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Abstract - An analytic function f is quasi-subordinate to an analytic function ¢, in the open unit disk if there exist
analytic function ¢ and w, with [@(2)| < 1, w(0) = 0and |w(z)| < 1suchthat f(2) = ¢(z)g(w(z)). Certain
subclasses of analytic univalent functions associated with quasi-subordination are defined and the bounds for the
Fekete-Szego coefficient functional |as — pa3| for functions belonging to these subclasses are derived.

[.  INTRODUCTION AND MOTIVATION
Let A be the class of analytic function f in the open unit disk D = {z : |z| <
1} normalized by f(0) = 0 and f’(0) = 1 of the form f(z) = Z+Z a,z". For
n=2

two analytic functions f and g, the function f is subordinate to g, written

as follows:
f(z) < g(2), (1.1)

if there exists an analytic function w, with w(0) = 0 and |w(z)| < 1 such
that f(z) = g(w(2)). In particular, if the function g is univalent in D, then
f(z) < g(2) is equivalent to f(0) = ¢(0) and f(D) C g(D). For brief survey
on the concept of subordination, see [1].

Ma and Minda [2] introduced the following class

e
s0)={rea: T <o |, (12)

where ¢ is an analytic function with positive real part in D, ¢(D) is
symmetric with respect to the real axis and starlike with respect to ¢(0) =1
and ¢'(0) > 0. A function f € S*(¢) is called Ma-Minda starlike (with
respect to ¢). The class C(¢) is the class of functions f € A for which

[1] P. Duren, Subordination, in Complex Analysis, Lecture Notes in
Mathematics, Springer, Berlin, Germany, 599 (1977), 22—29.
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14 2f"(2)/f'(2) < ¢(z). The class S*(¢) and C(¢) include several well-
known subclasses of starlike functions as special case.

In the year 1970, Robertson [3] introduced the concept of quasi-
subordination. For two analytic functions f and g, the function f is quasi-
subordinate to g, written as follows:

f(2) =4 9(2), (1.3)

if there exist analytic function ¢ and w, with |¢(z)| < 1, w(0) = 0 and
|lw(z)|] < 1 such that f(z) = ¢(z)g(w(z)). Observe that when ¢(z) = 1, then
f(z) = g(w(z)), so that f(z) < g(z) in D. Also notice that if w(z) = z,
then f(z) = ¢(z)g(z) and it is said that f is majorized by g and written
f(2) < g(z) in D. Hence it is obvious that quasi-subordination is a
generalization of subordination as well as majorization. See [4,5,6] for works
related to quasi-subordination.

Throughout this paper it is assumed that ¢ is analytic in D with ¢(0) = 1.
Motivated by [2,3], we define the following classes.

Definition 1.1. Let the class R} (a, ¢) consists of functions f € A satisfying
the quasi-subordination

Zef(x) N1 o
TOIED 1<,0(z)—1, a>0 (1.4)

Example 1.2. The function f : D — C defined by the following

2P e~ 1] a
[f(z)]lfa 1 [¢< ) 1]7 > 0 (15>

belongs to the class R;(c, ¢).

It is well known (see [10]) that the n'® coefficient of a univalent function f €
A is bounded by n. The bounds for coefficient give information about various
geometric properties of the function. Many authors have also investigated
the bounds for the Fekete-Szego coefficient for various classes [11,12, 13,14,
15,16,17,18,19,20,21,22,23,24,25 |. In this paper, we obtain coefficient esti-
mates for the functions in the above defined classes.
Let Q be the class of analytic functions w, normalized by w(0) = 0, and
satisfying the condition |w(z)| < 1. We need the following lemma to prove
our results.

Lemma 1.3 (see [26]). If w € §, then for any complex number f

lwy — tw?]| < max{1; |t|}. (1.6)

The result is sharp for the functions w(z) = 2% or w(z) = z.
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II.  MAIN RESULTS

Throughout, let f(z) = 2+as2?+azz3+- -, ¢(2) = 14+ B2+ Boz?+ B33+ - -
p(2) =co+az+ 2’ +¢2° +---, B € Rand By > 0.

Theorem 2.1. If f € A belongs to R;(c, ¢), then

Ref las| < By

1+a’
B 11—« o B,
<—11 1,By|—— 4+ — —= 2.1
lag| < 5 <+max{, 11+@+231+Bl }) (2.1)
and for any complex number u,
B 1 -« 2u o By
—pd? <2 (1 1,B - ).
lag — paz| < 5 ( +max < 1, By o (1+a)2+231 + B,

Proof. 1f f € RZ(oz,ng), then there exist analytic functions ¢ and w, with
lo(2)] <1, w(0) =0 and |w(z)| < 1 such that

e — L= e@)(e(w(z) - 1). (2:3)

Since

o(w(2)) — 1 = Byw,z + (Bywy + Bow?)z* + - - -

¢(2)(¢p(w(z)) — 1) = Bicowiz + (Bicywy + co(Biws + Bow?))z* + - -+ (2.4)

it follows from (2,3) that

[27] Z. Nehari, Conformal mapping, Dover, New York, NY, USA, 1975,

|
g
-
=
ﬁ Bicowy
Ao =
= T (1+a)
—
2 L 9B cowy + Bierw, + Bucgws + L) By + By ) w?
a3 = —— | =Bicow cLw Cows + € c w
= 37 5 g |2 o 1C1Wy 1cows o \ { 77 ) Pico 2 | Wy
2
= (2.5)
o
§ Since ¢(z) is analytic and bounded in D, we have [ 27, page 172]
e <1 —]cof* <1 (n>0). (2.6)
By using this fact and the well-known inequality, |w;| < 1, we get
B
|ag] < —2 (2.7)

14+a
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Further,

1 «
as — ,U,ag = 2—|-—a [Blclwl + C(](Bﬂl)g -+ 53111)1
1l—a 20

Then

1
|ag — pa3| < H—a(|3101w1|

2/1, 11—« o Wq Bg 2
B (2 _Biey - Biog+ 24 22 .
+‘ 1o (w2 ((1+a>2 1o (Ha) Ty T B)™

Again applying |c,| < 1 and |w;| < 1, we have

«Q 1—« 21 B Bs 9
wy — | = — — co— = |w
2 \2 \U+a (1+a2)7"" B/

B
Ias—u&§!§—1(1+

2+«
(2.10)
Applying Lemma 1.3 to
o 11—« 21 By 9
- =- — Bicy — —=— 2.11
’wQ <2 <1—l—a (1+a)2) 10 Bl)wl (211)
yields
B o 1 -« 21 By
—uadl < = (1 1,|= — - Bico— —| ¢ .
|as Ma2|_2+a( + max q 1, 5 1+a (Itap? 1Co B,
(2.12)
Observe that
o 1 -« 20 By 1 -« 20 o By
- — - Bico — =| < B — =
2 (1+a (1+a)2) o=l < Bilal |50 = 550 Yam | | B,
(2.13)
and hence we can conclude that
B 1—-a 21 o By
— a2l <2 (1 1,B — =214,
a5 = pas) < 5 < ML T T e 2B B
(2.14)
For ;1 = 0, the above will reduce to estimate of |as|.
Theorem 2.2. If f € A satisfies
Zl—af/(z)
Z L < d(z) -, (2.15)
Lf ()]
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then the following inequalities hold:

By

<
jaz| < 14+ a’

1
|as| < m(Bl + B + | Bal), (2.16)

and, for any complex number L,

(1+a)?B+|(1+a)? — 2+ a)u|B + (1 +a)*|Byl).
(2.17)

2
as — pay| <
a3 ’u2|_(2+a)(1+a)2

Proof. The result follows by taking w(z) = z in the proof of Theorem 2.1.
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