is the auto-correlation of 
the process. A Fourier transform of the auto-correlation 
is the power spectrum of the random process. Higher 
order correlations will give rise to higher order spectral 
representations for the process. Thus higher order 
statistics of the joint density function of random 
variables separated by

 
time lags are related to higher 

order spectra for the underlying random process.
 

If the random process is zero mean, the first 
moments of the density function will be zero. If the 
random process is white, random variables at different 
delays will be uncorrelated and the second moments will 
be described by a diagonal covariance matrix of 
variances. If the random process is Gaussian, the joint 
density function can be described by the means and 
covariance matrix alone, and higher order moments are 
functions of these parameters. Higher order moments 
take on non-zero values because on some sub-
manifolds of the n-th order lag space, they can 
degenerate to

 
products of lower order moments. For 

example, a fourth order moment can degenerate to a 
product of two variances if two of the four lags are 
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𝑝𝑋 𝑥 

=  2𝜋 −𝑁/2[det 𝐶 ]1/2𝑒𝑥𝑝  −
 𝑥 − 𝑚𝑥 𝑇𝐶−1(𝑥 − 𝑚𝑥)

2
 

𝜍𝑋
2 = 𝑑𝑖𝑎𝑔   (𝑥 − 𝑚𝑥)𝑇(𝑥 − 𝑚𝑥)

∞

−∞

𝑝𝑋(𝑥) 𝑑𝑥  

𝑚𝑋 =  𝑥 𝑝𝑋(𝑥)
∞

=∞

𝑑𝑥

Ψ 𝑓 =  
1

𝑘!

𝑛

𝑘=1

𝑐𝑥 𝑘  𝑗𝑓 𝑘 + 𝑜𝑛 𝑓 

Φ 𝑓 =  exp 𝑗2𝜋𝑓𝑥 𝑝𝑋(𝑥)

+∞

−∞

𝑑𝑥

identical and so are the other two. In this case, there are 

it is completely characterized by the mean value, m,  
(a first order statistic) and the covariance , C, (a second 
order statistic). In an estimate of the mean, values of a 
random vector are considered independently. 



 

degeneracy can occur whenever the set of n random 
variables can be split into two or more statistically 
independent groups. Higher order cumulants account 
for these sub-manifolds and are zero for Gaussian 
processes. Cumulants other than the first are also 
invariant to a shift of the origin like the central moments.

 

Ψ(𝑓𝑓) = Ψ1(𝑑𝑑1𝑓𝑓) + Ψ2(𝑑𝑑2𝑓𝑓) + ⋯+ Ψn(anf)       (8)
 

Cumulants are not directly ascertained through 
summation or integration but they are related to 
moments and can be found using these relationships. 
When working with real-world signals in a random 
process framework, probability density functions are in 
most cases not known in closed form. Moments must 
be estimated from realizations of the signal. It is then 
important to understand time and ensemble statistics of 
the process and assumptions about stationarity and 
ergodicity.

 

If scalar random variables are considered, the 
expected value over the ensemble is the ensemble 
mean of the process. There is a corresponding 
expectation in time, the time mean of the process. For 
an ergodic process, the ensemble statistics and the 
time statistics are assumed to be identical. If the product 
of two values of the process, separated by a time lag is 
considered, the autocorrelation function of the process 
is obtained. For a second order

 
ergodic process, the 

time autocorrelation and ensemble autocorrelation are 
equal. If the autocorrelation, ( )τxxR

 
is well behaved 

enough for a Fourier transform to exist, its Fourier 
transform yields the power spectral density of the 
process.

 

                    (9)

 

If the two values come from two different 
random processes, a cross-correlation is obtained and 
its Fourier transform represents the cross-spectral 
density of the two processes.

 

                
  (10)

 

The autocorrelation and the cross-correlation 
and the corresponding spectra form the basis of 
powerful second order approaches to signal detection, 
estimation and tracking such as matched filtering, 
Wiener filtering and Kalman filtering. For a stationary and 
ergodic process, these concepts were extended to 
products

 

of three and more values separated by lags, 
by Shiryaev [7]

 

and laid on firm mathematical 
foundations by Brillinger [8]

 

and Rosenblatt [1, 2]. They 
lead to the definition of higher order cumulant functions 
and corresponding higher order spectra.

 

For auto-correlation and auto-spectra we can 
omit the subscripts assuming that these are implied The 

Fourier transform of the third order cumulant function is 
referred to as the bispectrum and it is a complex-valued 
function of two frequencies. 

 

 

(11)

 

The Fourier transform of the

 

fourth order 
cumulant function is referred to as the trispectrum. It 
may be noted that these Fourier spectra exist only when 
the cumulant functions are well behaved – they decay 
with increasing lag and are absolutely integrable, for 
example. Conditions for existence can be relaxed 
carefully and the definitions and estimation procedures 
can be extended to include

 

cyclostationary and 
harmonic random processes. The power spectral 
density )( fP of a random process )(tx can be 
represented using 

 

)]()([)( * fdXfdXEdffP =                     (12)

 

This makes use of the Cramer spectral representation 

 

∫
∞

∞−
= )(]2exp[)( fdXftjtx π

                    
(13)

 

Similarly the bispectrum ),( 21 ffB

 

can be represented 
using

 



 =+

=
otherwise0

),(
)]()()([ 3212121

3
*

21
fffdfdfffB

fdXfdXfdXE
    

   

 

(14)

 

It is estimated using the averaged biperio-
dogram.

 

E

 

represents expectation over an ensemble of 
realizations of the process. The periodogram and the 
biperiodogram

 

are computed using numerical samples 
over a time windowed realization of the process and the 
Fast Fourier transform. Averaging is performed with 
several realizations.

 

The theoretical foundations have been extended 
and conditions for existence relaxed in a

 

number of 
ways. Discrete-time processes are not integrable but the 
use of Z transforms, discrete Fourier transforms and 
absolute summability allows definition of higher order 
cumulants and spectra for them. Deterministic functions 
do not have ensemble statistics or ensemble probability 
density

 

functions. However, they have time statistics and 
it has been shown that 

 

( ) [ ] 21221121

21
*

2121

)(2exp,~               

)()()(),(

ττττπττ ddffjR

ffXfXfXffB

+−∫=

+=
∞

∞−
(15)

 

where* represents the complex conjugate and ( )21,~ ττR
is the third order correlation in time (represented by E ) 
of the deterministic function.
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𝑃𝑥𝑥  𝑓 =  𝑅𝑥𝑥 (𝜏)𝑒−𝑗2𝜋𝑓𝜏
∞

−∞

𝑑𝜏

𝑃𝑥𝑦  𝑓 =  𝑅𝑥𝑦 (𝜏)𝑒−𝑗2𝜋𝑓𝜏
∞

−∞

𝑑𝜏

only two random variables rather than four. Such 

𝐵 𝑓1, 𝑓2 =  𝑅 𝜏1, 𝜏2 𝑒−𝑗2𝜋 𝑓1𝜏1+𝑓2𝜏2 𝑑𝜏1𝑑𝜏2

∞

−∞



 

( )

dttxtxtx

txtxtxR

)()()(               

)]()()([,~

21

2121

ττ

ττττ

+∫ +=

++=
∞

∞−

E

              
(16)

 

The third order correlation, or third order 
moment, is a function of two lag variables and the 
bispectrum is a function of two frequency variables. The 
above equations show that it is possible to estimate the 
bispectrum in two ways: either computing the third 
moment function and then taking its Fourier transform, 
or computing the Fourier transform of the function and 
using triple products of Fourier coefficients. For 
continuous-time deterministic signals, integrability of the 
moment and the existence of the Fourier transform are 
necessary for validity. For discrete-time signals or for 
computation via numerical methods based on sampling, 
summability of the moment and existence of the 
discrete-time Fourier transform are necessary for 
validity. The corresponding equations in discrete time 
are  
 

( ) [ ])(2exp,~               

)()()(),(

221121

21
*

2121

1 2

nfnfjnnR

ffXfXfXffB

n n
+−∑ ∑=

+=

∞

−∞=

∞

−∞=
π

                         

 

(17)
 

where 𝐵𝐵(𝑓𝑓1,𝑓𝑓2) is
 the bispectrum of  x(n), 𝑅𝑅�(𝑛𝑛1,𝑛𝑛2)

 is the 
third order correlation and X(f) is the Fourier transform of 
x(n) which are shown in equation (9) and (10).  In 
general, 𝐵𝐵(𝑓𝑓1,𝑓𝑓2) is complex and a sufficient condition 
for its existence is that 𝑅𝑅�(𝑛𝑛1,𝑛𝑛2) is absolutely 
summable.  
 

( )

∑ ++=

++=

∞

−∞=n
nnxnnxnx

nnxnnxnxnnR

)()()(               

)]()()([,~

21

2121 E

 
  (18) 

[ ]

           

2exp)()( fnjnxfX
n

π−∑=
∞

−∞=                     
(19) 

The sampling interval in the above equations is 
assumed to be unit, and when frequencies are 
normalized by the sampling frequency, the bispectrum, 
𝐵𝐵(𝑓𝑓1,𝑓𝑓2)

 
is periodic in 𝑓𝑓1 

and 𝑓𝑓2 
with period 

2𝜋𝜋
 
radians/sec or 1 cycle/sec. For a real-valued input, 

the spectrum is conjugate symmetric and only positive 
frequencies up to one-half the sampling frequency are 
unique in spectral values. Therefore, frequencies are 
often normalized by one half of the sampling frequency 
(or Nyquist frequency). Further, the bispectrum is 
symmetric in the two frequencies and knowledge of the 
auto-bispectrum in the triangular region  𝑓𝑓2 ≥ 0, 𝑓𝑓1 ≥
𝑓𝑓2,𝑓𝑓1 + 𝑓𝑓2 ≤ 1

 
(see Fig. 1) is enough for its complete 

description, where frequencies are normalized by the 
Nyquist frequency and the input is real-valued.

 

 

 Figure 1 :
 
Triangular bounded by 𝑓𝑓2 = 0, 𝑓𝑓1 = 𝑓𝑓2,𝑓𝑓1 +

𝑓𝑓2 = 1. Values of  𝐵𝐵(𝑓𝑓1, 𝑓𝑓2)
 
on this triangle for a real-

valued and band-limited random process determine its 
values everywhere in the (𝑓𝑓1 − 𝑓𝑓2)

 
plane

 
For a full description of the non-redundant 

regions of computation of various higher order spectra, 
the reader is referred to [5, 9]. The discrete-time 
versions may be further extended to discrete versions 
that are also sampled in the frequency domain. This is 
required to be able to compute spectra numerically. It 
may be noted that frequency sampling inherently makes 
the sequence periodic in time. Equivalently, computing 
the spectra using finite length sequences yields the 
discrete Fourier transform (DFT) which is a sampled 
version of the discrete-time Fourier transform (DTFT). 

[ ]

           

2exp)()(
1

0
knjnxkX

N

n
π−∑=

−

=

  

(20)
 

For deterministic signals, the assumption of 
periodicity outside the window of observation leads to 
side effects such as spectral leakage. Equation (20) is 
used with time samples x(n) in the frequency domain 
approach to obtain Fourier coefficients and their 
products are used in estimation via the first part of 
equation (15) or (17), in the frequency domain 

approach. Equation
 
(20) is used with moments ( )21,~ nnR

in the direct approach. If the observation window [0, N-
1] is long enough for the moment function to have 
decayed sufficiently, the frequency sampling should not 
cause significant error. 

 Higher-order spectra are thus multidimensional 
Fourier transforms of higher-order statistical parameters 
[10]. For stochastic processes, a frequency domain 
approach is beset with some difficulty because a Fourier 
transform does not strictly speaking exist for a stationary 
random process. However, spectral representations as 
in equations (13) and (14) can be employed with the use 
of expected values as done in stochastic calculus [10]. 
Discrete spectral representations imply conversion to 
cyclostationary processes but if the moments of interest 
decay to nearly zero within the observation window 
estimation of their spectra via expectations of products 

f 1

0.5

2f
0.5
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of frequency domain samples as in a discrete version of 



 
 equation (14) will be valid. In order to apply the 

frequency domain approach to estimation, each 
realization of a random process is windowed in time and 
sampled and equation (20) is used to computer Fourier 
coefficients. Averaging over an ensemble as in equation 
(14) reduces the estimation variance, taking the estimate 
closer to the true value.

 The trispectrum is defined in terms of the
 
fourth 

order cumulant by the discrete Fourier transform (DFT):
 

 

 

 

(21)

 

where 𝑐𝑐4
𝑥𝑥(𝑛𝑛1,𝑛𝑛2,𝑛𝑛3)

 

is the fourth-order cumulant 
sequence, similar to third-order cumulant given by 
equation (18) for bispectrum. The expectation operation 
in the tri-periodogram is omitted above, when the signal 
is deterministic. Symmetry properties and non-
redundant region

 

of computation of the trispectrum are 
discussed in [9]. 

If a distribution is symmetric, then its third-order 
cumulant equals zero; hence, for such a process we 
must use fourth-order cumulants. For example, Laplace, 
Uniform, Gaussian and Bernoulli-Gaussian distributions 
are symmetric, whereas Exponential, Rayleigh and k-
distributions are non-symmetric. Some processes have 
distributions with extremely small third-order cumulants 
and much larger fourth-order cumulants; hence, for 
such processes also we would also use the fourth 
cumulant or the trispectrum. In cubically phase coupled 
harmonic random processes also, the third order 
cumulants equal zero whereas fourth-order cumulants 
are non-zero. 

 

If {𝑥𝑥(𝑘𝑘)}

 

is, 𝑘𝑘 = 0, ±1, ±2, ±3, …

 

is a real 
stationary discrete-time signal and its moments up to 
order n exist, then

 

𝑚𝑚𝑛𝑛
𝑥𝑥(𝜏𝜏1, 𝜏𝜏2, … , 𝜏𝜏𝑛𝑛−1) ≜ E{x(k)x(k +τ1)x(k +τ2) … x(k +

τn−1}                (22) 

represents the nth-order moment function of the signal, 
which depends only on the time differences 
𝜏𝜏1, 𝜏𝜏2, … , 𝜏𝜏𝑛𝑛−1, 𝜏𝜏𝑑𝑑 = 0, ±1, ±2, ….

 

for all 𝑑𝑑. The 2nd –order 
moment function,

 

𝑚𝑚2
𝑥𝑥(𝜏𝜏1), is the autocorrelation whereas 

𝑚𝑚3
𝑥𝑥(𝜏𝜏1, 𝜏𝜏2) and 𝑚𝑚4

𝑥𝑥(𝜏𝜏1, 𝜏𝜏2, 𝜏𝜏3), the 3rd  and 4th  order 
moments, respectively, are the third and fourth order 
(auto)

 

correlations of the signal.

 

The nth-order cumulant 
function of a non-Gaussian stationary random signal 
𝑥𝑥(𝑘𝑘)

 

can be written as (for n=3, 4 only):

 

 
             (23)

 
where 𝑚𝑚𝑛𝑛

𝑥𝑥(𝜏𝜏1, … , 𝜏𝜏𝑛𝑛−1)

 

is the nth-order moment function 
of 𝑥𝑥(𝑘𝑘) and 𝑚𝑚𝑛𝑛

𝐺𝐺(𝜏𝜏1, 𝜏𝜏2, … , 𝜏𝜏𝑛𝑛−1)

 

is the nth-order moment 

function of an equivalent Gaussian signal that has the 
same mean value and autocorrelation sequence as 
𝑥𝑥(𝑘𝑘).Clearly, if 𝑥𝑥(𝑘𝑘)

 

is Gaussian, 𝑚𝑚𝑛𝑛
𝑥𝑥(𝜏𝜏1, 𝜏𝜏2, … , 𝜏𝜏𝑛𝑛−1) =

𝑚𝑚𝑛𝑛
𝐺𝐺(𝜏𝜏1, 𝜏𝜏2, … , 𝜏𝜏𝑛𝑛−1)

 

and thus 𝑐𝑐𝑛𝑛𝑥𝑥(𝜏𝜏1, 𝜏𝜏2, … , 𝜏𝜏𝑛𝑛−1) = 0. 
Note, however, that although equation (14) is only true 
for orders n=3 and 4, 𝑐𝑐𝑛𝑛𝑥𝑥(𝜏𝜏1, 𝜏𝜏2, … , 𝜏𝜏𝑛𝑛−1) = 0

 

for all n if 
𝑋𝑋(𝑘𝑘)

 

is Gaussian.

 
The relation between moments and cumulants 

are shown by the following equations which exist for 
orders n=1,2,3,4 for the sequence of {𝑥𝑥(𝑘𝑘)}. 

 

1st –order cumulants:

 
𝑐𝑐1
𝑥𝑥 = 𝑚𝑚1

𝑥𝑥 = 𝐸𝐸                                   (24)

 
2nd –order cumulants:

 

 

𝑐𝑐2
𝑥𝑥(𝜏𝜏1) = 𝑚𝑚2

𝑥𝑥(𝜏𝜏1) − (𝑚𝑚1
𝑥𝑥)2

 

= 𝑚𝑚2
𝑥𝑥(−𝜏𝜏1) − (𝑚𝑚1

𝑥𝑥)2

 

= 𝑐𝑐2
𝑥𝑥(−𝜏𝜏1)                    (25)

 

where 𝑚𝑚2
𝑥𝑥(−𝜏𝜏1)

 

is the autocorrelation sequence. Thus, 
we see that the 2nd

 

order cumulant sequence is the 
covariance while the 2nd

 

order moment sequence is the 
autocorrelation.

 
 

3rd –order cumulants:

 

𝑐𝑐3
𝑥𝑥(𝜏𝜏1, 𝜏𝜏2) = 𝑚𝑚3

𝑥𝑥(𝜏𝜏1, 𝜏𝜏2)

 

  −𝑚𝑚1
𝑥𝑥[𝑚𝑚2

𝑥𝑥(𝜏𝜏1) + 𝑚𝑚2
𝑥𝑥(𝜏𝜏2) + 𝑚𝑚2

𝑥𝑥(𝜏𝜏1 − 𝜏𝜏2)] + 2(𝑚𝑚1
𝑥𝑥)3     (26)

 
where 𝑚𝑚3

𝑥𝑥(𝜏𝜏1, 𝜏𝜏2)

 

is the third-order moment sequence. 
This follows if we combine equation (22) and (23). 

 
4th –order cumulants:

 
Combining equation (22) and (23), we get

 

 

(27)
 

 
 If the signal {𝑥𝑥(𝑘𝑘)}

 
is zero mean  𝑚𝑚1

𝑥𝑥 = 0, it
 follows from equation (25) and (26) that the second- and 

third-order cumulants are identical to the second- and 
third-order moments, respectively; however, to generate 
the fourth-order cumulants, we need knowledge of the 
fourth-order and second-order moments in equation 
(27), i.e.,

 
 

                                                               (28) 
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𝑇 𝑓1, 𝑓2, 𝑓3 = 𝑋 𝑓1 𝑋 𝑓2 𝑋 𝑓3 𝑋∗ 𝑓1 + 𝑓2 + 𝑓3 

=    𝑐4
𝑥(𝑛1 , 𝑛2, 𝑛3)

∞

𝑛3=−∞

∞

𝑛2=−∞

∞

𝑛1=−∞

exp −𝑗2𝜋 𝑓1𝑛1 + 𝑓2𝑛2

+ 𝑓3𝑛3  

𝑐𝑛
𝑥 𝜏1, 𝜏2, … , 𝜏𝑛−1 =

𝑚𝑛
𝑥 𝜏1, 𝜏2 , … , 𝜏𝑛−1 − 𝑚𝑛

𝐺 𝜏1, 𝜏2, … , 𝜏𝑛−1 

𝑐4
𝑥 𝜏1, 𝜏2, 𝜏3 = 𝑚4

𝑥 𝜏1, 𝜏2, 𝜏3 

−𝑚2
𝑥 𝜏1 . 𝑚2

𝑥 𝜏3 − 𝜏2 − 𝑚2
𝑥 𝜏2 . 𝑚2

𝑥 𝜏3 − 𝜏1 

− 𝑚2
𝑥 𝜏3 . 𝑚2

𝑥 𝜏2 − 𝜏1 

− 𝑚1
𝑥 𝑚3

𝑥 𝜏2 − 𝜏1, 𝜏3 − 𝜏1 + 𝑚3
𝑥 𝜏2, 𝜏3 + 𝑚3

𝑥 𝜏3, 𝜏1 

+ 𝑚3
𝑥 𝜏1 , 𝜏2  

+ (𝑚2
𝑥)2 𝑚1

𝑥 𝜏1 + 𝑚2
𝑥 𝜏2 + 𝑚2

𝑥 𝜏3 + 𝑚2
𝑥 𝜏3 − 𝜏1 

+ 𝑚2
𝑥 𝜏3 − 𝜏2 + 𝑚2

𝑥 𝜏2 − 𝜏1  

− 6(𝑚1
𝑥)4

𝑐4
𝑥 𝜏1, 𝜏2, 𝜏3 = 𝑚4

𝑥 𝜏1, 𝜏2, 𝜏3 − 𝑚2
𝑥 𝜏1 . 𝑚2

𝑥 𝜏3 − 𝜏2 

− 𝑚2
𝑥 𝜏2 . 𝑚2

𝑥 𝜏3 − 𝜏1 

− 𝑚2
𝑥 𝜏3 . 𝑚2

𝑥 𝜏2 − 𝜏1 



 
 
The use of cumulants rather than moments has a 
number of advantages as pointed out by J. Mendel [11].  

1. If 𝜆𝜆𝑑𝑑 , 𝑑𝑑 = 1,2, … . , 𝑘𝑘 are constants and 𝑥𝑥𝑑𝑑 , 𝑑𝑑 =
1,2, … . , 𝑘𝑘 are random variables, then 
𝑐𝑐𝑐𝑐𝑚𝑚(𝜆𝜆𝑑𝑑𝑥𝑥𝑑𝑑 , … 𝜆𝜆𝑘𝑘𝑥𝑥𝑘𝑘) = ∏ 𝜆𝜆𝑑𝑑  𝑐𝑐𝑐𝑐𝑚𝑚𝑘𝑘

𝑑𝑑=1 (𝑥𝑥1, … . 𝑥𝑥𝑘𝑘)           

2. Cumulants are symmetric in their arguments, 
i.e., 𝑐𝑐𝑐𝑐𝑚𝑚(𝑥𝑥1, … … , 𝑥𝑥𝑘𝑘) = 𝑐𝑐𝑐𝑐𝑚𝑚(𝑥𝑥𝑑𝑑1 , … … , 𝑥𝑥𝑑𝑑𝑘𝑘 ) where 
(𝑑𝑑1, … … , 𝑑𝑑𝑘𝑘)  is a permutation of (1, … … , 𝑘𝑘) 

3. Cumulants are additive in their arguments, 
i.e., 𝑐𝑐𝑐𝑐𝑚𝑚(𝑥𝑥0 + 𝑥𝑥0, 𝑧𝑧1, … , 𝑧𝑧𝑘𝑘) = 𝑐𝑐𝑐𝑐𝑚𝑚(𝑥𝑥0, 𝑧𝑧1, … , 𝑧𝑧𝑘𝑘) +
𝑐𝑐𝑐𝑐𝑚𝑚(𝑥𝑥0, 𝑧𝑧1, … , 𝑧𝑧𝑘𝑘) This means that cumulants of 
sums equals sums of cumulants (hence, the name 
“cumulant”). 

4. If α 𝑐𝑐𝑐𝑐𝑚𝑚(𝛼𝛼 + 𝑥𝑥1, 𝑥𝑥2, … … , 𝑥𝑥𝑘𝑘) =
𝑐𝑐𝑐𝑐𝑚𝑚(𝑥𝑥1, 𝑥𝑥2, … … , 𝑥𝑥𝑘𝑘) 

5. If the random variables {𝑥𝑥𝑑𝑑}  are independent of the 
random variables {𝑥𝑥𝑑𝑑}, 𝑑𝑑 = 1,2, … … , 𝑘𝑘  then 
𝑐𝑐𝑐𝑐𝑚𝑚(𝑥𝑥1 + 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 + 𝑥𝑥𝑘𝑘) = 𝑐𝑐𝑐𝑐𝑚𝑚(𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) +
𝑐𝑐𝑐𝑐𝑚𝑚(𝑥𝑥1, … ,𝑥𝑥𝑘𝑘) 

6. If a subset of the k random variables {𝑥𝑥𝑑𝑑}  is 
independent of the rest, then 𝑐𝑐𝑐𝑐𝑚𝑚(𝑥𝑥𝑑𝑑 , … , 𝑥𝑥𝑘𝑘) = 0 

Cumulants of an independent, identically 
distributed random sequence are delta functions, if 𝑤𝑤(𝑡𝑡) 
is an i.i.d. process, then  𝐶𝐶𝑘𝑘 ,𝑤𝑤(𝜋𝜋1,𝜋𝜋2, … . . ,𝜋𝜋𝑘𝑘−1) =
𝛾𝛾𝑘𝑘 ,𝑤𝑤𝛿𝛿(𝜋𝜋1)𝛿𝛿(𝜋𝜋2) … 𝛿𝛿(𝜋𝜋𝑘𝑘−1), where 𝛾𝛾𝑘𝑘 ,𝑤𝑤  is the kth –order 
cumulant of the stationary random sequence 𝑤𝑤(𝑛𝑛). 

This makes the higher-order statistics more 
robust to additive measurement noise than second 
order correlation, even if that noise is colored. In 
essence, cumulants can draw non-Gaussian signals out 
of Gaussian noise; thereby boosting their signal-to-noise 
ratios [11]. 

At a glance, Figure 2 illustrates the various 
higher-order spectra for a given discrete-time signal. 
Although higher-order statistics and spectra of a signal 
can be defined in terms of moments and cumulants, 
moments and moment spectra are very useful in the 
analysis of deterministic signals (transient and periodic) 
whereas cumulant and cumulant spectra are more 
useful in the analysis of stochastic signals. The two 
spectra are identical up for order three (the bispectrum). 
Unlike the power spectrum which is real-valued, higher 
order spectra can be complex valued and have both 
magnitude and phase, in general. The phase of the 
bispectrum is referred to as biphase and that of the 
trispectrum as the triphase.  
 

 

Figure 2 : The various higher order spectra for a 
deterministic signal. F [.] denotes n-dimensional Fourier 

Transform 

Higher order spectra are also functions of two 
or more component frequencies unlike the power 
spectrum which is a function of a single frequency. 
Although numerically computed estimates of higher 
order spectra may have non-zero values, they may or 
may not be statistically significant. Statistical 
significance depends on the number of degrees of 
freedom in the estimate. Of particular interest in the 
analysis of phase coupling between Fourier 
components is the value of the magnitude of the higher 
order spectrum independent of the powers at the 
component frequencies. This can be achieved by 
normalizing the magnitude with powers at the 
component frequencies. Since non-linear interactions 
result in the generation of phase-coupled power at sum 
and difference frequencies, the normalized spectra are 
also useful in detection and characterization of non-
linearity in systems. A normalized higher-order spectrum 
or nth-order coherency index is a function that combines 
the cumulant spectrum of order n with the power 
spectrum (n=2) of a signal. For a discrete- time signal, 
the 3rd – and 4th –order coherence are respectively 
defined by 

                                                 

 

(29)
 

             
(30)
 

These functions are very useful in the detection 
and characterization of nonlinearities in time series and 
in discriminating linear processes from nonlinear ones. 
A signal is said to be a linear non-Gaussian process of 
order n if the magnitude of the nth-order coherence, 
|(𝑃𝑃)𝑛𝑛𝑥𝑥(𝑓𝑓1,𝑓𝑓2, … , 𝑓𝑓𝑛𝑛−1)|, is constant over all frequencies; 
otherwise, the signal is said to be a non-linear 
process[13]. They are also useful in detecting phase 
coupling between Fourier components.

 

Signal F3[.]

Power SpectrumF1[.]
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is a constant, then  

𝐵𝑥 𝑏𝑖𝑐𝑜 𝑒𝑟𝑒𝑛𝑐𝑒   𝑓1, 𝑓2 

=
𝐵𝑥(𝑓1, 𝑓2)

 𝑃𝑥 𝑓1 𝑃𝑥 𝑓2 𝑃𝑥(𝑓1 + 𝑓2)

𝑇𝑥(𝑡𝑟𝑖𝑐𝑜 𝑒𝑟𝑒𝑛𝑐𝑒 )

=
𝑇𝑥(𝑓1, 𝑓2, 𝑓3)

 𝑃𝑥 𝑓1 𝑃𝑥 𝑓2 𝑃𝑥 𝑓3 𝑃𝑥(𝑓1 + 𝑓2 + 𝑓3)



 

 

A random signal, ( )nx  is completely character-
rized by its Autocorrelation Function (ACF) only if it 
originates from a random process with Gaussian 
characteristics. In non-Gaussian processes, the higher 
order moments carry information that cannot be found in 
the ACF. Such signals can be found for example in 
speech, radar, sonar, bio-medicine, seismic data 
processing, plasma physics and optics.  General 
relations for arbitrary stationary random data passing 
through arbitrary linear systems have been studied quite 
extensively for many years, but similar extensive general 
results are not available for arbitrary stationary random 
data passing through arbitrary nonlinear systems. 
Instead, each type of nonlinearity has been investigated 
as a special case. The extra information provided by 
HOS  leads to better estimates of parameters and sheds 
light on non-linearity in the source of the signal. In 
addition, cross-polyspectra may be used for nonlinear 
system identification from observations of input and 
output data. In this section we represent some brief 
examples to the readers of how higher order spectral 
have been applied to the following tutorial topic. 

a) Quadratic/Cubic Phase Coupling 
Quadratic phase coupling are situations where 

because of interaction between two harmonic 
components of a process there is contribution to the 
power at their sum and/or difference frequencies. A 
special case is when have two components with one 
being at twice the frequency of the other. For example, 
suppose the signal 

𝑥𝑥(𝑛𝑛) = 𝐴𝐴1 sin(𝜆𝜆1𝑛𝑛 + 𝜃𝜃1) + 𝐴𝐴2 sin(𝜆𝜆2𝑛𝑛 + 𝜃𝜃2)                 
is passed through the following simple nonlinear 
system: 

𝑧𝑧(𝑛𝑛) = 𝑥𝑥(𝑛𝑛) + 𝑐𝑐𝑥𝑥2(𝑛𝑛)                          (31) 

where c is a non-zero constant. The signal 𝑧𝑧(𝑛𝑛) contains 
sinusoidal terms in (𝜆𝜆1,𝜃𝜃1),  (𝜆𝜆2,𝜃𝜃2), (2𝜆𝜆1, 2𝜃𝜃1), (2𝜆𝜆2,
2𝜃𝜃2), (𝜆𝜆1 + 𝜆𝜆2,𝜃𝜃1 + 𝜃𝜃2) and  (𝜆𝜆1 − 𝜆𝜆2,𝜃𝜃1 − 𝜃𝜃2). Such 
phenomena, which give to rise to all of these phase 
relations, are known as quadratic phase coupling [12] 
and arise from the quadratic (square law) non-linearity. 

In particular applications, such as EEG data 
analysis, oceanography and plasma physics, it is 
necessary to find out if peaks at harmonically related 
positions in the power spectrum are in fact phase-
coupled. Since the power spectrum suppresses all 
phase relations it cannot provide an answer. The 
bispectrum, on the other hand, is capable of detecting 
and characterizing quadratic phase coupling. Consider 
the harmonic random process 

                      
(32) 

 where 
 
𝜆𝜆1 > 𝜆𝜆2 > 0, 𝜆𝜆4 > 𝜆𝜆5 > 0, 𝜆𝜆3 = 𝜆𝜆1 + 𝜆𝜆2, 𝜆𝜆6 =

𝜆𝜆4 + 𝜆𝜆5, 𝜃𝜃1,𝜃𝜃2, … …𝜃𝜃5
 

are all independent, uniformly 
distributed r.v.s over (0, 2𝜋𝜋) and 𝜃𝜃6 = 𝜃𝜃4 + 𝜃𝜃5. In

 equation (32) while (𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3) and (𝜆𝜆4, 𝜆𝜆5, 𝜆𝜆6)
 

are at 
harmonically related positions, only the component at 𝜆𝜆6

 is a result of phase coupling between those at 𝜆𝜆4 and 𝜆𝜆5
 while the one at 𝜆𝜆3  is an independent harmonic 

component. The power spectrum of the process 
consists of impulses at 𝜆𝜆𝑑𝑑 ; 𝑑𝑑 = 1,2, … ,6

 
as illustrated in 

Figure 3.
 Looking at the power spectrum one cannot say 

if the harmonically related components are, in fact, 
involved in quadratic phase-coupling relationships. The 
third-moment sequence 𝑚𝑚3

𝑥𝑥(𝜏𝜏1, 𝜏𝜏2)
 
of 𝑥𝑥(𝑛𝑛)

 
can be easily 

obtained as
 

                  (33)

 
It is important

 

to observe that in equation (33) only the 
phase coupled components appear. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 :

 

Quadratic phase coupling (a) Power spectrum 
of the process described by equation (31) and (b) its 

magnitude bispectrum
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𝑥 𝑛 =  sin 𝜆𝑖𝑛 + 𝜃𝑖 

6

𝑖=1

ω1

Z
ero

ω

2

λ1

λ

4

λ λ5

|c3(ω1.ω2)
|

ω
λ1 λ

2

λ

4

λ6
λ

3

λ5

c2 (ω)

𝑚3
𝑥 𝜏1, 𝜏2 =

1

4
 sin 𝜆5𝜏1 + 𝜆4𝜏2 + sin 𝜆6𝜏1 + 𝜆4𝜏2 

+ sin 𝜆4𝜏1 + 𝜆5𝜏2 + sin 𝜆6𝜏1 − 𝜆5𝜏2 

+ sin λ4𝜏1 − 𝜆6𝜏2 

+ sin 𝜆5𝜏1 − 𝜆6𝜏2  

Consequently, the bispectrum evaluated in the 
triangular region of Figure 3 shows an impulse only at 
(𝜆𝜆4, 𝜆𝜆5) indicating that only this pair is phase coupled. In 
the total absence of phase coupling the third moment 
sequence and the bispectrum are both zero. Thus the 
fact that only phase coupled components contributes to 
the third moment sequence of a process is what makes 
the bispectrum a very useful diagnostic tool for non 
linear wave interactions.

III. Tutorial on Higher Order 
Statistics



 

 
  

 

 

In the example above, the third moment and the 
bispectrum were computed analytically using 
knowledge of the probability density functions of the 
phases. In practice, sampled data are available from

 

the 
process and the question must be answered by 
numerical computation and hypothesis testing. If we 
simulate 100 realizations of this process, each of length 
512 samples, sampled at 6 times the highest frequency 
component, with components of equal and unit 
amplitude at frequencies 𝜆𝜆1 = 10, 𝜆𝜆2 = 20, 𝜆𝜆3 = 30, 𝜆𝜆4 =
40, 𝜆𝜆5 = 50, 𝜆𝜆6 = 90,  

 

such that each phase is uniform 
random in [0,2𝜋𝜋)

 

and the phase relationship 𝜃𝜃6 = 𝜃𝜃4 +
𝜃𝜃5

 

holds in each realization, a power spectral density of 
the process computed using an averaged periodogram 
estimate with no windowing would be as shown in 
Figure 4

 

 

Figure 4 : Power spectral density of the process defined 
in equation 21, when estimated using an averaged 

periodogram estimate from 100 realizations

 

It can be observed that estimates of the power 
spectral density are not all equal because of the 
variance of the estimate and spectral leakage owing to 
the finite length discrete Fourier transform. The power 
spectrum does not reveal any phase information and 
does not distinguish between the peaks at the different 
frequencies. It does not tell us whether the peak at 90 
Hz is related to those at 40 Hz and 50 Hz, or whether the 
peaks at 10 Hz, 20 Hz and 30 Hz are phase coupled. If 
we estimate the bispectrum of

 

this process using an 
averaged biperiodogram method, its

 

magnitude (Figure 
5) shows a prominent peak at (50 Hz, 40 Hz) as 
expected. There is no such peak at (20 Hz, 10 Hz) 
because these components were not phase coupled to 
the component at 30 Hz. However,

 

smaller peaks are 
also observed at other frequency combinations, again 
arising from the fact that statistical zero is not 
numerically zero and there is spectral leakage around 
the true peaks. The other peaks are much smaller in 
magnitude than the peak at (50 Hz, 40 Hz) which is 
where the bispectrum is statistically significantly different 
from zero.

 
 

 

Figure 5 : Magnitude bispectrum for the process in 
equation (21) estimated from 100 simulated realizations

 

If we compute the bicoherence, normalizing as 
done by Kim and Powers, bicoherence values are found 
to be between 0 and 1. For 100 realizations averaged, 
the bicoherence is statistically significantly different from 
zero only when the value is above 6/200 or 0.03. A plot 
of the bicoherence is shown in Figure 6. 

 

Figure 6 : Bicoherence for the processing in equation 
(21) estimated from 100 realizations. Only the 
bifrequency region of interest is shown here. A 
statistically significant non-zero value occurs at (50 Hz, 
40 Hz) as expected

 

  
 

38

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
III

X
II

 I
s s
ue

  
  
 e

rs
io
n 

I
V

Y
ea

r
  

 
(

)
A

  
20

13
IV

© 2013  Global Journals Inc.  (US)

Only the region of frequencies that are of 
interest is shown here – not the entire triangular non-
redundant region, the rest of which has statistically zero 
bicoherence. It can be observed here that the only value 
above 0.03 is at (50 Hz, 40 Hz). In reality, it is possible 
for an expected 5% of all the values to be above 0.03 if 
the process were Gaussian. In the above example, the 
process is harmonic and there is very little power at any 
other frequencies.

Let us now add a random phase component at 
the sum frequency of 90 Hz such that there is partial 
phase coupling rather than perfect phase coupling. The 



 

 

bicoherence at (50 Hz, 40 Hz) will now be the ratio of the 
power of the phase coupled component to the total 
power which is the sum of the powers of the phase 
coupled and random phase components since these 
are statistically independent.

 

 

Figure 7 : Power spectral density of the process in 
equation (21) with an additional random phase com-
ponent of equal power at 90Hz. The simulations also 
have additive Gaussian noise and the SNR is 20 dB

 

 

Figure 8 : Bicoherence for the same process as 
described for figure 7. The bicoherence at (50 Hz, 40 
Hz) has now reduced to around 0.5 instead of 1.0 
compared

 

to Figure 6

 

Further, let us add Gaussian noise to the 
process such that the ratio of the total signal power to 
the total noise power is 20 dB. If we then compute the 
power spectrum and the bicoherence, they are as 
shown in Figure 7 and Figure 8, respectively. 

We can see that the estimated bicoherence is 
close to the expected true value of 0.5. The estimate will 
in practice have a possibly non-zero bias and finite 
variance, which depend on a number of factors 
including the true value and the number of realizations 

averaged. Analytical expressions for these can be quite 
complicated. Statistics of bicoherence and tricoherence 
have been investigated numerically and analytically in 
[34],[61]. When phase coupled and random phase 
components are present along with additive Gaussian 
noise of significant variance, the estimate can be 
significantly different from the value expected. As the 
SNR falls, the statistics of the distribution will be decided 
by the noise rather than by the signal (the phase 
coupled harmonic components in the example above). 

 

If the hypothesis to be tested is whether the 
signal is Gaussian or not, we can potentially use 
bicoherence values from all frequency triads along with 
the knowledge of their distribution for a Gaussian 
process. If we simulate 100 records consisting purely of 
Gaussian random noise of unit variance with the same 
sampling frequency and record length as in the 
examples above the bicoherence plot would be as 
shown in Figure 9 and the histogram of bicoherence 
values would be as shown in Figure 10. The red line 

 

As we increase the number of realizations 
averaged, bicoherence tends towards the expected 
value of zero for white Gaussian noise.
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Figure 9 : Bicoherence distribution for a white Gaussian 
noise process over the same region as shown for the 
harmonic process in figures 6 and 8 and with the same 
number of realizations averaged. 5% of the values are 
now expected to be above the 95% significance level of 
0.03 and some of these shows up as the lighter spots

indicates the bicoherence value below which 95% of 
all bicoherence lie. It can be observed that this is close    
to 6 divide by twice the number of realizations 
averaged or 0.03.



 
 

 

 

Figure 10 : Bicoherence distribution for a white Gauss-

-

ian noise process when N=100 realizations are 
averaged in the estimate. The values are sorted and the 
value below which 95% lie is determined and shown 
using the red line above. It can be observed that this 
value is very nearly equal to 3/N = 0.03

 

If we want to test the hypothesis that a process 
is non-Gaussian, we can use this procedure and utilize 
the distribution of bicoherence

 

over all bi-frequencies or 
any statistic derived from it. If we want to test whether 
the

 

bicoherence at a given bi-frequency arose from 
phase coupled Fourier components or not, we can 
compare the bicoherence value to the 95% significance 
level for Gaussian noise. If the value is above this, we 
can be 95% confident that the true value was not zero. 
5% of the values even from Gaussian noise can be 
above this level. The 99% confidence level is given by 
9.2 divided by twice the number of realizations 
averaged.

 

The higher the bicoherence estimate 
compared to these and the greater the number of 
realizations averaged, the greater the confidence in the 
estimate.

 

Let us now lower signal to noise power ratio to 

-

40 dB and observe its effect on the power spectrum and 
the bispectrum. As shown in Figure 11,

 

the power 
spectrum estimated by an averaged periodogram now 
shows spurious peaks at many frequencies owing to 
white noise. The variance at the true signal peaks is also 
higher. Because the signal is harmonic and comprises 
of narrowband components, the signal peaks are still 
above the wideband noise floor.

 

But the power spectrum does not retain any 
phase relationships. If we examine the bicoherence, as 
shown in Figure 12, we can note that the bicoherence at 
(50Hz, 40 Hz) is significantly above 0.03, the 95% 
confidence level for Gaussian noise, indicating that it is 
non-zero.  

It is however far from the true value of 0.5 that 
would be expected from the harmonic components 
alone. This is owing to a bias introduced by the additive 

noise which will act as an additional random phase 
component or components within the bandwidth of the 
signal.

 

 

Figure 11

 

: 

 

Power spectral density of the same 
harmonic process as in figure 7 but with SNR lowered to 

-40 dB

 

 

Figure 12 : 

 

Bicoherence plot for the same harmonic 
process as in figures 7 and 8 but with SNR lowered to -
40 dB. Some values are above the 95% significance 
level of 0.03 as can be expected because of the additive 
white Gaussian noise present. The bicoherence at (50 
Hz, 40 Hz) is lowered from 0.5 because of the wideband 
noise contribution within the signal bandwidth that acts 
as an additional random phase component

 

If we increase the number of realizations 
averaged to 1000, the distribution of bicoherence owing 
to Gaussian noise alone would tend towards zero, but 
the bias will depend on the SNR and will not decrease 
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similarly. A bicoherence plot for 1000 realizations 
averaged is shown in Figure 13 below. 



 

 

 

Figure 13 : 

 

Bicoherence for the same process as shown 
in Figure 12, but with 1000 realizations averaged in the 
estimate instead of 100. The 95% significance level for 
zero bicoherence is now 0.003. Therefore, the spuriously 
high bicoherence values appearing in Figure 12 have 
disappeared. However, the random phase components 
at 50 Hz, 40 Hz and 90 Hz owing to noise are present in 
all realizations and the bicoherence at (50 Hz, 40 Hz) 
remains close to 0.11, a value determined by the power 
ratio of phase-coupled and random phase components

 

Note that spurious values of high bicoherence 
arising at other bi-frequencies have decreased 
compared  to Fig. 12  but  the  value of bicoherence  at 
(50 Hz, 40 Hz) has not become 0.5.

 

In spite of a number of limitations, by contrast, 
the conventional methods for bispectrum estimation can 
serve as better quantifiers of phase coupling whereas 
the parametric methods such as autoregressive (AR), 
moving average (MA) and autoregressive moving 
average (ARMA) are better as detectors rather than 
quantifiers [12]. Of course, the conventional bicohe-
rence index approach to serve as a good quantifier by 
providing good estimates of the degree of phase 
coupling at harmonically related frequency pairs. For 
details and excellent explanation of quadratic phase 
coupling based on conventional and parametric 
methods, the readers are referred to [4, 12, 13].

 

Swami et al

 

have shown [16] that the 
trispectrum can be used to resolve cubic phase 
coupling if a signal contains components from both 
quadratic and cubic phase coupling. The bispectrum of 
that signal is blind

 

to the cubically-coupled components 
and can resolve the quadratically-coupled components, 
whereas the trispectrum of that signal is blind to the 
quadratically-coupled components and can resolve the 
cubically coupled components [11]. Higher-order 
spectra can thus resolve various types of nonlinearity. 
An application of higher order spectra to detect 
quadratic and cubic non-linear characteristics of the 
output of a non-linear system can be found in the work 
on analysis of Chua’s circuit by Elgar and Chandran

 

[40]. This circuit can exhibit various modes of operation 
depending on the circuit parameters. It shows periodic 

outputs, period doubling phenomena and can be in 
different chaotic regimes. Using bicoherence and 
tricoherence plots, Elgar and Chandran demonstrate 
that quadratic interactions are absent when the circuit 
exhibits the double scroll attractor behavior as 
evidenced by statistically zero bicoherence. The 
tricoherence remains significantly non-zero pointing to 
the presence of cubic phase coupling and interactions. 
By contrast, when the circuit exhibits Rossler attractor 
behavior, both the bicoherence and the tricoherence are 
statistically significantly non-zero and both quadratic 
and cubic interactions are inferred to be important to the 
dynamics. 

b)

 

Harmonic Retrieval

 

In several signal processing applications, for 
instance in estimating the direction of arrival (DOA) of 
narrow-band source signals with linear arrays and in the 
harmonic retrieval problem, the estimation of the 
number of harmonics and the frequencies and 
amplitudes of harmonics from noisy measurements is 
frequently encountered. With real signals 𝑥𝑥(𝑛𝑛)

 

for the 
retrieval of harmonic in noise (RHN) problem, consider 
the system model is

 
                                                                                            

(34)

 

where the 𝜃𝜃𝑑𝑑 ’s denote random phases which are i.i.d. 
and uniformly distributed over (0,2𝜋𝜋)

 

, the 𝜔𝜔𝑑𝑑 ’s are 
unknown deterministic frequencies and the 𝑑𝑑𝑑𝑑 ’s are 
unknown deterministic amplitudes. The additive noise 
𝑤𝑤(𝑛𝑛)is assumed to be white or colored Gaussian noise 
with unknown spectral density. The goal of this problem 
is to estimate the number of signals p, the angular 
frequencies𝜔𝜔𝑑𝑑 ’s and the amplitudes

 

𝑑𝑑𝑑𝑑 ’s.

 

Second-order statistics based high resolution 
methods such as MUSIC (Multiple Signal Classification) 
combined with singular value decomposition work well 
to estimate the number of harmonics p

 

and their 
parameters if the additive noise is white.

 

However, these 
methods break down in the case of colored noise to 
overestimate the number of sinusoids by treating the 
colored noise as additional sinusoids. Higher-order 
statistics have been successfully applied to this problem 
as they show robustness to

 

additive Gaussian noise 
even when it is coloured. 

 

Third-order cumulants for 𝑥𝑥(𝑛𝑛)

 

equal zero; 
hence, this is an application where one must use fourth-
order cumulants. According to Swami and Mendel [16], 
the fourth-order cumulants of 𝑥𝑥(𝑛𝑛)

 

is a function of three 
lags. However, the diagonal slice of this cumulant is 
given as 

 

  
 

41

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
III

X
II

 I
ss
ue

  
  
 e

rs
io
n 

I
V

IV
Y
ea

r
  

 
(

)
A

  
2 0

13

© 2013  Global Journals Inc.  (US)

𝑦 𝑛 =  𝑎𝑖

𝑝

𝑖=1

sin 𝜔𝑖𝑛 + 𝜃𝑖 + 𝑤 𝑛 = 𝑥 𝑛 + 𝑤 𝑛 

(35)𝑐4
𝑦 𝜏1, 𝜏2 , 𝜏3 ≜ 𝑐4

𝑦 𝜏 = −
3

8
 𝑎𝑖

4

𝑝

𝑖=1

sin 𝜔𝑖𝜏 



 
 

  
 

The autocorrelation of 𝑥𝑥(𝑛𝑛)

 

is given by

 

  

                      (36)

 Except for a different scale factor, the fourth-order 
cumulants 𝑐𝑐4

𝑥𝑥(𝜏𝜏)

 

from equation (35) and (36) can be 
easily treated as an autocorrelation function of the 
following signal which is directly related to 𝑥𝑥(𝑛𝑛): 

 

          
(37)

 
Thus, for the RHN and DOA problem, the 

diagonal slice of fourth-order cumulant retains all the 
useful signal characteristics, and consequently, signal 
parameters can be estimated. Additionally, we show that 
the 1-D slice is identical with the autocorrelation of a 
related noiseless signal. 
c) Array Processing 

One of the most fundamental problems in 
signal processing is that of removing noise and 
interference from a received sensor signal. There are 
two general approaches. Single-sensor methods such 
as the celebrated Wiener filter enhance the signal by 
emphasizing frequencies with a high signal- to- noise 
ratio (SNR) while attenuating those with a low SNR. On 
the other hand, multichannel techniques employ an 
array of sensors that perform spatial discrimination or 
beamforming to aid in removing the unwanted noise. 
Array processing problems include: directional of arrival 
(DOA) determination, determination of number of 
sources, beamforming, estimation of the source signal, 
source classification, sensor calibration, etc., and the 
readers refer to [17] for an excellent introduction to array 
processing and its associated models. 

Although many novel and interesting array 
processing algorithms have appeared, higher-order 
statistics have been used to solve the array processing 
problem due to a number of reasons, namely: (1) 
Capon’s minimum-variance  distortionless response 
(MVDR) beamformer, that has been the starting point for 
both signal enhancement and high-resolution DOA 
estimation, requires very specific and detailed 
information about the so-called array steering 
vector(e.g., source steering angles, array geometry, 
receiver responses), information that is often not 
available, or if available is not given to a high degree of 
accuracy; (2)When additive noise is colored and 
Gaussian, a second-order statistics based high-
resolution  DOA algorithm, such as MUSIC, does not 
perform well, however a cumulant-based MUSIC 
algorithm does perform well; (3) most second-order 
statistics based beamformers assume that the received 
signals are not coherent, which rules out the important 
case of multipath propagation; cumulant-based 
beamformers can work in the presence of multipath[18].

 
Dogan et al used cumulants of received signals 

to estimate the steering vector of a narrowband non-
Gaussian desired signal in the presence of directional 
Gaussian interferers with unknown covariance structure. 
They assume no knowledge of the DOA information 
about the desired signal.  The desired signal could be 
voice speech, sonar and radar return

 

signal.

 
For radar return signal, consider an array of 𝑀𝑀

 
elements with arbitrary sensor response characteristics. 
Assume that the Gaussian interference signal, 𝑑𝑑(𝑡𝑡)

 

with 𝐽𝐽

 
number and the non-Gaussian desired signal, 𝑑𝑑(𝑡𝑡)

 

at 
center frequency, 𝑓𝑓0. The additive noise is assumed to 
be Gaussian with unknown covariance. Consequently, 
the array of 𝑀𝑀

 

elements measurements can be collected 
together to give the following model.

 𝒓𝒓(𝑡𝑡) = 𝒂𝒂(𝜃𝜃𝑑𝑑)𝑑𝑑(𝑡𝑡) + 𝐴𝐴𝐼𝐼(𝜽𝜽)𝒊𝒊(𝑡𝑡) + 𝒏𝒏(𝑡𝑡)

 

           (38)

 where 𝜃𝜃𝑑𝑑

 

is the

 

DOA of the desired signal, 𝒂𝒂(𝜃𝜃𝑑𝑑)

 

is the

 
array steering vector of the desired signal, 𝐴𝐴𝐼𝐼(𝜽𝜽)

 

is the

 
array steering matrix for the 𝐽𝐽

 

interference sources 𝑑𝑑(𝑡𝑡), 
𝜽𝜽

 

is a

 

𝐽𝐽 × 1

 

vector of DOA’s for the interferers, 𝒓𝒓(𝑡𝑡)

 

and 
𝒏𝒏(𝑡𝑡)

 

are the 𝑀𝑀 × 1 vector of received signals and 
Gaussian noises respectively.

 
The output of an MVDR beamformer can be 

expressed by Capon [20] as

 𝒚𝒚(𝑡𝑡) = 𝒘𝒘𝐻𝐻𝒓𝒓(𝑡𝑡) = [𝛽𝛽1𝑅𝑅−1𝒂𝒂(𝜃𝜃𝑑𝑑)]𝐻𝐻

 

                 (39)

 where constant 𝛽𝛽1

 

is a constant which maintains a 
specified response for the desired signal, 𝒘𝒘

 

denotes the 
weight vector of the processor and 𝑅𝑅

 

is the covariance 
matrix of 𝒓𝒓(𝑡𝑡). 

Now, by using the properties of cumulants 
which are described by Mendel [11] and the receiver 
model in equation (28), Dogan and Mendel show that

 𝒄𝒄 = 𝛽𝛽2𝒂𝒂(𝜃𝜃𝑑𝑑)

 

                                    (40)

 where 𝛽𝛽2

 

is a another constant. It is said that 𝒄𝒄

 

is a 
replica of the steering vector of the desired signal up to 
a scale factor 𝛽𝛽2.

 
Combining equation (39) and (40), it is shown 

that the cumulant-based MVDR beamformer output is

 𝑥𝑥(𝑡𝑡) = 𝒘𝒘𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑑𝑑𝑛𝑛𝑡𝑡
𝐻𝐻𝒓𝒓(𝑡𝑡) = [𝛽𝛽3𝑅𝑅−1𝒄𝒄]𝐻𝐻𝒓𝒓(𝑡𝑡)

 

         (41)

 where 
 
𝛽𝛽3 = (𝒄𝒄𝐻𝐻𝑅𝑅−1𝒄𝒄)−1

 At present, HOS has become attractive in array 
signal processing due to two additional reasons, namely 
(1) HOS can increase the effective aperture of an array, 
and (2) HOS can not only eliminate the effects of 
additive Gaussian noise, but it can also eliminate the 
effects of additive non-Gaussian noise.

 d)

 
Blind Deconvolution and Equilazation

 The blind deconvolution or equalization 
problem, deals with the reconstruction of the input 
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𝑐2
𝑦 𝜏 =

1

2
 𝑎𝑖

2

𝑝

𝑖=1

𝑠𝑖𝑛  𝜔𝑖𝜏 

𝑦1 𝑛 =  𝑎𝑖
2

𝑝

𝑖=1

sin 𝜔𝑖𝑛 + 𝜃𝑖 + 𝑤 𝑛 

sequence given the output of a linear system and 
statistical information about the input. Blind 



 
deconvolution algorithms are essentially adaptive 
filtering algorithms [17] designed in such a way that do 
not need the external supply of a desired response to 
generate the error signal in the output of the adaptive 
equalization filter whereas Classical deconvolution is 
concerned with the task of recovering an excitation 
signal, given the response of a known time-invariant 
linear operator to that excitation [19]. Blind 
deconvolution algorithm itself generates an estimate of 
the desired response by applying a non-linear 
transformation on sequences involved in the adaptation 
process. Detailed discussion on blind deconvolution 
can be found in [5].

 
 

 
 

Figure 14 : 

 

Block diagram of a baseband 
communication system subject to additive noise

 

Let us consider a discrete-time linear 
transmission channel with impulse response, ℎ(𝑛𝑛)

 

which 
is unknown and time-varying. The input signal 𝑥𝑥(𝑛𝑛)

 

is 
assumed to be independent and identically distributed 
(i.i.d) random variables with a non-Gaussian probability 
density function, with zero mean and variance. Initially 
the noise will not be taken into account in the output of 
the channel which can be written as from Figure 14.

 
 

  

(42)

 

Table 1 :

 

Summary of Developed Blind Equalization 
Algorithm Based on Higher-order Statistics

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 
 

 
 

 

 

 

 
  

 

 The goal of this problem is to restore 𝑥𝑥(𝑛𝑛)

 

from 
the received sequence 𝑥𝑥(𝑛𝑛)

 

to identify the inverse filter, 
𝑐𝑐(𝑛𝑛)

 

of the channel.

 From Figure 14, it is seen that the reconstructed 
signal 𝑥𝑥�(𝑛𝑛)

 

of the equalizer is given by 

 𝑥𝑥�(𝑛𝑛) = 𝑐𝑐(𝑛𝑛) ∗ 𝑥𝑥(𝑛𝑛) = 𝑐𝑐(𝑛𝑛) ∗ ℎ(𝑛𝑛) ∗ 𝑥𝑥(𝑛𝑛)            (43)

 It is achieved that the output reconstructed signal 𝑥𝑥�(𝑛𝑛)
 is

 
given by

 
𝑥𝑥�(𝑛𝑛) = 𝑥𝑥(𝑛𝑛 − 𝐷𝐷)𝑒𝑒𝑗𝑗𝜃𝜃

 
                          (44)

 
where 𝐷𝐷 and 𝜃𝜃

 
are a constant delay and a constant 

phase shift respectively. The convolution sum of the 
equalizer function and channel response function can 
be written as 

 
𝑐𝑐(𝑛𝑛) ∗ ℎ(𝑛𝑛) = 𝛿𝛿(𝑛𝑛 − 𝐷𝐷)𝑒𝑒𝑗𝑗𝜃𝜃                     (45) 

where 𝛿𝛿(𝑛𝑛) is the Kronecker delta function. Taking the 
Fourier transform of equation (45) and we obtain 

𝑈𝑈(𝜔𝜔)𝐻𝐻(𝜔𝜔) = 𝑒𝑒𝑗𝑗 (𝜃𝜃−𝜔𝜔𝐷𝐷 )                         (46) 

Hence, the objective of the equalizer is to 
achieve a transfer function 

𝑈𝑈(𝜔𝜔) = 1
𝐻𝐻(𝜔𝜔)

𝑒𝑒𝑗𝑗 (𝜃𝜃−𝜔𝜔𝐷𝐷 )                         (47) 

In general, 𝐷𝐷 and 𝜃𝜃 are unknown. However, the 
constant delay 𝐷𝐷 does not affect the reconstructed of 
the original input signal, 𝑥𝑥(𝑛𝑛). The phase constant, 𝜃𝜃 

can be removed by a decision device. 

Blind equalization algorithms based on higher-
order statistics (HOS) perform a nonlinear 
transformation on the input of the equalizer filter. This 
nonlinear transformation is memory nonlinearity and it is 
identical to the generation of higher-order cumulants of 
the received channel data. For more details, the readers 
are referred to the following table 1, about the various 
algorithms of blind equalization based higher-order 
statistics. 

x(n)

Reconstructed
Sequence

Received Sequence

w(n)

Input
Sequence

-

Channel Equalizer

u(n)
y(n) x(n)

h(n)

  
 

43

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
III

X
II

 I
ss
ue

  
  
 e

rs
io
n 

I
V

IV
Y
ea

r
  

 
(

)
A

  
2 0

13

© 2013  Global Journals Inc.  (US)

𝑦 𝑛 =  𝑛 ∗ 𝑥 𝑛 

=  𝑥 𝑛  𝑛 − 𝑖 

+∞

𝑖=−∞

=   𝑛 𝑥 𝑛 − 𝑖 

+∞

𝑖=−∞

Develop

algorithm

Significant

work

Related

Reference

Tricepstrum

Equalization

Algorithm

(TEA)

[Hatzinako 
and 

Nikias,1991]

Power 
Cepstrum and 
Tricoherence

Equalization

Algorithm

(POTEA)

Recovers the Fourier 
magnitude of the 
equalizer using 
autocorrelations and 
its Fourier phase 
fourth-order 
cumulants and the 
cepstrum of the 
Tricoherence.

[Bessios 
and Nikias, 

1991]

Cross-
Trispectrum 
Equalization 
Algorithm

(CTEA)

Extension of TEA to 
the multichannel 
case using the cross-
cumulants of the 
observed signals.

[Brooks 
and Nikias, 

1991]

Estimate the 
equalizer  impulse  
response  by using 
the complex 
cepstrum of the 
fourth-order 
cumulants of the 

synchronously 
sampled received 
signal.



 
e) Narrow and Wide band Interference Cancellation 

When a modulating signal is corrupted by an 
additive interference and an auxiliary reference signal 
which is highly correlated with the interference, the 
elimination of the interference is accomplished by an 
adaptive noise canceller using fourth-order statistics 
procedure which is shown in Fig. 4. The objective of an 
adaptive noise canceller is to produce a system output 
that best fits with the modulating signal. A conventional 
ANC which is called adaptive noise canceller second-
order statistics (ANC-SOS) algorithm cannot be applied 
in practice due to two major difficulties, namely (1) the 
ANC-SOS filter is affected directly by uncorrelated 
noises at the primary and reference inputs, (2) the ANC-
SOS algorithm is problem dependent, i.e., it is very 
sensitive to both the reference signal statistics and the 
choice of step size. 

Figure 15 : 
 
Block diagram of adaptive interference 

canceller based on higher-order statistics
 

Let 𝑥𝑥(𝑛𝑛) and 𝑧𝑧(𝑛𝑛)
 
denote the received signal 

and interference signal sequence respectively, they are 
both sampled

 
in chip rate, satisfying 

 

𝑥𝑥(𝑛𝑛) = 𝑠𝑠(𝑛𝑛) + 𝑑𝑑(𝑛𝑛) + 𝑛𝑛𝑝𝑝(𝑛𝑛)

 

                   (48)
 

𝑧𝑧(𝑛𝑛) = 𝑤𝑤(𝑛𝑛) + 𝑛𝑛𝑓𝑓(𝑛𝑛)

 

                          (49)
 

where 𝑠𝑠(𝑛𝑛)
 

is the modulating signal, 𝑑𝑑(𝑛𝑛)
 

is the

 

narrowband interference signal, and 𝑤𝑤(𝑛𝑛)
 

is a zero-
mean non-Gaussian reference signal highly correlated 
with the interference. The measurement noise 𝑛𝑛𝑝𝑝(𝑛𝑛)

 

and  
𝑛𝑛𝑓𝑓(𝑛𝑛)

 

are stationary, zero-mean, white or colored 
Gaussian process. The interference can be described 
by the interference signal as  

 
                   

(50)

 

 

Let

 

𝑥𝑥(𝑛𝑛)

 

be an adaptive filter output

 

 

                    
(51)

 

 

where 𝑁𝑁

 

denotes the number of taps and {ℎ(𝑛𝑛),𝑛𝑛 =
0,1, … ,𝑁𝑁 − 1}

 

is the adaptive filter coefficients. The 

system output  𝑒𝑒(𝑛𝑛)

 

is an evaluate of modulating signal 
𝑠𝑠(𝑛𝑛), which is given by 

 

𝑒𝑒(𝑛𝑛) = 𝑥𝑥(𝑛𝑛) − 𝑥𝑥(𝑛𝑛)

 

                      (52)

 

f)

 

Time-Delay Estimation

 

Time-delay estimation is one of most important 
method for broad-band source bearing and range 
calculation.

 

Assume that 𝑥𝑥(𝑛𝑛) and 𝑥𝑥(𝑛𝑛)

 

are

 

two discrete 
time signals which are spatially separated sensor 
measurements that satisfy the following equations

 

𝑥𝑥(𝑛𝑛) = 𝑠𝑠(𝑛𝑛) + 𝑤𝑤1(𝑛𝑛)

 

                               (53)

 

𝑥𝑥(𝑛𝑛) = 𝐴𝐴𝑠𝑠(𝑛𝑛 − 𝐷𝐷) + 𝑤𝑤2(𝑛𝑛)

 

                          (54)

 

where 𝑠𝑠(𝑛𝑛)

 

is an unknown broad-band source bearing 
signal, 𝑠𝑠(𝑛𝑛 − 𝐷𝐷)

 

is 𝐷𝐷

 

unit delay version of 𝑠𝑠(𝑛𝑛) and 
𝑤𝑤1(𝑛𝑛)

 

and 𝑤𝑤2(𝑛𝑛)

 

are unknown noise source. The basic 
approach to solve the time delay estimation problem is 
to shift measurement sequence  𝑥𝑥(𝑛𝑛)

 

with respect to 
𝑥𝑥(𝑛𝑛)

 

by taking cross correlation technique and we 
obtain.

 
 

 

 

 

            

 

(55)

 
 

Equation (53) and (54)

 

provided that 𝑤𝑤1(𝑛𝑛)

 

and

 

𝑤𝑤2(𝑛𝑛)

 

are zero-mean stationary signals which are 
independent with each other with 𝑠𝑠(𝑛𝑛)

 

and 𝑐𝑐2
𝑠𝑠(𝜏𝜏) =

𝐸𝐸{𝑠𝑠(𝑛𝑛)𝑠𝑠(𝑛𝑛 + 𝜏𝜏)}

 

is the covariance sequence of 𝑠𝑠(𝑛𝑛). In 
practical situations, due to finite length data records and 
noise source that are not exactly independent, the 
𝑐𝑐𝑥𝑥𝑥𝑥 (𝜏𝜏)

 

does not necessary to show peak at 𝜏𝜏 = 𝐷𝐷

 

at 
time delay

 

𝐷𝐷. It is well known to [21], Carter said that 
various window technique such as ROTH, SCOT, PHAT, 
Eckart and Hannan-Thompson have been suggested to 
smooth the cross-correlation function in order to 
improve the quality of time delay estimation.

 

g)

 

Classification

 

Signal classification can be done working 
directly with the signal samples, or with the attributes 
related to them. It is difficult to handle additive colored 
Gaussian noise with traditional approaches. A new 
approach [22] that is blind to additive colored or white 
Gaussian noise, works with vector of cumulants or 
higher order spectra, and extends correlation-based 
classification to HOS-based classification. It is based on 
the important fact that estimates of cumulants or higher 
order spectra are asymptotically Gaussian. 
Consequently, one is able to begin with an equation like

 

Computation

algorithm

Adaptive

HOS

-y(n)

HOS

+

e(n)

-

Computation
{h(n)},

+

n=0,1,...,N

z(n)

s(n)
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𝑖 𝑛 =  𝑔 𝑘 𝑤 𝑛 − 𝑘 

+∞

𝑘=−∞

𝑦 𝑛 =   𝑘 𝑧 𝑛 − 𝑘 

𝑁−1

𝑘=0

𝑐𝑥𝑦  𝜏 = 𝐸 𝑥 𝑛 𝑦(𝑛 + 𝜏) = 𝐸 𝑥 𝑛 + 𝜏 𝑦(𝑛) 

=  𝑥 𝑛 𝑦 𝑛 + 𝜏 

+∞

𝑛=−∞

=  𝑥 𝑛 + 𝜏 𝑦(𝑛)

+∞

𝑛=−∞

= 𝐴𝑐2
𝑠 𝜏 − 𝐷 , − ∞ < 𝜏 < +∞

‘Estimate of HOS = HOS + estimation error’ In which 
the “estimation error” is asymptotically Gaussian and 
extend traditional classification or detection procedures 



 

derived from the original data. Consequently, higher-
order statistics now provide new attributes to be used in 
signal classification problems including detection.

 

By minimizing a distance measure in the 
cumulant domain Tsatsanis et al built shift-invariant and 
noise-insensitive classifiers

 

which are summarize in 
table 2. For more details, the readers are referred to

 

[23] 

IV.

 

Application to Communication 
Systems

 

Wireless single input- single output (SISO) 
techniques like BPSK, OQPSK, MSK, GMSK are used 
commonly in modern communication

 

[24]. Most 
communication signals are corrupted by noise, thus it 

seems particularly important to detect signals more 
effectively at low SNR. There are many algorithms of 
signal detection and recognition based on higher-order 
statistics now, but few at low SNR. Furthermore, there 
are fewer algorithms based on higher-order statistics at 
low SNR with non-Gaussian background.

 

The bi-spectrum has been used in a technique 
[24] to suppress Gaussian noise for increasing the 
channel capacity (bit/s) as well as  to test the inhibition  
effect of higher order statistics and the detection effect 
of BPSK, OQPSK, MSK, GMSK signals based on bi-
spectrum in different SNR.

 
Using the third order 

cumulant, Zhong Zhang et all used Matlab software
 
[24] 

for finding the detection rate, by assuming following 
parameters:

  

 
 

Table 2 : Summary of Object CLASSIFYING BASED on Higher-Order Statistics  
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Classification Block diagram Algorithm‟s procedure

Shift-invariant 
Classification

Step 1. Build a bank of filters
{𝑚 (𝑖)}𝑖=0

𝑁 , where each one is 
matched to a template 𝑚 (𝑖)= 
𝑠𝑚 (𝑁 − 𝑖), 𝑚 = 1, … , 𝑀.

Step 2. Filter 𝑥(𝑖) through these 
filters and compute 𝑦3𝑚 (0,0) at 
the output of each filter.

Step 3. Add the bias term 
1

2
𝐸3𝑚

at  the  output of each matched 
filter to compensate for templates 
with unequal triple correlation 
energies.

Step 4. Select the maximum, 
say 

𝑚∗, to declare 𝐻𝑚 .

Rotation- and 
Scaling- invariant 

Classification

Step 1. Transform all templates 
to log-polar grid and design a 
bank of filters matched to the 
transformed templates.

Step 2. Transform the input 
image to log-polar grid.

Step 3. Apply the translation 
invariant algorithm to the 
transformed image.

Shift, Rotation 
and Scaling-

invariant 
Classification

Step 1. Compute the zeroth 
slice 

𝑥3(𝑖1, 0) of the triple correlation 
of 𝑥𝑖 .

Step 2. Sample it in a log-polar 
grid to form 𝑥3[ log 𝜌, 𝜃 ; 0].

Step 3. Apply the rotation-
scaling invariant algorithm to 

𝑥3[ log 𝜌, 𝜃 ; 0].

h1_log_
pol

hm_log_
pol

hM_log_
pol

log
_pol

M

A

X

x(p
,θ)

x(m,
n)

c
3y
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hm_log_
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hM_log_p
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pol
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c
3y
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h1(i)

MF

hM(i
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M
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(n)
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1/2
E3(i)

1/2E3

(M)
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(i)
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)

c3y1(0,

0)

c3yM(0,

0)

m
m

.

.

.

.

.

.

to this information. Working with a vector of higher-order 
statistics is in the spirit of using attributes which are 



 
Table 3 : Bi-Sectrum Processing Effect of BPSK, 

OQPSK, MSK, GMSK Signal at Different SNR 

Communication 
Signal Processing 

SNR 
in dB 

Detection 
Rate  

BPSK
 

(Binary Phase Shift 
Keying)

 

0 100%  
-4  100%  
-8  100%  

-12  95%  
-14  65%  

OQPSK
 

(Orthogonal 
Quadratic Phase Shift 

Keying)
 

0 100%  
-4  100%  
-8  100%  

-12  80%  
-14  60%  

MSK
 

(Minimum Phase 
Shift Keying)

 

0 100%  
-4  100%  
-8  100%  

-12  75%  
-14  60%  

GMSK
 

(Gaussian Minimum 
Shift  Keying)

 

0 100%  
-4  100%  
-8  100%  

-12  70%  
-14  65%  

 Sample points:
 

3840, Carrier frequency:
 

150000 Hz, 
Sampling frequency:

 
1200000Hz, Code rate:

 
125000, 

SNR: -14db, which is shown in table 3.
 

On the other hand, table 3. shows that the 
detection rate decreases with SNR decreased. On the 
other hand, four signals can achieve the desired 
detection effect at 0,-4,-8 db and detection rate starts to 
decline from -12db. According to the different signals 
and different intensity of background noise, an effective 
detection rate can be obtained using higher-order 
cumulant. 

Li Taijie et al proposed a Genetic algorithm 
which is independent of both noise source and 
reference signal as well as HOS which can preserve 
information of non-Gaussian stationary random process 
[25].Compare with the adaptive filters based on second- 
order statistics, the HOS and GA-based filter can reject 
the interference more efficiently and is independent of 
uncorrelated Gaussian noise. So it is important to obtain 
an algorithm which is independent of both uncorrelated 
noise sources and the statistics of the reference signal. 
For this purpose, D.C. Shin and C.L. Nikias [26] have 
introduced an adaptive scheme based on HOS for 
narrow band interference rejection. 

Besides, Spread spectrum is itself a powerful 
technique to mitigate multipath propagation but when, 
as in Cellular CDMA (Code Division Multiple Access), 
bandwidth limitations are consequent to system design 
considerations, other counter measures must be 

adopted [30], 31], [33]. Multipath propagation degrades 
system performance not only because it introduces 
intersymbol interference (ISI) but also because it 
deteriorates the orthogonality property of the spreading 
codes. To overcome this limitation, Massimiliano 
Martone [27] studied a cellular direct sequence spread 
spectrum CDMA system which seems to be attractive 
due to numerical stability and computational complexity 
based on fourth order cumulants with respect to TDMA 
and FDMA. 

In many applications, it is desired to extract 
some information from a signal corrupted by 
multiplicative noise. One such application lies in mobile 
communications where the transmitted signals are 
bandlimited, frequency or phase-modulated signals, 
𝑇𝑇𝑥𝑥(𝑡𝑡)

 
is given by 

𝑇𝑇𝑥𝑥(𝑡𝑡) = 𝐴𝐴𝑒𝑒𝑗𝑗�2𝜋𝜋𝑓𝑓0𝑡𝑡+𝜙𝜙(𝑡𝑡)�                          (56) 

where 𝜙𝜙(𝑡𝑡) 
represents the baseband signal, 𝑓𝑓0

 
is the

 

carrier frequency and A is the constant amplitude of the 
transmitted signal. The mobile radio channel is a time-
varying multipath channel and is subject to physical 
propagation path loss [28].The time-variations are 
caused by the medium changes as the vehicles moves. 
The propagation losses are related to both the 
atmospheric propagation and the terrain configuration. 
The multipath aspect is caused by different scatterers 
and reflectors such as buildings or trees that surround 
the mobile unit which is shown in Figure 16.

 

As a result of these propagation phenomena in 
a narrow-band transmission, where narrow-band is 
defined with respect to the coherence bandwidth of the 
channel [22], the received signal 𝑅𝑅𝑥𝑥(𝑡𝑡) 

is given by:
 

𝑅𝑅𝑥𝑥(𝑡𝑡) = 𝐴𝐴𝑒𝑒(𝑡𝑡)𝑒𝑒𝑗𝑗�2𝜋𝜋𝑓𝑓0𝑡𝑡+𝜙𝜙(𝑡𝑡)+𝜓𝜓𝑓𝑓(𝑡𝑡)�
 
                  (57)

 

where )(te and 𝜓𝜓𝑓𝑓(𝑡𝑡)
 

are respectively a Rayleigh 
distributed random amplitude modulation signal and a 
uniformly distributed random phase. 

 

Both
 

)(te and 𝜓𝜓𝑓𝑓(𝑡𝑡)
 
affect the performance of 

the receiver which results in an increase of bit-error rate. 
Current techniques for reducing the effect of the 
Rayleigh multiplicative noise are based on the use of 
diversity techniques,[28].

 
As a matter of fact, a new 

cost-effective method based on Time-varying Higher 
Order

 
Spectra (TV-HOS), particularly the Wigner-Ville 

Trispectrum (WVT) is proposed for optimal recovery of 
the information contained in the signal without use of 
diversity techniques in [29].
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Figure 16  :  Multipath Fading Phenomenon 

For non-stationary random signal, Time-Varying 
Higher-Order Spectra (TV-HOS) extends the class of 
Polynomial Wigner-Ville Distributions (PWVD). The k-th 
order Wigner-Ville spectrum of a random signal 𝑥𝑥(𝑡𝑡) is 
defined as 

                 
(58)

 

where 𝑚𝑚𝑥𝑥
𝑘𝑘(𝑡𝑡, 𝜏𝜏)

 

represents a specific slice of the time-
varying k-th order moment function of 𝑥𝑥(𝑡𝑡)

 

and is 
expressed as

 

  

 

(59)

 

where (𝜆𝜆1, … , 𝜆𝜆𝑘𝑘)

 

determines the slice, * represents the 
complex-conjugate operator, 𝑃𝑃𝑑𝑑+1[. ]

 

is the complex 
conjugate operator and identity operator if i is odd and 
even respectively, and 𝐸𝐸(. )

 

is expectation function.

 

For 𝑘𝑘 = 4, the k-th order Wigner-Ville spectrum 
converts to Wigner-Ville Trispectrum which is defined as

 

 

           

(60)

 

where 𝑊𝑊𝑥𝑥
4(𝑡𝑡, 𝑓𝑓)

 

is the fourth-order Polynomial Wigner-
Ville Distribution (PWVD) function of 𝑥𝑥(𝑡𝑡)and 𝑀𝑀𝑥𝑥

4(𝑡𝑡, 𝑓𝑓)

 

is 
referred to as moment-based Wigner-Ville Trispectrum 
(WVT).

 

In [29] this moment based WVT which is 
described in equation (48), in particular, is successful to 
recover the spectral characteristics as well as optimum 
estimation of the instantaneous frequency (IF) of the 
signals for increasing the system performance.

 
 
 

V. Potential of Hos for Further 
Applications 

SISO systems are used commonly in modern 
communication system owing to their reduced cost and 
complexity. But most communication signals encounter 
degradations in channel (e. g. scatters and reflectors 
such as buildings and trees) and it is particularly 
important to detect signals effectively at low SNR.  

MIMO systems show promise in this context.  It 
may be possible to use HOS to analyze MIMO system 
performance taking mutual electromagnetic coupling of 
antenna elements into consideration. 

Non-stationary and cyclostationary signal 
analysis with HOS-based time frequency representa-
tions can reveal information on sub-manifolds in higher 
dimensional frequency spaces that offer greater SNR 
pathways in available channels. It can lead to design of 
coding techniques that may be superior to those based 
on second order information theory concepts and 
channel capacity limits. 

VI. Conclusion 

Regardless of the use of diversity or spatial 
multiplexing technique, the main drawback of any MIMO 
system is increased complexity and cost. Due to this 
reason, there is now great interest in Higher Order 
Spectra based schemes. HOS can be applied in 
transmitter section, receiver section or on both sides 
and have the potential to retain the performance 
improvement similar to that of a full complexity MIMO 
system at reduced complexity and cost. In addition, 
spectrum estimation techniques have proved essential 
to the creation of advanced communication systems. 
These techniques only use second-order statistical 
information, which means that we have been assuming 
that the signals are inherently Gaussian. Most real –
world signals are non Gaussian. It is no wonder, 
therefore, that spectral techniques often have serious 
difficulties in practice. For this reason, there is a need for 
a thorough literature review and original innovations in 
this area with emphasis on wireless communication and 
pattern recognition and so on.  

There is much more information in a stochastic 
non-Gaussian or deterministic signal than conveyed by 
its auto- correlation or spectrum. Higher-order spectra, 
which are defined in terms of the higher-order statistics 
of a signal, contain this additional information.  

Signal processing algorithms based on higher- 
order spectra are now available for use in commercial 
and military applications. The emergence of low cost 
very high speed hardware chips and the ever growing 
availability of fast computers now demand that we 
extract more information than we have been doing in the 
past from signals, so that better decisions can be made. 
All of the new algorithms that have been developed 
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M𝑥
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𝑖=1
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4  
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𝑥∗ 𝑡 − 𝜏

4  
2
 

+∞

−∞
𝑒𝑗2𝜋𝑓𝜏 𝑑𝜏



 
using higher-order spectra are application driven. That is 
why higher order spectra (HOS) are an attractive 
scheme for the above mentioned field. 
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