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Hilbert spaces over the field of complex numbers are indispensable for mathematical structure
of quantum mechanics [ ] which in turn play a great role in molecular, atomic and subatomic
phenomena. The work towards the generalization of quantum mechanics to bicomplex num-
ber system have been recently a topic in different quantum mechanical models [ , , , ].
More specifically, in [ ] the authors made an in depth study of bicomplex Hilbert spaces and
operators acting on them. After obtaining reasonable results responsible for investigations on
finite and infinite dimensional bicomplex Hilbert spaces and applications to quantum mechanics
[ ], they in [ ] asked for extension of Riesz-Fischer Theorem and Spectral Theorem
on infinite dimensional Hilbert spaces. Recently, the bicomplex analogue of the Spectral De-
composition Theorem was proven using bicomplex eigenvalues [ ]. In this paper, we obtain
a bicomplex analogue of the Riesz-Fischer Theorem [ ] on infinite dimensional Hilbert
spaces. Our proof of R-F Theorem is essentially different from its complex Hilbert space ana-
logue in the sense that we do not make use of the so called Parseval’s identity as done in general
Hilbert spaces over R or C. To support our results, we prove A Best Approximation Theorem
and we show that the bicomplex analogue of l2, the space of all (real, complex or bicomplex)
sequences {wl} such that

∑∞
l=1 |wl|2 < ∞, is a bicomplex Hilbert space. As for the standard

quantum mechanics, this specific result is fundamental to understand the space where live the
wave functions of the bicomplex Quantum Harmonic Oscillator [ , , ].

II. Preliminaries  

This section first summarizes a number of known results on the algebra of bicomplex numbers,
which will be needed in this paper. Much more details as well as proofs can be found in [ , ,
, ]. Basic definitions related to bicomplex modules and scalar products are also formulated

as in [ , ], but here we make no restrictions to finite dimensions following definitions of [ ].
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Bicomplex Riesz-Fischer Theorem

The set M(2) of bicomplex numbers is defined as

M(2) := {w = z1 + z2i2 | z1, z2 ∈ C(i1)}, (2.1)

where i1 and i2 are independent imaginary units such that i21 = −1 = i22. The product of i1
and i2 defines a hyperbolic unit j such that j2 = 1. The product of all units is commutative
and satisfies

i1i2 = j, i1j = −i2, i2j = −i1.

With the addition and multiplication of two bicomplex numbers defined in the obvious way, the
set M(2) makes up a commutative ring. They are a particular case of the so-calledMulticomplex
Numbers (denoted M(n)) [ ] and [ ]. In fact, bicomplex numbers

M(2) ∼= ClC(1, 0) ∼= ClC(0, 1)

are unique among the complex Clifford algebras (see [ , ] and [ ]) in the sense that this set
form a commutative, but not division algebra.

Three important subsets of M(2) can be specified as

C(ik) := {x+ yik | x, y ∈ R}, k = 1, 2;

D := {x+ yj | x, y ∈ R}.
Each of the sets C(ik) is isomorphic to the field of complex numbers, while D is the set of
so-called hyperbolic numbers, also called duplex numbers (see, e.g. [ ], [ ]).

Three kinds of conjugation can be defined on bicomplex numbers. With w specified as in
and the bar (̄ ) denoting complex conjugation in C(i1), we define

w†1 := z̄1 + z̄2i2, w†2 := z1 − z2i2, w†3 := z̄1 − z̄2i2.

It is easy to check that each conjugation has the following properties:

(s+ t)†k = s†k + t†k ,
(
s†k

)†k = s, (s · t)†k = s†k · t†k .
Here s, t ∈ M(2) and k = 1, 2, 3.

With each kind of conjugation, one can define a specific bicomplex modulus as

|w|2i1 := w · w†2 = z21 + z22 ∈ C(i1),

|w|2i2 := w · w†1 =
(|z1|2 − |z2|2

)
+ 2Re(z1z̄2)i2 ∈ C(i2),

|w|2j := w · w†3 =
(|z1|2 + |z2|2

)− 2 Im(z1z̄2)j ∈ D.

It can be shown that |s · t|2k = |s|2k · |t|2k, where k = i1, i2 or j.

In this paper we will often use the Euclidean R4-norm defined as

|w| :=
√
|z1|2 + |z2|2 =

√
Re(|w|2j ) .

Clearly, this norm maps M(2) into R. We have |w| ≥ 0, and |w| = 0 if and only if w = 0.

Moreover [ ], for all s, t ∈ M(2),

|s+ t| ≤ |s|+ |t|, |s · t| ≤ √
2 |s| · |t|.

a) Bicomplex Numbers

i. Definition

ii. Conjugation and Moduli

,116 7 2    3

5  121

22     18

18

(2.1)
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The operations of the bicomplex algebra is considerably simplified by the introduction of two
bicomplex numbers e1 and e2 defined as

e1 :=
1 + j

2
, e2 :=

1− j

2
.

In fact e1 and e2 are hyperbolic numbers. They make up the so-called idempotent basis of the
bicomplex numbers. One easily checks that (k = 1, 2)

e21 = e1, e22 = e2, e1 + e2 = 1, e
†3
k = ek, e1e2 = 0. (2.2)

Any bicomplex number w can be written uniquely as

w = z1 + z2i2 = z
̂1e1 + z

̂2e2, (2.3)

where
z
̂1 = z1 − z2i1 and z

̂2 = z1 + z2i1

both belong to C(i1). Note that

|w| = 1√
2

√
|z

̂1|2 + |z
̂2|2 .

The caret notation (1̂ and 2̂) will be used systematically in connection with idempotent decom-

positions, with the purpose of easily distinguishing different types of indices. As a consequence

of ( ) and ( ), one can check that if n
√
z
̂1 is an nth root of z

̂1 and n
√
z
̂2 is an nth root of z

̂2,

then n
√
z
̂1 e1 + n

√
z
̂2 e2 is an nth root of w.

The uniqueness of the idempotent decomposition allows the introduction of two projection
operators as

P1 : w ∈ M(2) �→ z
̂1 ∈ C(i1),

P2 : w ∈ M(2) �→ z
̂2 ∈ C(i1).

The Pk (k = 1, 2) satisfies

[Pk]
2 = Pk, P1e1 + P2e2 = Id,

and, for s, t ∈ M(2),

Pk(s+ t) = Pk(s) + Pk(t), Pk(s · t) = Pk(s) · Pk(t).

The product of two bicomplex numbers w and w′ can be written in the idempotent basis as

w · w′ = (z
̂1e1 + z

̂2e2) · (z′̂1e1 + z′
̂2
e2) = z

̂1z
′
̂1
e1 + z

̂2z
′
̂2
e2.

Since 1 is uniquely decomposed as e1 + e2, we can see that w ·w′ = 1 if and only if z
̂1z

′
̂1
= 1 =

z
̂2z

′
̂2
. Thus w has an inverse if and only if z

̂1 
= 0 
= z
̂2, and the inverse w−1 is then equal to

(z
̂1)

−1e1 + (z
̂2)

−1e2. A nonzero w that does not have an inverse has the property that either

z
̂1 = 0 or z

̂2 = 0, and such a w is a divisor of zero. Zero divisors make up the so-called null cone

NC. That terminology comes from the fact that when w is written as in ( ), zero divisors are

such that z21 + z22 = 0.

Any hyperbolic number can be written in the idempotent basis as x
̂1e1+x̂2e2, with x̂1 and

x
̂2 in R. We define the set D+ of positive hyperbolic numbers as

D+ := {x
̂1e1 + x

̂2e2 | x
̂1, x̂2 ≥ 0}.

Since w†3 = z̄
̂1e1 + z̄

̂2e2, it is clear that w · w†3 ∈ D+ for any w in M(2).

iii . Idempotent Basis

2.2 2.3

2.1

Notes
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Bicomplex Riesz-Fischer Theorem

The set of bicomplex numbers is a commutative ring. Just like vector spaces are defined
over fields, modules are defined over rings. A module M defined over the ring of bicomplex
numbers is called an M(2)-module [ , , ].

Let M be an M(2)-module. For k = 1, 2, we define Vk as the set of all elements of the form

ek|ψ〉, with |ψ〉 ∈ M . Succinctly, V1 := e1M and V2 := e2M . In fact, Vk is a vector space
over C(i1) and any element |vk〉 ∈ Vk satisfies |vk〉 = ek|vk〉 for k = 1, 2. For arbitrary M(2)-
modules, vector spaces V1 and V2 bear no structural similarities. For more specific modules,
however, they may share structure. It was shown in [ ] that if M is a finite-dimensional free
M(2)-module, then V1 and V2 have the same dimension.

For any |ψ〉 ∈M , there exist a unique decomposition

|ψ〉 = |v1〉+ |v2〉, (2.4)

where vk ∈ Vk, k = 1, 2.

It will be useful to rewrite as

|ψ〉 = |ψ1〉+ |ψ2〉,
where

|ψ1〉 := e1|ψ〉 and |ψ2〉 := e2|ψ〉.

In fact, theM(2)-moduleM can be viewed as a vector spaceM ′ overC(i1), andM ′ = V1⊕V2.
From a set-theoretical point of view, M and M ′ are identical. In this sense we can say, perhaps

improperly, that the module M can be decomposed into the direct sum of two vector spaces

over C(i1), i.e. M = V1 ⊕ V2.

A bicomplex scalar product maps two arbitrary kets |ψ〉 and |φ〉 into a bicomplex number
(|ψ〉, |φ〉), so that the following always holds (s ∈ M(2)):

1. (|ψ〉, |φ〉+ |χ〉) = (|ψ〉, |φ〉) + (|ψ〉, |χ〉);
2. (|ψ〉, s|φ〉) = s(|ψ〉, |φ〉);
3. (|ψ〉, |φ〉) = (|φ〉, |ψ〉)†3 ;
4. (|ψ〉, |ψ〉) = 0 ⇔ |ψ〉 = 0.

The bicomplex scalar product was defined in [ ] where, as in this paper, the physicists’ con-
vention is used for the order of elements in the product.

Property 3 implies that (|ψ〉, |ψ〉) ∈ D, while properties 2 and 3 together imply that

(s|ψ〉, |φ〉) = s†3(|ψ〉, |φ〉). However, in this work we will also require the bicomplex scalar

product (·, ·) to be hyperbolic positive, i.e.

(|ψ〉, |ψ〉) ∈ D+, ∀|ψ〉 ∈M.

This is a necessary condition if we want to recover the standard quantum mechanics from the
bicomplex one (see [ ]).

Definition 2.1. Let M be a T-module and let (·, ·) be a bicomplex scalar product defined on
M . The space {M, (·, ·)} is called a M(2)-inner product space, or bicomplex pre-Hilbert space.
When no confusion arises, {M, (·, ·)} will simply be denoted by M .

In this work, we will sometimes use the Dirac notation

(|ψ〉, |φ〉) = 〈ψ|φ〉

iv . Bicomplex Scalar Product

(2.4)
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for the scalar product. The one-to-one correspondence between bra 〈·| and ket |·〉 can be estab-
lished from the Bicomplex Riesz Representation Theorem [ , Th. 3.7]. As in [ ], subindices
will be used inside the ket notation. In fact, this is simply a convenient way to deal with the
Dirac notation in V1 and V2. Note that the following projection of a bicomplex scalar product:

(·, ·)
̂k := Pk((·, ·)) :M ×M −→ C(i1)

is a standard scalar product on Vk, for k = 1, 2. One easily show [ ] that

(|ψ〉, |φ〉) = e1P1((|ψ1〉, |φ1〉)) + e2P2((|ψ2〉, |φ2〉))

= e1 (|ψ1〉, |φ1〉)̂1 + e2 (|ψ2〉, |φ2〉)̂2 .
= e1 〈ψ1|φ1〉1̂ + e2 〈ψ2|φ2〉2̂ .

(2.5)

We point out that a bicomplex scalar product is completely characterized by the two
standard scalar products (·, ·)

̂k on Vk. In fact, if (·, ·)
̂k is an arbitrary scalar product on Vk, for

k = 1, 2, then (·, ·) defined as in ( ) is a bicomplex scalar product on M .
From this scalar product, we can define a norm on the vector space M ′:∣∣∣∣|φ〉∣∣∣∣ := 1√

2

√
(|φ1〉, |φ1〉)̂1 + (|φ2〉, |φ2〉)̂2

=
1√
2

√∣∣|φ1〉∣∣21 + ∣∣|φ2〉∣∣22 . (2.6)

Here we wrote ∣∣|φk〉∣∣k =
√
(|φk〉, |φk〉)̂k ,

where | · |k is the natural scalar-product-induced norm on Vk. Moreover,∣∣∣∣|φ〉∣∣∣∣ = 1√
2

√
(|φ1〉, |φ1〉)̂1 + (|φ2〉, |φ2〉)̂2 =

∣∣√(|φ〉, |φ〉)∣∣.
Definition 2.2. Let M be an M(2)-module and let M ′ be the associated vector space. We say
that ‖ · ‖ :M −→ R is a M(2)-norm on M if the following holds:

1. ‖ · ‖ :M ′ −→ R is a norm;

2.
∥∥w · |ψ〉∥∥ ≤ √

2
∣∣w∣∣ · ∥∥|ψ〉∥∥, ∀w ∈ T, ∀|ψ〉 ∈M .

A M(2)-module with a M(2)-norm is called a normed M(2)-module. It is easy to check that
‖ · ‖ in ( ) is a M(2)-norm on M and that the M(2)-module M is complete with respect to
the following metric on M :

d(|φ〉, |ψ〉) = ∣∣∣∣|φ〉 − |ψ〉∣∣∣∣
if and only if V1 and V2 are complete (see [ ]).

Definition 2.3. A bicomplex Hilbert space is a M(2)-inner product spaceM which is complete
with respect to the induced M(2)-norm ( ).

III. Main Results

Throughout the text, by a bicomplex Hilbert space we shall mean an infinite dimensional
bicomplex Hilbert space. A normedM(2)-module with a Schauder M(2)-basis is called a count-
able M(2)-module.

Definition 3.1. A bicomplex Hilbert space M is said to be separable by a basis if it has a
Schauder M(2)-basis.

We note that by Theorem 3.10 in [ ], any SchauderM(2)-basis ofM can be orthonormalized.

Remark 3.2. A topological space S is called separable if it admits a countable dense subset W .
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Bicomplex Riesz-Fischer Theorem

Proof. First observe that: 〈ψn|φn〉 − 〈ψ|φ〉

= 〈ψn|φn〉 − 〈ψ|φn〉+ 〈ψ|φn〉 − 〈ψ|φ〉
= 〈ψn − ψ|φn〉+ 〈ψ|φn − φ〉

= 〈ψn − ψ|φn − φ〉+ 〈ψn − ψ|φ〉 + 〈ψ|φn − φ〉 .
From this we get by the bicomplex Schwarz inequality ([ ], Theorem 3.8):

∣∣ 〈ψn|φn〉−〈ψ|φ〉 ∣∣
=

∣∣ 〈ψn − ψ|φn − φ〉+ 〈ψn − ψ|φ〉+ 〈ψ|φn − φ〉 ∣∣
≤ ∣∣ 〈ψn − ψ|φn − φ〉 ∣∣+ ∣∣ 〈ψn − ψ|φ〉 ∣∣+ ∣∣ 〈ψ|φn − φ〉 ∣∣

≤ [√
2
∣∣∣∣|ψn〉 − |ψ〉∣∣∣∣ · ∣∣∣∣|φn〉 − |φ〉∣∣∣∣+√

2
∣∣∣∣|ψn〉 − |ψ〉∣∣∣∣ · ∣∣∣∣|φ〉∣∣∣∣

+
√
2
∣∣∣∣|ψ〉∣∣∣∣ · ∣∣∣∣|φn〉 − |φ〉∣∣∣∣].

The proposition now follows easily.

Theorem 3.4 (Best Approximation Theorem). Let {|ψn〉} be an arbitrary orthonormal se-
quence in the bicomplex Hilbert space M = H1 ⊕H2, and let α1, . . . , αn be a set of bicomplex
numbers. Then for all |ψ〉 ∈M ,

∣∣∣∣|ψ〉 − n∑
l=0

αl|ψl〉
∣∣∣∣ ≥ ∣∣∣∣|ψ〉 − n∑

l=0

〈ψl|ψ〉 |ψl〉
∣∣∣∣.

Proof. By definition of the bicomplex inner product, the set {|ψnk〉} is also an arbitrary or-
thonormal sequence in the Hilbert space Hk for k = 1, 2. Therefore, using the classical Best
Approximation Theorem (see [ ], P.61) on the Hilbert spacesH1 andH2, we obtain for k = 1, 2:

∣∣|ψk〉 −
n∑

l=0

Pk(αl)|ψlk〉
∣∣
k
≥ ∣∣|ψk〉 −

n∑
l=0

〈ψlk|ψk〉̂k |ψlk〉
∣∣
k
.

Hence, by definition of the M(2)-norm, we have that

∣∣∣∣|ψ〉 − n∑
l=0

αl|ψl〉
∣∣∣∣ =

1√
2

√√√√ 2∑
k=1

∣∣|ψk〉 −
n∑

l=0

Pk(αl)|ψlk〉
∣∣2
k

≥ 1√
2

√√√√ 2∑
k=1

∣∣|ψk〉 −
n∑

l=0

〈ψlk|ψk〉̂k |ψlk〉
∣∣2
k

=
∣∣∣∣|ψ〉 − n∑

l=0

〈ψl|ψ〉 |ψl〉
∣∣∣∣.

An important consequence of the Best Approximation Theorem is that an orthonormal basis
for a dense subspace of a bicomplex Hilbert space is actually an orthonormal basis in the full
bicomplex Hilbert space. This is very useful result for the construction of specific orthonormal
basis in separable Hilbert spaces. The precise result is as follows.

Theorem 3.5. Let N be a dense subspace of the bicomplex Hilbert space M , and assume that
{|ml〉} is an orthonormal Schauder M(2)-basis for N . Then {|ml〉} is also an orthonormal
Schauder M(2)-basis for M .

Proposition 3.3. Let 〈·|·〉 be a bicomplex inner product in the bicomplex Hilbert space M and
let || · || be the induced norm. If the sequences {|ψn〉} and {|φn〉} in M converge to {|ψ〉} and
{|φ〉} respectively, then the sequence of inner products {〈ψn|φn〉} converges to 〈ψ|φ〉.
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This follows by Proposition and the short computation

〈ml|ψ〉 =
〈
ml| lim

n→∞

n∑
k=1

αkmk

〉
= lim

n→∞

〈
ml|

n∑
k=1

αkmk

〉
= αl,

valid for all l ∈ N. Now, to complete the proof, let us prove that any ket |φ〉 ∈ M admits the
same expansion form:

|φ〉 =
∞∑
l=1

〈ml|φ〉 |ml〉. (3.1)

To prove this assertion, let an arbitrary ε > 0 be given. Since, N is dense in M , we can choose
|ψ〉 ∈ N , such that

∣∣∣∣|φ〉 − |ψ〉∣∣∣∣ < ε
2 . Now write |ψ〉 = ∑∞

l=1 〈ml|ψ〉 |ml〉, and choose n0 ∈ N

such that

n ≥ n0 ⇒ ∣∣∣∣|ψ〉 − n∑
l=1

〈ml|ψ〉 |ml〉
∣∣∣∣ < ε

2
.

By the Best Approximation Theorem, we then get for all n ≥ n0,

∣∣∣∣|φ〉 − n∑
l=1

〈ml|φ〉 |ml〉
∣∣∣∣ ≤ ∣∣∣∣|φ〉 − n∑

l=1

〈ml|ψ〉 |ml〉
∣∣∣∣

≤ ∣∣∣∣|φ〉 − |ψ〉∣∣∣∣+ ∣∣∣∣|ψ〉 − n∑
l=1

〈ml|ψ〉 |ml〉
∣∣∣∣

≤ ε

2
+
ε

2
.

Hence,

|φ〉 = lim
n→∞

n∑
l=1

〈ml|φ〉 |ml〉 =
∞∑
l=1

〈ml|φ〉 |ml〉.

This prove that {|ml〉} is an orthonormal Schauder M(2)-basis for M .

The next result shows that all separable bicomplex Hilbert spaces are separable by a basis.

Lemma 3.6. Every separable bicomplex Hilbert space M has an orthonormal Schauder M(2)-
basis.

Proof. By the definition of separability, M contains a countable, dense subset W of kets in M .
Consider the linear subspace U in M consisting of all finite bicomplex linear combinations of
kets in W - the bicomplex linear span of W . Clearly, U is a dense sub-M(2)-module in M . By
the construction of U we can eliminate kets from the countable set W one after the other to
get a (bicomplex) linearly independent set {|φn〉} (finite, or countable) of kets in U that spans
U . However, a sub-M(2)-module U in M of finite dimension is a complete space, thus a closed
set in M , and then U = Ū =M a contradiction with our hypothesis. Therefore, the set {|φn〉}
is a countable (bicomplex) linearly independent set of kets in U . Now, since no |φn〉 (and thus
no 〈φn|φn〉) can belongs to the null cone, the classical Gram-Schmidt process can be applied
(see [ ], P.574). Hence, we can turn the sequence {|φn〉} into an orthonormal sequence {|ψn〉}
with the property that for all n ∈ N,

span{|φn〉}nl=1 = span{|ψl〉}nl=1

Proof. Since {|ml〉} is a Schauder M(2)-basis for N , any |ψ〉 ∈ N admits a unique expansion
as an infinite series |ψ〉 = ∑∞

l=1 αl|ml〉. In fact,

|ψ〉 =
∞∑
l=1

〈ml|ψ〉 |ml〉.

3   .3
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Theorem 3.7. If M is a separable bicomplex Hilbert space, then Hk (k = 1, 2) is an infinite
dimensional separable complex Hilbert space.

Proof. From Lemma , M = H1 ⊕H2 has an orthonormal Schauder M(2)-basis {|ψl〉}. It is
easy to see that {|ψlk〉} is also an orthonormal Schauder basis for Hk (k = 1, 2). Hence, Hk

(k = 1, 2) is separable by a basis. Now, from Theorem 3.3.6. in [ ], Hk (k = 1, 2) is an infinite
dimensional separable complex Hilbert space.

Definition 3.8. Denote by l22, the space of all (real, complex or bicomplex) sequences {wl}
such that ∞∑

l=1

|wl|2 <∞.

The bicomplex l22 space is clearly an M(2)-module. The norm of the associated vector space
(l22)

′ over C(i1) is defined by

||{wl}||2 =
( ∞∑

l=1

|wl|2
) 1

2

.

Theorem 3.9. l22 is a bicompex Hilbert space.

Proof. Let us prove that (l22)
′ = (e1l

2) ⊕ (e2l
2). This comes automatically from the fact that

any bicomplex sequence {wl} can be decomposed as the following sum of two sequences in
C(i1):

{wl} = e1{z1l − z2li1}+ e2{z1l + z2li1}.

To complete the proof, we need to verify that the norm || · ||2 coincides with the induced M(2)-
norm of the bicomplex Hilbert space (e1l

2)⊕ (e2l
2). Let || · || be the induced M(2)-norm of the

bicomplex Hilbert space (e1l
2)⊕ (e2l

2). Thus

∣∣∣∣{wl}
∣∣∣∣ = 1√

2

√∣∣{z1l − z2li1}
∣∣2
1
+
∣∣{z1l + z2li1}

∣∣2
2

where
∣∣ · ∣∣

1
=

∣∣ · ∣∣
2
is the classical norm on l2. Hence,

∣∣∣∣{wl}
∣∣∣∣ = 1√

2

√∣∣{z1l − z2li1}
∣∣2
1
+
∣∣{z1l + z2li1}

∣∣2
1

=
1√
2

√√√√ ∞∑
l=1

|z1l − z2li1|2 +
∞∑
l=1

|z1l + z2li1|2

=

√√√√ ∞∑
l=1

[|z1l − z2li1|2 + |z1l + z2li1|2]
2

= ||{wl}||2.

Since {|ψl〉} is orthonormal, we can use {|ψl〉} as a Schauder M(2)-basis to generate a linear
subspace N in M (for the unicity, see the proof of Theorem ). Then N is a dense sub-M(2)-
module inM , since U is a dense sub-M(2)-module in N . The latter follows since any ket |ψ〉 ∈ N
can be expanded into a series |ψ〉 = ∑∞

l=1 αl|ψl〉, showing that |ψ〉 = limn→∞
∑n

l=1 αl|ψl〉, and
hence that |ψ〉 is the limit of a sequence of kets in U .

By construction, {|ψl〉} is an orthonormal SchauderM(2)-basis for N and hence by Theorem
also for M .
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Proof.

Tk(|φ〉) = ek(T (|φ〉))

= ek(T (|φ1〉+ |φ2〉))

= T ((|φk〉)).

Theorem 3.11 (Riesz-Fischer). Every separable bicomplex Hilbert space M is isometrically

isomorphic to the bicomplex Hilbert space l22.

Proof. From Lemma , since M = H1 ⊕H2 is a separable bicomplex Hilbert space, it has an
orthonormal Schauder M(2)-basis:

{|m1〉, . . . , |ml〉, . . . }.
Then each |ψ〉 ∈M admits a unique decomposition as

|ψ〉 =
∞∑
l=1

wl|ml〉, wl ∈ M(2).

Since the infinite series above converges, by Theorem 3.11 in [ ], the series
∑∞

l=1 |wl|2
converges in R and thus {wl} ∈ l22. Now, define a map T : M → l22 as

T (|φ〉) = {wl}∞l=1 ∀|φ〉 ∈M.

T is a well defined map: Let |φ〉, |ψ〉 ∈ M be such that |φ〉 = |ψ〉. Hence,
∑∞

l=1 wl|ml〉 =∑∞
l=1 wl′|ml〉 and then by the uniqueness of the representation we find that wl = wl

′ for each
l ∈ N, which further implies that T (|φ〉) = T (|ψ〉). Next, we show that T is bicomplex linear.
Let |φ〉, |ψ〉 ∈M and α, β ∈ T. Then,

T (α|φ〉+ β|ψ〉) = T (α

∞∑
l=1

wl|ml〉+ β

∞∑
l=1

wl′|ml〉)

= T (

∞∑
l=1

(αwl)|ml〉+
∞∑
l=1

(βwl′)|ml〉)

= T (

∞∑
l=1

(αwl + βwl′)|ml〉)

= {αwl + βwl
′}

= α{wl}+ β{wl
′}

= αT (|φ〉) + βT (|ψ〉).

Lemma 3.10. Let M1,M2 be two M(2)-modules and T : M1 → M2 be a bicomplex linear
function. Then ∀|φ〉 ∈M1 we have

Tk(|φ〉) = T (|φk〉), (k = 1, 2).

We are now ready for the proof of the main result on the structure of infinite dimensional,
separable bicomplex Hilbert space. We show that the space of square summable bicomplex
sequences l22 Define the projection Tk :M −→ Vk as

Tk|φ〉 := ekT (|φ〉), ∀|φ〉 ∈M, k = 1, 2.

With this definition we have the following Lemma.

63.
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By Theorem , the classical Riesz-Fischer Theorem can be applied to Hk where T : Hk →
ekl

2 for k = 1, 2. Then we find that

(T (|φk〉), T (|φk〉))̂k =
∣∣T (|φk〉)∣∣2k

=
∣∣|φk〉∣∣2k

= 〈φk|φk〉̂k
for k = 1, 2, where

∣∣ · ∣∣
1
=

∣∣ · ∣∣
2
is the classical norm on l2. Thus, from Equation ( ), we get

that ∥∥T (|φ〉)∥∥ =
∥∥|φ〉∥∥.

This proves that T is an isometry. HenceM is isometrically isomorphic to the bicomplex Hilbert

space l22.
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