

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH MATHEMATICS AND DECISION SCIENCES

Volume 13 Issue 11 Version 1.0 Year 2013

Type: Double Blind Peer Reviewed International Research Journal

Publisher: Global Journals Inc. (USA)

Online ISSN: 2249-4626 & Print ISSN: 0975-5896

CESARO Mean of Product Summability of Partial Differential Equations of Sequences

By Suyash Narayan Mishra

Amity University, India

Abstract- In [4], the definition of product summability method (D,k)(C,l) for functions was given and some of its properties were investigated. In [2], $(D,k)(C,\alpha,\beta)$ (k > 0, α > 0, β > -1) summability for functions are defined and some of its properties were investigated. In [1], the Ces \dot{a} ro means and Ces \dot{a} ro summability were discussed for sequences. In this paper, we study some results of Ces \dot{a} ro mean of product summability $(D,k)(C,\alpha,\beta)$ (k > 0, α > 0, β > -1) of partial differential equations of sequences.

GJSFR-F Classification: MSC 2010: 32W50, 42B08

Strictly as per the compliance and regulations of:

© 2013. Suyash Narayan Mishra. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 $R_{\rm ef}$

B. Kuttner, On translated quasi –Cesaro summability, Cambridge Philos.Soc.,62 (1966) ,705-712.

CESARO Mean of Product Summability of Partial Differential Equations of Sequences

Suyash Narayan Mishra

Abstract- In [4], the definition of product summability method (D,k)(C,l) for functions was given and some of its properties were investigated. In [2], $(D, k)(C, \alpha, \beta)$ $(k > 0, \alpha > 0, \beta > -1)$ summability for functions are defined and some of its properties were investigated. In [1], the Cesaro means and Cesaro summability were discussed for sequences. In this paper, we study some results of Cesaro mean of product summability $(D, k)(C, \alpha, \beta)$ $(k > 0, \alpha > 0, \beta)$ > -1) of partial differential equations of sequences.

I. Introduction

Kuttner [1], introduced the summability method for functions and investigated some of its properties. Pathak [4], defined the product summability method for functions and investigated some of its properties. Mishra and Srivastava [3], introduced the summability method for functions by generalizing summability method. Mishra and Mishra [2], introduced the summability method for functions and investigated some of its properties. In this paper, we study some results of Cesaro mean of product summability $(D,k)(C,\alpha,\beta)$ $(k>0,\alpha>0,\beta>-1)$ of partial differential equations of sequences.

Some relations and Definitions

Let f(x) be any function which is Lebesgue-measurable, and that $f:[0,+\infty)\to R$, and integrable in (0, x), for any finite x and which is bounded in some right hand are throughout to be taken as $\lim_{x\to 0}$ neighbourhood of origin. Integrals of the form \int

being a Lebesgue integral. For any n>0, we write $a_n(x)$ for the n^{th} integral,

$$a_n(x) = \frac{1}{\Gamma(n)} \int_0^x (x - y)^{n-1} a(y) dy$$

$$a_{-}(0)(x) = a(x)$$

The (C,α,β) transform of a(t), which we denote by $\partial_{\alpha,\beta}(t)$ is given by

$$a(t)$$
 $(\alpha = 0)$

$$\frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha)\Gamma(\beta+1)} \frac{1}{t^{\alpha+\beta}} \int_{0}^{x} (t-u)^{\alpha-1} u^{\beta} a(y) dy, \quad (\alpha > 0, \beta > -1), \tag{2.1}$$

Notes

If, for t > 0, the integral defining $\partial_{\alpha,\beta}(t)$ exists and if $\partial_{\alpha,\beta}(t) \to s$ as $t \to \infty$, we say that a (x) is summable (C,α,β) to s, and we write $\boldsymbol{a}(\boldsymbol{x}) \to s$ (C, α , β). We write

 $g(t) = g^{(k)}(t) = kt \int_{0}^{\infty} \frac{x^{k-1}}{(x+t)^{k+1}} a(x) dx$, (k > 0) (2.2) if this exists, We also write

$$U_{k,\alpha,\beta}(t) = kt \int_{0}^{\infty} \frac{x^{k-1}}{(x+t)^{k+1}} \partial_{\alpha,\beta}(x) dx, \quad (2.3) \text{ if this exists.}$$

With the usual terminology, we say that the sequence a_n is summable,

- (I) (D, k) to the sum s, if g (t) tends to a limit s as $t \to \infty$,
- (II) (D, k) (C, α , β) to s, if $U_{k,\alpha,\beta}(t)$ tends to s as $t\to\infty$. When $\beta=0$, $(D,k)(C,\alpha,\beta)$ and $(D,k)(C,\alpha)$ denote the same method. The case $\beta=0$ is due to Pathak[5]. We know that for any fixed t>0, k>0, it is necessary and sufficient for the convergence of (2.3) that $\int_1^\infty \frac{\partial_{\alpha,\beta}(x)}{x^2} \ dx$ should converge. (2.4) If (2.4) converges, write for x>0, $F_{\alpha,\beta}(x)=\int_x^\infty \frac{\partial_{\alpha,\beta}(t)}{t^2} \ dt$.

We note that $F_{\alpha,\beta}(x) = o(1)$ as $x \to \infty$. Further, (since f(x) is bounded in some right hand neighbourhood of the origin) we have,

$$F_{\alpha,\beta}(x) = o\left(\frac{1}{x}\right) \text{as } x \rightarrow 0 + .$$

III. MAIN RESULTS

In this section, we have following theorems for sequences analogous to [2].

Theorem 3.1 : If $\alpha > \gamma \ge 1$, k > 0 then $a(x) \to s(D,k)(C,\alpha-1,\beta)$,whenever $a(x) \to s(D,k)(C,\gamma-1,\beta)$.

Theorem 3.2 : Let $\alpha > \gamma \geq 0$, $\beta > -1$, and suppose that a(x) is summable (C, γ, β) to s and that $\int_1^\infty \frac{\partial_{\gamma,\beta}(x)}{x^2} \ dx$ converges . Then a(x) is summable $(D,k)(C,\alpha,\beta)$ to s.

References Références Referencias

- 1. **B. Kuttner,** On translated quasi –Cesaro summability, Cambridge Philos.Soc.,62 (1966) ,705-712.
- 2. **B. P. Mishra and S.N. Mishra,** Some remarks on product summability methods.Prog.of Maths.Vol 35 (nos.1 & 2) 2001.
- 3. B. P. Mishra and A.P.Srivastava, Some remarks on absolute summability of functions based on (C, α, β) summability methods. To appear in Jour.Nat.Acad.Math.
- 4. **S.N.Pathak**, Some investigations of summability of functions, Ph.D. Thesis, Gorakhpur University, Gorakhpur (1986).

