Global Journals of Science Frontier Research: A Physics and Space Science

Theory of Gravity
Multilayer Probing of Cells
Highlights
Physical Errors of Wald
Radiation Hazards Associated

Discovering Thoughts, Inventing Future

Volume 13
Issue 2
Version 1.0

© 2001-2013 by Global Journal of Science Frontier Research, USA
EDITORIAL BOARD MEMBERS (HON.)

John A. Hamilton, "Drew" Jr.,
Ph.D., Professor, Management
Computer Science and Software Engineering
Director, Information Assurance Laboratory
Auburn University

Dr. Wenying Feng
Professor, Department of Computing & Information Systems
Department of Mathematics
Trent University, Peterborough, ON Canada K9J 7B8

Dr. Henry Hexmoor
IEEE senior member since 2004
Ph.D. Computer Science, University at Buffalo
Department of Computer Science
Southern Illinois University at Carbondale

Dr. Osman Balci, Professor
Department of Computer Science
Virginia Tech, Virginia University
Ph.D. and M.S. Syracuse University,
Syracuse, New York
M.S. and B.S. Bogazici University,
Istanbul, Turkey

Dr. Thomas Wischgoll
Computer Science and Engineering,
Wright State University, Dayton, Ohio
B.S., M.S., Ph.D.
(University of Kaiserslautern)

Dr. Abdurrahman Arslanyilmaz
Computer Science & Information Systems Department
Youngstown State University
Ph.D., Texas A&M University
University of Missouri, Columbia
Gazi University, Turkey

Dr. Xiaohong He
Professor of International Business
University of Quinnipiac
BS, Jilin Institute of Technology; MA, MS, PhD, (University of Texas-Dallas)

Yogita Bajpai
M.Sc. (Computer Science), FICCT
U.S.A. Email: yogita@computerresearch.org

Dr. T. David A. Forbes
Associate Professor and Range Nutritionist
Ph.D. Edinburgh University - Animal Nutrition
M.S. Aberdeen University - Animal Nutrition
B.A. University of Dublin- Zoology

Burcin Becerik-Gerber
University of Southern California
Ph.D. in Civil Engineering
DDes from Harvard University
M.S. from University of California, Berkeley & Istanbul University
Dr. Bart Lambrecht
Director of Research in Accounting and Finance
Lancaster University Management School
BA (Antwerp); MPhil, MA, PhD (Cambridge)

Dr. Söhnke M. Bartram
Department of Accounting and Finance
Lancaster University Management School
Ph.D. (WHU Koblenz)
MBA/BBA (University of Saarbrücken)

Dr. Carlos García Pont
Associate Professor of Marketing
IESE Business School, University of Navarra
Doctor of Philosophy (Management), Massachusetts Institute of Technology (MIT)
Master in Business Administration, IESE, University of Navarra
Degree in Industrial Engineering, Universitat Politècnica de Catalunya

Dr. Miguel Angel Ariño
Professor of Decision Sciences
IESE Business School
Barcelona, Spain (Universidad de Navarra)
CEIBS (China Europe International Business School).
Beijing, Shanghai and Shenzhen
Ph.D. in Mathematics
University of Barcelona
BA in Mathematics (Licenciatura)
University of Barcelona

Philip G. Moscoso
Technology and Operations Management
IESE Business School, University of Navarra
Ph.D in Industrial Engineering and Management, ETH Zurich
M.Sc. in Chemical Engineering, ETH Zurich

Dr. Sanjay Dixit, M.D.
Director, EP Laboratories, Philadelphia VA Medical Center
Cardiovascular Medicine - Cardiac Arrhythmia
Univ of Penn School of Medicine

Dr. Mihaly Mezei
ASSOCIATE PROFESSOR
Department of Structural and Chemical Biology, Mount Sinai School of Medical Center
Ph.D., Etsv Lornd University
Postdoctoral Training, New York University

Dr. Han-Xiang Deng
MD., Ph.D
Associate Professor and Research Department Division of Neuromuscular Medicine
Davee Department of Neurology and Clinical NeuroscienceNorthwestern University

Dr. Fotini Labropulu
Mathematics - Luther College
University of ReginaPh.D., M.Sc. in Mathematics
B.A. (Honors) in Mathematics
University of Windso

Dr. Lynn Lim
Reader in Business and Marketing
Roehampton University, London
BCom, PGDip, MBA (Distinction), PhD, FHEA

Dr. Mihaly Mezei
ASSOCIATE PROFESSOR
Department of Structural and Chemical Biology, Mount Sinai School of Medical Center
Ph.D., Etsv Lornd University
Postdoctoral Training, New York University
Dr. Pina C. Sanelli
Associate Professor of Public Health
Weill Cornell Medical College
Associate Attending Radiologist
NewYork-Presbyterian Hospital
MRI, MRA, CT, and CTA
Neuroradiology and Diagnostic Radiology
M.D., State University of New York at Buffalo, School of Medicine and Biomedical Sciences

Dr. Roberto Sanchez
Associate Professor
Department of Structural and Chemical Biology
Mount Sinai School of Medicine
Ph.D., The Rockefeller University

Dr. Wen-Yih Sun
Professor of Earth and Atmospheric Sciences
Purdue University Director National Center for Typhoon and Flooding Research, Taiwan
University Chair Professor
Department of Atmospheric Sciences, National Central University, Chung-Li, Taiwan
University Chair Professor
Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan
Ph.D., MS The University of Chicago, Geophysical Sciences
BS National Taiwan University, Atmospheric Sciences
Associate Professor of Radiology

Dr. Michael R. Rudnick
M.D., FACP
Associate Professor of Medicine
Chief, Renal Electrolyte and Hypertension Division (PMC)
Penn Medicine, University of Pennsylvania
Presbyterian Medical Center, Philadelphia
Nephrology and Internal Medicine Certified by the American Board of Internal Medicine

Dr. Bassey Benjamin Esu
B.Sc. Marketing; MBA Marketing; Ph.D Marketing
Lecturer, Department of Marketing, University of Calabar
Tourism Consultant, Cross River State Tourism Development Department
Co-ordinator, Sustainable Tourism Initiative, Calabar, Nigeria

Dr. Aziz M. Barbar, Ph.D.
IEEE Senior Member
Chairperson, Department of Computer Science
AUST - American University of Science & Technology
Alfred Naccash Avenue – Ashrafieh
President Editor (HON.)

Dr. George Perry, (Neuroscientist)
Dean and Professor, College of Sciences
Denham Harman Research Award (American Aging Association)
ISI Highly Cited Researcher, Iberoamerican Molecular Biology Organization
AAAS Fellow, Correspondent Member of Spanish Royal Academy of Sciences
University of Texas at San Antonio
Postdoctoral Fellow (Department of Cell Biology)
Baylor College of Medicine
Houston, Texas, United States

Chief Author (HON.)

Dr. R.K. Dixit
M.Sc., Ph.D., FICCT
Chief Author, India
Email: authorind@computerresearch.org

Dean & Editor-in-Chief (HON.)

Vivek Dubey (HON.)
MS (Industrial Engineering),
MS (Mechanical Engineering)
University of Wisconsin, FICCT
Editor-in-Chief, USA
editorusa@computerresearch.org

Sangita Dixit
M.Sc., FICCT
Dean & Chancellor (Asia Pacific)
deanind@computerresearch.org

Suyash Dixit
(B.E., Computer Science Engineering), FICCT
President, Web Administration and Development, CEO at IOSRD
COO at GAOR & OSS

Er. Suyog Dixit
(M. Tech), BE (HONS. in CSE), FICCT
SAP Certified Consultant
CEO at IOSRD, GAOR & OSS
Technical Dean, Global Journals Inc. (US)
Website: www.suyogdixit.com
Email:suyog@suyogdixit.com

Pritesh Rajvaidya
(MS) Computer Science Department
California State University
BE (Computer Science), FICCT
Technical Dean, USA
Email: pritesh@computerresearch.org

Luis Galárraga
J!Research Project Leader
Saarbrücken, Germany
CONTENTS OF THE VOLUME

i. Copyright Notice
ii. Editorial Board Members
iii. Chief Author and Dean
iv. Table of Contents
v. From the Chief Editor’s Desk
vi. Research and Review Papers

1. Some Mathematical and Physical Errors of Wald on General Relativity. 1-9
2. Rotating X-Ray Window for Multilayer Probing of Cells; Microfocussing Techniques. 11-15
3. An Investigation on the Radiation Hazards Associated with the Use of Abakaliki Pyroclastic from Southeastern Nigeria as Construction Materials. 17-22
4. LRS Bianchi Type – II Universe in F(R,T) Theory of Gravity. 23-27

vii. Auxiliary Memberships
viii. Process of Submission of Research Paper
ix. Preferred Author Guidelines
x. Index
Some Mathematical and Physical Errors of Wald on General Relativity

By C. Y. Lo

Abstract - In spite of including crucial errors, Wald's book has become a standard reference, in part, because the 1993 Nobel Prize Committee for physics made the same mistakes. He also has circumvented some errors of Misner, Thorne and Wheeler, but he still fails to understand Einstein's equivalence principle. Moreover, he maintains the major common errors, the existence of dynamic and wave solutions for the Einstein equation, and thus also the claimed validity of linearization for weak gravity and the perturbation approach. Another problem is that he failed to see the invalidity of Einstein's covariance principle in physics. This is due to that in spite of his being additionally cautious, Wald was often not able to tell the difference between mathematics and physics. Although his main errors have been shown in the literature, some theorists may not have the mathematical background or the time to go through these. In this paper, his errors are illustrated and explained in mathematics at the undergraduate level.

Keywords: Einstein's equivalence principle; dynamic solutions, principle of causality; mathematical analysis 04.20.-q, 04.20.cv.

GJSFR-A Classification: FOR Code: 020109, 010599p

© 2013. C. Y. Lo. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Some Mathematical and Physical Errors of Wald on General Relativity

C. Y. Lo

Abstract - In spite of including crucial errors, Wald’s book has become a standard reference, in part, because the 1993 Nobel Prize Committee for physics made the same mistakes. He also has circumvented some errors of Misner, Thorne and Wheeler, but he still fails to understand Einstein’s equivalence principle. Moreover, he maintains the major common errors, the existence of dynamic and wave solutions for the Einstein equation, and thus also the claimed validity of linearization for weak gravity and the perturbation approach. Another problem is that he failed to see the invalidity of Einstein’s covariance principle in physics. This is due to that in spite of his being additionally cautious, Wald was often not able to tell the difference between mathematics and physics. Although his main errors have been shown in the literature, some theorists may not have the mathematical background or the time to go through these. In this paper, his errors are illustrated and explained in mathematics at the undergraduate level.

Keywords: einstein’s equivalence principle; dynamic solutions, principle of causality; mathematical analysis 04.20.-q, 04.20.cv.

“Science sets itself apart from other paths to truth by recognizing that even its greatest practitioners sometimes err”

I. Introduction

In celebrating a wonderful tradition, the installation of a new MIT president, I had a chance to talk to MIT President, Dr. L. Rafael Reif. Since he asked the community, including MIT Alumni to help him to do a better job, I ventured again to tell that in my 20 years of research on fundamental problems in physics, I discovered that there are many problems in current theories of general relativity. He asked me to give him a report with details on these.

I examined the MIT open course Phy. 8.962 (instructed by Prof. Bertschinger) with the textbook [1] by Sean Carroll. As expected, there still are major errors that started from the beginning of general relativity. For instance, as Gullstrand [2, 3] pointed out in 1921, there is actually no dynamic solution for the non-linear Einstein equation,

\[G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -\kappa T_{\mu\nu}, \kappa = 8\pi G / c^4 = 1.86 \times 10^{-47} \] (1)

where \(g_{\mu\nu}\) is the space-time metric, \(R_{\mu\nu}\) is Ricci tensor, and \(T_{\mu\nu}\) is the source, energy momentum tensor of matter [4]. Also \(\kappa\) is the gravitational constant in Newtonian theory, and \(c\) is the velocity of light in vacuum.

Carroll stated that he has often leaned heavily on the book of Wald [5] as a primary source since it has become a standard reference in the field. Thus, I decided to publish another paper on general relativity to illustrate and explain errors of Wald because this spreading of errors should be stopped as soon as possible. Previously, I have reported problems on MIT open course, Phy. 8.033 to former MIT President Susan Hockfield, but that involved mainly the errors of the Wheeler School [6].

The issue of whether the Einstein equation has far reaching consequences leads to answering issues such as whether \(E = mc^2\) is only conditionally valid, (Appendix A), whether all the coupling constants have the same sign, and whether general relativity is not applicable to microscopic phenomena as Penrose and Hawking claimed, etc. In fact, the mistakes on the question of dynamic solutions are responsible for many subsequent absurd claims [7].

II. Equivalence of the Inert & the Gravitational Mass, and Einstein’s Equivalence Principle

Wald [5] circumvented Einstein’s equivalence principle, but claimed the equivalence of inert mass and the gravitational mass due to Galileo and Newton as “the equivalence principle”, but the 1993 Nobel Prize Committee for Physics adapted this view. In so doing, Wald avoided criticizing the error of Misner, Thorne, and Wheeler [6] because they have misidentified Einstein’s equivalence principle of 1916 as the invalid 1911 assumption of equivalence between acceleration and Newtonian gravity. However, this also exposed that Wald does not understand Einstein’s equivalence principle-historical errors in mathematics and physics.

Einstein’s equivalence principle is based on the then highly accurate experimental fact that the inert mass and the gravitational mass can be considered the same although they are defined very differently. Then, he considered two space coordinate systems: an inertial
system K and a system K' that is uniformly accelerated with respect to K. Then masses that are free from acceleration with respect to K, would have equal and parallel acceleration with respect to K'. They behave just as if a gravitational field were present and K' is unaccelerated. Einstein called the assumption of the complete physical equivalence of the systems of coordinates, K and K' the “principle of equivalence”. Einstein considered that this principle is evidently intimately connected with the law of the equality between the inert and the gravitational mass, and signifies an extension of the principle of relativity to coordinate systems which are in non-uniform motion relatively to each other.

Nevertheless, Wald claimed “This fact, known as the equivalence principle, is expressed in Newtonian theory of gravitation by the statement that the gravitational force on a body is proportional to its inertial mass.” Thus Wald changed Einstein’s equivalence principle completely, and reduced it to the level of Galileo and Newton. Then, he omitted the Einstein-Minkowski condition completely that follows Einstein’s equivalence principle. Thus, Wald could avoid the obvious conflict between the Einstein-Minkowski condition and Einstein’s covariance principle [7] that Wald subsequently heavily leaned on.

Moreover, he derived the bending of a light without going through the Einstein-Minkowski condition [4]. Then he omitted the justifications for the adaptation of Einstein’s theory of measurement and thus avoided approving the invalid applications of Einstein with special relativity to justify his theory of measurement [8]. He also avoided the issue of inconsistency with observed light bending from using Einstein’s theory of measurement. However, he still failed to achieve the consistency with Einstein’s theory of measurement because the interior solution and the exterior solution must be continuous at the surface of a massive ball. For the Schwarzschild gauge, this means as shown in his equation (6.2.10) [5] that the total mass

\[M = m(R) = 4\pi \int_0^R \rho(r) r^2 dr \] (2)

where \(\rho(r) \) is the density of the mass. However, this also means that Einstein’s theory of measurement is not valid because as shown in his equation (6.2.11), it would require that

\[M' = m(R) = 4\pi \int_0^R \rho(r) r^2 \left[1 - \frac{2m(r)}{r} \right]^{1/2} dr \] (2')

Wald’s interpretation is that \(M' \) is total proper mass. However, he failed to explain why the difference \((M' - M) \) does not contribute to gravity.

Apparently, Wald was unaware of that Einstein’s equivalence principle plays a crucial role in deriving the Maxwell-Newton Approximation (see Appendix B) which is identical to the linearized equation with massive sources in the harmonic gauge [9]. This derivation is necessary because the non-linear Einstein equation has been found [10, 11] to be invalid for the dynamic case. However, Wald also has mistaken that the Einstein equation had dynamic solutions. He failed to see that a mathematical equation may not necessarily have a valid solution for physics, and thus he often claimed a solution for an equation without a necessary proof.\(^3\)

III. Weak Gravity, Gravitational Waves, and the Principle of Causality

According to Einstein [4], in general relativity weak sources would produce a weak field, i.e.,

\[g_{\mu \nu} = \eta_{\mu \nu} + \gamma_{\mu \nu}, \text{ where } |\gamma_{\mu \nu}| << 1 \] (3)

and \(\eta_{\mu \nu} \) is the flat metric when there is no source. For the static case, condition (3) is verified. However, for the dynamic case, Gullstrand [2, 3] suspected that condition (3) may not be valid. According to the principle of causality, condition (3) should be valid; but this is true only if the equation is valid in physics. Many theorists failed to see this because they failed to see the difference between physics and mathematics clearly [7]. In other words, condition (3) and whether the principle of causality is applicable need a rigorous proof.

Unfortunately, many believe that condition (3) is always valid for general relativity because Einstein has produced accurate predictions for the static case. When the Einstein equation has a weak solution, an approximate weak solution can be derived through the approach of the field equation being linearized. The linearized Einstein equation with the linearized harmonic gauge \(\partial^\alpha \bar{T}_{\mu \nu} = 0 \) is

\[\frac{1}{2} \delta^\alpha \partial_\alpha \bar{T}_{\mu \nu} = \kappa T_{\mu \nu} \quad \text{where} \quad \bar{T}_{\mu \nu} = \gamma_{\mu \nu} - \frac{1}{2} \eta_{\mu \nu} \gamma \]

and \(\gamma = \eta_{\mu \nu} \gamma_{\mu \nu} \) (4)

Note that we have

\[G_{\mu \nu} = G_{\mu \nu}^{(1)} + G_{\mu \nu}^{(2)} \]

and

\[G_{\mu \nu}^{(1)} = \frac{1}{2} \delta^\alpha \partial_\alpha \bar{T}_{\mu \nu} - \delta^\alpha \partial_\mu \gamma_{\alpha \nu} - \delta^\alpha \partial_\nu \gamma_{\alpha \mu} + \frac{1}{2} \eta_{\mu \nu} \delta^\alpha \partial_\alpha \bar{T}_{\nu \mu} \]

(5)

The linearized vacuum Einstein equation means

\[G_{\mu \nu}^{(1)} [\gamma_{\alpha \mu}^{(1)}] = 0 \] (6)
Thus, as pointed out by Wald, in order to maintain a solution of the vacuum Einstein equation to second order we must correct $\gamma^{(1)}_{\mu \nu}$ by adding to it the term $\gamma^{(2)}_{\mu \nu}$, where $\gamma^{(2)}_{\mu \nu}$ satisfies

$$G^{(1)}_{\mu \nu}[\gamma^{(2)}_{\mu \nu}] + G^{(1)}_{\nu \mu}[\gamma^{(2)}_{\mu \nu}] = 0,$$

where $\gamma_{\mu \nu} = \gamma^{(1)}_{\mu \nu} + \gamma^{(2)}_{\mu \nu} \quad (7)$

Which is the correct form of eq. (4.4.52) in Wald’s book. (In Wald’s book, he did not distinguish $\gamma_{\mu \nu}$ from $\gamma^{(1)}_{\mu \nu}$) This equation does have a solution for the static case. However, detailed calculation shows that this equation does not have a solution for the dynamic case [10, 11]. The fact that there is no solution for eq. (7) means also that the Einstein equation does not have a bounded dynamic solution.

An independent supplementary convincing evidence for the absence of a bounded dynamic solution is, as shown by Hu, Zhang & Ting [12], that gravitational radiation calculated would depend on the solution is, as shown by Hu, Zhang & Ting [12], that evidence for the absence of a bounded dynamic solution. A similar problem in approximation schemes such as post-Newtonian approach used. This is also a manifestation that there is no bounded solution. A similar problem in approximation schemes such as post-Newtonian approximation [2, 3] is that their validity is also only assumed.

IV. Illustrative Examples for the Nonexistence of Wald’s Equation

To illustrate Wald’s error, one can consider the example provided by Misner et al. [6]. They claimed that a plane-wave solution is of the form as follows:

$$ds^2 = c^2 dt^2 - dx^2 - L^2 \left[e^{2\beta} dy^2 + e^{-2\beta} dz^2 \right] \quad (8)$$

where $L = L(u)$, $\beta = \beta (u)$, $u = ct - x$, and c is the light speed. Then, the Einstein equation $G_{\mu \nu} = 0$ becomes

$$\frac{d^2 L}{du^2} + L \left(\frac{d \beta}{du} \right)^2 = 0 \quad (9)$$

Misner et al. [6] claimed that Eq. (9) has a bounded solution, compatible with a linearization of Einstein equation (1). It has been shown that Misner et al. are incorrect and Eq. (9) does not have a physical solution that satisfies Einstein’s requirement on weak gravity [13, 14]. In fact, $L(u)$ is unbounded even for a very small $\beta (u)$.

On the other hand, from the linearization of the Einstein equation (the Maxwell-Newton approximation) in vacuum, Einstein [15] obtained a solution as follows:

$$ds^2 = c^2 dt^2 - dx^2 - \left(1 + 2\phi \right) dy^2 - \left(1 - 2\phi \right) dz^2 \quad (10)$$

where ϕ is a bounded function of $u \ (= ct - x)$. Note that metric (10) is the linearization of metric (8) if $\phi = \beta (u)$. Thus, the problem of waves illustrates that the linearization may not be valid for the dynamic case when gravitational waves are involved since eq. (9) does not have a weak wave solution.

In conclusion, due to confusion between mathematics and physics, Wald [5] made errors in mathematics at the undergraduate level. The principle of causality requires the existence of a dynamic solution, but Wald did not see that the Einstein equation can fail this requirement.

Another well-known counter example is the metric obtained by Bondi, Pirani, & Robinson [16] as follows:

$$ds^2 = c^2 \left[\cosh 2\beta (dy^2 + dz^2) - 2 \sinh 2\beta \cos 2\theta (dy^2 - dz^2) \right]$$

where ϕ, β and θ are functions of $u \ (= \tau - \xi)$. It satisfies the differential equation (i.e., their Eq. [2.8]),

$$2\phi = u \left(\beta^2 + \theta^2 \sinh^2 2\beta \right)$$

They claimed this is a wave from a distant source. (11b) implies ϕ cannot be a periodic function. The metric is irreduncibly unbounded because of the factor u^2. Both eq. (9) and eq. (11b) are special cases of $G_{\mu \nu} = 0$. However, linearization of (11b) does not make sense since variable u is not bounded. Thus, they claim Einstein’s notion of weak gravity invalid because they do not understand the principle of causality adequately.

Moreover, when gravity is absent, it is necessary to have $\phi = \sinh 2\beta = \sin 2\theta = 0$. These would reduce (11a) to

$$ds^2 = \left(dr^2 - d\xi^2 \right) - u^2 \left(d\eta^2 - d\zeta^2 \right) \quad (11c)$$

However, this metric is not equivalent to the flat metric. Thus, metric (11c) violates the principle of causality. Also, it is impossible to adjust metric (11a) to become equivalent to the flat metric.

This challenges the view that both Einstein’s notion of weak gravity and his covariance principle are valid. These conflicting views are supported respectively by the editorials of the “Royal Society Proceedings A” and the “Physical Review D” thus there is no general consensus. As the Royal Society correctly pointed out [17, 18], Einstein’s notion of weak gravity is inconsistent with his covariance principle. However, Einstein’s covariance principle has been proven invalid since counter examples have been found [19, 20].

There are other theorists who also ignore the principle of causality. For example, another “plane wave”, which is intrinsically non-physical, is the metric accepted by Penrose [21] as follows:

$$ds^2 = du \, dv + H du^2 - dx dx, \quad \text{where} \quad H = h_{ij}(u) x_i x_j \quad (12)$$

Where $u = ct - z$, $v = ct + z$. However, there are arbitrary non-physical parameters (the choice of origin) that are

The plane wave solution of Liu & Zhou [22], which satisfies the harmonic gauge, is as follows:

$$ds^2 = dt^2 - dx^2 + 2F(dt - dx)^2 - \cosh 2\psi (e^{2\phi} dy^2 + e^{-2\phi} dz^2) - 2\sinh 2\psi dy dz.$$

(13)

where $\phi = \phi(u)$ and $\psi = \psi(u)$. Moreover, $F = F_p + H$, where

$$F_p = \frac{1}{2} (\psi^2 + \phi^2 \cosh 2\psi) \left[\cosh 2\psi \left(e^{2\phi} y^2 + e^{-2\phi} z^2 \right) + 2\sinh 2\phi yz \right],$$

(14)

and H satisfies the equation,

$$\cosh 2\psi \left(e^{2\phi} H_{,22} + e^{-2\phi} H_{,23} \right) - 2\sinh 2\psi H_{,23} = 0.$$

(15)

For the weak fields one has $1 >> |\phi|$, $1 >> |\psi|$, but there is no weak approximation as claimed to be

$$ds^2 = dt^2 - dx^2 - (1 + 2\phi) dy^2 - (1 - 2\phi) dz^2 - 4y dy dz$$

(16)

because F_p is not bounded unless ϕ and ψ are zero (i.e., no wave).

The linearized equation for a dynamic case has been illustrated as incompatible with the non-linear Einstein equation, which has no bounded dynamic solutions. Thus, Eq. (9), Eq. (11b), and Eq. (13) serve as good simple examples that can be shown through explicit calculation that linearization of the Einstein equation is not valid. Also, metric (12) suggests that the cause of having no physical solution would be due to inadequate source terms [10, 12, 23].

V. THE SO-CALLED SPACE-TIME SINGULARITY THEOREMS, POSITIVE MASS THEOREM, AND $E = mc^2$

A surprising conclusion, from the investigation of the Einstein equation, is that the space-time singularity theorems of Penrose and Hawking are actually irrelevant to physics. This is so because their theorems have a common implicit assumption that all the couplings have the same sign. However, from the investigation of dynamic solutions, such an assumption is necessarily invalid in physics [9, 10]. These theorems were accepted because Penrose won the arguments against a well-known Russian scientist E. M. Lifshitz who claimed, with the same set of assumptions, that there is no space-time singularity [24]. However, the problem is not the mathematics in the theorems, but the earlier historical errors in mathematics and physics.

As Pauli [25] pointed out, in principle general relativity can have different signs for their coupling constants. The fact that nobody questioned the assumption of unique sign for all coupling, is probably due to the unverified speculation of formula $E = mc^2$ being generally true. This formula comes from special relativity, and the conversion of some mass to various combinations of energy is verified by the fission and fusion in nuclear physics. However, the conversion of a single type of energy to mass actually has never been verified [7].

Einstein and theorists have shown that the photons can be converted into mass thorough absorption [26]. This conversion is supported by the fact that the π^0 meson can be decayed into two photons. Thus, it was claimed that the electromagnetic energy can be converted into mass because they failed to see that the photons must have non-electromagnetic energy.

When Einstein proposed the notion of photons, he had not conceived general relativity yet. Thus, understandably he neglected the gravitational component of light. However, after general relativity, a light ray consists of a gravitational component is natural because the electron has a mass. Besides, the electromagnetic energy-momentum tensor has a zero trace, but the energy-momentum tensor of massive matter has a non-zero trace. In fact, Einstein failed to show the general validity of $E = mc^2$ in spite of several years effort [27]. Experimentally, in contrast of Einstein’s claim, $E = mc^2$ is not always valid because a piece of heated up metal has reduced weight [28].

Although the Einstein equation does not have a dynamic solution, physically the dynamical structure must exist for a rectified equation. A problem of the Einstein equation is that it does not include the gravitational energy-stress tensor of its gravitational waves in the source and thus the principle of causality is violated. Since a gravitational wave carried energy-momentum and the source of gravity is the energy-stress tensors, as Hogarth [29] pointed out, the presence of a non-zero energy-momentum in the source is necessary for a gravitational wave. Thus, to fit the Hulse-Taylor data of the binary pulsar, it is necessary to modify the Einstein equation [10] to

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -\kappa \left[T(m)_{\mu\nu} - t(g)_{\mu\nu} \right]$$

(17)

Where $t(g)_{\mu\nu}$ is the energy-stress tensor for gravity. For radiation, the tensor $t(g)_{\mu\nu}$ is equivalent to Einstein’s notion of the gravitational energy-stress. However, his notion is a pseudo-tensor and can become zero by choosing a suitable coordinate system, but the energy-momentum of a radiation cannot be zero, and thus must be a tensor [10].

It is crucial to note that the new tensor necessarily has a different sign for its coupling. Thus, the implicit assumption of Penrose and Hawking is proven necessarily invalid. Note that the absence of a dynamic solution and the presence of space-time singularities are related to the same invalid assumption.
It is the long standing bias and errors in mathematics that some theorists accepted one but rejected the other. Now, clearly the space-time singularity theorems dramatically illustrate that what could an applied mathematician do without the proper guidance of physics. Other victims are the positive mass theorem of Yau [30] and the positive energy theorem of Witten [31] because they used the same invalid implicit assumption as Hawking and Penrose.

VI. DISCUSSIONS AND CONCLUSIONS

Einstein was the major architect or foundation builder of three great theories of modern physics, namely: special relativity, quantum mechanics and general relativity. However, he was also the source of oversight in each theory [7]. In special relativity, he failed to see that $E = mc^2$ is only conditionally valid. In quantum theory, he failed to recognize that photons must include non-electromagnetic energy [32]. In general relativity, his principle of covariance and theory of measurement are invalid [8, 33]. However, related criticisms of Whitehead [34] and Zhou [35] were ignored. The lack of examples to illustrate his equivalence principle makes it possible to have popular misinterpretations and confusions in physics [36].

Some theorists such as Carroll [1] claimed “General relativity is the most beautiful physical theory ever invented.” This reaffirms that beauty is in the eyes of the beholder. He probably simply regurgitates what he heard in Caltech, where Thorne [23] erroneously claimed his student’s opinion, that Einstein neglected the tidal force as Einstein’s, although Einstein explicitly pointed it out as wrong [37]5. In addition to that analysis shows clearly that there are no bounded wave-solutions; there are many necessarily unbound “wave”. Thus, it is a puzzle how the “experts” never reexamine the hand-waving “proofs” for such a long time. A problem of the Wheeler School and her associates is that they seldom read papers that are written by “outsiders” and thus their errors would continue regardless.

However, now it is clearly an incomplete theory that remains to be explored. In terms of physics, a basic problem is that just as in Maxwell’s classical electromagnetism [38], there is also no radiation reaction force in general relativity. Although an accelerated massive particle would create radiation [24], the metric elements in the geodesic equation are created by particles other than the test particle [4]. (Thus, Carroll’s [1] tendency, to think of general relativity as a field, would be valid.) Another problem is the exact field equation for the dynamic case. Because of the misinterpretation of $E = mc^2$, the study of gravitational effects of electromagnetism is clearly inadequate [7]. The discovery of the charge-mass interaction is a good beginning since the need for Einstein’s unification is confirmed.

Unfortunately, these potentially great developments have been blocked because of the inadequacy of the theorists in mathematics and historical inadequacy in physics. Half of the book of Wald [4] dealt with “advanced topics”, but they are actually at most unverified speculations. It is obvious that there is no perturbation approach since there is no bounded dynamic solution. The misunderstanding on the notion of gauge invariance [39] persistently presented by C. N. Yang [40, 41] was probably responsible for prolonging the incorrect acceptance of Einstein’s covariance principle after it has been found to be invalid through explicit examples [33].

Historically, in the US, the Wheeler School has been responsible for recognizing the importance of general relativity. It is hoped that they are able to continue their efforts after rectifying their mistakes. A lesson to be learned is that nothing can damage sciences more than biased authority worship. Currently, the Einstein equation is served as guidance for the research in string theory. It would be a great disservice to the string theorists if the problem in the Einstein equation is withheld from them. It seems to me that the string theory, if correct, must be able to include the experimentally verified charge-mass interaction, newly discovered from an analysis of general relativity [7, 28]. It is hoped this paper would help theorists to look at unsolved problems squarely.

IV. ACKNOWLEDGMENTS

This paper is dedicated to MIT Institute Professor P. Morrison for his enlightenment on general relativity for more than 15 years. Special thanks are to Sharon Holcombe for valuable suggestions. This work is supported in part by Innotec Design, Inc., USA and the Chan Foundation, Hong Kong.

a) Appendix A: on Invalidity of $e = mc^2$ and Related Errors

Based on special relativity, it is conjectured that mass can be equivalent to energy with the relation $E = mc^2$ [4]. This conversion is supported by fission and fusion in nuclear physics. In such a conversion the resulting energy is a combination of different types of energy.

However, there is no example that a single type of energy can be converted to mass. Einstein claimed that electromagnetic energy can be equivalent to mass. However, this is actually due to that Einstein failed to see that photons actually consist of gravitational energy [7]. This inclusion is natural after general relativity since a charged particle always has mass. Einstein tried to extend this relation to other types of energy for several years (1905-1909) but failed [27]. Recently, experiments have shown that electromagnetic energy alone is not equivalent to mass [28].
Some argued that the mass of a particle can be defined with the formula \(f = ma \). A problem is that such a mass may not be related to the energy of such a force. For instance, although the electromagnetic force acting on a charged particle, this does not enable one to establish a relation between such a mass and the electromagnetic energy. In fact, this is also an error of Nobel Laureate G.‘t Hooft made in his 1999 Nobel speech.

Moreover, before direct experimental evidence against the formula \(E = mc^2 \) are known, there exists a theoretical puzzle because the photons have no mass. For this, some defined an electromagnetic mass with \(m_e = E_e/c^2 \) in terms of the electromagnetic energy \(E_e \), but few theorists questioned whether such a definition makes sense in physics. Now, it has been shown that this formula may fail, and thus cannot be considered as generally valid. Hence, one should have asked whether such a new definition of mass is equivalent to the inert mass and/or the gravitational mass. Now, clearly this line of thinking actually does not lead to any meaningful physics. In fact, it is probably due to a failure in distinguishing mathematics from physics that must be additionally supported by experiments.

b) Appendix B: The Question of Dynamic Solutions and the Maxwell-Newton Approximation

A problem in general relativity [10] is that, for a dynamic case, there is no bounded solution,

\[
\left| g_{ab}(x, y, z, t) \right| < \text{constant}, \quad (A1)
\]

for the Einstein equation, where \(g_{ab} \) is the space-time metric [4]. In fact, eq. \((A1) \) is also a necessary implicit assumption in calculating Einstein’s radiation formula [42] and the light bending [23]. One might argue that requirement \((A1) \) violates the covariance principle. However, the covariant principle is invalid in physics [33].

Moreover, Einstein’s notion of weak gravity [4] is also in agreement with the principle of causality. However, although such a requirement can be satisfied for the static case, it fails for a dynamic case [10].

The question of valid dynamic solutions was raised by Gullstrand [2] the chairman of Nobel Prize Committee for Physics (1922-1929). He challenged Einstein and also Hilbert who approved Einstein’s calculations [43]. Apparently Hilbert was unaware of the need of a bounded dynamic solution for the perturbation approach to this issue. However, Hilbert, being an excellent mathematician, did not participate in the subsequent efforts for the defense of Einstein’s claim. Nevertheless, theorists such as Misner, Thorne and Wheeler [6] and Christodoulou & Klainerman [44], etc. failed to see this, and tried very hard to prove otherwise. Their efforts have been proven as futile [10, 45].

The failure of producing a dynamic solution would cast a strong doubt to the validity of the linearized equation that produces many effects including the gravitational waves. In fact, for the case that the source is an electromagnetic plane wave, the linearized equation actually does not have a bounded solution [46].

Nevertheless, when the sources are massive, some of such results from the linearized equation have been verified by observation. Thus, there must be a way to justify the linearized equation, independently. Such an investigation has led additionally to a modified Einstein equation that would have dynamic solutions. To this end, Einstein’s equivalence principle [9] is needed, and thus this principle, though rejected by the 1993 Nobel Prize Committee for Physics implicitly [47], is crucial in general relativity. As a result, it becomes even clearer that the non-existence of a bounded dynamic solution for massive sources is due to a violation of the principle of causality [13].

i. Gravitational Waves and the Einstein Equation of 1915

Relativity requires the existence of gravitational waves because physical influence must be propagated with a finite speed [48]. To this end, let us consider the Einstein equation of 1915 [4]. Einstein believed that his equation satisfied this requirement since its linearized “approximation” gives a wave solution.

The linearized equation with massive sources [4] is the Maxwell-Newton Approximation [10],

\[
\frac{1}{2} \partial_\alpha \gamma^\alpha \gamma^\beta \gamma^\gamma = -\kappa T(m)_{ab}, \quad (A2)
\]

where \(\gamma_{ab} = \gamma_{ab} - (1/2)\eta_{ab} \), \(\eta_{ab} = g_{ab} - \eta_{ab} \), \(\gamma = \eta^{cd} \gamma_{cd} \), and \(\eta_{ab} \) is the flat metric. Eq. \((A2) \) has a mathematical structure similar to that of Maxwell's equations. A solution of eq. \((A2) \) is

\[
\gamma_{ab}(x, t) = -\kappa \frac{1}{2\pi} \int \frac{1}{R} T_{ab}[y^j, (t - R)] d^3 y,
\]

where \(R^2 = \sum_{i=1}^3 (x^i - y^i)^2 \) \((A3) \)

Note that the Schwarzschild solution, after a gauge transformation, can also be approximated by \((A3) \). Solution \((A3) \) would represent a wave if \(T_{ab} \) has a dynamical dependency on time \(t' (= t - R) \). Thus, the theoretical existence of gravitational waves seems to be assured as a certainty as believed [25, 42, 49].

However, for non-linear equations, the physical second order terms can be crucial for the mathematical existence of bounded solutions. For Einstein equation \((1) \), the Cauchy initial condition is restricted by four constraints since there is no second order time derivatives in \(G_{ab} \) \((a = x, y, z, t) \) [42]. This suggests that Einstein equation \((1) \) and eq. \((A1) \) may not be compatible for a dynamic problem. Einstein discovered that his equation does not admit a propagating wave.
solution [50, 51]. Recently, it has been shown that the linearization procedure is not generally valid in mathematics [10, 52]. Thus, it is necessary to justify wave solution (A3) independently.

i. The Weak Gravity of Massive Matter and Einstein Equation of the 1995 Update

For a massive source, the linear equation (A2), as a first order approximation, is supported by experiments [10, 39]. However, for the dynamic case, the Einstein equation is clearly invalid. It will be shown that eq. (A2) can be derived from Einstein’s equivalence principle. Based on this principle, the equation of motion for a neutral particle is obtained as a first order approximation, is supported by the geodesic equation. In comparison with Newton’s principle, the equation of motion for a neutral particle is from Einstein’s equivalence principle. Based on this linearization procedure is not generally valid in mathematics [10, 52]. Thus, it is necessary to justify wave solution (A3) independently.

\[
\frac{1}{2} \partial_c \partial^c \gamma_{ab} = -\frac{\kappa}{2} \left[\alpha T(m)_{ab} + \beta \tilde{T}(m) \eta_{ab} \right].
\]

where

\[
\tilde{T}(m) = \eta^{cd} T(m)_{cd}, \quad \kappa = 8\pi G c^{-2}, \quad \alpha + \beta = 1,
\]

and \(T(m)_{ab}\) is an unknown tensor of second order in \(K\), if \(R_{ab}\) consists of no net sum of first order other than the term \((1/2) \partial_c \partial^c \gamma_{ab}\). This requires that the sum

\[
- \frac{1}{2} \partial_c \partial^c \left[\partial_b \gamma_{ac} + \partial_a \gamma_{bc} \right] + \frac{1}{2} \partial_a \partial_b \gamma = 0,
\]

must be of second order. To this end, let us consider eq. (A4a), and obtain

\[
\frac{1}{2} \partial_c \partial^c \left(\partial_a \gamma_{ab} \right) = -\frac{\kappa}{2} \left[\alpha \partial_a T(m)_{ab} + \beta \partial_b \tilde{T}(m) \right].
\]

From \(\nabla^c T(m)_{cb} = 0\), it is clear that \(K \partial^c T(m)_{cb}\) is of second order but \(K \partial^c \tilde{T}(m) = m\) is not. However, one may obtain a second order term by a suitable linear combination of \(\nabla^c \gamma_{cb}\) and \(\partial^c \tilde{T}(m)\). From (A6a), one has

\[
\frac{1}{2} \partial_c \partial^c \left(\partial_a \gamma_{ab} + C \partial_b \gamma \right) = -\frac{\kappa}{2} \left[\alpha \partial_a T(m)_{ab} + \left(\beta + 4C\beta \right) + C\alpha \partial_b \tilde{T}(m) \right].
\]

Thus, the harmonic coordinates (i.e., \(\partial^a \gamma_{ab} = -\partial_b \gamma^a / 2 \approx 0\)), can lead to inconsistency. It follows eqs. (A5b) and (A6b) that, for the other terms to be of second order, one must have \(C = -1/2, \alpha = 2, \beta = -1\). Hence, eq. (A4a) becomes,

\[
\frac{1}{2} \partial_c \partial^c \gamma_{ab} = -\kappa \left[T(m)_{ab} - \frac{1}{2} \tilde{T}(m) \eta_{ab} \right].
\]

Which is equivalent to eq. (A2a), has been determined to be the field equation of massive matter. This derivation is independent of the exact form of equation (A5a). The implicit gauge condition is that the flat metric \(\eta_{ab}\) is the asymptotic limit. Eq. (A7) is compatible with the equivalence principle as demonstrated by Einstein in his calculation of the special relativity. Thus, the derivation is self-consistent.

Einstein obtained the same values for \(\alpha\) and \(\beta\) by considering eq. (A5a) after assuming \(X^{(2)}_{ab} = 0\) [43]. His equation (A2) could also be “derived” from a more general linear equation, if one regards the gravitational field as a spin 2 field coupled to the energy-stress tensor [48, 49], and the existence of bounded dynamic solutions be assumed.

An advantage of the approach of considering eqs. (A4) and (A5b) is that the over simplification \(X^{(2)}_{ab} = 0\) is not needed. Then, it is possible to obtain from eq. (A6a) an equation different from eq. (A2a),

\[
R_{ab} + X^{(2)}_{ab} = \frac{1}{2} G_{ab} = R_{ab} - \frac{1}{2} g_{ab} \left(X^{(2)}_{cd} g^{cd} \right).
\]

The conservation law \(\nabla^c T(m)_{cb} = 0\) and \(\nabla^c G_{cb} = 0\) implies also \(\nabla^a Y^{(1)}_{ab} = 0\). If \(Y^{(1)}_{ab}\) is identified as the gravitational field tensor of \(C_{ab}\), Einstein equation of the 1995 update [10] is reaffirmed. Note that eq. (A2a) is the first order approximation of eq. (A8) but may not be of eq. (A2). Note, however, that in Einstein’s initial consideration, \(C_{ab}\) is a pseudo-tensor. It has been shown that it must be a tensor [10].

ENDNOTES

3. For a theoretical physicist, it is important to tell the difference between mathematics and physics. A good example is that although mathematically a non-Abelian gauge theory can be totally gauge invariant, a physical theory cannot be totally gauge invariant because a totally gauge invariant theory cannot represent distinct particles.

4. One should not be too surprised if some graduates of Caltech make errors in general relativity since Kip Thorne often made errors in general relativity, including mathematical errors at the undergraduate level [13, 14].

5. A well-known problem is NASA’s discovery of Pioneer Space-Probe Anomaly. Recently, it was claimed that this problem has been resolved by a heat-radiation model. However, Erik Anderson (April 1, 2011 at 12:57) a discoverer of the anomaly commented, “I take the opposite viewpoint of Paul and Daniel. Science will have suffered the worst sort of dysfunction if the Pioneer Anomaly gets swept under the convenient rug of “the plausible.” Even so, we will still have the Earth flyby anomalies and the so-called “A.U.” anomaly left unco-vered. All three anomalies seem to be manifestations of a singular phenomenon — the latter two cannot be dismissed as heat radiation. Heat-radiation models, like string theory, can be customized to fit any set of observational parameters. There is no limit on sophistication. We should not be so easily impressed. Nothing has been resolved.

And it needn’t have cost 100’s of millions of dollars to do some authentic observational research. The New Horizons mission to Pluto could have been adapted to re-test the Anomaly if it was taken seriously dollars to do some authentic observational research.

15. A. Einstein, Sitzungsberi, Preuss, Acad. Wis. 1918, 1: 154 (1918).

References Références Referencias

45. C. Y. Lo, GJSFR Vol. 12 Issue 4 (Ver. 1.0) (June 2012).
Rotating X-Ray Window for Multilayer Probing of Cells; Microfocussing Techniques

By Dikedi P.N.

Physics Department, King’s College

Abstract - This project report covers soft X-ray generation of the X-ray microprobe and advances made at the Gray Cancer Institute. Schematics and benefits of the microprobe are presented and microfocussing techniques specifically for enhanced spatial image resolution of cellular structures are considered.

GJSFR-A Classification : FOR Code: 240402
Abstract - This project report covers soft X-ray generation of the X-ray microprobe and advances made at the Gray Cancer Institute. Schematics and benefits of the microprobe are presented and microfocussing techniques specifically for enhanced spatial image resolution of cellular structures are considered.

I. Introduction
Soft X-rays optical components are outperformed by those of visible light due to a number of setbacks; they suffer from poor efficiencies, poor spatial resolution, large aberrations, strong chromatic aberration and low angular and wavelength band passes. These setbacks are ameliorated by the use of zone plates, multilayer mirrors, periodic mirrors and grazing incidence mirrors. The Gray Cancer Institute (GCI) for over ten years has been active in the development and use of microfocussing techniques for radiobiological purposes. In the next section, few techniques are discussed which are diffractive optics by the use of zone plates and reflective optics by the use of multilayer mirrors and grazing incidence mirrors.

II. Zone Plates
Application of Fresnel zone plate in achieving submicrometre spot size diameter on irradiated biological samples has been a common practice. They are vital optical elements used at the GCI and King’s college in the ongoing development of a micro irradiation system that uses a focused X-ray microprobe to irradiate individual cells. At short wavelengths particularly in the soft X-ray region, the use of zone plates is employed because

Figure 1.1 : Schematic of Fresnel zone plate of focal length, F, with OD as its diameter and ΔRₙ as its outermost zone width

Author : Physics Department, King’s College, London.
sof their ability to form images at very high spatial resolution; very close to the diffraction limit and sub-15nm resolution has been achieved [5]. It is able to ameliorate most of the setbacks in X-ray optics highlighted in the previous section. Diffraction patterns and the energy which each pattern represents always propagate from diffracting structures such as disks, angles of order $\theta \approx \frac{\lambda}{D}$ where D is a characteristic dimension [6].

When interference occurs between diffracted and undiffracted radiation, interference takes place at well defined positions; distances from such positions represent focal lengths. Fresnel zone plate lens is one of the focusing devices used in synchrotrons. Zone plates form a focus by using constructive interference of rays from adjacent zones. The focal length F of a zone plate is related to its diameter, OD, its outermost zone width, ΔR_m, and the X-ray wavelength, λ by

$$F = \frac{OD\Delta R_m}{\lambda} \quad (1.1)$$

Fresnel zone plates consist of alternating transparent and opaque (amplitude of Fresnel zone plate) concentric rings (zones). The spatial resolution of the zone plate for an incoming wave is expressed according to the Raleigh criterion as

$$\varsigma = 1.22 \Delta R_n \quad (1.2)$$

Where ς is spatial resolution; equations 1.1 and 1.2 indicate that for a spatial resolution of less than 1 μm to be achieved all values of outermost zone width less than 0.82 μm must be used and the achievable values of focal lengths are not more than 234.78nm provided the value of zone diameter is assumed to be 80 μm hence a resolution of less than 1 μm can be achieved by fabricating zone plates with zones of outermost zone width diameter less than 0.82 μm etched on a material. The value of spatial resolution, ς, is limited by X-ray photon energy of 4.5KeV (0.276nm) for titanium. The micro focusing system at the GCI which employs the use of Fresnel zone plate of 0.2-0.8mm diameter is able to focus K_{α} X-ray of carbon or aluminum to a beam of less than 1 μm diameter, forming zone plate images. The focused X-rays are aimed at sub cellular targets and about 3000 cells per hour can be irradiated individually. The use of zone plates for producing very fine probes is now well established [7, 8].

The proposed X-ray window will be positioned under a zone plate in a table source microprobe at the GCI, which is illustrated in figure 1.1.

III. Multilayer Mirrors

Multilayer coated mirrors are artificial structures designed to enhance reflectivity, through constructive interference of beams reflected from many layer interfaces [9]. Reflection coefficient and absorption coefficient of multilayer mirrors contribute significantly to the degree of precision attained. Bragg’s law states,

$$m\lambda = 2d \sin \theta_m \quad (1.3)$$

Where m is an integer, d is the spatial periodicity, λ is the wavelength; X-rays, incident at angle θ with respect to the mirror surface will be strongly reflected at angles close to Bragg angle θ_m for mth order diffraction, but a maximum angle called an angle of peak reflectivity θ_{mp} may be achieved if this angle is made slightly greater than the Bragg angle [10]. i.e. $\theta_{mp} > \theta_m$. The reflectivity at an interface is determined by the Fresnel equation,

$$R = \left(\frac{n-1}{n+1}\right)^2 \approx \frac{\delta^2}{4} \quad (1.4)$$

Where R, is the normal incidence reflectivity, δ is the refractive index decrement, β is the absorption index and n is the refractive index of the multilayer material. Higher reflectivities can be obtained by making the more absorbing layers thinner or making less absorbing layers thicker [10]. This reduces absorption and enhances reflectivity. Before making a multilayer mirror choice of suitable material must be considered. Three rules are normally adopted [10]:

- Select a material with a low absorption coefficient for the “transmitting” (spacer) layer.
- Select a second material to give a large reflection coefficient at the boundary with the first (means large difference in δ values). If several materials give similar reflection coefficients, use that with the lowest value of β to give less absorption.
- Make sure that the two materials can form physically and chemically stable boundaries, and can be deposited with low roughnesses and interdiffusion.

Multi layer mirrors (multi layer interference coatings) are made by depositing alternating layers of two materials of differing refractive index to form stable interfaces. These materials are of high and low atomic numbers so as to obtain large or maximum difference in electron density. Multilayer mirrors are elliptically bent to produce smaller spot size, hence a better defined focal spot [11].
IV. Grazing Incidence

Grazing incidence optics is a reflective optics technique based on total external reflection. Grazing incidence mirrors are used to achieve grazing incidence and grazing angles.

\[\theta_c = \sqrt{2\delta} \] \hspace{1cm} (1.5)

\[n = 1 - \delta + i\beta \] \hspace{1cm} (1.6)

\[\theta_c \propto \lambda \sqrt{Z} \] \hspace{1cm} (1.7)

Where, \(\theta_c \) is critical angle, \(Z \) is atomic mass, \(\delta \) is refractive index decrement, \(\beta \) is absorption coefficient, and \(n \) is refractive index. Equation 1.7 shows that \(\theta_c \) vary with \(\lambda \); this infer that grazing incidence is limited by X-ray photon energy (wavelength). The use of a low \(Z \) material is also favourable to grazing incidence.

Grazing incidence X-ray optics facility has some advantages which are summarized as follows;

- The production of this focusing device is cost effective
- It has a large collecting
- High reflectivity, over 90% is achievable depending on the grazing angle; High reflectivity is achieved at grazing angle smaller than the critical angle
- Though this technique suffers from aberration, yet it provides high efficiency.
Since Rayleigh criterion, ς, has a limit, adopting bent optics as shown in Figure 1.3 (b) will reduce focal length F to f which results to an improvement in resolution over that delivered by the flat optics as indicated in figure 1.3(b). This agrees well with equations 1.1 and 1.2. By applying bent optics to both reflective and diffractive optics, through the use of zone plates, multi layer and grazing incidence mirrors resolution will be improved. By using grazing incidence mirrors, bremsstrahlung radiation was reduced to 2%; Grazing incidence optics has been in use for several years. Grazing incidence mirrors have been used to produce high-resolution images of the structure and function in small animals. Adopting Grazing-incidence focusing optics provides an advanced understanding of biology, including human growth, development, and diseases.

V. Conclusion

Soft X-rays and their application in radiobiology have been considered. A brief description of the X-ray microprobe and its background has been studied. Microfocussing techniques such as diffractive, reflective and grazing incidence optics which involves the use of multilayer mirrors, Fresnel zone plate lenses and grazing incidence mirrors respectively have been considered as tools for high resolution.

Multilayer mirrors for the future must be made up of a highly reflective material i.e. high reflection coefficient and a material of low absorption index. Future work should be directed to micro fabrication of zone plates by etching zones of outer width, $\Delta R_n < 0.82$ μm on a material.

References Références Referencias

An Investigation on the Radiation Hazards Associated with the Use of Abakaliki Pyroclastic from Southeastern Nigeria as Construction Materials

By Chijioke M. Amakom & Okechukwu P Aghamelu

University of Ibadan

Abstract - This paper presents an investigation on the health risks that may be associated with pyroclastic rocks when used as construction materials. Radionuclides in the pyroclastic rocks from the Abakaliki and Ezillo areas (both in Ebonyi State, Southeastern Nigeria) were assessed. Data show that the uranium concentration in the pyroclastic rocks vary from 1 – 3 ppm (or 0.01 – 0.03 Bq.g-1) for the Abakaliki area, and 2 – 5 ppm (or 0.02 – 0.05 Bq.g-1) for the Ezillo area. The Radium equivalent activity of the Abakaliki pyroclastics varied from 20.0 – 62.90 mBq.g-1 while that of Ezillo varied from 62.9 – 145.8 mBq.g-1. A comparison with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) recommended standard (that Radium equivalent activity in building materials must be below 370 Bq.kg-1 or 0.37 Bq.g-1) suggests that the radium equivalent activity for the pyroclastics from both areas in the southeastern Nigeria were all well below the maximum permissible level for dwelling homes. This therefore implies that they are safe, health wise, as construction materials for residential buildings.

Keywords : pyroclastics; radionuclides; health hazards; construction material; nigeria; recommended level.

GJSFR-A Classification : FOR Code: 111208, 879999p
An Investigation on the Radiation Hazards Associated with the Use of Abakaliki Pyroclastic from Southeastern Nigeria as Construction Materials

Chijioke M. Amakom & Okechukwu P. Aghamelu

Abstract - This paper presents an investigation on the health risks that may be associated with pyroclastic rocks when used as construction materials. Radionuclides in the pyroclastic rocks from the Abakaliki and Ezillo areas (both in Ebonyi State, Southeastern Nigeria) were assessed. Data show that the uranium concentration in the pyroclastic rocks vary from 1 – 3 ppm (or 0.01 – 0.03 Bq.g⁻¹) for the Abakaliki area, and 2 – 5 ppm (or 0.02 – 0.05 Bq.g⁻¹) for the Ezillo area. The Radium equivalent activity of the Abakaliki pyroclastics varied from 20.0 – 62.90 mBq.g⁻¹ while that of Ezillo varied from 62.9 – 145.8 mBq.g⁻¹. A comparison with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) recommended standard (that Radium equivalent activity in building materials must be below 370 Bq.kg⁻¹) suggests that the radium equivalent activity for the pyroclastics from both areas in the southeastern Nigeria were all well below the maximum permissible level for dwelling homes. This therefore implies that they are safe, health wise, as construction materials for residential buildings.

Keywords: pyroclastics; radionuclides; health hazards; construction material; nigeria; recommended level.

1. Introduction

External exposures to radiation arise from terrestrial radionuclides present at trace levels in soil, rocks and other materials that could be used in building construction projects. Irradiation from these materials is mainly by gamma emissions from radionuclides; ²³⁸U and ²³²Th series and from ⁴⁰K.

Building raw materials and processed products can vary greatly in radionuclide content depending on the character and the geology of the origin (Schuler et al, 1991). Radioactivity in building materials can lead to health risks in homes, offices and other working places. In the dwelling homes, the exposure rate depends on the concentrations of the radionuclides in the materials with which it was constructed, the quantity of these construction materials and the form of the dwelling home (Farai and Ademola 2004). In an airy room, the radon concentration depends mainly on the rate of radon exhalation from building materials, and the ventilation rate (Mustonen, 1984).

Hamilton (1971) reports that clay bricks contain typically 1.4 ppm of radium whereas, granite bricks have an elevated concentration of 2.4 ppm. All these natural sources of radiation in building materials result in internal and external dose to the public. About 54% of the total external dose received by the public in normal background areas originates from ⁴⁰K, ²²⁶Ra and ²²⁸Ra (UNSCEAR, 1980).

In the southeastern Nigeria (Figure 1), there are massive occurrences of pyroclastic rock bodies at Abakaliki and Ezillo (Ofoegbu and Amajor 1987), and at Uturu and Lokps-Ukwu areas (Onwughalu and Ukaegbu 2009). These rocks are used in virtually all forms of building construction in the area. However, the analyses on the samples of pyroclastics from the Abakaliki and Ezillo by Ofoegbu and Amajor (1987) have shown that they contain detectable amounts of radionuclides. Information is sparse on the environmental and health impacts of radiation from these rocks in the Abakaliki and Ezillo areas.

In this work, an attempt has been made to assess the radiation risks associated with the radionuclide in the Abakaliki and Ezillo pyroclastic rocks, when used as construction materials especially for residential buildings.

II. Previous Researches on Rocks as Construction Materials

The use of rocks in construction dates back to the days of the primitive man. However, the demand and utilization in various construction projects continue to increase proportionally to the sophistication in building technology and civil engineering.

Today, almost all types of rocks, as well as other naturally occurring and artificial materials, are employed in construction projects. Presently, rocks such as charnockite (Eze 1997), granite, dolerite and basalt (Krynine and Judd 1957), marble and slate (Bell 1993) are being utilized as building stones, highway-runway

Author α: Radiation and Health Physics Research Laboratory Department of Physics, University of Ibadan, Ibadan, Nigeria. E-mails: camakom@gmail.com, chijiokechimed@gmail.com
Author α: Geology and Exploration Geophysics Department Ebonyi State University, Abakaliki, Nigeria. E-mail: aghameluokaey@yahoo.co.uk
surfacing materials, foundation filling, concrete aggregates, surface finishings, as well as in dams and tunnels constructions. However, these rocks, in addition to being economically available, are supposed to pass some building, engineering and health safety standards.

In the Abakaliki and Ezillo areas, southeastern Nigeria (see Figure 1), pyroclastic rocks, found associated with the thick Albian Asu River Group and Turonian Eze Aku Group respectively (Reyment 1965) sediments, are being quarried and utilized in most projects that require rocks as construction materials. The occurrence and petrology of these rocks commonly are as not measured in the samples. The authors acknowledge Dr Uzochukwu Amakom for financing this research. Chidi Okeugo digitized the figures, and he is gratefully appreciated. OPA acknowledges Dr Hilary N. Ezeh of the Geology & Exploration Geophysics dept. Ebonyi State University, Abakaliki, for his assistance and support in the course of this research.

III. Materials and Methods

This research adopts data generated by Ofoegbu and Amajor (1987). They collected forty samples (twenty samples from each area) from some pyroclastic rock bodies in the Abakaliki and Ezillo areas. Details on the sampling and testing procedures are presented in their work, while the accessibility of the sampled localities is shown in Figure 3.

IV. Radium Equivalent Activity

Radium equivalent activity (Ra eq) is a common index used to compare the total activity concentration of U, Th and K in a building material. Hamilton (1971) defines it as a weighted sum of the activity concentrations of the radionuclides. The Radium equivalent activity was calculated in this study using the equation below:

\[Ra_{eq} = A_{Ra} + 1.43A_{Th} + 0.077A_{K} \]

(1)

Where, \(A_{Ra} \), \(A_{th} \) and \(A_{K} \) are the activity concentrations of \(^{226}\text{Ra} \) (\(^{238}\text{U} \)), \(^{232}\text{Th} \) and \(^{40}\text{K} \) respectively.

The third term in equation (1), \((0.077A_{K}) \) was dropped since \(^{40}\text{K} \) was not measured in the samples. Equation (1) was based on the estimation that 370 Bq.kg\(^{-1}\) of Ra, 259 Bq.kg\(^{-1}\) of Th and 4810 Bq.kg\(^{-1}\) of K produce the same gamma ray dosage.

The following conversions were made:

- Uranium, 1 ppm = 0.33 pCi.g\(^{-1}\), 1 pCi.g\(^{-1}\) = 3 ppm
- Thorium, 1 ppm = 0.11 pCi.g\(^{-1}\), 1 pCi.g\(^{-1}\) = 9.1 ppm
- One Becquerel (Bq) = 27 picocuries (pCi)
- One picocurie (pCi) = 0.037 becquerels (Bq)

V. Results and Discussion

The data for the uranium and thorium concentrations of the Abakaliki and Ezillo pyroclastic rocks are shown in Tables 1 and 2 respectively. The uranium concentration in the pyroclastic rocks were found to vary from 1 – 3 ppm or 0.01 – 0.03 Bq.g\(^{-1}\) for the Abakaliki area and 2 – 5 ppm or 0.02 – 0.05 Bq.g\(^{-1}\) for the Ezillo area. The thorium concentration ranges from 2 – 7 ppm or 0.002 – 0.07 Bq.g\(^{-1}\) for the Abakaliki samples and, 8 – 15 ppm or 0.08 – 0.15 Bq.g\(^{-1}\) for the Ezillo samples. These ranges thus, suggest that the Ezillo pyroclastics record slightly higher concentration of uranium and thorium.

The observed variations in concentrations of the radionuclides may be a reflection of the differences in the geochemistry of the samples. Ofoegbu and Amajor (1987) had classed the Abakaliki pyroclastics as alkaline basalts and Ezillo pyroclastics as sub-alkaline. They conclude that the geochemical difference in composition of the Abakaliki and Ezillo pyroclastics may be either primarily due to fractional differentiation of a single magma in which case both units are of the same age, or that they belong to different volcanic sources in time and/or space.

Tables 1 and 2 also contain the Radium equivalent activity obtained from the Abakaliki and Ezillo pyroclastic rocks. The Radium equivalent activity of the Abakaliki pyroclastics varied from 20.0 – 62.90 mBq.g\(^{-1}\) while that of Ezillo varied from 62.9 - 145.8 mBq.g\(^{-1}\). According to UNSCEAR (1982) recommendation, Radium equivalent activity in building materials must be below 370 Bq.g\(^{-1}\) or 0.37 Bq.g\(^{-1}\). Comparing the results obtained and the standard given by UNSCEAR (1982), the Radium equivalent activity were all well below the maximum permissible level for dwelling homes.

VI. Conclusions

This study has shown that although the Ezillo pyroclastics have slightly higher concentrations of uranium and thorium than the Abakaliki pyroclastics, both have their Radium concentration equivalents well below the UNSCEAR recommended level for construction materials. This may imply that, on the basis of radium concentration equivalents, they are safe for use as building materials. In other words, evidences of significant irradiation in residential buildings constructed with the pyroclastics may be originating from other source(s) apart from the pyroclastics.

VII. Acknowledgements

The authors acknowledge Dr Uzochukwu Amakom for financing this research. Chidi Okeugo digitized the figures, and he is gratefully appreciated. OPA acknowledges Dr Hilary N. Ezeh of the Geology & Exploration Geophysics dept. Ebonyi State University, Abakaliki, for his assistance and support in the course of this research.
References Références Referencias

Table 1: Activity concentration and Radium equivalent activity of the Abakaliki Pyroclastics

<table>
<thead>
<tr>
<th>Sample</th>
<th>*U (ppm)</th>
<th>U (Bq/g)</th>
<th>*Th (ppm)</th>
<th>Th (Bq/g)</th>
<th>Ra eq (mBq/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2</td>
<td>0.02</td>
<td>6</td>
<td>0.02</td>
<td>48.60</td>
</tr>
<tr>
<td>A2</td>
<td>1</td>
<td>0.01</td>
<td>4</td>
<td>0.01</td>
<td>24.30</td>
</tr>
<tr>
<td>A3</td>
<td>2</td>
<td>0.02</td>
<td>4</td>
<td>0.01</td>
<td>34.30</td>
</tr>
<tr>
<td>A4</td>
<td>2</td>
<td>0.02</td>
<td>7</td>
<td>0.03</td>
<td>62.90</td>
</tr>
<tr>
<td>A5</td>
<td>2</td>
<td>0.02</td>
<td>3</td>
<td>0.01</td>
<td>34.30</td>
</tr>
<tr>
<td>A6</td>
<td>2</td>
<td>0.02</td>
<td>3</td>
<td>0.01</td>
<td>34.30</td>
</tr>
<tr>
<td>A7</td>
<td>1</td>
<td>0.01</td>
<td>4</td>
<td>0.01</td>
<td>24.30</td>
</tr>
<tr>
<td>A8</td>
<td>2</td>
<td>0.02</td>
<td>7</td>
<td>0.03</td>
<td>62.90</td>
</tr>
<tr>
<td>A9</td>
<td>2</td>
<td>0.02</td>
<td>6</td>
<td>0.02</td>
<td>48.60</td>
</tr>
<tr>
<td>A10</td>
<td>2</td>
<td>0.02</td>
<td>4</td>
<td>0.01</td>
<td>34.30</td>
</tr>
<tr>
<td>A11</td>
<td>2</td>
<td>0.02</td>
<td>3</td>
<td>0.01</td>
<td>34.30</td>
</tr>
<tr>
<td>A12</td>
<td>2</td>
<td>0.02</td>
<td>2</td>
<td>0</td>
<td>20.00</td>
</tr>
<tr>
<td>A13</td>
<td>2</td>
<td>0.03</td>
<td>2</td>
<td>0</td>
<td>20.00</td>
</tr>
<tr>
<td>A14</td>
<td>2</td>
<td>0.02</td>
<td>3</td>
<td>0.01</td>
<td>24.30</td>
</tr>
<tr>
<td>A15</td>
<td>2</td>
<td>0.02</td>
<td>3</td>
<td>0.01</td>
<td>24.30</td>
</tr>
<tr>
<td>Sample</td>
<td>U (ppm)</td>
<td>U (Bq/g)</td>
<td>Th (ppm)</td>
<td>Th (Bq/g)</td>
<td>Ra_{eq} (mBq/g)</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>E1</td>
<td>3</td>
<td>0.03</td>
<td>13</td>
<td>0.05</td>
<td>101.5</td>
</tr>
<tr>
<td>E2</td>
<td>3</td>
<td>0.03</td>
<td>9</td>
<td>0.03</td>
<td>72.90</td>
</tr>
<tr>
<td>E3</td>
<td>2</td>
<td>0.02</td>
<td>8</td>
<td>0.03</td>
<td>62.90</td>
</tr>
<tr>
<td>E4</td>
<td>2</td>
<td>0.02</td>
<td>10</td>
<td>0.04</td>
<td>77.20</td>
</tr>
<tr>
<td>E5</td>
<td>3</td>
<td>0.03</td>
<td>9</td>
<td>0.03</td>
<td>72.90</td>
</tr>
<tr>
<td>E6</td>
<td>3</td>
<td>0.03</td>
<td>9</td>
<td>0.03</td>
<td>72.90</td>
</tr>
<tr>
<td>E7</td>
<td>2</td>
<td>0.02</td>
<td>10</td>
<td>0.04</td>
<td>77.20</td>
</tr>
<tr>
<td>E8</td>
<td>3</td>
<td>0.03</td>
<td>12</td>
<td>0.05</td>
<td>101.5</td>
</tr>
<tr>
<td>E9</td>
<td>2</td>
<td>0.02</td>
<td>9</td>
<td>0.03</td>
<td>62.90</td>
</tr>
<tr>
<td>E10</td>
<td>2</td>
<td>0.02</td>
<td>10</td>
<td>0.04</td>
<td>77.20</td>
</tr>
<tr>
<td>E11</td>
<td>3</td>
<td>0.03</td>
<td>12</td>
<td>0.05</td>
<td>101.5</td>
</tr>
<tr>
<td>E12</td>
<td>2</td>
<td>0.02</td>
<td>10</td>
<td>0.04</td>
<td>77.20</td>
</tr>
<tr>
<td>E13</td>
<td>4</td>
<td>0.05</td>
<td>14</td>
<td>0.06</td>
<td>135.8</td>
</tr>
<tr>
<td>E14</td>
<td>5</td>
<td>0.06</td>
<td>15</td>
<td>0.06</td>
<td>145.8</td>
</tr>
<tr>
<td>E15</td>
<td>2</td>
<td>0.02</td>
<td>8</td>
<td>0.03</td>
<td>62.90</td>
</tr>
<tr>
<td>E16</td>
<td>4</td>
<td>0.05</td>
<td>12</td>
<td>0.05</td>
<td>121.5</td>
</tr>
<tr>
<td>E17</td>
<td>3</td>
<td>0.03</td>
<td>13</td>
<td>0.05</td>
<td>101.5</td>
</tr>
<tr>
<td>E18</td>
<td>2</td>
<td>0.02</td>
<td>8</td>
<td>0.03</td>
<td>62.90</td>
</tr>
<tr>
<td>E19</td>
<td>3</td>
<td>0.03</td>
<td>9</td>
<td>0.03</td>
<td>72.90</td>
</tr>
<tr>
<td>E20</td>
<td>5</td>
<td>0.06</td>
<td>15</td>
<td>0.06</td>
<td>145.8</td>
</tr>
</tbody>
</table>

(*data from Ofoegbu and Amajor, 1987)

Table 2: Activity concentrations and Radium equivalent activity of the Ezillo Pyroclastics

Figure 1: Map of Nigeria showing the location of the southeast
Figure 2: Geological map of southeastern showing locations of pyroclastic rock bodies
[Modified after Ofoegbua and Amajor (1987) and Aghamelu (2009)]
Figure 3: Accessibility map of the southeastern Nigeria cities
Abstract - LRS Bianchi Type-II space–time is considered in the presence of a perfect fluid source in the framework of f(R,T) gravity proposed by Harko et al. [Phys. Rev. D 84, 024020(2011)]. An exact cosmological model with an appropriate choice of the function f(R,T) is obtained using a special law of variation for Hubble’s parameter proposed by Berman (Nuovo Cimento B 74. 182, 1983). The physical behavior of the cosmological model is also studied.

Keywords: “f(R,T)” gravity, Bianchi type-II model, Hubble’s parameter.

GJSFR-A Classification: FOR Code: 010505
Abstract - LRS Bianchi Type-II space – time is considered in the presence of a perfect fluid source in the framework of f(R, T) gravity proposed by Harko et al. [Phy.Rev-D 84, 024020(2011)]. An exact cosmological model with an appropriate choice of the function f(RT) is obtained using a special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento B 74, 182,1983). The physical behavior of the cosmological model is, also, studied.

Keywords : f(R,T) gravity, Bianchi type-II model, Hubble’s parameter.

1. INTRODUCTION

Recent observational data suggests that our universe is accelerating. Supernova 1A data gave the first indication of the accelerated expansion of the universe [1-4]. Another major development in cosmology is that our universe is making a transition from a decelerating phase to an accelerating one. This was confirmed by anisotropies in the cosmic microwave background (CMB) radiation as seen in the data from satellite such as WMAP and large scale structure. Astrophysical observations indicate that the accelerated expansion of the universe is driven by exotic energy with large negative pressure which is known as dark energy (For a general complete review see [5]). In spite of all the observational evidences, the nature of dark energy is, still, a challenging problem in modern cosmology.

There are two major approaches to address the problem of cosmic acceleration. One approach is to introduce a dark energy component in the universe and study its dynamics. Another alternative approach is to modify general relativity itself. This is termed as ‘modified gravity’ approach [5-8]. Both the approaches have novel features with some deep theoretical problems. However, here, we are interested in modified gravity approaches, several modifications of general gravity have been proposed in the last few decades. Noteworthy among them are Brans-Dicke[9]and Saez-Ballester[10] scalar-tensor theories of gravitation. In Brans-Dicke gravity besides a gravitational part, a dynamical scalar field was introduced to account for variable gravitational constant.

This modification was introduced because of the fact that Einstein’s theory does not fully incorporate Mach’s Principle. Later Saez and Ballester formulated a scalar-tensor theory of gravity in which metric is coupled with a scalar field. Here the strength of the coupling between the gravity and the field is governed by a parameter ω. This theory also enables us to solve the ‘missing mass’ problem. Other than these approaches some authors [11-15] considered modified gravitational action by adding a function f(R) (R being Ricci scalar curvature) to Einstein-Hilbert Lagrangian where f(R) provides a gravitational alternative for dark energy causing late time acceleration of the universe. A comprehensive review on f(R) gravity is given by Copeland et al. [16].

Very recently, Harko et al. [17] developed another modified gravity known as f(R, T) gravity. In this the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R and of the trace T of the stress energy tensor. Adhav[18] has presented spatially homogeneous and anisotropic Bianchi type–I model in f(R,T) gravity while Reddy et al.[19-20] have studied Bianchi type-III and Kaluza-Klein cosmological models in this theory.

Motivated by the above investigations, in this paper, we obtain LRS Bianchi type – II cosmological model in f(R, T) gravity. Bianchi type – II space time are of vital importance in describing cosmological models at the early stages of evaluation of the universe. This paper is organized as follows: Sect. 2, presents a brief description of f(R, T) gravity. In Sect. 3, we derive f(R, T) gravity field equations for LRS Bianchi type – II metric. In Sect. 4, the solutions of field equations and the model are obtained. Sect. 5 is devoted to the discussion of physical and Kinematical properties of the model. The last section contains some useful conclusions.

II. F (R,T) THEORY OF GRAVITY

In f(R,T) gravity, the field equations are derived from a variational, Hilbert-Einstein type, principle.

The action for the modified f(R,T) gravity is

\[S = \frac{1}{16\pi} \int f(R,T)\sqrt{-g}d^4x + \int L_m\sqrt{-g}d^4x \] \hspace{1cm} (1)

Where f(R,T) is an arbitrary function of the Ricci scalar, R, T is the trace of stress-energy tensor of the matter, \(T_{ij} \) and \(L_m \) is the matter Lagrangian density. We define the stress-energy tensor of matter as

\[
\begin{bmatrix}
T_{00} & T_{01} & T_{02} \\
T_{10} & T_{11} & T_{12} \\
T_{20} & T_{21} & T_{22}
\end{bmatrix}
\]

\[
\left[
\begin{array}{c}
\rho \\
\pi
\end{array}
\right] = \left[
\begin{array}{c}
T_{00} + T_{11} + T_{22} \\
\frac{1}{3}(T_{00} - T_{11} - T_{22})
\end{array}
\right]
\]
\[T_{ij} = \frac{-2 \delta (\sqrt{-g T})}{\sqrt{-g}} \]

and its trace by \(T = g^{ij} T_{ij} \) respectively. By assuming that \(L_m \) of matter depends only on the metric tensor components \(g_{ij} \), and not on its derivatives, we obtain

\[T_{ij} = g_{ij} L_m - 2 \frac{\partial L_m}{\partial g^{ij}} \]

Now by varying the action \(S \) of the gravitational field with respect to the metric tensor components \(g_{ij} \), we obtain the field equations of \(f(R, T) \) gravity as

\[
f(R, T) R_{ij} - \frac{1}{2} f(R, T) g_{ij} + (g_{ij} \Box - \nabla_i \nabla_j) f_	heta (R, T) = 8\pi T_{ij} - f_t (R, T) T_{ij} - f_f (R, T) \theta_{ij}
\]

Where \(\theta_{ij} = -2 T_{ij} + g_{ij} L_m - 2 g^{ik} \frac{\partial^2 L_m}{\partial g^{ij} \partial g^{lm}} \)

Here \(f_t = \frac{\delta f(R, T)}{\delta T} \), \(f_f = \frac{\delta f(R, T)}{\delta R} \), \(\Box = \nabla^i \nabla_i \), \(\nabla_i \) is the covariant derivative and \(T_{ij} \) is the standard matter energy-momentum tensor derived from the Lagrangian \(L_m \). It may be noted that when \(f(R, T) \equiv \phi (R) \), the equations (4) yield the field equations of \(f(R) \) gravity.

The problem of the perfect fluids described by an energy density \(\rho \), pressure \(p \) and four velocity \(u^i \) is complicated since there is no unique definition of the matter Lagrangian. However, here, we assume that the stress energy tensor of the matter is given by

\[T_{ij} = (\rho + p) u^i u_j - p g_{ij} \]

And the matter Lagrangian can be taken as \(L_m = -p \) and we have

\[u^i \nabla_i u_i = 0, \quad u^i u_i = 1 \]

Then with the use of Equations (5) we obtain for the variation of stress-energy of perfect fluid the expression

\[\theta_{ij} = -2 T_{ij} - p g_{ij} \]

Generally, the field equations also depend through the tensor \(\theta_{ij} \), on the physical nature of the matter field. Hence in the case of \(f(R,T) \) gravity depending on the nature of the matter source, we obtain several theoretical models corresponding to each choice of \(f(R,T) \). Assuming

\[f(R,T) = R + 2 f(T) \]

as a first choice where \(f(T) \) is an arbitrary function of the trace of stress-energy tensor of matter, we get the gravitational field equations of \(f(R,T) \) gravity from Eq. (4) as

\[R_{ij} - \frac{1}{2} R g_{ij} = 8\pi T_{ij} - 2 f'(T) T_{ij} - 2 f'(T) \theta_{ij} + f(T) \theta_{ij} \]

Where the prime denotes differentiation with respect to the argument.

If the matter source is a perfect fluid, then the field equations become

\[R_{ij} - \frac{1}{2} g_{ij} R = 8\pi T_{ij} + 2 f'(T) T_{ij} + [2 p f'(T) + f(T)] g_{ij} \]

III. Metric and Field Equations

We consider a homogeneous LRS Bianchi type-II space–time given by

\[ds^2 = -dt^2 + A^2 dx^2 + B^2 dy^2 + 2B^2 x dy dz + (Bx^2 + A^2) dz^2 \]

where \(A \) and \(B \) are functions of cosmic time \(t \).

Using co moving coordinates and equations (6)-(8), the \(f(R,T) \) gravity field equation(11) with the particular choice of the function (Harko et al.2011)

\[f(T) = \lambda T, \lambda, a \text{ constant} \]

for the metric (12) take the form

\[\frac{\dot{A}}{A} + \frac{\dot{B}}{B} + \frac{\dot{A} B - A \dot{B}}{A^2 B} = (8\pi + 3\lambda)p - \lambda \rho \]

\[2 \frac{\dot{A}^2}{A^2} + \frac{\dot{B}^2}{B^2} - \frac{3 B^2}{A^4} = (8\pi + 3\lambda)p - \lambda \rho \]

\[2 \frac{\dot{A} B}{A^2 B} - \frac{\dot{B}^2}{B^2} - \frac{3 B^2}{A^4} = -(8\pi + 3\lambda) \rho + \lambda p \]

Where an overhead dot denotes differentiation with respect to cosmic time \(t \).

IV. Solutions and the Model

The field equations (14)-(16) are a system of three independent equations in four unknowns \(A, B, \rho \) and \(p \). Hence to obtain a determinate solution of the system we take the help of special law of variation proposed by Bermann [21] for Hubble’s parameter that yields constant deceleration parameter model of the universe.

We consider constant deceleration parameter model defied by

\[q = -\frac{\ddot{a}}{a} = \text{constant} \]

where the scale factor \(a \) is given by

\[a = (A^2 B)^{1/3} \]

Here the constant is taken as negative because our theory corresponds to the accelerating model of the universe.

The solution of (17) is

\[a = (ct + d)^{1/(1+q)} \]

Where \(c \neq 0 \) and \(d \) are constants of integration. Also this equation implies that the condition for cosmic acceleration is \((1 + q) > 0 \)
The scalar expansion \(\theta \), shear scalar \(\sigma^2 \) in the model (12) are defined by

\[
\theta = 2 \frac{A}{A'} + \frac{B}{B'} \tag{20}
\]

\[
\sigma^2 = \frac{1}{3} \left(\frac{A}{A'} - \frac{B}{B'} \right)^2 \tag{21}
\]

We also observe that the expansion \(\theta \) in the model is proportional to the Shear scalar \(\sigma \) which leads to

\[
A = B^m \tag{22}
\]

\[
ds^2 = -dt^2 + t^{\frac{6m}{2m+1}(1+q)}dx^2 + t^{\frac{6}{2m+1}(1+q)}dy^2 + 2t^{\frac{6}{2m+1}(1+q)}xdydz + \left(t^{\frac{6}{2m+1}(1+q)}x^2 + t^{\frac{6m}{2m+1}(1+q)} \right)dz^2 \tag{24}
\]

This represents LRS Bianchi type – II universe in f(R,T) gravity.

V. SOME PHYSICAL PROPERTIES OF THE MODEL

Equation (24) represents a perfect fluid Bianchi type – II cosmological model in f(R,T) gravity with the following physical and Kinematical parameters:

The Spatial Volume is

\[
V^3 = A^2B = t^{\frac{3}{1+q}} \tag{25}
\]

The Scalar Expansion is

\[
\theta = \frac{3}{1+q} \tag{26}
\]

The Shear Scalar is

\[
\sigma^2 = \frac{3(m-1)^2}{(2m+1)^2(1+q)^2} \frac{1}{t^2} \tag{27}
\]

The Generalized Hubble’s parameter is

\[
H = \frac{\dot{a}}{a} = \frac{1}{3} \left(\frac{A'}{A} + \frac{B'}{B} \right) = \frac{1}{(1+q)t} \tag{28}
\]

\[
\begin{align*}
\text{Figure 1:} & \quad \text{The plot of Hubble’s parameter H Vs. t. Here q= -0.1} \\
\text{The Average anisotropic parameter is} & \\
A_a = \frac{1}{\gamma} \sum \left(\frac{\Delta H_i}{H} \right)^2 & \text{Which gives} \quad A_a = \frac{3}{4} \tag{30} \\
\text{Where } \Delta H_i = H_i - H \quad (i = 1,2,3) & \text{Also} \\
\text{The Pressure in the model is} & \\
p = \frac{1}{(8\pi+3\lambda)} \left\{ \left(10m^2 - 12qm^2 - 6m - 6mq \right) + \frac{\lambda^3(2m^2-6m^2-9)(1+q)-6(8\pi+3\lambda)}{\lambda^3-8(8\pi+3\lambda)^2}m^2 \right\} t^{-2} \frac{1}{(1+q)^2(2m+1)^2} + \frac{3}{4} \right\} \tag{32}
\end{align*}
\]
The energy density in the model is

\[\rho = \frac{\lambda^2}{\lambda^3 - (8\pi + 3\lambda)^2} \left\{ \left(2m^2 - 6m - 9\right)(1 + q) - \frac{(8\pi + 3\lambda)}{\lambda} \right\} \frac{t^{-2}}{(1 + q)^2(2m + 1)^2} - \frac{(16\pi + 5\lambda)6m}{\lambda(1 + q)^2(2m + 1)^2} t^{\frac{q}{(2m + 1)(1 + q)}} + \frac{6(2m - 1)}{(2m + 1)(1 + q)} \]

(33)

From the above results it can be seen that the spatial volume is zero at \(t=0 \) and it increases with cosmic time showing the late time accelerated expansion of the universe. Also at \(t=0 \) the parameters \(\Theta, \sigma, H, \rho \) and \(p \) diverge while they vanish for infinitely large values of \(t \). The mean anisotropic parameter is uniform through
the whole evolution of the universe which shows that the dynamics of the mean anisotropic parameter does not depend on the cosmic time t. Also, since $\frac{\sigma^2}{\dot{\Theta}}$ is constant the model does not approach isotropy through the whole evolution of the universe. It may also be observed that the model (24) has no initial singularity.

VI. Conclusion

Here we have studied LRS Bianchi type-II cosmological model in the presence of perfect fluid in $f(R,T)$ theory of gravity. It is observed that the model has no initial singularity and shows the late time accelerated expansion of the universe for large t. It is also observed that all the physical and kinematical parameters diverge at initial epoch while they approach zero for infinitely large t. The model obtained, in this paper, is of considerable interest and may be useful to study the large scale dynamics of the early universe in $f(R,T)$ theory of gravity.

References Références Referencias

This page is intentionally left blank
FELLOWS

FELLOWS OF ASSOCIATION OF RESEARCH SOCIETY IN SCIENCE (FARSS)

- 'FARSS' title will be awarded to the person after approval of Editor-in-Chief and Editorial Board. The title 'FARSS' can be added to name in the following manner. eg. Dr. John E. Hall, Ph.D., FARSS or William Walldroff Ph. D., M.S., FARSS
- Being FARSS is a respectful honor. It authenticates your research activities. After becoming FARSS, you can use 'FARSS' title as you use your degree in suffix of your name. This will definitely will enhance and add up your name. You can use it on your Career Counseling Materials/CV/Resume/Visiting Card/Name Plate etc.
- 60% Discount will be provided to FARSS members for publishing research papers in Global Journals Inc., if our Editorial Board and Peer Reviewers accept the paper. For the life time, if you are author/co-author of any paper bill sent to you will automatically be discounted one by 60%
- FARSS will be given a renowned, secure, free professional email address with 100 GB of space eg.johnhall@globaljournals.org. You will be facilitated with Webmail, SpamAssassin, Email Forwarders, Auto-Responders, Email Delivery Route tracing, etc.
- FARSS member is eligible to become paid peer reviewer at Global Journals Inc. to earn up to 15% of realized author charges taken from author of respective paper. After reviewing 5 or more papers you can request to transfer the amount to your bank account or to your PayPal account.
- Eg. If we had taken 420 USD from author, we can send 63 USD to your account.
- FARSS member can apply for free approval, grading and certification of some of their Educational and Institutional Degrees from Global Journals Inc. (US) and Open Association of Research,Society U.S.A.
- After you are FARSS. You can send us scanned copy of all of your documents. We will verify, grade and certify them within a month. It will be based on your academic records, quality of research papers published by you, and 50 more criteria. This is beneficial for your job interviews as recruiting organization need not just rely on you for authenticity and your unknown qualities, you would have authentic ranks of all of your documents. Our scale is unique worldwide.
- FARSS member can proceed to get benefits of free research podcasting in Global Research Radio with their research documents, slides and online movies.
- After your publication anywhere in the world, you can upload you research paper with your recorded voice or you can use our professional RJs to record your paper their voice. We can also stream your conference videos and display your slides online.
- FARSS will be eligible for free application of Standardization of their Researches by Open Scientific Standards. Standardization is next step and level after publishing in a journal. A team of research and professional will work with you to take your research to its next level, which is worldwide open standardization.
• FARSS is eligible to earn from their researches: While publishing his paper with Global Journals Inc. (US), FARSS can decide whether he/she would like to publish his/her research in closed manner. When readers will buy that individual research paper for reading, 80% of its earning by Global Journals Inc. (US) will be transferred to FARSS member's bank account after certain threshold balance. There is no time limit for collection. FARSS member can decide its price and we can help in decision.

MEMBER OF ASSOCIATION OF RESEARCH SOCIETY IN SCIENCE (MARSS)

• 'MARSS' title will be awarded to the person after approval of Editor-in-Chief and Editorial Board. The title 'MARSS' can be added to name in the following manner. eg. Dr. John E. Hall, Ph.D., MARSS or William Walldroff Ph. D., M.S., MARSS
• Being MARSS is a respectful honor. It authenticates your research activities. After becoming MARSS, you can use 'MARSS' title as you use your degree in suffix of your name. This will definitely will enhance and add up your name. You can use it on your Career Counseling Materials/CV/Resume/Visiting Card/Name Plate etc.
• 40% Discount will be provided to MARSS members for publishing research papers in Global Journals Inc., if our Editorial Board and Peer Reviewers accept the paper. For the life time, if you are author/co-author of any paper bill sent to you will automatically be discounted one by 60%
• MARSS will be given a renowned, secure, free professional email address with 30 GB of space eg.johnhall@globaljournals.org. You will be facilitated with Webmail, SpamAssassin, Email Forwarders, Auto-Responders, Email Delivery Route tracing, etc.
• MARSS member is eligible to become paid peer reviewer at Global Journals Inc. to earn up to 10% of realized author charges taken from author of respective paper. After reviewing 5 or more papers you can request to transfer the amount to your bank account or to your PayPal account.
• MARSS member can apply for free approval, grading and certification of some of their Educational and Institutional Degrees from Global Journals Inc. (US) and Open Association of Research,Society U.S.A.
• MARSS is eligible to earn from their researches: While publishing his paper with Global Journals Inc. (US), MARSS can decide whether he/she would like to publish his/her research in closed manner. When readers will buy that individual research paper for reading, 40% of its earning by Global Journals Inc. (US) will be transferred to MARSS member's bank account after certain threshold balance. There is no time limit for collection. MARSS member can decide its price and we can help in decision.
Auxiliary Memberships

ANNUAL MEMBER

- Annual Member will be authorized to receive e-Journal GJSFR for one year (subscription for one year).
- The member will be allotted free 1 GB Web-space along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted free 500 MB email space.

PAPER PUBLICATION

- The members can publish paper once. The paper will be sent to two-peer reviewer. The paper will be published after the acceptance of peer reviewers and Editorial Board.
The Area or field of specialization may or may not be of any category as mentioned in ‘Scope of Journal’ menu of the GlobalJournals.org website. There are 37 Research Journal categorized with Six parental Journals GJCST, GJMR, GJRE, GJMBR, GJSFR, GJHSS. For Authors should prefer the mentioned categories. There are three widely used systems UDC, DDC and LCC. The details are available as ‘Knowledge Abstract’ at Home page. The major advantage of this coding is that, the research work will be exposed to and shared with all over the world as we are being abstracted and indexed worldwide.

The paper should be in proper format. The format can be downloaded from first page of ‘Author Guideline’ Menu. The Author is expected to follow the general rules as mentioned in this menu. The paper should be written in MS-Word Format (*.DOC, *.DOCX).

The Author can submit the paper either online or offline. The authors should prefer online submission. **Online Submission:** There are three ways to submit your paper:

(A) (I) First, register yourself using top right corner of Home page then Login. If you are already registered, then login using your username and password.

 (II) Choose corresponding Journal.

 (III) Click ‘Submit Manuscript’. Fill required information and Upload the paper.

(B) If you are using Internet Explorer, then Direct Submission through Homepage is also available.

(C) If these two are not conveninet , and then email the paper directly to dean@globaljournals.org.

Offline Submission: Author can send the typed form of paper by Post. However, online submission should be preferred.
MANUSCRIPT STYLE INSTRUCTION (Must be strictly followed)

Page Size: 8.27” X 11”

- Left Margin: 0.65
- Right Margin: 0.65
- Top Margin: 0.75
- Bottom Margin: 0.75
- Font type of all text should be Swiss 721 Lt BT.
- Paper Title should be of Font Size 24 with one Column section.
- Author Name in Font Size of 11 with one column as of Title.
- Abstract Font size of 9 Bold, “Abstract” word in Italic Bold.
- Main Text: Font size 10 with justified two columns section
- Two Column with Equal Column with of 3.38 and Gaping of .2
- First Character must be three lines Drop capped.
- Paragraph before Spacing of 1 pt and After of 0 pt.
- Line Spacing of 1 pt
- Large Images must be in One Column
- Numbering of First Main Headings (Heading 1) must be in Roman Letters, Capital Letter, and Font Size of 10.
- Numbering of Second Main Headings (Heading 2) must be in Alphabets, Italic, and Font Size of 10.

You can use your own standard format also.

Author Guidelines:

1. General,

2. Ethical Guidelines,

3. Submission of Manuscripts,

4. Manuscript’s Category,

5. Structure and Format of Manuscript,

6. After Acceptance.

1. GENERAL

Before submitting your research paper, one is advised to go through the details as mentioned in following heads. It will be beneficial, while peer reviewer justify your paper for publication.

Scope

The Global Journals Inc. (US) welcome the submission of original paper, review paper, survey article relevant to the all the streams of Philosophy and knowledge. The Global Journals Inc. (US) is parental platform for Global Journal of Computer Science and Technology, Researches in Engineering, Medical Research, Science Frontier Research, Human Social Science, Management, and Business organization. The choice of specific field can be done otherwise as following in Abstracting and Indexing Page on this Website. As the all Global
Journals Inc. (US) are being abstracted and indexed (in process) by most of the reputed organizations. Topics of only narrow interest will not be accepted unless they have wider potential or consequences.

2. ETHICAL GUIDELINES

Authors should follow the ethical guidelines as mentioned below for publication of research paper and research activities.

Papers are accepted on strict understanding that the material in whole or in part has not been, nor is being, considered for publication elsewhere. If the paper once accepted by Global Journals Inc. (US) and Editorial Board, will become the copyright of the Global Journals Inc. (US).

Authorship: The authors and coauthors should have active contribution to conception design, analysis and interpretation of findings. They should critically review the contents and drafting of the paper. All should approve the final version of the paper before submission.

The Global Journals Inc. (US) follows the definition of authorship set up by the Global Academy of Research and Development. According to the Global Academy of R&D authorship, criteria must be based on:

1) Substantial contributions to conception and acquisition of data, analysis and interpretation of the findings.

2) Drafting the paper and revising it critically regarding important academic content.

3) Final approval of the version of the paper to be published.

All authors should have been credited according to their appropriate contribution in research activity and preparing paper. Contributors who do not match the criteria as authors may be mentioned under Acknowledgement.

Acknowledgements: Contributors to the research other than authors credited should be mentioned under acknowledgement. The specifications of the source of funding for the research if appropriate can be included. Suppliers of resources may be mentioned along with address.

Appeal of Decision: The Editorial Board’s decision on publication of the paper is final and cannot be appealed elsewhere.

Permissions: It is the author’s responsibility to have prior permission if all or parts of earlier published illustrations are used in this paper.

Please mention proper reference and appropriate acknowledgements wherever expected.

If all or parts of previously published illustrations are used, permission must be taken from the copyright holder concerned. It is the author’s responsibility to take these in writing.

Approval for reproduction/modification of any information (including figures and tables) published elsewhere must be obtained by the authors/copyright holders before submission of the manuscript. Contributors (Authors) are responsible for any copyright fee involved.

3. SUBMISSION OF MANUSCRIPTS

Manuscripts should be uploaded via this online submission page. The online submission is most efficient method for submission of papers, as it enables rapid distribution of manuscripts and consequently speeds up the review procedure. It also enables authors to know the status of their own manuscripts by emailing us. Complete instructions for submitting a paper is available below.

Manuscript submission is a systematic procedure and little preparation is required beyond having all parts of your manuscript in a given format and a computer with an Internet connection and a Web browser. Full help and instructions are provided on-screen. As an author, you will be prompted for login and manuscript details as Field of Paper and then to upload your manuscript file(s) according to the instructions.
To avoid postal delays, all transaction is preferred by e-mail. A finished manuscript submission is confirmed by e-mail immediately and your paper enters the editorial process with no postal delays. When a conclusion is made about the publication of your paper by our Editorial Board, revisions can be submitted online with the same procedure, with an occasion to view and respond to all comments.

Complete support for both authors and co-author is provided.

4. MANUSCRIPT'S CATEGORY

Based on potential and nature, the manuscript can be categorized under the following heads:

Original research paper: Such papers are reports of high-level significant original research work.

Review papers: These are concise, significant but helpful and decisive topics for young researchers.

Research articles: These are handled with small investigation and applications

Research letters: The letters are small and concise comments on previously published matters.

5. STRUCTURE AND FORMAT OF MANUSCRIPT

The recommended size of original research paper is less than seven thousand words, review papers fewer than seven thousands words also. Preparation of research paper or how to write research paper, are major hurdle, while writing manuscript. The research articles and research letters should be fewer than three thousand words, the structure original research paper; sometime review paper should be as follows:

Papers: These are reports of significant research (typically less than 7000 words equivalent, including tables, figures, references), and comprise:

(a) Title should be relevant and commensurate with the theme of the paper.

(b) A brief Summary, “Abstract” (less than 150 words) containing the major results and conclusions.

(c) Up to ten keywords, that precisely identifies the paper’s subject, purpose, and focus.

(d) An Introduction, giving necessary background excluding subheadings; objectives must be clearly declared.

(e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition; sources of information must be given and numerical methods must be specified by reference, unless non-standard.

(f) Results should be presented concisely, by well-designed tables and/or figures; the same data may not be used in both; suitable statistical data should be given. All data must be obtained with attention to numerical detail in the planning stage. As reproduced design has been recognized to be important to experiments for a considerable time, the Editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned un-refereed;

(g) Discussion should cover the implications and consequences, not just recapitulating the results; conclusions should be summarizing.

(h) Brief Acknowledgements.

(i) References in the proper form.

Authors should very cautiously consider the preparation of papers to ensure that they communicate efficiently. Papers are much more likely to be accepted, if they are cautiously designed and laid out, contain few or no errors, are summarizing, and be conventional to the approach and instructions. They will in addition, be published with much less delays than those that require much technical and editorial correction.
The Editorial Board reserves the right to make literary corrections and to make suggestions to improve briefness.

It is vital, that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

Format

Language: The language of publication is UK English. Authors, for whom English is a second language, must have their manuscript efficiently edited by an English-speaking person before submission to make sure that, the English is of high excellence. It is preferable, that manuscripts should be professionally edited.

Standard Usage, Abbreviations, and Units: Spelling and hyphenation should be conventional to The Concise Oxford English Dictionary. Statistics and measurements should at all times be given in figures, e.g. 16 min, except for when the number begins a sentence. When the number does not refer to a unit of measurement it should be spelt in full unless, it is 160 or greater.

Abbreviations supposed to be used carefully. The abbreviated name or expression is supposed to be cited in full at first usage, followed by the conventional abbreviation in parentheses.

Metric SI units are supposed to generally be used excluding where they conflict with current practice or are confusing. For illustration, 1.4 l rather than 1.4 × 10⁻³ m³, or 4 mm somewhat than 4 × 10⁻³ m. Chemical formula and solutions must identify the form used, e.g. anhydrous or hydrated, and the concentration must be in clearly defined units. Common species names should be followed by underlines at the first mention. For following use the generic name should be constricted to a single letter, if it is clear.

Structure

All manuscripts submitted to Global Journals Inc. (US), ought to include:

Title: The title page must carry an instructive title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) wherever the work was carried out. The full postal address in addition with the e-mail address of related author must be given. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining and indexing.

Abstract, used in Original Papers and Reviews:

Optimizing Abstract for Search Engines

Many researchers searching for information online will use search engines such as Google, Yahoo or similar. By optimizing your paper for search engines, you will amplify the chance of someone finding it. This in turn will make it more likely to be viewed and/or cited in a further work. Global Journals Inc. (US) have compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.

Key Words

A major linchpin in research work for the writing research paper is the keyword search, which one will employ to find both library and Internet resources.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy and planning a list of possible keywords and phrases to try.

Search engines for most searches, use Boolean searching, which is somewhat different from Internet searches. The Boolean search uses "operators," words (and, or, not, and near) that enable you to expand or narrow your affords. Tips for research paper while preparing research paper are very helpful guideline of research paper.

Choice of key words is first tool of tips to write research paper. Research paper writing is an art. A few tips for deciding as strategically as possible about keyword search:
• One should start brainstorming lists of possible keywords before even begin searching. Think about the most important concepts related to research work. Ask, “What words would a source have to include to be truly valuable in research paper?” Then consider synonyms for the important words.
• It may take the discovery of only one relevant paper to steer in the right keyword direction because in most databases, the keywords under which a research paper is abstracted are listed with the paper.
• One should avoid outdated words.

Keywords are the key that opens a door to research work sources. Keyword searching is an art in which researcher's skills are bound to improve with experience and time.

Numerical Methods: Numerical methods used should be clear and, where appropriate, supported by references.

Acknowledgements: Please make these as concise as possible.

References

References follow the Harvard scheme of referencing. References in the text should cite the authors' names followed by the time of their publication, unless there are three or more authors when simply the first author's name is quoted followed by et al. unpublished work has to only be cited where necessary, and only in the text. Copies of references in press in other journals have to be supplied with submitted typescripts. It is necessary that all citations and references be carefully checked before submission, as mistakes or omissions will cause delays.

References to information on the World Wide Web can be given, but only if the information is available without charge to readers on an official site. Wikipedia and Similar websites are not allowed where anyone can change the information. Authors will be asked to make available electronic copies of the cited information for inclusion on the Global Journals Inc. (US) homepage at the judgment of the Editorial Board.

The Editorial Board and Global Journals Inc. (US) recommend that, citation of online-published papers and other material should be done via a DOI (digital object identifier). If an author cites anything, which does not have a DOI, they run the risk of the cited material not being noticeable.

The Editorial Board and Global Journals Inc. (US) recommend the use of a tool such as Reference Manager for reference management and formatting.

Tables, Figures and Figure Legends

Tables: Tables should be few in number, cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g. Table 4, a self-explanatory caption and be on a separate sheet. Vertical lines should not be used.

Figures: Figures are supposed to be submitted as separate files. Always take in a citation in the text for each figure using Arabic numbers, e.g. Fig. 4. Artwork must be submitted online in electronic form by e-mailing them.

Preparation of Electronic Figures for Publication

Even though low quality images are sufficient for review purposes, print publication requires high quality images to prevent the final product being blurred or fuzzy. Submit (or e-mail) EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Do not use pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings) in relation to the imitation size. Please give the data for figures in black and white or submit a Color Work Agreement Form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution (at final image size) ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs): >350 dpi; figures containing both halftone and line images: >650 dpi.

© Copyright by Global Journals Inc.(US) | Guidelines Handbook
Color Charges: It is the rule of the Global Journals Inc. (US) for authors to pay the full cost for the reproduction of their color artwork. Hence, please note that, if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a color work agreement form before your paper can be published.

Figure Legends: Self-explanatory legends of all figures should be incorporated separately under the heading 'Legends to Figures'. In the full-text online edition of the journal, figure legends may possibly be truncated in abbreviated links to the full screen version. Therefore, the first 100 characters of any legend should notify the reader, about the key aspects of the figure.

6. AFTER ACCEPTANCE

Upon approval of a paper for publication, the manuscript will be forwarded to the dean, who is responsible for the publication of the Global Journals Inc. (US).

6.1 Proof Corrections

The corresponding author will receive an e-mail alert containing a link to a website or will be attached. A working e-mail address must therefore be provided for the related author.

Acrobat Reader will be required in order to read this file. This software can be downloaded (Free of charge) from the following website:

www.adobe.com/products/acrobat/readstep2.html. This will facilitate the file to be opened, read on screen, and printed out in order for any corrections to be added. Further instructions will be sent with the proof.

Proofs must be returned to the dean at dean@globaljournals.org within three days of receipt.

As changes to proofs are costly, we inquire that you only correct typesetting errors. All illustrations are retained by the publisher. Please note that the authors are responsible for all statements made in their work, including changes made by the copy editor.

6.2 Early View of Global Journals Inc. (US) (Publication Prior to Print)

The Global Journals Inc. (US) are enclosed by our publishing's Early View service. Early View articles are complete full-text articles sent in advance of their publication. Early View articles are absolute and final. They have been completely reviewed, revised and edited for publication, and the authors’ final corrections have been incorporated. Because they are in final form, no changes can be made after sending them. The nature of Early View articles means that they do not yet have volume, issue or page numbers, so Early View articles cannot be cited in the conventional way.

6.3 Author Services

Online production tracking is available for your article through Author Services. Author Services enables authors to track their article - once it has been accepted - through the production process to publication online and in print. Authors can check the status of their articles online and choose to receive automated e-mails at key stages of production. The authors will receive an e-mail with a unique link that enables them to register and have their article automatically added to the system. Please ensure that a complete e-mail address is provided when submitting the manuscript.

6.4 Author Material Archive Policy

Please note that if not specifically requested, publisher will dispose off hardcopy & electronic information submitted, after the two months of publication. If you require the return of any information submitted, please inform the Editorial Board or dean as soon as possible.

6.5 Offprint and Extra Copies

A PDF offprint of the online-published article will be provided free of charge to the related author, and may be distributed according to the Publisher’s terms and conditions. Additional paper offprint may be ordered by emailing us at: editor@globaljournals.org.
Before start writing a good quality Computer Science Research Paper, let us first understand what is Computer Science Research Paper? So, Computer Science Research Paper is the paper which is written by professionals or scientists who are associated to Computer Science and Information Technology, or doing research study in these areas. If you are novel to this field then you can consult about this field from your supervisor or guide.

TECHNIQUES FOR WRITING A GOOD QUALITY RESEARCH PAPER:

1. **Choosing the topic:** In most cases, the topic is searched by the interest of author but it can be also suggested by the guides. You can have several topics and then you can judge that in which topic or subject you are finding yourself most comfortable. This can be done by asking several questions to yourself, like Will I be able to carry our search in this area? Will I find all necessary recourses to accomplish the search? Will I be able to find all information in this field area? If the answer of these types of questions will be “Yes” then you can choose that topic. In most of the cases, you may have to conduct the surveys and have to visit several places because this field is related to Computer Science and Information Technology. Also, you may have to do a lot of work to find all rise and falls regarding the various data of that subject. Sometimes, detailed information plays a vital role, instead of short information.

2. **Evaluators are human:** First thing to remember that evaluators are also human being. They are not only meant for rejecting a paper. They are here to evaluate your paper. So, present your Best.

3. **Think Like Evaluators:** If you are in a confusion or getting demotivated that your paper will be accepted by evaluators or not, then think and try to evaluate your paper like an Evaluator. Try to understand that what an evaluator wants in your research paper and automatically you will have your answer.

4. **Make blueprints of paper:** The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.

5. **Ask your Guides:** If you are having any difficulty in your research, then do not hesitate to share your difficulty to your guide (if you have any). They will surely help you out and resolve your doubts. If you can’t clarify what exactly you require for your work then ask the supervisor to help you with the alternative. He might also provide you the list of essential readings.

6. **Use of computer is recommended:** As you are doing research in the field of Computer Science, then this point is quite obvious.

7. **Use right software:** Always use good quality software packages. If you are not capable to judge good software then you can lose quality of your paper unknowingly. There are various software programs available to help you, which you can get through Internet.

8. **Use the Internet for help:** An excellent start for your paper can be by using the Google. It is an excellent search engine, where you can have your doubts resolved. You may also read some answers for the frequent question how to write my research paper or find model research paper. From the internet library you can download books. If you have all required books make important reading selecting and analyzing the specified information. Then put together research paper sketch out.

9. **Use and get big pictures:** Always use encyclopedias, Wikipedia to get pictures so that you can go into the depth.

10. **Bookmarks are useful:** When you read any book or magazine, you generally use bookmarks, right! It is a good habit, which helps to not to lose your continuity. You should always use bookmarks while searching on Internet also, which will make your search easier.

11. **Revise what you wrote:** When you write anything, always read it, summarize it and then finalize it.
12. **Make all efforts**: Make all efforts to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in introduction, that what is the need of a particular research paper. Polish your work by good skill of writing and always give an evaluator, what he wants.

13. **Have backups**: When you are going to do any important thing like making research paper, you should always have backup copies of it either in your computer or in paper. This will help you to not to lose any of your important.

14. **Produce good diagrams of your own**: Always try to include good charts or diagrams in your paper to improve quality. Using several and unnecessary diagrams will degrade the quality of your paper by creating "hotchpotch." So always, try to make and include those diagrams, which are made by your own to improve readability and understandability of your paper.

15. **Use of direct quotes**: When you do research relevant to literature, history or current affairs then use of quotes become essential but if study is relevant to science then use of quotes is not preferable.

16. **Use proper verb tense**: Use proper verb tenses in your paper. Use past tense, to present those events that happened. Use present tense to indicate events that are going on. Use future tense to indicate future happening events. Use of improper and wrong tenses will confuse the evaluator. Avoid the sentences that are incomplete.

17. **Never use online paper**: If you are getting any paper on Internet, then never use it as your research paper because it might be possible that evaluator has already seen it or maybe it is outdated version.

18. **Pick a good study spot**: To do your research studies always try to pick a spot, which is quiet. Every spot is not for studies. Spot that suits you choose it and proceed further.

19. **Know what you know**: Always try to know, what you know by making objectives. Else, you will be confused and cannot achieve your target.

20. **Use good quality grammar**: Always use a good quality grammar and use words that will throw positive impact on evaluator. Use of good quality grammar does not mean to use tough words, that for each word the evaluator has to go through dictionary. Do not start sentence with a conjunction. Do not fragment sentences. Eliminate one-word sentences. Ignore passive voice. Do not ever use a big word when a diminutive one would suffice. Verbs have to be in agreement with their subjects. Prepositions are not expressions to finish sentences with. It is incorrect to ever divide an infinitive. Avoid clichés like the disease. Also, always shun irritating alliteration. Use language that is simple and straightforward. Put together a neat summary.

21. **Arrangement of information**: Each section of the main body should start with an opening sentence and there should be a changeover at the end of the section. Give only valid and powerful arguments to your topic. You may also maintain your arguments with records.

22. **Never start in last minute**: Always start at right time and give enough time to research work. Leaving everything to the last minute will degrade your paper and spoil your work.

23. **Multitasking in research is not good**: Doing several things at the same time proves bad habit in case of research activity. Research is an area, where everything has a particular time slot. Divide your research work in parts and do particular part in particular time slot.

24. **Never copy others' work**: Never copy others' work and give it your name because if evaluator has seen it anywhere you will be in trouble.

25. **Take proper rest and food**: No matter how many hours you spend for your research activity, if you are not taking care of your health then all your efforts will be in vain. For a quality research, study is must, and this can be done by taking proper rest and food.

26. **Go for seminars**: Attend seminars if the topic is relevant to your research area. Utilize all your resources.
27. **Refresh your mind after intervals:** Try to give rest to your mind by listening to soft music or by sleeping in intervals. This will also improve your memory.

28. **Make colleagues:** Always try to make colleagues. No matter how sharper or intelligent you are, if you make colleagues you can have several ideas, which will be helpful for your research.

29. **Think technically:** Always think technically. If anything happens, then search its reasons, its benefits, and demerits.

30. **Think and then print:** When you will go to print your paper, notice that tables are not be split, headings are not detached from their descriptions, and page sequence is maintained.

31. **Adding unnecessary information:** Do not add unnecessary information, like, I have used MS Excel to draw graph. Do not add irrelevant and inappropriate material. These all will create superfluous. Foreign terminology and phrases are not apropos. One should NEVER take a broad view. Analogy in script is like feathers on a snake. Not at all use a large word when a very small one would be sufficient. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grunt readers. Amplification is a billion times of inferior quality than sarcasm.

32. **Never oversimplify everything:** To add material in your research paper, never go for oversimplification. This will definitely irritate the evaluator. Be more or less specific. Also too, by no means, ever use rhythmic redundancies. Contractions aren’t essential and shouldn’t be there used. Comparisons are as terrible as clichés. Give up ampersands and abbreviations, and so on. Remove commas, that are, not necessary. Parenthetical words however should be together with this in commas. Understatement is all the time the complete best way to put onward earth-shaking thoughts. Give a detailed literary review.

33. **Report concluded results:** Use concluded results. From raw data, filter the results and then conclude your studies based on measurements and observations taken. Significant figures and appropriate number of decimal places should be used. Parenthetical remarks are prohibitive. Proofread carefully at final stage. In the end give outline to your arguments. Spot out perspectives of further study of this subject. Justify your conclusion by at the bottom of them with sufficient justifications and examples.

34. **After conclusion:** Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium though which your research is going to be in print to the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects in your research.

Informal Guidelines of Research Paper Writing

Key points to remember:

- Submit all work in its final form.
- Write your paper in the form, which is presented in the guidelines using the template.
- Please note the criterion for grading the final paper by peer-reviewers.

Final Points:

A purpose of organizing a research paper is to let people to interpret your effort selectively. The journal requires the following sections, submitted in the ordered listed, each section to start on a new page.

The introduction will be compiled from reference matter and will reflect the design processes or outline of basis that direct you to make study. As you will carry out the process of study, the method and process section will be constructed as like that. The result segment will show related statistics in nearly sequential order and will direct the reviewers next to the similar intellectual paths throughout the data that you took to carry out your study. The discussion section will provide understanding of the data and projections as to the implication of the results. The use of good quality references all through the paper will give the effort trustworthiness by representing an alertness of prior workings.
Writing a research paper is not an easy job no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record keeping are the only means to make straightforward the progression.

General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear
· Adhere to recommended page limits

Mistakes to evade
· Insertion a title at the foot of a page with the subsequent text on the next page
· Separating a table/chart or figure - impound each figure/table to a single page
· Submitting a manuscript with pages out of sequence

In every sections of your document
· Use standard writing style including articles ("a", "the," etc.)
· Keep on paying attention on the research topic of the paper
· Use paragraphs to split each significant point (excluding for the abstract)
· Align the primary line of each section
· Present your points in sound order
· Use present tense to report well accepted
· Use past tense to describe specific results
· Shun familiar wording, don't address the reviewer directly, and don't use slang, slang language, or superlatives
· Shun use of extra pictures - include only those figures essential to presenting results

Title Page:

Choose a revealing title. It should be short. It should not have non-standard acronyms or abbreviations. It should not exceed two printed lines. It should include the name(s) and address(es) of all authors.
Abstract:

The summary should be two hundred words or less. It should briefly and clearly explain the key findings reported in the manuscript--must have precise statistics. It should not have abnormal acronyms or abbreviations. It should be logical in itself. Shun citing references at this point.

An abstract is a brief distinct paragraph summary of finished work or work in development. In a minute or less a reviewer can be taught the foundation behind the study, common approach to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Yet, use comprehensive sentences and do not let go readability for briefness. You can maintain it succinct by phrasing sentences so that they provide more than lone rationale. The author can at this moment go straight to shortening the outcome. Sum up the study, with the subsequent elements in any summary. Try to maintain the initial two items to no more than one ruling each.

- Reason of the study - theory, overall issue, purpose
- Fundamental goal
- To the point depiction of the research
- Consequences, including definite statistics - if the consequences are quantitative in nature, account quantitative data; results of any numerical analysis should be reported
- Significant conclusions or questions that track from the research(es)

Approach:

- Single section, and succinct
- As a outline of job done, it is always written in past tense
- A conceptual should situate on its own, and not submit to any other part of the paper such as a form or table
- Center on shortening results - bound background information to a verdict or two, if completely necessary
- What you account in an conceptual must be regular with what you reported in the manuscript
- Exact spelling, clearness of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else

Introduction:

The Introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable to comprehend and calculate the purpose of your study without having to submit to other works. The basis for the study should be offered. Give most important references but shun difficult to make a comprehensive appraisal of the topic. In the introduction, describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will have no attention in your result. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here. Following approach can create a valuable beginning:

- Explain the value (significance) of the study
- Shield the model - why did you employ this particular system or method? What is its compensation? You strength remark on its appropriateness from a abstract point of vision as well as point out sensible reasons for using it.
- Present a justification. Status your particular theory (es) or aim(s), and describe the logic that led you to choose them.
- Very for a short time explain the tentative propose and how it skilled the declared objectives.

Approach:

- Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done.
- Sort out your thoughts; manufacture one key point with every section. If you make the four points listed above, you will need a least of four paragraphs.

© Copyright by Global Journals Inc. (US) | Guidelines Handbook
The principle while stating the situation. The purpose is to text all particular resources and broad procedures, so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step by step report of the whole thing you did, nor is a methods section a set of orders.

Materials:
- Explain materials individually only if the study is so complex that it saves liberty this way.
- Embrace particular materials, and any tools or provisions that are not frequently found in laboratories.
- Do not take in frequently found.
- If use of a definite type of tools.
- Materials may be reported in a part section or else they may be recognized along with your measures.

Methods:
- Report the method (not particulars of each process that engaged the same methodology)
- Describe the method entirely
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures
- Simplify - details how procedures were completed not how they were exclusively performed on a particular day.
- If well known procedures were used, account the procedure by name, possibly with reference, and that’s all.

Approach:
- It is embarrassed or not possible to use vigorous voice when documenting methods with no using first person, which would focus the reviewer’s interest on the researcher rather than the job. As a result when script up the methods most authors use third person passive voice.
- Use standard style in this and in every other part of the paper - avoid familiar lists, and use full sentences.

What to keep away from
- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings - save it for the argument.
- Leave out information that is immaterial to a third party.

Results:
The principle of a results segment is to present and demonstrate your conclusion. Create this part a entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Carry on to be to the point, by means of statistics and tables, if suitable, to present consequences most efficiently. You must obviously differentiate material that would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matter should not be submitted at all except requested by the instructor.
Content

- Sum up your conclusion in text and demonstrate them, if suitable, with figures and tables.
- In manuscript, explain each of your consequences, point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation an exacting study.
- Explain results of control experiments and comprise remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or in manuscript form.

What to stay away from

- Do not discuss or infer your outcome, report surroundings information, or try to explain anything.
- Not at all, take in raw data or intermediate calculations in a research manuscript.
- Do not present the similar data more than once.
- Manuscript should complement any figures or tables, not duplicate the identical information.
- Never confuse figures with tables - there is a difference.

Approach

- As forever, use past tense when you submit to your results, and put the whole thing in a reasonable order.
- Put figures and tables, appropriately numbered, in order at the end of the report.
- If you desire, you may place your figures and tables properly within the text of your results part.

Figures and tables

- If you put figures and tables at the end of the details, make certain that they are visibly distinguished from any attach appendix materials, such as raw facts.
- Despite of position, each figure must be numbered one after the other and complete with subtitle.
- In spite of position, each table must be titled, numbered one after the other and complete with heading.
- All figure and table must be adequately complete that it could situate on its own, divide from text.

Discussion:

The Discussion is expected the trickiest segment to write and describe. A lot of papers submitted for journal are discarded based on problems with the Discussion. There is no head of state for how long a argument should be. Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implication of the study. The purpose here is to offer an understanding of your results and hold up for all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of result should be visibly described. Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved with prospect, and let it drop at that.

- Make a decision if each premise is supported, discarded, or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."
- Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work.
- You may propose future guidelines, such as how the experiment might be personalized to accomplish a new idea.
- Give details all of your remarks as much as possible, focus on mechanisms.
- Make a decision if the tentative design sufficiently addressed the theory, and whether or not it was correctly restricted.
- Try to present substitute explanations if sensible alternatives be present.
- One research will not counter an overall question, so maintain the large picture in mind, where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

Approach:

- When you refer to information, differentiate data generated by your own studies from available information.
- Submit to work done by specific persons (including you) in past tense.
 - Submit to generally acknowledged facts and main beliefs in present tense.
Please carefully note down following rules and regulation before submitting your Research Paper to Global Journals Inc. (US):

Segment Draft and Final Research Paper: You have to strictly follow the template of research paper. If it is not done your paper may get rejected.

- **The major constraint** is that you must independently make all content, tables, graphs, and facts that are offered in the paper. You must write each part of the paper wholly on your own. The Peer-reviewers need to identify your own perceptive of the concepts in your own terms. NEVER extract straight from any foundation, and never rephrase someone else’s analysis.

- Do not give permission to anyone else to “PROOFREAD” your manuscript.

- Methods to avoid Plagiarism is applied by us on every paper, if found guilty, you will be blacklisted by all of our collaborated research groups, your institution will be informed for this and strict legal actions will be taken immediately.

- To guard yourself and others from possible illegal use please do not permit anyone right to use to your paper and files.
CRITERION FOR GRADING A RESEARCH PAPER (Compilation)
BY GLOBAL JOURNALS INC. (US)

Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals Inc. (US).

<table>
<thead>
<tr>
<th>Topics</th>
<th>Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A-B</td>
</tr>
<tr>
<td>Abstract</td>
<td>Clear and concise with appropriate content, Correct format. 200 words or below</td>
</tr>
<tr>
<td></td>
<td>Above 200 words</td>
</tr>
<tr>
<td>Introduction</td>
<td>Containing all background details with clear goal and appropriate details, flow specification, no grammar and spelling mistake, well organized sentence and paragraph, reference cited</td>
</tr>
<tr>
<td>Methods and Procedures</td>
<td>Clear and to the point with well arranged paragraph, precision and accuracy of facts and figures, well organized subheads</td>
</tr>
<tr>
<td>Result</td>
<td>Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake</td>
</tr>
<tr>
<td>Discussion</td>
<td>Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph, reference cited</td>
</tr>
<tr>
<td>References</td>
<td>Complete and correct format, well organized</td>
</tr>
</tbody>
</table>
Index

A

Anisotropies · 44
Approaches · 44, 57, 59, 61
Astrophysical · 20, 44

B

Boltzmannian · 53

C

Circumvented · 1
Cosmological · 44, 45, 48, 50

D

Demonstrated · 19, 64

E

Electromagnetism · 15
Elliptically · 29

G

Gravitational · 1, 2, 3, 11, 12, 13, 14, 15, 16, 17, 18, 19, 44, 45, 46

J

Justifications · 3

L

Lagrangian · 44, 45, 46

M

Manifestations · 21
Microfocussing · 26, 28, 30, 31, 33, 34
Misinterpretations · 15

N

Nevertheless · 3, 17

P

Prechanneling · 66
Pyroclastics · 35, 38, 39

R

Radionuclides · 35, 37, 38
Roughnesses · 29

S

Schwarzschild · 3, 18
Sophistication · 21, 36
Southeastern · 35, 37, 39, 42, 43

U

Unaccelerated · 3
Undergraduate · 1, 11, 21
Uzuakpunwa · 37, 39