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Rotating Light House Effect 
R. Rajamohan (Retd.) α & A. Satya Narayanan σ 

Abstract  -  We clarify as to how a precession period appears 
in the analysis of periodic phenomenon in Astrophysics. The 
observed redshift that is related to this phenomenon is shown 
to be 2a/V = 2 / T, where ‘a’ is the relative acceleration 
between the emitter and receiver and ‘V’ the relative transverse 
velocity. 

We find that the Hubble relation can equally well be a 
consequence of galaxies rotating differentially around a 
common center of mass. It is shown that New-tonian 
mechanics can account for all major anamolies quoted 
against it when space-time relationship involving acceleration 
is properly taken into account. 

I. Introduction 

n continuation of our earlier papers (Rajamohan and 
Satya Narayanan [1], [2]) and references therein, we 
derive in section 4, a direct solution for the rate of 

change of redshift for an accelerating observer. This 
effect is also shown to account for the observed redshift 
from the center of the Sun’s disk. 

II. Relation Between Periods 

In this section we introduce the simple concept 
of a ro  tating  light source. Let us assume that the 
period of a rotating light source be Pe (need not be 
unity). Also the distance between two consecutive 
pulses is CPe, where C is the velocity of light. The 
distance D0 travelled by the Nth pulse to meet the 
receiver will be NCPe. 

 

 
(1)

 
Here t0

 
is the time. The period Pe

 
is related to 

the
 
distance travelled and the number of pulses by the 

relation
 

 

 

(2)

 For an observer in relative motion, the period is given
 
by

 

 

 

(3)

 Here 

  

is the average velocity. It is easy to see that

 

 (4)

 

 
(5)

 

Thus for uniform motion 
  

(6) 
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Also

 
 
 
 

 

(7)

 

For an accelerating observer, we can write

 
 
 
 

 

(8)

 

Here we wish to make an important statement 
about

 

the periods and period derivatives. For a moving 
observer with uniform velocity V, the difference in the 
periods at different time intervals will remain the same.

 

This would imply that the variation in the periods, or

 

the 
period derivatives would simply be identically zero.

 

However, for an

 

accelerating observer, the difference in

 

the periods at different time intervals would be different.

 

Such a difference would produce period derivatives. It is

 

important to realize that a pulse which has met an accel-

 

erating observer who has moved CPe

 

kms, an

 

additional

 

time interval of Pe

 

seconds has to be accounted for. This

 

additional time interval Pe

 

will contribute significantly

 

to 
period derivatives.

 

The first term in the above equation is the contri-

 

bution due to uniform motion, while the second term

 

contributes to the change in the period due to acceler-

 

ation of the moving observer, as Pe

 

seconds has to be

 

accounted for every CPe

 

km due to acceleration. As

 

mentioned above the contribution to the period deriva-

 

tive would come from the second term.

 

For an accel-

 

erating observer, 

 

is the average velocity so that the

 

contribution due to acceleration would be of the order

 

of 
2 . A simple calculation would yield the following

 

relation for the variation in the period.

 
 

 

(9)

 
 
 
 
 

 

(10)

 

Thus

 
 

I 
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D0 = NCPe = Ct0

Pe =
d0

NC
=

t0
N

P =
Pe

(1 − V̄ /C)

V̄

NP = NPe +
V̄

C

Pe

(1 − V̄ /C)
N

= NPe +
V̄ Pe

C − V̄
N

P = Pe +
Pe

N

PObserved = Pe + △Pe = Pe +
Pe

N

P = Pe +
1

2

2Pe

N

V̄

V̄

Ṗ =
2Pe

N

=
2P 2

e

t0
=

2CP 2
e

D0

Ṗ

Pe
=

2

t0

T =
d0

V̄
+ [

d0 + (d − d0)]

C

(11)

In terms of time, we can write as follows: The 
total time interval T,

(12)
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contains N -

 

intervals of 

  

so that

 
 
 

 

(13)

 
 

Therefore the period derivative is

  
 
 
 

(14)

 
 

 

(15)

 
 
 

It is important to realise that when we calculate 
the

 

variation in the periods, we have to divide the period

 

with time intervals (t

 

− te) and then subsequently

 

take 
the limit of te

   

0. Whenever we say that we  are

 

measuring time, one must remember that we actually

 

measure time intervals. A more detailed derivation of

 

the 
relation between the period and period derivatives

 

is 
provided in section 4. The simple relation between

 

the 
periods and period derivative have interesting 
applications in astrophysics as discussed in the 
following sections. We first clarify in section 3, as to how 
a precession

 

period appears in the observed periodic 
phenomenon in

 

Astrophysics. As the two phenomena 
are related, it is

 

shown that the observed result can be 
accounted for by

 

differential rotation of objects around a 
common center

 

of mass.

 

III.

 

Precession

 

Let two objects A (e.g.

 

Earth) and B (e.g. 
Mercury) revolve around a common center of Mass (e.g. 
Sun) with

 

periods PA

 

and PB, respectively. Let at time t = 
0,

 

A, B and C be aligned and let this line point to a 
distant object (quasar). The difference in angular motion

 

will again lead to a similar alignment given by the well

 

known Synodic period PS. However, this alignment will

 

be pointing towards a different distant object. Let us ask

 

the question when will a given alignment with respect to

 

the same distant object repeat itself. The question is,

 

considered as two clocks with two different periods,

 

were

 

to start in phase at t

 

= 0, what would be the time 
interval taken for them to come in phase again.

 

Let PL

 

be this time interval. PL

 

is obviously re-

 

lated to the relative acceleration in the angles involved

 

for which a simple solution can be found.

 

In the synodic period PS

 

given by

   

(16)

 
 
 

Object A moves through an angle    

 

given by

 
 
 

 

(17)

 
 

In the same time interval, object B moves 
through

 

an angle

 
 
 

 

(18)

 

Thus

 
 
 
 

 

(19)

 

Squaring the above equation, we get

 
 
 
 

 

(20)

 

Hence two hypothetical objects moving along 
the

 

same circle with   

 

and             

 

will  be  aligned in 
phase

 

again and again at intervals of     seconds. He- 
nce this

 

precession period will be reflected in the data as

  
 

 

(21)

 
   
 

(22)

 
 
 

 

(23)

 
 

This is in good agreement with the observed 
value of

 

43 arcsec/century. Orbital inclinations and 
eccentricity

 

will lead to higher order terms.

 

A similar situation occurs in the case of binary 
pulsars. In the determination of orbital paramaters of a 
binary system for example, the position angle of the 
semimajor axis and the time of periastron passage 
assumes

 

that the observer is stationary. The relative 
motion of

 

the Sun is not taken into account. This effect 
of rotation

 

of the axis leads to a precession of the orbit 
(spurious)

 

when not taken into account. The signal 
emitted [(e.g)

 

from velocity maximum] towards the Sun 
cannot repeat

 

after one orbital period unless the ratio P-
orbital to P-emission is an integer. The time required for 
such a

 

repetition can be calculated as follows.

 

The height through which the pulsar drops in its 
orbit

 

is (1             

 

in      seconds, where ‘V’

 

is the 
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[
T

N
]N = [

T0

N
]N + [

P̄

N
]N2

P̄d/C

Ṗ =
Pe

T0(1 − V/C)

As V → 0

Ṗ =
Pe

T0

→

2π/PS = 2π/PB − 2πPA

△θ

△θ =
VA

RA
· PS

2π + △θ =
VB

RB
· PS

2π = ( ˙θB − ˙θA)PS = ˙θrel · PS

2π =
( ˙θB − ˙θA)2

2π
· P 2

S =
˙θrel

2

2π
· P 2

S

θ̇ θ̇2/2π

P 2
S

2π

P 2
S

/ per second

=
2π

1014
× 3.1 × 109 × 2.063 × 105arcsec/century

≈ 41 arcsec/century

/2)V 2P 2
e /D Pe

orbital velocity and ‘D’ is the radius of the orbit. For a 
circular orbit, the number of divisions of                 (1                    
in ‘4D’ is

(24)

This would be the time interval needed for 
repetition of the same phenomenon in phase; for the 
signal to originate from the same position in its orbit.
The observed precession per pulse would then be

(25)

/2)V 2P 2
e /D

8D2

V 2P 2
e

2πV 2P 2
e

8D2
=

πV 2P 2
e

4D2
=

π3V 2P 2
e

4π2D2
=

π3P 2
e

P 2
orb

This result is in good agreement with the 
observed value of precession of binary pulsars. We can 
obtain the same result by introducing   2 as a scale 
factor. As acceleration  is                    ,  the  precession 
observed per pulse would be

π/

V 2P 2
e /D2



  
   

  
 
 

 
 

  
 

 
 

 
  

 
 

 
  

 
 

 

(26)

 

IV.

 

Redshifts

 

a)

 

Redshift for unit light travel time

 

Transverse motion involves acceleration given 
by (V

 

2/d

 

)

 

where ‘V’

 

is the relative transverse velocity, ‘d’

 

is the

 

distance that separates the emitter and the 
receiver

 

at

 

time t = 0.

 

Let an accelerating observer starting from x = 0 
be at

 

station A at time tA

 

and station B ahead at time tB. 
Let

 

XB

 

−

 

XA

 

= CPe

 

kms. Let one of the signals emitted at

 

intervals of ‘Pe’

 

seconds by a relatively stationary emitter

 

meet the observer at station B at time t1. The next

 

signal 
will be ‘CPe’

 

kms behind at station XA

 

as XB

 

−

 

XA

 

= CPe 

where ‘C’

 

is the signal speed.

 

Let this second signal meet the moving 
observer at

 

X2

 

at time t2. Then the observed period is 
(t2−t1). The

 

time ‘t2’

 

must satisfy the following two 
relations.

 
 
 

 

(27)

 

as

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(28)

 

as

 
 
 
 
 

Subtracting equation (23) from equation (24) we get

 
 
 
 
 
 
 
 
 
 
 
 

as

 
 
 
 
 

Therefore

 
 
 

 
 

(29)

 
 
 
 
 

 

(30)

 

It is important to note that the time interval 
(t2−t1)

 

must satisfy the condition
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A

  
2 0
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1

2
· π

2
· V 2P 2

e

D2

t2 = ta +
X2 − Xa

(1/2)a(t2 + tA)

X2 − Xa = (1/2)a(t22 − t2A) = (1/2)a(t2 + tA)(t2 − tA)

_
2

1

x  ,t x  ,t2

x  ,t2   2A   1

B

x  ,t

Ax  ,t a  1  2

x=  at 2

∆  ∆x=c   t

t2 = t1 +
X2 − Xa

C

C(t2 − t1) = X2 − Xa

(t1 − ta) − X2 − Xa

(1/2)a(t2 + tA)
(1 − (1/2)a(t2 + tA)

C
) = 0

(t1 − ta) = (t2 − tA)(1 − (1/2)a(t2 + tA)

C
)

X2 − Xa

(1/2)a(t2 + tA)
= (t2 − tA)

(t2 − tA) =
(t1 − tA)

(1 − (1/2)a(t2+tA)
C )

(t2 − t1) =
(1/2)a(t2 + tA)

C

(t1 − tA)

(1 − (1/2)a(t2+tA)
C )

(t2 − t1) =
V

C
(t2 − tA)

where is the average velocity in the time interval
(t2− tA).
For uniform motion

or

and

When acceleration is involved the same 
relationship is as that given by equation (30).

Setting tA = 0, we get

V̄

(t2 − t1) =
V

C
· CPe

V (1 − V/C)

(t2 − t1) =
V

C
· (t1 − tA)

(1 − V/C)

X2 − XA =
X1 − Xa

(1 − V/C)

(t2 − t1) = P =
(1/2)a(t2 + tA)

C
· (t1 − tA)

(1 − (1/2)a(t2+tA)
C )

P =
(t2 + tA)

(t1 + tA)
· Pe

(1 − (1/2)a(t2+tA)
C )

P =
t2
t1

· Pe

(1 − (1/2)a(t2+tA)
C )

P =
t1 + (t2 − t1)

t1
· Pe

(1 − (1/2)a(t2+tA)
C )

P =
Pe

(1 − (1/2)at2)
C )

+
PPe

(1 − (1/2)a(t2+tA)
C )t1

(31)

(32)

Hence the rate of change of P is

Ṗ ≈ 2Pe/t (33)

b) The Redshift in General
Let d0 be the distance between the emitter and 

the receiver at time t = 0. If the receiver and emitter are
relatively stationary, the observed period PE will be the
same as the emitter period. If the observer is moving
towards or away from the receiver, with uniform ve-
locity, the observed period would be Pe /(1 + V/C) or

Figure 1 : The relative positions of the two signals



                     
  

 
 
 
 

 
 
 
 
 

 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 

  
 
 
 

  
 
 
 
 
 

 
 
 

 
  

 
  

  
 

  
  

 
  

Pe/(1−V/C), respectively. When acceleration is involved, 
the common error made is to assume that the

 

rate of 
change of observed period is 

 

e /C.

 

We

 

will show 
that this is not true and 

 

is given by 2

 

The 
simplest way of approach is V (average)   T= CPe

 

where 
V is the average velocity in the time interval    T.

 

 
 

  

(34)

 

That is, as the observer accelerates, the time 
interval

 

in CPe

 

kms is smaller and smaller and is a 
function of

 

time. The similarity with frequency and 
wavelength of

 

light is to be noted.

 
 
 
 

(35)

 

Consider an observer moving away from the 
emitter

 

and is at a distance d0

 

at time T0

 

from the origin 
(d =0).

 
 
 

 

(36)

 

Let one of the signal meet the receiver at d0

 

at 
time

 

T0

 

and let the nth signal be at d = 0 at T

 

= T0. Let 
the

 

nth signal meet the receiver at a distance d1

 

at time 
T1.

 
 
 

and

 
 
 

(37)

 
 

 
 
 

(38)

 

where  

 

is the average velocity in the time interval

 

0 to 
T1. and C(T1

 

−

 

T0) = d1. Therefore

 
 
 

 

(39)

 

Since the number of signal n occupies the 
same space

 

d0, between two signals, the number of

 

seconds on an

 

average is CPe/(1/2)aT0.

 

The relationship is of the kind

 
 
 

where ‘t’

 

is the time interval corresponding to the

 

space 
interval X. Equation (17) can be written as

 
 
 
 
 
 

Hence the acceleration in arrival times is
                                 

 

             

 

per

 

cycle, per 

   

seconds. Thus
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Ṗ = V̇ P

Ṗ V̇ Pe/V .
△

△

1

△T
=

V

CPe
;− △Ṫ

△T 2
=

V̇

CPe
or − △Ṫ

△T
=

V̇

CPe
△T =

V̇

V

λν = C;
1

ν
=

λ

C
;− ν̇

ν2
=

λ̇

C
;− ν̇

ν
=

λ̇

C
ν =

λ̇

λ

d0 = (1/2)aT 2
0

T1 = T0 + (T1 − T0)

d1 = d0 + d1 − d0 = (1/2)aT 2
0 + [(1/2)aT 2

1 − (1/2)aT 2
0 ]

T1 = T0 + d/C = T0 +
d0

C(1 − V̄ /C)

V̄

T = [
CPe

(1/2)aT0
+

Pe

1 − V̄ /C
]

d0

CPe

X = (u + (1/2)at)t

T1 =
CPe

(1/2)aT0
· d0

CPe
+

CP 2
e

d0(1 − (1/2)a(T+T0)
C )

· d2
0

C2P 2
e

CP 2
e /d0 CPe/(1/2)aT0

Ṗ =
CPe

d0
· (1/2)aT0

C
=

(1/2)aT0 · Pe

(1/2)aT 2
0

=
Pe

T0

Ṗ

Pe
=

1

T0

In terms of the light travel times, equation (39) 
gets modified as

Introducing a factor 2 for acceleration, as NP =

where N is the number of cycles and
is the initial period

(40)

Note that the change in the velocity by ‘aPe ’
occurs for every ‘V Pe’ kms. In the length interval CPe, the
change in ‘V’ is therefore

Hence the rate of change of period per unit light
travel time is given by

Introducing 2 as a factor for acceleration

This result can be directly obtained from 
equation (38) by replacing t1 by T0 which satisfies the 
relation

c) Comparison with observations
The relative transverse velocity of two objects A 

and B moving around a massive common center of 
mass is given by

T1 − T0 ≈ Pe ·
d0

CPe
+

(1/2)aT0

C
· d0

CPe

Ṗ =
(1/2)aT)

C
· cPe

d0
=

(1/2)aT0

(1/2)aT 2
0

· Pe =
Pe

T0

Ṗ

Pe
=

2

T0

PiN +(1/2)ṖPiN
2

CPe

V Pe
· aPe

Ṗ =
aPe

V
=

Pe

T

Ṗ

Pe
=

2

T

d0 = (1/2)aT 2
0 .

VA − VB = (
GM

RA
)1/2 − (

GM

RB
)1/2

Vrel = (GM)1/2{ 1

R
1/2
A

− 1

R
1/2
B

}

Let RB = |RA − d|, where d = |RA − RB |.

where RA and RB are the radius vectors.



 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

   
    

 
 
 
 
 

  
   

   
 
 
 

 
 

 
 
 
 

 
 
 
 
 
 

   
 
 
 

  

 
  

 
 
 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The redshift

  

is

 
 
 
 
 
 
 

                       is proportional to the reciprocal of the or-

 

bital period. Identifying RA

 

with RSun, we expect the

 

observed period derivatives of pulsars to be proportional

 

to the distance of pulsars from Sun. This is well corrobo-

 

rated as shown in Rajamohan and Satya Narayanan [2].

 

This result is in good agreement with the observed pe-
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)
A

  
2 0

13

Vrel = (GM)1/2{ 1

R
1/2
A

− 1

(RA − d)1/2
}

= (GM)1/2{ 1

R
1/2
A

− 1

R
1/2
A (1 − d/RA)1/2

}

= (GM)1/2{ 1

R
1/2
A

− 1

R
1/2
A

{1 +
d

2RA
+

3d2

8R2
A

}}

= (GM)1/2{ 1

R
1/2
A

· d

RA
+

1

R
1/2
A

3d2

8R2
A

}

Ṗ /Pe

1

2

√
2
Vrel

d
=

1√
2
[(

GM

RA
)1/2 − (

GM

RB
)1/2]/|RA − RB|

≈ 1√
2

(GM)1/2

R
3/2
A

+
1√
2
· 3

8

(GM)1/2

R
3/2
A

· d

RA

(GM)1/2

R3/2

riod derivatives of pulsars and its relation to the distance
from the Sun.

(41)

Therefore

(42)

2 is an approximation to   2. The redshift there-
fore observed from the center of Sun’s disk is given by

which is in close agreement with observed values
(Weinberg [3]). We can therefore speculate that the 
Hubble relation is a consequence of this effect if 
galaxies were to be differentially rotating about a 
common center of mass. Then the reciprocal of H0 is 
proportional to the rotation period of the Milky Way 
galaxy around such a center.

V.

The relationship between space and time as 
defined by the law of Gravitation and Galilean 
transformation can account for major anamolies quoted 
against the law.

d0 = (1/2)aT 2
0

2

T0
=

√
2
vτ

d0

√
π/

π/2
407

1.5 × 108
≈ 4.24 × 10−6

The observed precession is an artifact and can 
be accounted for by differential rotation effects. The 
same is true of period derivatives of pulsars since the 
observed P is not intrinsic to the pulsar. The period 
derivatives being proportional to the distance can be 
again accounted for by differential rotation of objects 
around a common center of mass (Rajamohan and 
Satya Narayanan [2]).

As acceleration, and in turn rotation appears to 
be fundamental in nature (i.e., satellites around planets,
planets around Sun, Sun and stars around the Milky
Way), we suggest that the Hubble relation is a conse-
quence of differential rotation of galaxies around a com-
mon center of mass. Many such local universes might
exist in infinite space.

The effect derived in this paper shows that the 
average observed period of pulsars and their 
dependence on their distance from the Sun is a 
kinematic effect caused by differential rotation of the 
galaxy. It leads to the conclusion that Newton’s law of 
gravitation is true to one part in 1016. It also shows that 
the velocity of light is constant to the same degree of 
accuracy. The Hubble relation interpreted as differential 
rotation of galaxies around a common massive center 
indicates that the above conclusions are true to one part 
in 1019.

This effect also mitigates the requirement of a 
large amount of missing mass in the observable 
universe that are proposed to account for the observed 
relation be-tween velocity and distance.

The general design of the Nature appears to 
repeat the same phenomenon of a massive bulge (core) 
with differentially revolving smaller objects around it -
from satellites of planets around the mother planet, 
planets around the Sun, Sun and stars around the 
galactic center, and the galactic center with its entire 
family of Milky Way members around a distant center. 
Such a center appears to be in the constellation of 
Virgo, where a clustering of clusters of galaxies is seen.
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