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Abstract -

 

In the present paper, we construct the traveling wave solutions involving parameters for some nonlinear 
evolution equations

 

in the mathematical physics via the Konopelchenko-Dubrovsky Coupled System

 

equation and the 
(1+1)-dimensional nonlinear Ostrovsky equation by using the Bernoulli Sub-ODE method. By using this method exact 
solutions involving parameters have been obtained.

 

When the parameters are taken as special values, solitary wave 
solutions have been originated from the hyperbolic function solutions. It has been shown that the method is effective 
and can be used for many other NLEEs in mathematical physics.
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I.

 

Introduction

 

NLEEs are encountered in various fields of mathematics, physics, chemistry, 
biology, engineering and numerous applications. Exact solutions of NLEEs play an 
important role in the proper understanding of qualitative features of many phenomena 
and processes in various areas of natural science. Exact solutions of nonlinear equations 
graphically demonstrate and allow unscrambling the mechanisms of many complex 
nonlinear phenomena such as spatial localization of transfer processes, multiplicity or 
absence steady states under various conditions, existence of peaking regimes and many 
others. Even those special exact solutions that do not have a clear physical meaning can 
be used as test problems to verify the consistency and estimate errors of various 
numerical, asymptotic, and approximate analytical methods. Exact solutions can serve as 
a basis

 

for perfecting and testing computer algebra software packages for solving NLEEs. 
It is significant that many equations of physics, chemistry, and biology contain empirical 
parameters or empirical functions. Exact solutions allow researchers to design and run 
experiments, by creating appropriate natural conditions, to determine these parameters or 
functions. Therefore, investigation exact traveling wave solutions are becoming 
successively attractive in nonlinear sciences day by day. However, not all equations posed 
of these models are solvable. As a result, many new techniques have been successfully 

developed by diverse groups of mathematicians and physicists, such as

 

the )/( GG′ -

expansion method [1-7], the Hirota’s bilinear transformation method [8,9], the modified 

simple equation method [10-13], the tanh-function method [14],  the first integral 
method[15], the Exp-function method [16-18], the Jacobi elliptic function method [19], the 
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homotopy perturbation method [20-22], the Bernoulli Sub-ODE method [23-24], the 

enhanced )/( GG′ -expansion Method [25-27], the exp ))(( ξΦ− -expansion method [28] and 

so on.  
The objective of this paper is to find the exact solutions then the solitary wave 

solutions for the Konopelchenko-Dubrovsky Coupled System equation and the (1+1)-
dimensional nonlinear Ostrovsky equation through Bernoulli Sub-ODE method.  

The article is arranged as follows: In section II, the Bernoulli Sub-ODE method is 
discussed. In section III, we apply this method to the nonlinear evolution equations 
pointed out above; in section IV, graphical representation and in section V, conclusions 
are given. 

II. Methodology 

In this section, we describe the Bernoulli Sub-ODE method for finding traveling 
wave solutions of NLEEs. Suppose that a nonlinear partial differential equation, say in 
two independent variables x  and t   is given by 

0),,,,,,( =ℜ xtxxttxt uuuuuu ,                      (1) 

where ),()( txuu =ξ  is an unknown function, ℜ  is a polynomial of ),( txu and its partial 

derivatives in which the highest order derivatives and nonlinear terms are involved. In the 
following, we give the main steps of this method [23, 24]: 

Step 1. Combining the independent variables x  and t  into one variableξ , we 

suppose that 

 ),()( txuu =ξ ,        tx ωξ ±= .                       (2)     

The traveling wave transformation Eq. (2) permits us to reduce Eq. (1) to the 
following ODE:     

 

  0),,,( =′′′ℜ uuu ,
  

                     (3)
 

whereℜ is a polynomial in )(ξu
 
and its derivatives, while

 

ξ
ξ

d
duu =′ )( , 2

2

)(
ξ

ξ
d

udu =′′
 
and 

so on.
 

Step 2.

 

We suppose that Eq.(3) has the formal solution

 

 ∑
=

=
n

i

i
iGau

0
)(ξ ,

 

                                     (4)

 

where )(ξGG =
 

satisfy the equation      

 
2GGG µλ =+′ ,

 

                                (5)

 

in which )N;( ∈≤≤− nninai   are constants to be determined later, and 0≠µ , 0≠λ .

 

then the Eq. (5) is the type of Bernoulli equation, and we can obtain the solution as 

 

 









−






−= 1

2
tanh

2
ξλ

µ
λG .

   

                     (6)
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







−






−= 1

2
coth

2
ξλ

µ
λG .                        (7) 

Step 3. The positive integer n  
can be determined by considering the homogeneous 

balance between the highest order derivatives
 
and the nonlinear terms appearing in 

Eq.(1) or Eq.(3). Moreover precisely, we define the degree of )(ξu  
as nuD =))(( ξ  

which 

gives rise to the degree of other expression as follows:
 

 
)(, qnsnp

d
uduDqn

d
udD

s

q

q
p

q

q

++=





















+=








ξξ

.
  

                 (8)
 

Therefore we can find the value of n
 

in Eq.(4), using Eq.(1). 

 

Step 4. We substitute Eq. (4) into Eq.(3) using Eq. (5) and then collect all terms 

of same powers of  )(ξG
 

together, then set each coefficient of them to zero to yield a 

system of algebraic equations, solving this system we obtain the values of  ia andω .

 

Finally, substituting ia , ω
 

and Eq.

 

(6), Eq. (7) into Eq. (4) we obtain exact 

traveling wave solutions of Eq. (1). 

 

III.

 
Applications

 

a)

 
The Konopelchenko-Dubrovsky Coupled System equation

 

In this section, we will consider the following the Konopelchenko-Dubrovsky 
Coupled System

 

equation:

 

033
2
36 22 =+−+−− vauvuuabuuuu xyxxxxxt

 

                  (9)

 

xy vu =

   

                      (10)

 

This system was studied by Taghizadeh N. and Mirzazadeh M. by the first 
integral method [15]. 
Suppose that

)(),( ξutxu = , )(),( ξvtxv = tykx ωαξ ++= ,           

 

      (11)

 

where ωα ,,k

 

are constants that to be determined later.

 

By Eq. (9), Eq. (10) and Eq. (11) are converted into the following ODEs,

 

033
2
36 223 =′+′−′+′−′′′−′ vuakvukuaubkuuku αω ,

  

        

 

      (12)

 

vku ′=′α .

   

          

   

(13)

 

Integrating Eq.(13) once with zero constant, Eq. (13) reduces to

 

    

 

u
k

v α
= ,

 

                            

 

      (14)
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[ ] 0233
2
3 2

223 =′−+′−′+′′′−′ uubkau
k

ukuauku ααω .

 

  

      
    (15)

 

Integrating Eq. (15) once, Eq. (15) reduces to

 

[ ] 02
2
33

2
1 2

2
323 =+−+−+′′− Rubkau

k
kuauku ααω ,

   

     

 

    (16)

 

where R
 

is the integration constant.

 

Suppose that the solution of Eq. (16) can be expressed by a polynomial in G as follows:

 

 

( ) ∑
=

=
m

i

i
iGau

0
ξ ,

   

                   (17)

 

where are constants, and 

 

satisfies the following Bernoulli equation:

 

 
2GGG µλ =+′

   
        

 
      (18)

 

Balancing the order of u ′′ and 3u
 
in Eq. (16), we have 23 += mm , 1=m . So Eq. (17) can 

be rewritten as
 

( ) 0, 101 ≠+= aaGau ξ ,
 

               
 

      (19)
 

where 01,aa are constants to be determined later.
 

Substituting Eq. (19) into Eq. (16) and collecting all the terms with the same 

power of G together, equating each coefficient to zero, yields a set of simultaneous 
algebraic equations as follows:

 

0
23

0
222

0
2

0
2

0
0 62362: aakaRkkaaabkkaG ααω −+++−

kaakakaaaaakaaabkG 1
2

1
4

1
2

101
2
0

22
10

21 2266312: ωλαα +−−++−
 

kaaabkaakaakG 2
1

2
1

22
10

22
1

42 3636: αµλ +−+
 

3
1

222
1

43 4: akaakG +− µ

Solving the above system of algebraic equations, we get the following two sets of solutions:

Set-1: ( )( )( )αλλαααλ 22322222
42 24421

2
1 akabkabkakbabkak

ak
R +−−+−+−−= , 








 −++−
−=

ka
aakbkakb

2

2222422 91212
2
1 αλαω , 2

2

0
2

ka
abkaka αλ +−

−= , 
a
ka µ2

1 = .

 

Set-2: ( )( )( )αλλαααλ 22322222
42 24421

2
1 akabkabkakbabkak

ak
R +−+−−+−= , 








 −++−
−=

ka
aakbkakb

2

2222422 91212
2
1 αλαω , 2

2

0
2

ka
abkaka αλ −+

= , 
a
ka µ2

1 −= ,
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Study of Nonlinear Evolution Equations in Mathematical Physics



Substituting Set-1 and Set-2 into Eq. (19) along with Eq. (6) and Eq. (7), we get 
the following exact traveling wave solutions: 

Case 1: When ( )( )( )αλλαααλ 22322222
42 24421

2
1 akabkabkakbabkak

ak
R +−−+−+−−= , 








 −++−
−=

ka
aakbkakb

2

2222422 91212
2
1 αλαω , 2

2

0
2

ka
abkaka αλ +−

−= , 
a
ka µ2

1 =

( ) 















−





−

+−
−= 1

2
1tanh12, 2

2

1 λξλαλ k
aka

abkaktxu         (20) 

( ) 















−





−

+−
−= 1

2
1coth12, 2

2

2 λξλαλ k
aka

abkaktxu ,        (21) 

where          t
ka

aakbkakbykx 














 −++−
−++= 2

2222422 91212
2
1 αλααξ ,  

Substituting Eq. (20) and Eq. (21) into Eq. (14), yields 

( ) 

























−





−

+−
−= 1

2
1tanh12, 2

2

1 λξλαλα k
aka

abkak
k

txv .            (22) 

( ) 

























−





−

+−
−= 1

2
1coth12, 2

2

2 λξλαλα k
aka

abkak
k

txv .            (23) 

Case 2: When ( )( )( )αλλαααλ 22322222
42 24421

2
1 akabkabkakbabkak

ak
R +−+−−+−= , 








 −++−
−=

ka
aakbkakb

2

2222422 91212
2
1 αλαω , 2

2

0
2

ka
abkaka αλ −+

= , 
a
ka µ2

1 −= , 

( ) 















−





+

−+
= 1

2
1tanh12, 2

2

3 λξλαλ k
aka

abkaktxu .                (24) 

( ) 















−





+

−+
= 1

2
1coth12, 2

2

4 λξλαλ k
aka

abkaktxu .            (25) 

Substituting Eq. (24) and Eq. (25) into Eq. (14), yields 

( ) 

























−





+

−+
= 1

2
1tanh12, 2

2

3 λξλαλα k
aka

abkak
k

txv .         (26) 
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( ) 

























−





+

−+
= 1

2
1coth12, 2

2

4 λξλαλα k
aka

abkak
k

txv .            (27) 

b) The (1+1)-dimensional nonlinear Ostrovsky equation 
Consider the (1+1)-dimensional nonlinear Ostrovsky equation 

  02 =+− txtxxxt uuuuuu ,                              (28) 

This equation is a model for weakly nonlinear surface and internal waves in a 
rotation ocean. Following the above procedure we transform Eq. (28) into ODE: 

  ( ) 02 2 =′′−′′′+′′′− uuuuuu ,                               (29) 

obtained upon using ctx −=ξ . Integrating Eq.(29) with respect to ξ  one has  

  ( ) 033 32 =++′−′′ Ruuuu ,         (30)  

where R  is the integration constant. 

Balancing the nonlinear term 3u with the highest order derivative uu ′′ that gives  

  23 ++= mmm , 

  so that 2=m .  
So Eq. (4) can be rewritten as 

( ) ,01
2

2 aGaGau ++=ξ   0, 21 ≠aa ,             (31) 

where 210 ,, aaa are constants to be determined later. 

Substituting Eq. (31) into Eq. (30) and collecting all the terms with the same 

power of G together, equating each coefficient to zero, yields a set of simultaneous 
algebraic equations as follows: 

3
0

0 : aG  

1
2
0

2
10

1 33: aaaaG +λ  

µλλ 10
2
10

2
202

2
0

2 93123: aaaaaaaaG −++  

2
2121020

3
1

2
1

2
10

3 363036: λµλµλµ aaaaaaaaaaaG ++−+−  

2
2
1

22
121

2
20

2
20

4 3315318: aaaaaaaaaG ++−+ µµλµ  

2
21

2
2

2
21

5 1263: µµλ aaaaaG +−  

3
2

22
2

6 6: aaG +µ  

Solving the above system of algebraic equations, we get the following solution: 

2
210 6,6,0,, µµλ −===== aaaccRR  

Substituting these values into Eq. (31) along with Eq. (6) and Eq. (7), we get the 
following exact traveling wave solutions:
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( )
2

22
1 1

2
1tanh

2
31

2
1tanh3, 








−





−








−





−= λξλλξλtxu ,             (32) 

( )
2

22
2 1

2
1coth

2
31

2
1coth3, 








−





−








−





−= λξλλξλtxu ,             (33) 

where ctx −=ξ . 

IV. Graphical Illustration of Some Obtained Solutions 

We make graphs of obtained solutions, so that they can represent the importance 
of each obtained solution and physically interpret the importance of parameters. Some of 
our obtained traveling wave solutions are represented in Figure 1-Figure 4 with the aid of 
Maple:    

    

   Figure (1) : Profile of Eq. (24) with   Figure (2) : Profile of Eq. (27) with 

2,2,1,1,1,2 ====== ωαλ bak and 0=y .   1,1,1,1,1,1 −====−== ωαλ bak  and 0=y . 

 

Figure
 

(3)
 

: Profile of Eq. (32) 

with 1,1 == λc .

 
Figure

 
(4)

 
:

 
Profile of Eq. (33) 

with 1,1 == λc .
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V. Conclusion 

The Bernoulli Sub-ODE method presented in this article has been applied to the 
NLEEs through the Konopelchenko-Dubrovsky Coupled System equation and the (1+1)-
dimensional nonlinear Ostrovsky equation for finding the exact solutions and the solitary 
wave solutions of these equations which appeal the attention of many Mathematicians. 
This simple and powerful method can be more successfully applied to study nonlinear 
partial differential equations, which frequently arise in engineering sciences, mathematical 
physics and other scientific real-time application fields. 
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