Global JOURNAL

OF SCIENCE FRONTIER RESEARCH: F

Mathematics and Decision Sciences

Discovering Thoughts, Inventing Future

Global Journal of Science Frontier Research: F Mathematics \& Decision

Global Journal of Science Frontier Research: F Mathematics \& Decision Science
Volume 13 Issue 2 (VER. 1.0)
© Global Journal of Science Frontier Research . 2013.

All rights reserved.
This is a special issue published in version 1.0 of "Global Journal of Science Frontier Research." By Global Journals Inc.

All articles are open access articles distributed under "Global Journal of Science Frontier Research"

Reading License, which permits restricted use. Entire contents are copyright by of "Global Journal of Science Frontier Research" unless otherwise noted on specific articles.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without written permission.

The opinions and statements made in this book are those of the authors concerned. Ultraculture has not verified and neither confirms nor denies any of the foregoing and no warranty or fitness is implied.

Engage with the contents herein at your own risk.

The use of this journal, and the terms and conditions for our providing information, is governed by our Disclaimer, Terms and Conditions and Privacy Policy given on our website http://globaljournals.us/terms-and-condition/ menu-id-1463/

By referring / using / reading / any type of association / referencing this journal, this signifies and you acknowledge that you have read them and that you accept and will be bound by the terms thereof.

All information, journals, this journal, activities undertaken, materials, services and our website, terms and conditions, privacy policy, and this journal is subject to change anytime without any prior notice.

Incorporation No.: 0423089
License No.: 42125/022010/1186
Registration No.: 430374 Import-Export Code: 1109007027 Employer Identification Number (EIN): USA Tax ID: 98-0673427

Global Journals Inc.

(A Delaware USA Incorporation with "Good Standing"; Reg. Number: 0423089)
Sponsors: Open Association of Research Society
Open Scientific Standards

Publisher's Headquarters office

Global Journals Inc., Headquarters Corporate Office, Cambridge Office Center, II Canal Park, Floor No. 5th, Cambridge (Massachusetts), Pin: MA 02141 United States
USA Toll Free: +001-888-839-7392
USA Toll Free Fax: +001-888-839-7392

Offset Typesetting

Open Association of Research Society, Marsh Road, Rainham, Essex, London RM13 8EU United Kingdom.

Packaging \& Continental Dispatching

Global Journals, India

Find a correspondence nodal officer near you
To find nodal officer of your country, please email us at local@globaljournals.org
eContacts

Press Inquiries: press@globaljournals.org Investor Inquiries: investers@globaljournals.org Technical Support: technology@globaljournals.org Media \& Releases: media@globaljournals.org

Pricing (Including by Air Parcel Charges):
For Authors:
22 USD (B/W) \& 50 USD (Color)
Yearly Subscription (Personal \& Institutional):
200 USD (B/W) \& 250 USD (Color)

Editorial Board Members (HON.)

John A. Hamilton,"Drew" Jr.,
Ph.D., Professor, Management
Computer Science and Software Engineering
Director, Information Assurance Laboratory
Auburn University

Dr. Henry Hexmoor

IEEE senior member since 2004
Ph.D. Computer Science, University at
Buffalo
Department of Computer Science
Southern Illinois University at Carbondale

Dr. Osman Balci, Professor

Department of Computer Science Virginia Tech, Virginia University Ph.D.and M.S.Syracuse University, Syracuse, New York
M.S. and B.S. Bogazici University, Istanbul, Turkey

Yogita Bajpai
M.Sc. (Computer Science), FICCT
U.S.A.Email:
yogita@computerresearch.org

Dr. T. David A. Forbes

Associate Professor and Range
Nutritionist
Ph.D. Edinburgh University - Animal
Nutrition
M.S. Aberdeen University - Animal Nutrition
B.A. University of Dublin- Zoology

Dr. Wenying Feng

Professor, Department of Computing \&
Information Systems
Department of Mathematics
Trent University, Peterborough,
ON Canada K9J 7B8

Dr. Thomas Wischgoll

Computer Science and Engineering, Wright State University, Dayton, Ohio
B.S., M.S., Ph.D.
(University of Kaiserslautern)

Dr. Abdurrahman Arslanyilmaz

Computer Science \& Information Systems
Department
Youngstown State University
Ph.D., Texas A\&M University
University of Missouri, Columbia
Gazi University, Turkey

Dr. Xiaohong He

Professor of International Business
University of Quinnipiac
BS, Jilin Institute of Technology; MA, MS, PhD,. (University of Texas-Dallas)

Burcin Becerik-Gerber

University of Southern California
Ph.D. in Civil Engineering
DDes from Harvard University
M.S. from University of California, Berkeley \& Istanbul University

Dr. Bart Lambrecht

Director of Research in Accounting and FinanceProfessor of Finance Lancaster University Management School BA (Antwerp); MPhil, MA, PhD (Cambridge)

Dr. Carlos García Pont

Associate Professor of Marketing
IESE Business School, University of
Navarra
Doctor of Philosophy (Management),
Massachusetts Institute of Technology
(MIT)
Master in Business Administration, IESE, University of Navarra
Degree in Industrial Engineering, Universitat Politècnica de Catalunya

Dr. Fotini Labropulu

Mathematics - Luther College
University of ReginaPh.D., M.Sc. in
Mathematics
B.A. (Honors) in Mathematics University of Windso

Dr. Lynn Lim

Reader in Business and Marketing Roehampton University, London BCom, PGDip, MBA (Distinction), PhD, FHEA

Dr. Mihaly Mezei

ASSOCIATE PROFESSOR
Department of Structural and Chemical
Biology, Mount Sinai School of Medical Center
Ph.D., Etvs Lornd University
Postdoctoral Training, New York University

Dr. Söhnke M. Bartram

Department of Accounting and
FinanceLancaster University Management
SchoolPh.D. (WHU Koblenz)
MBA/BBA (University of Saarbrücken)

Dr. Miguel Angel Ariño

Professor of Decision Sciences
IESE Business School
Barcelona, Spain (Universidad de Navarra)
CEIBS (China Europe International Business School).
Beijing, Shanghai and Shenzhen
Ph.D. in Mathematics
University of Barcelona
BA in Mathematics (Licenciatura)
University of Barcelona

Philip G. Moscoso

Technology and Operations Management IESE Business School, University of Navarra
Ph.D in Industrial Engineering and
Management, ETH Zurich
M.Sc. in Chemical Engineering, ETH Zurich

Dr. Sanjay Dixit, M.D.
Director, EP Laboratories, Philadelphia VA
Medical Center
Cardiovascular Medicine - Cardiac
Arrhythmia
Univ of Penn School of Medicine

Dr. Han-Xiang Deng

MD., Ph.D

Associate Professor and Research
Department Division of Neuromuscular

Medicine

Davee Department of Neurology and Clinical
NeuroscienceNorthwestern University
Feinberg School of Medicine

Dr. Pina C. Sanelli
Associate Professor of Public Health
Weill Cornell Medical College
Associate Attending Radiologist
NewYork-Presbyterian Hospital
MRI, MRA, CT, and CTA
Neuroradiology and Diagnostic Radiology
M.D., State University of New York at

Buffalo,School of Medicine and Biomedical Sciences

Dr. Roberto Sanchez

Associate Professor
Department of Structural and Chemical
Biology
Mount Sinai School of Medicine
Ph.D., The Rockefeller University

Dr. Wen-Yih Sun

Professor of Earth and Atmospheric
SciencesPurdue University Director
National Center for Typhoon and
Flooding Research, Taiwan
University Chair Professor
Department of Atmospheric Sciences, National Central University, Chung-Li, TaiwanUniversity Chair Professor Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan.Ph.D., MS The University of Chicago, Geophysical Sciences
BS National Taiwan University, Atmospheric Sciences
Associate Professor of Radiology

Dr. Michael R. Rudnick
M.D., FACP

Associate Professor of Medicine
Chief, Renal Electrolyte and
Hypertension Division (PMC)
Penn Medicine, University of
Pennsylvania
Presbyterian Medical Center, Philadelphia
Nephrology and Internal Medicine Certified by the American Board of Internal Medicine

Dr. Bassey Benjamin Esu

B.Sc. Marketing; MBA Marketing; Ph.D Marketing
Lecturer, Department of Marketing, University of Calabar Tourism Consultant, Cross River State Tourism Development Department Co-ordinator, Sustainable Tourism Initiative, Calabar, Nigeria

Dr. Aziz M. Barbar, Ph.D.

IEEE Senior Member
Chairperson, Department of Computer Science
AUST - American University of Science \& Technology
Alfred Naccash Avenue - Ashrafieh

President Editor (HON.)

Dr. George Perry, (Neuroscientist)

Dean and Professor, College of Sciences
Denham Harman Research Award (American Aging Association)
ISI Highly Cited Researcher, Iberoamerican Molecular Biology Organization
AAAS Fellow, Correspondent Member of Spanish Royal Academy of Sciences
University of Texas at San Antonio
Postdoctoral Fellow (Department of Cell Biology)
Baylor College of Medicine
Houston, Texas, United States

Chief Author (HON.)

Dr. R.K. Dixit
M.Sc., Ph.D., FICCT

Chief Author, India
Email: authorind@computerresearch.org

DEAN \& EDITOR-IN-Chief (HON.)

Vivek Dubey(HON.)

MS (Industrial Engineering),
MS (Mechanical Engineering)
University of Wisconsin, FICCT
Editor-in-Chief, USA
editorusa@computerresearch.org

Sangita Dixit

M.Sc., FICCT

Dean \& Chancellor (Asia Pacific)
deanind@computerresearch.org

Suyash Dixit

(B.E., Computer Science Engineering), FICCTT President, Web Administration and Development, CEO at IOSRD
COO at GAOR \& OSS

Er. Suyog Dixit

(M. Tech), BE (HONS. in CSE), FICCT

SAP Certified Consultant
CEO at IOSRD, GAOR \& OSS
Technical Dean, Global Journals Inc. (US)
Website: www.suyogdixit.com
Email:suyog@suyogdixit.com

Pritesh Rajvaidya

(MS) Computer Science Department
California State University
BE (Computer Science), FICCT
Technical Dean, USA
Email: pritesh@computerresearch.org
Luis Galárraga
J!Research Project Leader
Saarbrücken, Germany

Contents of the Volume

i. Copyright Notice
ii. Editorial Board Members
iii. Chief Author and Dean
iv. Table of Contents
v. From the Chief Editor's Desk
vi. Research and Review Papers

1. A Common Fixed Point for Eight Mappings in an Intuitionistic M- Fuzzy Metric Space with Property 'E'. 1-11
2. Dual to Ratio Estimators of Population Mean in Post-Stratified Sampling using Known Value of Some Population Parameters. 13-23
3. Development of a Summation Formula in Connection with Hypergeometric and Gamma Function. 25-53
4. Some New Properties of Generalized Polynomials and \bar{H}-Function Associated with Feynman Integrals. 55-63
5. (1, 2) - Domination in Some Harmonius Graphs. 65-74
6. Pathway Fractional Integral Operator Concerning to Polynomials. 75-80
7. The Integration of Certain Products of Special Functions. 81-87
8. On Certain Indefinite Elliptic Integrals. 89-93
vii. Auxiliary Memberships
viii. Process of Submission of Research Paper
ix. Preferred Author Guidelines
x. Index

Global Journal of Science Frontier Research MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 2 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

A Common Fixed Point for Eight Mappings in an Intuitionistic M- Fuzzy Metric Space with Property 'E’

By Ranjeeta Jain \& N. Bajaj
Infinity Management and Engineering college

Abstract - The aim of this paper is to introduce the concept of an intuitionistic M - fuzzy metric space with property ' E ' and prove common fixed point theorem for eight weakly compatible mappings in intuitionistic M - fuzzy metric space with property ' E '.

Keywords : intuitionistic M-fuzzy metric space, compatible mapping, weak compatible mapping, property (E).

GJSFR-F Classification : MSC 2010 : 13P25, 30F45

Strictly as per the compliance and regulations of :

© 2013. T. K. Ranjeeta Jain \& N. Bajaj. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

A Common Fixed Point for Eight Mappings in an Intuitionistic M-Fuzzy Metric Space with Property 'E'

Ranjeeta Jain ${ }^{\alpha}$ \& N. Bajaj ${ }^{\sigma}$

Abstract - The aim of this paper is to introduce the concept of an intuitionistic M - fuzzy metric space with property ' E ' and prove common fixed point theorem for eight weakly compatible mappings in intuitionistic M -fuzzy metric space with property ' E '.
Keywords : intuitionistic M-fuzzy metric space, compatible mapping, weak compatible mapping, property (E).

I. Introduction

In 1975, Kramosil and Michalek [5] introduced the concept of fuzzy metric space by generalizing the concept of probabilitic metric space to fuzzy situation. Many authors ([1],[2], [3],[5]) obtained common fixed point theorems involving fuzzy metric spaces.

In 2006, Sedghi and Shobe [6] introduced the concept of M - Fuzzy metric space as follows:
DEFINITION (1) : A 3-tuple (X,M,*) is called a M - Fuzzy metric space if X is an arbitrary (non-empty) set, * is a continuous t- norm, and M is a Fuzzy set on $X^{3} x(0, \infty)$, satisfying the following condition : for each $x, y, z, a \in X$ and $t, s>0$,
(1). $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})>\mathrm{o},(2) . \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=1$ if and only if $\mathrm{x}=\mathrm{y}=\mathrm{z}$,
(3). $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=\mathrm{M}(\mathrm{p}\{\mathrm{x}, \mathrm{y}, \mathrm{z}\} \mathrm{t}$, where p is a permutation function,
(4). $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{a} \mathrm{t}) * \mathrm{M}(\mathrm{a}, \mathrm{z}, \mathrm{z}, \mathrm{s}) \leq \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}+\mathrm{s})$.
(5). $\quad \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}):(0, \infty) \rightarrow[0,1]$ is continuous.

As a generalization of fuzzy sets, Atanassov [4] introduce and studied the concept of intuitionistic fuzzy sets. park [3] and Alaca, Turkoglu and Yiliz [2] using the idea of intuitionistic fuzzy sets, defined the notion of intuitionistic fuzzy metric spaces with the help of continuous t-norm and continuous t-conorm as a generalization of fuzzy metric spaces due to George and Veeramani [1] and kramosil and Michalek [5] respectively.

In 2006, Sedghi and Shobe [6] defined M-Fuzzy metric space and proved a common fixed point theorem for four weakly compatible mappings in this space. In 2009, Seema Mehra and Meenakshi Gugnani [8] defined the notion of an intuitionistic M-Fuzzy metric space due to Sidgi and Shobe [6] and

[^0]Author a : Infinity Management and Engineering college Pathariya jat Road Sagar (M.P.)470003.
proved a common fixed point theorem for six mappings for property (E) in this newly defined space. Our result is an intuitionistic Fuzzy version of the results of Seema Mehra and Meenakshi Gugnani [8] result in M- Fuzzy metric space.

We introduce the concept of an intuitionistic M - Fuzzy metric space as follows.
DEFINITION (2): A binary operation $*:[0,1] \times[0,1]$ is a continuous t - norm of it satisfies the following condition
(1) $*$ is associative and commutative,
(2) $*$ is continuous
(3) $\mathrm{a} * \mathrm{l}=\mathrm{a}$ for all $\mathrm{a} \in[0,1]$
(4) $\mathrm{a} * \mathrm{l}=\mathrm{c} * \mathrm{~d}$ whenever $\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{d}$, for each $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in[\mathrm{o}, 1]$.

Two typical example of a continuous t - norm are $a * b=a b$ and $a * b=\min (a, b)$
DEFINITION (3): A binary operation $\rangle:[0,1] \times[0,1] \rightarrow[0,1]$ is a continuous t-connorm if it satisfies the following conditions:
(1). \diamond is associative and commutative,
(2). \diamond is continuous,
(3). $\mathrm{a} \diamond \mathrm{o}=\mathrm{a}$ for all $\mathrm{a} \in[0, \mathrm{I}]$,
(4). $\mathrm{a} \diamond \mathrm{b} \leq \mathrm{c} \diamond \mathrm{d}$ whenever $\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{d}$, for each $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in[0,1]$.

Two typical examples of a continuous $t-$ conorm are $\mathrm{a} \diamond \mathrm{b}=\min (1, \mathrm{a},+\mathrm{b})$ and $\mathrm{a} \diamond \mathrm{b}=\max (\mathrm{a}, \mathrm{b})$.
DETINITION (4): A 5-tuple ($\mathrm{X}, \mathrm{M}, \mathrm{N} *, \diamond$) is called an intuitionistic M -fuzzy metric apace if X is an arbitrary (non-empty) set, * is a continuous t-norm,\diamond a continuous t-conorm and M, N are fuzzy sets on $X^{3}(0, \infty)$, satisfying the following conditions : for each $x, y, z, a \in X$ and $t, s>0$,
(a) $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})+\mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}) \leq 1$.
(b) $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})>0$,
(c) $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=$,1 if and only if $\mathrm{x}=\mathrm{y}=\mathrm{z}$,
(d) $M(x, y, z, t)=,M(p\{x, y, z\} t$,$) , where p$ is a permutation function,
(e) $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{t},)^{*} \mathrm{M}(\mathrm{a}, \mathrm{z}, \mathrm{z}, \mathrm{s},) \leq \mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}+\mathrm{s})$,
(f) $M(x, y, z):,(0, \infty) \rightarrow[0,1]$ is continuous
(g) $\mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})>$,0 ,
(h) $N(x, y, z, t)=$,0 , if and only if $x=y=z$,
(i) $\mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=,\mathrm{N}(\mathrm{p}\{\mathrm{x}, \mathrm{y}, \mathrm{z}\} \mathrm{t}$,$) , where \mathrm{p}$ is a permutation function,
(j) $\mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{t},) \diamond \mathrm{N}(\mathrm{a}, \mathrm{z}, \mathrm{z}, \mathrm{s}) \geq \mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}+\mathrm{s})$,
(k) $\mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{z},):.(0, \infty) \rightarrow[0,1]$ is continuous.

Then (M, N) is called an intuitionistic M - Fuzzy metric on X.

$$
\begin{array}{r}
\text { Example(1): Let } X=R \text { and } M(x, y, z, t,)=\frac{t}{t+|x-y|+|y+z|+|z-x|}, \\
N(x, y, z, t,)=\frac{|x-y|+|y-z|+|z-x|}{t+|x-y|+|y-z|+|z-x|}
\end{array}
$$

for every $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and $\mathrm{t}>0$ Let A and B defined as $\mathrm{Ax}=2 \mathrm{x}+1, \mathrm{Bx}=\mathrm{x}+2$. consider the sequence $\mathrm{x}_{\mathrm{n}}=\frac{1}{\mathrm{n}}+1$,
$\mathrm{n}=1,2 \ldots \ldots$. Thus we have $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{M}\left(\mathrm{Ax}_{\mathrm{n}}, 3,3, \mathrm{t}\right)=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{M}\left(\mathrm{Bx}_{\mathrm{n}}, 3,3, \mathrm{t}\right)=1$ and $\lim _{n \rightarrow \infty} N\left(A x_{n}, 3,3, t\right)=\lim _{n \rightarrow \infty} N\left(B x_{n}, 3,3, t\right)=0$, for every $t>0$.Then A and B Satisfying in the property (E). In 2009, Seema Mehra and Meenakshi Gugnani [8] have proved the following theorem. THEOREM (A) : Let P, Q, A, B, S and T be self mappings of X Satisfying the following conditions :
(i) $\mathrm{P}(\mathrm{X}) \subset \mathrm{ST}(\mathrm{X})$ and $\mathrm{Q}(\mathrm{X}) \subset \mathrm{AB}(\mathrm{X})$ and $\mathrm{ST}(\mathrm{X})$ or $\mathrm{AB}(\mathrm{X})$ or $\mathrm{AB}(\mathrm{X})$ is complete fuzzy metric subspace of X , (ii) $\mathrm{AB}=\mathrm{BA}, \mathrm{ST}=\mathrm{TS}, \mathrm{PB}=\mathrm{BP}, \mathrm{TQ}=\mathrm{QT}$,
(iii) The pair $(\mathrm{P}, \mathrm{AB})$ and $(\mathrm{Q}, \mathrm{ST})$ are weakly compatible and $(\mathrm{P}, \mathrm{AB})$ or $(\mathrm{Q}, \mathrm{ST})$ Satisfies the property (E),
(iv) If there exists a number $\mathrm{K}>1$ Such that

$\mathrm{M}(\mathrm{Px}, \mathrm{Qy}, \mathrm{Qz}, \mathrm{t}) \geq$	$\phi\{(\mathrm{M}(\mathrm{ABx}, \mathrm{STy}, \mathrm{STz}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABx}, \mathrm{Qy}, \mathrm{STz}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABx}, \mathrm{STy}, \mathrm{Qz}, \mathrm{Kt})$, M(ABx, Qy, Qy, Kt) M(STy, Qy, Qz, Kt), M(STy, STy Qz, Kt), M(STy, Qy, Qy, Kt), M(STy, Qz, Qz, Kt), M(Qy, STy, STz, Kt), M(Qy, Qy, STz, Kt), $\mathrm{M}(\mathrm{Qy}, \mathrm{STz}, \mathrm{STz}, \mathrm{Kt}), \mathrm{M}(\mathrm{STz} \mathrm{Qz}, \mathrm{Qz}, \mathrm{Kt})$ \} and
$\mathrm{N}(\mathrm{Px}, \mathrm{Qy}, \mathrm{Qz}, \mathrm{t}) \leq$	$\phi^{\prime}\{\mathrm{N}(\mathrm{ABx}, \mathrm{STy}, \mathrm{STz}, \mathrm{Kt}), \mathrm{N}(\mathrm{ABx}, \mathrm{Qy}, \mathrm{STz}, \mathrm{Kt}), \mathrm{N}(\mathrm{ABx}, \mathrm{STy}, \mathrm{Qz}, \mathrm{Kt}), \mathrm{N}(\mathrm{ABx}$, Qy, Qy, Kt), N(STy, Qy, Qz, Kt), N(STy, STy Qz, Kt), N(STy, Qy, Qy, Kt), N(STy, Qz, Qz, Kt) N(Qy, STy, STz, Kt), N(Qy, Qy, STz, Kt), N(Qy, STz, $\mathrm{STz}, \mathrm{Kt}), \mathrm{N}(\mathrm{STz} \mathrm{Qz}, \mathrm{Qz}, \mathrm{Kt})$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ and $\mathrm{t}>0$,

Then $\mathrm{P}, \mathrm{Q}, \mathrm{A}, \mathrm{B}, \mathrm{S}$ and T have unique common fixed point in X .
Where A class of implict relation: Let ψ denote a family of mappings and $\phi, \phi^{\prime} \in \psi, \phi, \phi^{\prime}:[0$, $1]^{12} \rightarrow[0,1]$, and ϕ, ϕ ' are continuous, increasing and decreasing respectively, in each co-ordinate variable. Also $\phi(\mathrm{s}, \mathrm{s}, \ldots \mathrm{s})>\mathrm{s}, \phi^{\prime}(\mathrm{s}, \mathrm{s}, \ldots ., \mathrm{s})<\mathrm{s}$ for every $\mathrm{s} \in[0,1]$,
Example(3): Let $\phi, \phi^{\prime}:[0,1]^{12} \rightarrow[0,1]$ be define by $\phi\left(x_{1}, x_{2}{ }^{-} \ldots \ldots \mathrm{x}_{12}\right)=\left(\min \left\{\mathrm{x}_{\mathrm{i}}\right\}^{\mathrm{h}}\right.$ for some $0<\mathrm{h}<1$ and $\phi^{\prime}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots ., \mathrm{x}_{12}\right)=\left(\max \left\{\mathrm{x}_{\mathrm{i}}\right\}\right)^{\mathrm{h}}$ for some $\mathrm{h}>1$. Then $\phi, \phi^{\prime} \in \psi$.
Here we generalized and extend the results of theorem (A) for eight mappings with property (E) in this newly defined space.

iI. Main Result

Theorem 1 : Let P, Q, A, B, F, L, S and T be self mappings of X satisfying the following condition:
(1.2.1) $\quad \mathrm{P}(\mathrm{X}) \subseteq \mathrm{ST}(\mathrm{X}) \cup \mathrm{F}(\mathrm{X})$ and $\mathrm{Q}(\mathrm{X}) \subseteq \mathrm{AB}(\mathrm{X}) \cup \mathrm{L}(\mathrm{X})$ and $\mathrm{ST}(\mathrm{X})$ or $\mathrm{AB}(\mathrm{X})$ and $\mathrm{L}(\mathrm{X})$ are complete fuzzy metric subspace of X .
(1.2.2) $\mathrm{AB}=\mathrm{BA}, \mathrm{ST}=\mathrm{TS}, \mathrm{BP}=\mathrm{PB}, \mathrm{QT}=\mathrm{TQ}, \mathrm{FT}=\mathrm{TF}, \mathrm{LB}=\mathrm{BL}$,
(1.2.3) The pair (P, AB), (P, L) and (Q, ST), (Q, F) are weak compatible and (P, AB) or (Q, ST) and (Q, F) satisfies the property (E)
(1.2.4) If there exists a number $\mathrm{k}>1$ such that

M(Px, Qy, Qz, t) \geq ф $\mathrm{M}(\mathrm{ABx}, \mathrm{STy}, \mathrm{Lx}, \mathrm{kt}), \mathrm{M}(\mathrm{Lx}, \mathrm{STy}, \mathrm{STz}, \mathrm{kt}), \mathrm{M}(\mathrm{ABx}, \mathrm{STy}, \mathrm{Fz}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABx}, \mathrm{Qy}, \mathrm{Fz}, \mathrm{Kt})$,
 M(ABx ,Fy, Qz, Kt), M(STz, Qz, Fz, Kt), M(Fy, Qy, Qz, Kt), M(Lx, Qy, Fz, Kt),
 M(Qy, STy, Fz, Kt), M(ABx, STy, STz, Kt), M(ABx, Qy, STz, Kt), M(ABx, STy, Qz, Kt) \}

and
$N(P x, Q y, Q z, t) \leq \phi^{\prime}\{N(A B x, S T y, L x, K t), N(L x, S T y, S T z, K t), N(A B x, S T y, F z, K t), N(A B x, Q y, F z, K t), N(A B x$,
for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ and $\mathrm{t}>0$
Then $\mathrm{P}, \mathrm{Q}, \mathrm{A}, \mathrm{B}, \mathrm{F}, \mathrm{L}, \mathrm{S}$ and T have a unique common fixed point in X
Proof: Suppose that pair (Q, ST) and (Q, F) Satisfies the property (E). Hence there exists a sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$. Such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} M\left(Q x_{n}, u, u, t\right)=\lim _{n \rightarrow \infty} M\left(S T x_{n}, u, u, t\right)=1 \\
& \lim _{n \rightarrow \infty} N\left(Q x_{n}, u, u, t\right)=\lim _{n \rightarrow \infty} N\left(S T x_{n}, u, u, t\right)=0 \text { and } \\
& \lim _{n \rightarrow \infty} M\left(Q x_{n}, u, u, t\right)=\lim _{n \rightarrow \infty} M\left(F x_{n}, u, u, t\right)=1 \\
& \lim _{n \rightarrow \infty} N\left(Q x_{n}, u, u, t\right)=\lim _{n \rightarrow \infty} N\left(F x_{n}, u, u, t\right)=0, \text { for some } u \in X \text { and every } t>0 . A s Q(X) \subset
\end{aligned}
$$

$$
A B(X) \cup L(X) \text {, there exists a sequence }\left\{y_{n}\right\} \text { such that } Q x_{n}=A B y_{n}=L y_{n}=u \text {. }
$$

Hence,
$\lim _{n \rightarrow \infty} M\left(A B y_{n}, u, u, t\right)=1$ and $\lim _{n \rightarrow \infty} N\left(A B y_{n}, u, u, t\right)=0$ and
$\lim _{n \rightarrow \infty} M\left(L y_{n}, u, u, t\right)=1$ and $\lim _{n \rightarrow \infty} N\left(L y_{n}, u, u, t\right)=0$
We prove that

$$
\lim _{n \rightarrow \infty} M\left(\mathrm{Py}_{n}, u, u, t\right)=1, \lim _{n \rightarrow \infty} N\left(P y_{n}, u, u, t\right)=0
$$

Step 1: Putting $x=y_{n}, y=x_{n}, z=x_{n+1}$ in (1.2.4), we obtain
$M\left(P y_{n}, Q x_{n}, Q x_{n+1}, t\right) \geq \phi\left\{M\left(A B y_{n}, S T x_{n}, L y_{n}, K t\right), M\left(y_{n}, S T x_{n}, S T x_{n+1}, K t\right), M\left(A B y_{n}, S T x_{n}\right.\right.$,

$$
\begin{aligned}
& \left.\mathrm{Fx}_{\mathrm{n}+1}, \mathrm{Kt}\right), \mathrm{M}\left(\mathrm{ABy}_{\mathrm{n}}, \mathrm{Qx}_{\mathrm{n}}, \mathrm{Fx}_{\mathrm{n}+1}, \mathrm{Kt}\right), \mathrm{M}\left(\mathrm{ABy}_{\mathrm{n}}, \mathrm{Fx}_{\mathrm{n}}, \mathrm{Qx} \mathrm{x}_{\mathrm{n}+1}, \mathrm{Kt}\right) \text {, } \\
& M\left(S T x_{n+1}, Q x_{n+1}, F x_{n+1}, K t\right), M\left(F x_{n}, Q x_{n}, Q x_{n+1}, K t\right), M\left(L y_{n}, Q x_{n}\right. \text {, } \\
& \left.\mathrm{Fx}_{\mathrm{n}+1}, \mathrm{Kt}\right), \mathrm{M}\left(\mathrm{Qx}_{\mathrm{n}}, \mathrm{STx}_{\mathrm{n}}, \mathrm{Fx}_{\mathrm{n}}, \mathrm{Kt}\right), \mathrm{M}\left(\mathrm{ABy}_{\mathrm{n}}, \mathrm{STx}_{\mathrm{n}}, \mathrm{STx}_{\mathrm{n}+1}, \mathrm{Kt}\right) \text {, } \\
& \left.\mathrm{M}\left(\mathrm{ABy}_{\mathrm{n}}, \mathrm{Qx}_{\mathrm{n}}, \mathrm{STx}_{\mathrm{n}+1}, \mathrm{Kt}\right), \mathrm{M}\left(\mathrm{ABy}_{\mathrm{n}}, \mathrm{STx}_{\mathrm{n}}, \mathrm{Qx} \mathrm{x}_{\mathrm{n}+1}, \mathrm{Kt}\right),\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& N\left(P y_{n}, Q x_{n}, Q x_{n+1}, t\right) \leq \phi^{\prime}\left\{N\left(A B y_{n}, S T x_{n}, L y_{n}, K t\right), N\left(\operatorname{Ly}_{n}, S T x_{n}, S T x_{n+1}, K t\right), N\left(A B y_{n}, S T x_{n},\right.\right. \\
& \left.F x_{n+1}, K t\right), N\left(A B y_{n}, Q x_{n}, F x_{n+1}, K t\right), N\left(A B y_{n}, F x_{n}, Q x_{n+1}, K t\right) \text {, } \\
& \mathrm{N}\left(\mathrm{STx}_{\mathrm{n}+1}, \mathrm{Qx}_{\mathrm{n}+1}, \mathrm{Fx}_{\mathrm{n}+1}, \mathrm{Kt}\right), \mathrm{N}\left(\mathrm{Fx}_{\mathrm{n}}, \mathrm{Qx} \mathrm{x}_{\mathrm{n}}, \mathrm{Qx} \mathrm{x}_{\mathrm{n} 1}, \mathrm{Kt}\right), \mathrm{N}\left(\mathrm{Ly}_{\mathrm{n}}, \mathrm{Qx} \mathrm{x}_{\mathrm{n}}, \mathrm{Fx}_{\mathrm{n}+1}\right. \text {, } \\
& K t), N\left(Q x_{n}, S T x_{n}, F x_{n}, K t\right), N\left(A B y_{n}, S T x_{n}, S T x_{n+1}, K t\right), N\left(A B y_{n},\right. \\
& \text { Qx } \left.\left.x_{n}, \text { STx }_{n+1}, K t\right), N\left(A B y_{n}, \text { STx }_{n}, \mathrm{Qx}_{n+1}, K t\right)\right\}
\end{aligned}
$$

Letting $\mathrm{n} \rightarrow \infty$ in the above inequality we get

$$
\begin{gathered}
\lim _{n \rightarrow \infty} M\left(P y_{n}, Q x_{n}, Q x_{n+1}, t\right) \geq \phi\{M(u, u, u, K t), M(u, u, u, K t), M(u, u, u, K t), \ldots, \\
M(u, u, u, K t)\}=1,
\end{gathered}
$$

$\lim _{n \rightarrow \infty} N\left(P y_{n}, Q x_{n}, Q x_{n+1}, t\right) \leq \phi^{\prime}\{N(u, u, u, K t), N(u, u, u, K t), N(u, u, u, K t), \ldots \ldots$,

$$
\mathrm{N}(\mathrm{u}, \mathrm{u}, \mathrm{u}, \mathrm{Kt})\}=0 .
$$

Therefore,

$$
\lim _{n \rightarrow \infty} M\left(P y_{n}, u, u, t\right)=1, \lim _{n \rightarrow \infty} N\left(P y_{n}, u, u, t\right)=0
$$

Hence,

$$
\lim _{n \rightarrow \infty} \mathrm{Py}_{n}=\lim _{n \rightarrow \infty} \mathrm{ABy}_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} L y_{n}=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{Qx}_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{STx}_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{Fx}_{n}=u
$$

Assume that $\mathrm{AB}(\mathrm{X})$ and $\mathrm{L}(\mathrm{X})$ are complete intutionstic M-Fuzzy metric space, then there exists x $\in X$ s.t $\quad A B x=u$ and $L x=u$.

Step 2: If $P x \neq u$, putting $y=x_{n}$, and $z=x_{n+1}$ in (1.2.4) then we have

$$
\begin{aligned}
& \mathrm{M}\left(\mathrm{Px}, \mathrm{Qx}_{\mathrm{n}}, \mathrm{Qx} \mathrm{x}_{\mathrm{n}+1}, \mathrm{t}\right) \geq \phi\left\{\mathrm{M}\left(\mathrm{ABx}, \mathrm{STx}_{\mathrm{n}}, \mathrm{Lx}, \mathrm{Kt}\right), \mathrm{M}\left(\mathrm{Lx}, \mathrm{STx}_{\mathrm{n}}, \mathrm{STx}_{\mathrm{n}+1}, \mathrm{Kt}\right), \mathrm{M}\left(\mathrm{ABx}, \mathrm{STx}_{\mathrm{n}}, \mathrm{Fx}_{\mathrm{n}+1}, \mathrm{Kt}\right)\right. \text {, } \\
& M\left(A B x, Q x_{n}, F x_{n+1}, K t\right), M\left(A B x, F x_{n}, \mathrm{Qx}_{n+1}, K t\right), M\left(\mathrm{STx}_{n+1}, \mathrm{Qx}_{\mathrm{n}+1}, \mathrm{Fx}_{\mathrm{n}+1}, \mathrm{Kt}\right) \text {, } \\
& \mathrm{M}\left(\mathrm{Fx}_{\mathrm{n}}, \mathrm{Qx}_{\mathrm{n}}, \mathrm{Qx} \mathrm{x}_{\mathrm{n}+1}, \mathrm{Kt}\right), \mathrm{M}\left(\mathrm{Lx}, \mathrm{Qx}_{\mathrm{n}}, \mathrm{Fx}_{\mathrm{n}+1}, \mathrm{Kt}\right), \mathrm{M}\left(\mathrm{Qx} \mathrm{x}_{\mathrm{n}}, \mathrm{ST}_{\mathrm{n}}, \mathrm{Fx}_{\mathrm{n}+1}, \mathrm{Kt}\right) \text {, } \\
& \left.\mathrm{M}\left(\mathrm{ABx}, \mathrm{STx}_{\mathrm{n}}, \mathrm{STx}_{\mathrm{n}+1}, \mathrm{Kt}\right), \mathrm{M}\left(\mathrm{ABx}, \mathrm{Qx}_{\mathrm{n}}, \mathrm{STx}_{\mathrm{n}+1}, \mathrm{Kt}\right), \mathrm{M}\left(\mathrm{ABx}, \mathrm{STx}_{\mathrm{n}}, \mathrm{Qx}_{\mathrm{n}+1}, \mathrm{Kt}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& N\left(P x, Q x_{n+1}, t\right) \leq \phi^{\prime}\left\{N\left(A B x, S T x_{n}, L x, K t\right), N\left(L x, S T x_{n}, S T x_{n+1}, K t\right), N\left(A B x, S T x_{n}, F x_{n+1}, K t\right)\right. \text {, } \\
& \mathrm{N}\left(\mathrm{ABx}, \mathrm{Qx}_{\mathrm{n}}, \mathrm{Fx}_{\mathrm{n}+1}, \mathrm{Kt}\right), \mathrm{N}\left(\mathrm{ABx}, \mathrm{Fx}_{\mathrm{n}}, \mathrm{Qx}_{\mathrm{n}+1}, \mathrm{Kt}\right), \mathrm{N}\left(\mathrm{STx}_{\mathrm{n}+1}, \mathrm{Qx}_{\mathrm{n}+1}, \mathrm{Fx}_{\mathrm{n}+1}, \mathrm{Kt}\right) \text {, } \\
& \mathrm{N}\left(\mathrm{Fx}_{\mathrm{n}}, \mathrm{Qx}_{\mathrm{n}}, \mathrm{Qx}_{\mathrm{n}+1}, \mathrm{Kt}\right), \mathrm{N}\left(\mathrm{Lx}, \mathrm{Qx}_{\mathrm{n}}, \mathrm{Fx}_{\mathrm{n}+1}, \mathrm{Kt}\right), \mathrm{N}\left(\mathrm{Qx} \mathrm{x}_{\mathrm{n}}, \mathrm{STx}_{\mathrm{n}}, \mathrm{Fx}_{\mathrm{n}+1}, \mathrm{Kt}\right) \text {, } \\
& \left.\mathrm{N}\left(\mathrm{ABx}, \mathrm{STx}_{\mathrm{n}}, \mathrm{STx}_{\mathrm{n}+1}, \mathrm{Kt}\right), \mathrm{N}\left(\mathrm{ABx}, \mathrm{Qx}_{\mathrm{n}}, \mathrm{STx}_{\mathrm{n}+1}, \mathrm{Kt}\right), \mathrm{N}\left(\mathrm{ABx}, \mathrm{STx}_{\mathrm{n}}, \mathrm{Qx}_{\mathrm{n}+1}, \mathrm{Kt}\right)\right\}
\end{aligned}
$$

Letting $\mathrm{n} \rightarrow \infty$ we get
$\mathrm{M}(\mathrm{Px}, \mathrm{u}, \mathrm{u}, \mathrm{t})=1, \mathrm{~N}(\mathrm{Px}, \mathrm{u}, \mathrm{u}, \mathrm{t})=0$.

Hence,

$$
P \mathrm{x}=\mathrm{u}=\mathrm{ABx}=\mathrm{Lx} .
$$

If (P, AB) and (P, L) are weakly compatible, we have

$$
\begin{aligned}
& P(A B) x=(A B) P x \text {, so } \\
& P P x=P(A B) x=(A B) P x=A B(A B) x,
\end{aligned}
$$

so we have $\mathrm{Pu}=\mathrm{ABu}$ and $\mathrm{PLx}=\mathrm{LPx}, \mathrm{Pu}=\mathrm{u}$ Hence $\mathrm{Pu}=\mathrm{ABu}=\mathrm{Lu}$.
Step 3: As $p(X) \subset S T(X) \cup F(x)$,

Case I: If $\operatorname{STv} \neq \mathrm{Qv}$, Putting $\mathrm{y}=\mathrm{v}$, and $\mathrm{z}=\mathrm{v}$ in (1.2.4) then we have
$M(P x, Q v, Q v, t) \geq \phi(M(A B x, S T v, L x, K t), M(L x, S T v, S T v, K t), M(A B x, S T v, F v, K t), M(A B x, Q v, F v, K t), M(A B x, F v$, Qv, Kt), M(STv, Qv, Fv, Kt), M(Fv, Qv, Qv, Kt), M(Lx, Qv, Fv, Kt), M(Qv, STv, Fv, Kt), $\mathrm{M}(\mathrm{ABx}, \mathrm{STv}, \mathrm{STv}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABx}, \mathrm{Qv}, \mathrm{STv}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABx}, \mathrm{STv}, \mathrm{Qv}, \mathrm{Kt})\}$
and
$N(P x, Q v, Q v, t) \leq \phi^{\prime}\{N(A B x, S T v, L x, K t), N(L x, S T v, S T v, K t), N(A B x, S T v, F v, K t), N(A B x, Q v, F v, K t), N(A B x, F v, Q v, K t)$, $\mathrm{N}(\mathrm{STv}, \mathrm{Qv}, \mathrm{Fv}, \mathrm{Kt}), \mathrm{N}(\mathrm{Fv}$, Qv, Qv, Kt), N(Lxx, Qv, Fv, Kt), N(Qv, STv, Fv, Kt), N(ABx, STv, STv, $\mathrm{Kt}), \mathrm{N}(\mathrm{ABx}, \mathrm{Qv}, \mathrm{STv}, \mathrm{Kt}), \mathrm{N}(\mathrm{ABx}, \mathrm{STv}, \mathrm{Qv}, \mathrm{Kt})\}$

Case II: If $\mathrm{Qv} \neq \mathrm{u}$, then we have

$$
\begin{aligned}
& \mathrm{M}(\mathrm{Px}, \mathrm{Qv}, \mathrm{Qv}, \mathrm{t})>\mathrm{M}(\mathrm{Px}, \mathrm{Qv}, \mathrm{Qv}, \mathrm{kt}), \\
& \mathrm{N}(\mathrm{Px}, \mathrm{Qv}, \mathrm{Qv}, \mathrm{t})<\mathrm{M}(\mathrm{Px}, \mathrm{Qv}, \mathrm{Qv}, \mathrm{kt})
\end{aligned}
$$

which is a contradiction,
Thus $\mathrm{STv}=\mathrm{Qv}=\mathrm{Px}=\mathrm{Fv}=\mathrm{u}$.
Step 4: If $(\mathrm{Q}, \mathrm{ST})$ and (Q, F) is weakly compatible mappings then we get

$$
\mathrm{Q}(\mathrm{ST}) \mathrm{v}=(\mathrm{ST}) \mathrm{Qv} \text { so, } \quad(\mathrm{ST})(\mathrm{ST}) \mathrm{v}=(\mathrm{ST}) \mathrm{Qv} .=\mathrm{Q} \cdot \mathrm{Qv},
$$

so $\mathrm{STu}=\mathrm{Qu}$. and $\mathrm{QFv}=\mathrm{FQv}$
we prove $\mathrm{Pu}=\mathrm{u}$, for $\mathrm{Qu}=\mathrm{Fu}$
$M(P u, u u, t)=M(P u, Q v, Q v, t)$
$\geq \phi\{\mathrm{M}(\mathrm{ABu}, \mathrm{STv}, \mathrm{Lu}, \mathrm{Kt}), \mathrm{M}(\mathrm{Lu}, \mathrm{STv}, \mathrm{STv}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABu}, \mathrm{STv}, \mathrm{Fv}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABu}, \mathrm{Qv}, \mathrm{Fv}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABu}, \mathrm{Fv}$, Qv, Kt), M(STv, Qv, Fv, Kt), M(Fv, Qv, Qv Kt), M(Lu Qv, Fv, Kt),M(Qv, STv, Fv, Kt), $\mathrm{M}(\mathrm{ABu}, \mathrm{STv}, \mathrm{STv}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABu}, \mathrm{Qv}, \mathrm{STv}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABu}, \mathrm{STv}, \mathrm{Qv}, \mathrm{Kt})\}$
and
$N(P u, u, u t)=N(P u, Q v, Q v, t)$
$\leq \phi\{N(A B u, S T v, L u, K t), N(L u, S T v, S T v, K t), N(A B u, S T v, F v, K t), N(A B u, Q v, F v, K t), N(A B u, F v, Q v, K t)$, $\mathrm{N}(\mathrm{STv}, \mathrm{Qv}, \mathrm{Fv}, \mathrm{Kt}), \mathrm{N}(\mathrm{Fv}, \mathrm{Qv}, \mathrm{Qv} \mathrm{Kt}), \mathrm{N}(\mathrm{Lu} \mathrm{Qv}, \mathrm{Fv}, \mathrm{Kt}), \mathrm{N}(\mathrm{Qv}, \mathrm{STv}, \mathrm{Fv}, \mathrm{Kt}), \mathrm{N}(\mathrm{ABu}, \mathrm{STv}, \mathrm{STv}$, $\mathrm{Kt}), \mathrm{N}(\mathrm{ABu}, \mathrm{Qv}, \mathrm{STv}, \mathrm{Kt}), \mathrm{N}(\mathrm{ABu}, \mathrm{STv}, \mathrm{Qv}, \mathrm{Kt})\}$

Step 5: If $\mathrm{Pu} \neq \mathrm{u}$, then we have
$\mathrm{M}(\mathrm{Pu}, \mathrm{u}, \mathrm{u}, \mathrm{t})>\mathrm{M}(\mathrm{Pu}, \mathrm{u}, \mathrm{u}, \mathrm{Kt})$
$\mathrm{N}(\mathrm{Pu}, \mathrm{u}, \mathrm{u}, \mathrm{t})<\mathrm{N}(\mathrm{Pu}, \mathrm{u}, \mathrm{u}, \mathrm{Kt})$,
which is contradiction. Thus

$$
\begin{equation*}
\mathrm{Pu}=\mathrm{u}=\mathrm{ABu}=\mathrm{Lu} \tag{1}
\end{equation*}
$$

Step 6: Now we prove $\mathrm{Qu}=\mathrm{u}$. For
$\mathrm{M}(\mathrm{u}, \mathrm{Qu}, \mathrm{Qu}, \mathrm{t})=\mathrm{M}(\mathrm{Pu}, \mathrm{Qu}, \mathrm{Qu}, \mathrm{t})$
$\geq \phi\{\mathrm{M}(\mathrm{ABu}, \mathrm{STu}, \mathrm{Lu}, \mathrm{Kt}), \mathrm{M}(\mathrm{Lu}, \mathrm{STu}, \mathrm{STu}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABu}, \mathrm{STu}, \mathrm{Fu}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABu}, \mathrm{Qu}, \mathrm{Fu}, \mathrm{Kt})$, $M(A B u, F u, Q u, K t), M(S T u, Q u, F u, K t), M(F u, Q u, Q u K t), M(L u ~ Q u, F u, K t)$, $\mathrm{M}(\mathrm{Qu}, \mathrm{STu}, \mathrm{Fu}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABu}, \mathrm{STu}, \mathrm{STu}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABu}, \mathrm{Qu}, \mathrm{STu}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABu}, \mathrm{STu}, \mathrm{Qu}, \mathrm{Kt} \boldsymbol{\}}$
and
$N(u, Q u, Q u, t)=N(P u, Q u, Q u, t)$
$\leq \phi^{\prime}\{\mathrm{N}(\mathrm{ABu}, \mathrm{STu}, \mathrm{Lu}, \mathrm{Kt}), \mathrm{N}(\mathrm{Lu}, \mathrm{STu}, \mathrm{STu}, \mathrm{Kt}), \mathrm{N}(\mathrm{ABu}, \mathrm{STu}, F u, \mathrm{Kt}), \mathrm{N}(\mathrm{ABu}, \mathrm{Qu}, \mathrm{Fu}, \mathrm{Kt})$,
$\mathrm{N}(\mathrm{ABu}, F u, Q u, K t), \mathrm{N}(\mathrm{STu}, \mathrm{Qu}, F u, K t), \mathrm{N}(F u, Q u, Q u K t), N(L u \quad Q u, F u, K t), N(Q u, S T u, F u, K t)$, $\mathrm{N}(\mathrm{ABu}, \mathrm{STu}, \mathrm{STu}, \mathrm{Kt}), \mathrm{N}(\mathrm{ABu}, \mathrm{Qu}, \mathrm{STu}, \mathrm{Kt}), \mathrm{N}(\mathrm{ABu}, \mathrm{STu}, \mathrm{Qu}, \mathrm{Kt})\}$

Step 7: If $\mathrm{Qu} \neq \mathrm{u}$ then we have,

$$
\begin{aligned}
& \mathrm{M}(\mathrm{u}, \mathrm{Qu}, \mathrm{Qu}, \mathrm{t})>\mathrm{M}(\mathrm{u}, \mathrm{Qu}, \mathrm{Qu}, \mathrm{Kt}) \\
& \mathrm{N}(\mathrm{u}, \mathrm{Qu}, \mathrm{Qu}, \mathrm{t})<\mathrm{N}(\mathrm{u}, \mathrm{Qu}, \mathrm{Qu}, K \mathrm{t}),
\end{aligned}
$$

which is contradiction. Thus

$$
\begin{equation*}
\mathrm{Pu}=\mathrm{Qu}=\mathrm{ABu}=\mathrm{STu}=\mathrm{Fu}=\mathrm{Lu}=\mathrm{u} . \tag{2}
\end{equation*}
$$

Step 8: Now we show that $B u=u$ by putting $x=B u, y=x_{2 n+1}$ and $z=x_{2 n}$ in (1.2.4)
If $\mathrm{Bu} \neq \mathrm{u}$ then
$M\left(P(B u), Q x_{2 n+1}, Q x_{2 n}, t\right) \geq \phi\left\{M\left(A B(B u), S T x_{2 n+1}, L(B u), K t\right), M\left(L(B u), S T x_{2 n+1}, S T x_{2 n}, K t\right), M\left(A B(B u), \operatorname{STx}_{2 n+1}, \operatorname{Fx}_{2 n}\right.\right.$, $\mathrm{Kt}), \mathrm{M}\left(\mathrm{AB}(\mathrm{Bu}), \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{Fx}_{2 \mathrm{n}}, \mathrm{Kt}\right), \mathrm{M}\left(\mathrm{AB}(\mathrm{Bu}), \mathrm{Fx}_{2 \mathrm{n}+1}, \mathrm{Qx}_{2 \mathrm{n}}, \mathrm{Kt}\right), \mathrm{M}\left(\mathrm{STx}_{2 \mathrm{n}}, \mathrm{Qx}_{2 n}, \mathrm{Fx}_{2 \mathrm{n}}, \mathrm{Kt}\right)$, $M\left(\mathrm{Fx}_{2 \mathrm{n}+1}, \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{Qx}_{2 \mathrm{n}}, \mathrm{Kt}\right), \mathrm{M}\left(\mathrm{L}(\mathrm{Bu}), \mathrm{Qx}_{2 n+1}, \mathrm{Fx}_{2 n}, \mathrm{Kt}\right), \mathrm{M}\left(\mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{STx}_{2 n+1}, \mathrm{Fx}_{2 n}, \mathrm{Kt}\right)$, $\mathrm{M}\left(\mathrm{AB}(\mathrm{Bu}), \mathrm{STx}_{2 n+1}, \mathrm{STx}_{2 n} \mathrm{Kt}\right), \mathrm{M}\left(\mathrm{AB}(\mathrm{Bu}), \mathrm{Qx}_{2 n+1}, \mathrm{STx}_{2 n} \mathrm{Kt}\right)$, $\left.\mathrm{M}\left(\mathrm{AB}(\mathrm{Bu}), \mathrm{STx}_{2 \mathrm{n}+1}, \mathrm{Qx}_{2 \mathrm{n}}, \mathrm{Kt}\right)\right\}$
and
$N\left(P(B u), \mathrm{Qx}_{2 n+1}, Q x_{2 n}, t\right) \leq \phi^{\prime}\left\{N\left(A B(B u), S T x_{2 n+1}, L(B u), K t\right), N\left(L(B u), S T x_{2 n-1}, S T x_{2 n}, K t\right), N\left(A B(B u), S T x_{2 n+1}, F x_{2 n}, K t\right)\right.$, $\mathrm{N}\left(\mathrm{AB}(\mathrm{Bu}), \mathrm{Qx}_{2 n+1}, \mathrm{Fx}_{2 \mathrm{n}}, \mathrm{Kt}\right), \mathrm{N}\left(\mathrm{AB}(\mathrm{Bu}), \mathrm{Fx}_{2 \mathrm{n}+1}, \mathrm{Qx}_{2 \mathrm{n}}, \mathrm{Kt}\right), \mathrm{N}\left(\mathrm{STx}_{2 \mathrm{n}}, \mathrm{Qx}_{2 \mathrm{n}}, \mathrm{Fx}_{2 \mathrm{n}}\right.$, $K t), N\left(\mathrm{Fx}_{2 n+1}, \mathrm{Qx}_{2 n+1}, \mathrm{Qx}_{2 n}, \mathrm{Kt}\right), \mathrm{N}\left(\mathrm{L}(\mathrm{Bu}), \mathrm{Qx}_{2 n+1}, \mathrm{Fx}_{2 n}, \mathrm{Kt}\right), \mathrm{N}\left(\mathrm{Qx}_{2 n+1} \mathrm{STx}_{2 n+1}\right.$, $\left.\mathrm{Fx}_{2 \mathrm{n}}, \mathrm{Kt}\right), \mathrm{N}\left(\mathrm{AB}(\mathrm{Bu}), \mathrm{STx}_{2 \mathrm{n}+1}, S \mathrm{ST}_{2 \mathrm{n}}, \mathrm{Kt}\right), \mathrm{N}\left(\mathrm{AB}(\mathrm{Bu}), \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{STx}_{2 \mathrm{n}}, \mathrm{Kt}\right)$, $\left.\mathrm{N}\left(\mathrm{AB}(\mathrm{Bu}), \mathrm{STx}_{2 \mathrm{n}+1}, \mathrm{Qx}_{2 \mathrm{n}}, \mathrm{Kt}\right)\right\}$
since $A B=B A, B P=P B$ and $L B=B L$,
we have

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Bu})=\mathrm{B}(\mathrm{Pu})=\mathrm{Bu}, \mathrm{AB}(\mathrm{Bu})=\mathrm{BA}(\mathrm{Bu})=\mathrm{Bu} \\
& \mathrm{~L}(\mathrm{Bu})=\mathrm{B}(\mathrm{Lu})=\mathrm{Bu}
\end{aligned}
$$

Letting $\mathrm{n} \rightarrow \infty$, we have
$\mathrm{M}(\mathrm{Bu}, \mathrm{u}, \mathrm{u}, \mathrm{t})>\mathrm{M}(\mathrm{Bu}, \mathrm{u}, \mathrm{u}, \mathrm{kt})$
$\mathrm{N}(\mathrm{Bu}, \mathrm{u}, \mathrm{u}, \mathrm{t})<\mathrm{N}(\mathrm{Bu}, \mathrm{u}, \mathrm{u}, \mathrm{kt})$,
which is contradiction.
Thus $\mathrm{Bu}=\mathrm{u}$.
Since $u=A B u$,
we have $u=A u$,
therefore,

$$
\mathrm{u}=\mathrm{Au}=\mathrm{Bu}=\mathrm{Pu}=\mathrm{Lu}
$$

Step 9: Finally we show that $T u=u$. By putting $x=u, y=T u$ and $z=u$ in (1.2.4) If $T u \neq u$, then $\mathrm{M}(\mathrm{Pu}, \mathrm{Q}(\mathrm{Tu}), \mathrm{Qu}, \mathrm{t}) \geq \phi\{\mathrm{M}(\mathrm{ABu}, \mathrm{ST}(\mathrm{Tu}), \mathrm{Lu}, \mathrm{Kt}), \mathrm{M}(\mathrm{Lu}, \mathrm{ST}(\mathrm{Tu}), \mathrm{STu}, \mathrm{Kt})$, $\mathrm{M}(\mathrm{ABu}, \mathrm{ST}(\mathrm{Tu}), \mathrm{Fu}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABu}, \mathrm{Q}(\mathrm{Tu}), \mathrm{Fu}, \mathrm{Kt})$, $\mathrm{M}(\mathrm{ABu}, \mathrm{F}(\mathrm{Tu}), \mathrm{Qu}, \mathrm{Kt}), \mathrm{M}(\mathrm{STu}, \mathrm{Qu}, \mathrm{Fu}, \mathrm{Kt}), \mathrm{M}(\mathrm{F}(\mathrm{Tu}), \mathrm{Q}(\mathrm{Tu}), \mathrm{Qu}, \mathrm{Kt})$, $\mathrm{M}(\mathrm{Lu}, \mathrm{Q}(\mathrm{Tu}), \mathrm{Fu}, \mathrm{Kt}), \mathrm{M}(\mathrm{Q}(\mathrm{Tu}), \mathrm{ST}(\mathrm{Tu}), \mathrm{Fu}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABu}, \mathrm{ST}(\mathrm{Tu}), \mathrm{STu}, \mathrm{Kt})$, $\mathrm{M}(\mathrm{ABu}, \mathrm{Q}(\mathrm{Tu}), \mathrm{STu}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABu}, \mathrm{ST}(\mathrm{Tu}), \mathrm{Qu}, \mathrm{Kt})\}$ and
$\mathrm{N}(\mathrm{Pu}, \mathrm{Q}(\mathrm{Tu}), \mathrm{Qu}, \mathrm{t}) \leq \phi^{\prime}\{\mathrm{N}(\mathrm{ABu}, \mathrm{ST}(\mathrm{Tu}), \mathrm{Lu}, \mathrm{Kt}), \mathrm{N}(\mathrm{Lu}, \mathrm{ST}(\mathrm{Tu}), \mathrm{STu}, \mathrm{Kt}), \mathrm{N}(\mathrm{ABu}, \mathrm{ST}(\mathrm{Tu}), F u, K \mathrm{t})$, $\mathrm{N}(\mathrm{ABu}, \mathrm{Q}(\mathrm{Tu}), \mathrm{Fu}, \mathrm{Kt}), \mathrm{N}(\mathrm{ABu}, \mathrm{F}(\mathrm{Tu}), \mathrm{Qu}, \mathrm{Kt}), \mathrm{N}(\mathrm{STu}, \mathrm{Qu}, F u, \mathrm{Kt})$, $\mathrm{N}(\mathrm{F}(\mathrm{Tu}), \mathrm{Q}(\mathrm{Tu}), \mathrm{Qu}, \mathrm{Kt}), \mathrm{N}(\mathrm{Lu}, \mathrm{Q}(\mathrm{Tu}), \mathrm{Fu}, \mathrm{Kt}), \mathrm{N}(\mathrm{Q}(\mathrm{Tu}), \mathrm{ST}(\mathrm{Tu})$ $F u, K t), N(A B u, S T(T u), S T u, K t), N(A B u, Q(T u), S T u, K t), N(A B u$, $\mathrm{ST}(\mathrm{Tu}), \mathrm{Qu}, \mathrm{Kt}) \boldsymbol{\}}$

Since $\mathrm{ST}=\mathrm{TS}, \mathrm{TQ}=\mathrm{QT}$ and $\mathrm{FT}=\mathrm{TF}$,

We have,

$$
\begin{aligned}
& \mathrm{ST}(\mathrm{Tu})=\mathrm{T}(\mathrm{STu})=\mathrm{Tu} \\
& \mathrm{QTu}=\mathrm{TQu}=\mathrm{Tu} \text { and } \\
& \mathrm{FTu}=\mathrm{TFu}=\mathrm{Tu} . \mathrm{Then} \\
& \mathrm{M}(\mathrm{u}, \mathrm{Tu}, \mathrm{u}, \mathrm{t})>\mathrm{M}(\mathrm{u}, \mathrm{Tu}, \mathrm{u}, \mathrm{Kt}) \\
& \mathrm{N}(\mathrm{u}, \mathrm{Tu}, \mathrm{u}, \mathrm{t})<\mathrm{N}(\mathrm{u}, \mathrm{Tu}, \mathrm{u}, \mathrm{Kt})
\end{aligned}
$$

which is a contradiction,
thus $\quad \mathrm{Tu}=\mathrm{u}$,
since $u=S T u$,
we have $u=S u=T u$.
By combining the above result (1), (2), (3) and (4) we get
$\mathrm{Au}=\mathrm{Bu}=\mathrm{Su}=\mathrm{Tu}=\mathrm{Fu}=\mathrm{Lu}=\mathrm{Pu}=\mathrm{Qu}=\mathrm{u}$. So $\mathrm{P}, \mathrm{Q}, \mathrm{A}, \mathrm{B}, \mathrm{L}, \mathrm{F}, \mathrm{S}$ and T have a common fixed point u .
Now to prove the uniqueness: suppose that $\mathrm{v} \neq \mathrm{u}$ is another common fixed point of $\mathrm{P}, \mathrm{Q}, \mathrm{A}, \mathrm{B}, \mathrm{L}, \mathrm{F}, \mathrm{S}$ and T , then
$M(v, u, u, T)=M(P v, Q u, Q u, T)$ $\geq \phi\{\mathrm{M}(\mathrm{ABv}, \mathrm{STu}, \mathrm{Lv}, \mathrm{Kt}), \mathrm{M}(\mathrm{Lv}, \mathrm{STu}, \mathrm{STu}, \mathrm{STu}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABv}, \mathrm{STu}, \mathrm{Fu}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABv}, \mathrm{Qu}, \mathrm{Fu}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABv}$, $F u, \mathrm{Qu}, \mathrm{Kt}), \mathrm{M}(\mathrm{STu}, \mathrm{Qu}, \mathrm{Fu}, \mathrm{Kt}), \mathrm{M}(\mathrm{Fu}, \mathrm{Qu}, \mathrm{Qu}, \mathrm{Kt}), \mathrm{M}(\mathrm{Lv}, \mathrm{Qu}, \mathrm{Fu}, \mathrm{Kt}), \mathrm{M}(\mathrm{Qu}, \mathrm{STu}, \mathrm{Fu}, \mathrm{Kt})$, $\mathrm{M}(\mathrm{ABv}, \mathrm{STu}, \mathrm{STu}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABv}, \mathrm{Qu}, \mathrm{STu}, \mathrm{Kt}), \mathrm{M}(\mathrm{ABv}, \mathrm{STu}, \mathrm{Qu}, \mathrm{Kt})\}$ $>\mathrm{M}(\mathrm{v}, \mathrm{u}, \mathrm{u}, \mathrm{Kt})$.

Similarly

$$
\begin{aligned}
N(v, u, u, t)= & N(P v, Q u, Q u, t) \\
\leq & \phi^{\prime}\{N(A B v, S T u, L v, K t), N(L v, S T u, S T u, S T u, K t), N(A B v, S T u, F u, K t), N(A B v, Q u, F u, K t), N(A B v, F u, \\
& Q u, K t), N(S T u, Q u, F u, K t), N(F u, Q u, Q u, K t), N(L v, Q u, F u, K t), N(Q u, S T u, F u, K t), \\
& N(A B v, S T u, S T u, K t), N(A B v, Q u, S T u, K t), N(A B v, S T u, Q u, K t)\} \\
< & N(v, u, u, K t),
\end{aligned}
$$

which is a contradiction ,
therefore $\mathrm{v}=\mathrm{u}$ is common fixed point of $\mathrm{P}, \mathrm{Q}, \mathrm{A}, \mathrm{B}, \mathrm{L}, \mathrm{F}, \mathrm{S}$ and T .
COROLLARY: Let f, g be self mappings of X satisfying the following conditions
(i) $\quad f(X) \subset g(X)$ and $g(X)$ is complete fuzzy metric subspace of X.
(ii) The pair (f, g) is weakly compatible and (f, g) satisfies the property (E).
(iii) If there exists a number $\mathrm{K}>1$ S.t.
$M(f x, f y, f z, t) \geq \phi\{M(g x, g y, f x, K t), M(f x, g y, g z, K t)), M(g x, g y, g z, K t), M(g x, f y, g z, K t)$, M(gx, gy, fz, Kt), M(gz, fz, gz, Kt), M(gy, fy, fz, Kt), M(fy, fx, gz, Kt), M(fy, $g y, g z, K t), M(g x, g y, g z, K t), M(g x, f y, g z, K t), M(g x, g y, f z, K t)\}$ and
$N(f x, f y, f z, t) \leq \phi^{\prime}\{N(g x, g y, f x, K t), N(f x, g y, g z, K t)), N(g x, g y, g z, K t), N(g x, f y, g z, K t), N(g x, g y, f z$, $K t), N(g z, f z, g z, K t), N(g y, f y, f z, K t), N(f y, f x, g z, K t), N(f y, g y, g z, K t)$, $\mathrm{N}(\mathrm{gx}, \mathrm{gy}, \mathrm{gz}, \mathrm{Kt}), \mathrm{N}(\mathrm{gx}, \mathrm{fy}, \mathrm{gz}, \mathrm{Kt}), \mathrm{N}(\mathrm{gx}, \mathrm{gy}, \mathrm{fz}, \mathrm{Kt})\}$
for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ and $\mathrm{t}>0$ then f, g, have a unique common fixed point in X .
Example 3 : - Let $\mathrm{X}=[0,1]$ with the usual generalized metric D .
Define,
$\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{z}, 0)=0, \mathrm{~N}(\mathrm{x}, \mathrm{y}, \mathrm{z}, 0)=1$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$ clearly $(\mathrm{X}, \mathrm{M}, \mathrm{N}, *, \diamond)$ is a complete intuitionistic $\mathrm{M}-$ Fuzzy metric space where $*$ and \diamond are defined $\mathrm{b} \mathrm{a}^{*} \mathrm{~b}=\min (\mathrm{a}, \mathrm{b})$ and $\mathrm{a} \diamond \mathrm{b}=\max (\mathrm{a}, \mathrm{b})$. LetA, $\mathrm{B}, \mathrm{S}, \mathrm{T}, \mathrm{P}$, Q, L and F be defined as
$S x=x, \quad T x=\frac{x}{2}, \quad A x=\frac{x}{5}, \quad B x \frac{x}{3}, \quad P x=\frac{x}{6}, \quad Q x=0, \quad F x=\frac{x}{4}$ and $L x=\frac{x}{7}$ for all $x, y, z \in X$.
Then

$$
\begin{gathered}
\mathrm{P}(\mathrm{x})=\left[0, \frac{1}{6}\right] \subset\left[0, \frac{1}{2}\right] \cup\left[0, \frac{1}{4}\right]=\mathrm{ST}(\mathrm{X}) \cup \mathrm{F}(\mathrm{X}) \quad \text { and } \\
\mathrm{Q}(\mathrm{X})=\{0\} \subset\left[0, \frac{1}{15}\right] \cup\left[0, \frac{1}{7}\right]=\mathrm{ABx}(\mathrm{X}) \cup \mathrm{L}(\mathrm{X})
\end{gathered}
$$

Clearly

$\mathrm{AB}=\mathrm{BA}, \mathrm{ST}=\mathrm{TS}, \mathrm{PB}=\mathrm{BP}, \mathrm{TQ}=\mathrm{QT}, \mathrm{FT}=\mathrm{TF}, \mathrm{LB}=\mathrm{BL}$.
Moreover, the pairs $(\mathrm{P}, \mathrm{AB}),(\mathrm{Q}, \mathrm{ST}),(\mathrm{P}, \mathrm{L})$ and (Q, F) are weakly compatible at 0 and the pair $(\mathrm{Q}, \mathrm{ST})$ and
(Q, F) satisfies the property (E) if $\lim _{n \rightarrow \infty} x_{n}=0$, where $\left\{x_{n}\right\}$ is a sequence in X s.t.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} M\left(Q x_{n}, u, u, t\right)=\lim _{n \infty} M\left(S T x_{n}, u, u, t\right)=1 \\
& \lim _{n \rightarrow \infty} N\left(Q x_{n}, u, u, t\right)=\lim _{n \rightarrow \infty} N\left(\operatorname{STx}_{n}, u, u, t\right)=0 \text { and } \\
& \lim _{n \rightarrow \infty} M\left(Q x_{n}, u, u, t\right)=\lim _{n \rightarrow \infty} M\left(F x_{n}, u, u, t\right)=1, \text { and } \\
& \lim _{n \rightarrow \infty} N\left(Q x_{n}, u, u, t\right)=\lim _{n \rightarrow \infty} N\left(F x_{n}, u, u, t\right)=0
\end{aligned}
$$

For $\mathrm{u}=0 \in \mathrm{X}$ and $\mathrm{t}>0$ If we take $\mathrm{K}=2$ and $\mathrm{t}=1$, then conditions (1.2.4) of the main theorem is satisfied and 0 is the unique common fixed point of $\mathrm{P}, \mathrm{Q}, \mathrm{A}, \mathrm{S}, \mathrm{L}, \mathrm{F}, \mathrm{S}$ and T .

References Références Referencias

1. A. George and P. Veeramani: On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64(1994), 395-399.
2. C. Alaca, D. Turkoglu and C. Yiliz:Fixed points in intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 29(2006), 1073-1078.
3. J.H.Park:Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22(2004), 1039-11046.
4. K. Atanassov: Intuitionistic fuzzy Sets and Systems, 20(1986), 87-96.
5. O.Kramosil and J.Michalek:Fuzzy metric and statistical metric spaces, Ky-bernetics, 11(1975), 330-334.
6. S. Sedghi and N. Shobe:Fixed point theorem in M-fuzzy metric spaces with property (E), Advances in Fuzzy Mathematics, 1(1) (2006), 55-65.
7. Singh S.L. and Singh:S.P., A fixed point theorem, Indian J.of Pure and App. Math., 11(1980), 1584-1586.
8. Mehra S. and Gugnani M.:A common fixed point for six mappings in an intruitionisti M-fuzzy metric space. Indian Journal of Mathematics, Vol. 51 No. 1, (2009) 23-47.

This page is intentionally left blank

Global Journal of Science Frontier Research
MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 2 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Dual to Ratio Estimators of Population Mean in Post-Stratified Sampling using Known Value of Some Population Parameters

By Onyeka, A.C.

Federal University
Abstract - This paper extends the work carried out by Onyeka (2012), by proposing a class of dual to ratio combined estimators of the population mean in post-stratified sampling when using known value of some population parameters. The proposed estimators, under certain conditions, are shown to be more efficient than some existing estimators, including the usual poststratified estimator and the estimators proposed by Onyeka (2012). Properties of the proposed class of estimators, including conditions for optimal efficiency, are obtained up to first order approximation. The results are illustrated using empirical data.

Keywords : auxiliary information, general family of estimators, post-stratified sampling, mean squared errors.

GJSFR-F Classification : MSC 2010: 62D05

Strictly as per the compliance and regulations of:

© 2013. Onyeka, A.C. This is a research/review paper, distributed under the terms of the Creative Commons AttributionNoncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dual to Ratio Estimators of Population Mean in Post-Stratified Sampling using Known Value of Some Population Parameters

Onyeka, A.C.

Abstract

This paper extends the work carried out by Onyeka (2012), by proposing a class of dual to ratio combined estimators of the population mean in post-stratified sampling when using known value of some population parameters. The proposed estimators, under certain conditions, are shown to be more efficient than some existing estimators, including the usual poststratified estimator and the estimators proposed by Onyeka (2012). Properties of the proposed class of estimators, including conditions for optimal efficiency, are obtained up to first order approximation. The results are illustrated using empirical data.

Keywords : auxiliary information, general family of estimators, post-stratified sampling, mean squared errors.

I. Introduction

Many authors have considered the use of some known population parameters of an auxiliary character in formulating estimators of population parameters of a variable of interest. A lot of theoretical and empirical studies have been carried out along this line. Some known population parameters of an auxiliary character, which have been considered for the purpose of constructing estimators for some population parameters of the study variate include coefficient of variation, (CV), used by Searls (1964) and Sisodia-Dwivedi (1981); coefficient of kurtosis, used by Singh et al. (1973) and Upadhyaya-Singh (1999); coefficient of skewness, used by G.N. Singh (2003); standard deviation, used by G.N. Singh (2003); and correlation coefficient, used by Singh and Tailor (2003). A general family of estimators of $\overline{\mathrm{Y}}$ under the SRSWOR scheme was discussed by Khoshnevisan et.al. (2007), using known parameters of the auxiliary variable x , such as standard deviation, coefficient of variation, coefficient of skewness, kurtosis and correlation coefficient. Koyuncu and Kadilar (2009) also proposed a general family of combined estimators of $\overline{\mathrm{Y}}$ in stratified random sampling. Onyeka (2012), motivated by the works carried out by Khoshnevisan et.al. (2007) and Koyuncu and Kadilar (2009), developed a general family of estimators of $\overline{\mathrm{Y}}$ under the poststratified sampling scheme using known values of some population parameters of an auxiliary character. The family of estimators discussed by Onyeka (2012), was found, under some optimum conditions, to be as efficient as the post-stratified regression estimator $\bar{y}_{\text {psREG }}$, but more efficient, in terms of having a smaller mean squared error, than the usual poststratified sampling estimator, $\overline{\mathrm{y}}_{\mathrm{ps}}$, and other particular cases of the proposed estimators. The present study is aimed at utilizing some variable transformation of an auxiliary character x , to extend the work carried out by Onyeka (2012) in poststratified sampling scheme. Srivenkataramana
(1980) used the transformation, $x_{i}^{*}=\frac{N \bar{X}-n x_{i}}{N-n}, i=1,2, \cdots, N$, to obtain a dual to ratio estimate of $\overline{\mathrm{Y}}$ in simple random sampling scheme. Authors, like Singh and Tailor (2005), Tailor and Sharma (2009), and Sharma and Tailor (2010) have used the same transformation to improve estimates under the simple random sampling scheme. Motivated by these studies, we intend, in the present work, to use the same transformation to extend the work carried out by Onyeka (2012) in poststratified sampling scheme.
Let $\mathrm{y}_{\mathrm{hi}}\left(\mathrm{x}_{\mathrm{hi}}\right)$ denote the $\mathrm{i}^{\text {th }}$ observation in stratum h for the study (auxiliary) variate in poststratified sampling scheme. Let a random sample of size n be drawn from a population of N units using SRSWOR method, and let the sampled units be allocated to their respective strata, where n_{h} (a random variable) is the number of units that fall into stratum h such that $\sum_{\mathrm{h}=1}^{\mathrm{L}} \mathrm{n}_{\mathrm{h}}=\mathrm{n}$. It is assumed that n is large enough such that $\mathrm{P}\left(\mathrm{n}_{\mathrm{h}}=0\right)=0, \forall h$. Onyeka (2012) proposed the following general family of combined estimators of the population mean $\overline{\mathrm{Y}}$ in post-stratified sampling scheme:

$$
\begin{equation*}
\overline{\mathrm{y}}_{\mathrm{pss}}=\overline{\mathrm{y}}_{\mathrm{ps}}\left(\frac{\mathrm{a} \overline{\mathrm{X}}+\mathrm{b}}{\alpha\left(\mathrm{a} \overline{\mathrm{x}}_{\mathrm{ps}}+\mathrm{b}\right)+(1-\alpha)(\mathrm{a} \overline{\mathrm{X}}+\mathrm{b})}\right)^{\mathrm{g}} \tag{1.1}
\end{equation*}
$$

where,
$\bar{y}_{\mathrm{ps}}=\sum_{\mathrm{h}=1}^{\mathrm{L}} \omega_{\mathrm{h}} \overline{\mathrm{y}}_{\mathrm{h}}$ is the usual post-stratified estimator of $\overline{\mathrm{Y}}$
$\overline{\mathrm{x}}_{\mathrm{ps}}=\sum_{\mathrm{h}=1}^{\mathrm{L}} \omega_{\mathrm{h}} \overline{\mathrm{x}}_{\mathrm{h}}$ is the usual post-stratified estimator of $\overline{\mathrm{X}}$
$\overline{\mathrm{X}}=\sum_{\mathrm{h}=1}^{\mathrm{L}} \omega_{\mathrm{h}} \overline{\mathrm{X}}_{\mathrm{h}}$ is the known population mean of the auxiliary variate x .
$\mathrm{a}(\neq 0), \mathrm{b}$ are either constants or functions of known population parameters of the auxiliary variate, such as standard deviation $\left(\sigma_{x}\right)$, coefficient of variation $\left(C_{x}\right)$, skewness $\left(\beta_{1}(x)\right)$, kurtosis $\left(\beta_{2}(x)\right)$, and correlation coefficient ($\rho_{y x}$).
$\omega_{h}=N_{h} / N$ is stratum weight, L is the number of strata in the population, N_{h} is the number of units in stratum h, N is the number of units in the population, \bar{X}_{h} is the population mean of the auxiliary variate in stratum h, and $\bar{y}_{h}\left(\bar{x}_{h}\right)$ is the sample mean of the study (auxiliary) variate in stratum h.

Under the unconditional argument, that is, for repeated samples of fixed size n, the variances and covariance of the estimators, $\overline{\mathrm{y}}_{\mathrm{ps}}$ and $\overline{\mathrm{x}}_{\mathrm{ps}}$, obtained up to first order approximation are:

$$
\begin{align*}
& \mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{ps}}\right)=\left(\frac{1-\mathrm{f}}{\mathrm{n}}\right) \sum_{\mathrm{h}=1}^{\mathrm{L}} \omega_{\mathrm{h}} \mathrm{~S}_{\mathrm{yh}}^{2}, \tag{1.2}\\
& \mathrm{~V}\left(\overline{\mathrm{x}}_{\mathrm{ps}}\right)=\left(\frac{1-\mathrm{f}}{\mathrm{n}}\right) \sum_{\mathrm{h}=1}^{\mathrm{L}} \omega_{\mathrm{h}} \mathrm{~S}_{\mathrm{xh}}^{2}, \tag{1.3}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{Cov}\left(\overline{\mathrm{y}}_{\mathrm{ps}}, \overline{\mathrm{x}}_{\mathrm{ps}}\right)=\left(\frac{1-\mathrm{f}}{\mathrm{n}}\right) \sum_{\mathrm{h}=1}^{\mathrm{L}} \omega_{\mathrm{h}} \mathrm{~S}_{\mathrm{yxh}} . \tag{1.4}
\end{equation*}
$$

where $\mathrm{f}=\mathrm{n} / \mathrm{N}$ is the population sampling fraction, $\mathrm{S}_{\mathrm{yh}}^{2}\left(\mathrm{~S}_{\mathrm{xh}}^{2}\right)$ is the population variance of $y(x)$ in stratum h, and $S_{y x h}$ is the population covariance of y and x in stratum h. Let

$$
\begin{equation*}
\mathrm{e}_{0}=\frac{\overline{\mathrm{y}}_{\mathrm{ps}}-\overline{\mathrm{Y}}}{\overline{\mathrm{Y}}} \text { and } \mathrm{e}_{1}=\frac{\overline{\mathrm{x}}_{\mathrm{ps}}-\overline{\mathrm{X}}}{\overline{\mathrm{X}}} \tag{1.5}
\end{equation*}
$$

Under the unconditional argument, it follows that

$$
\begin{gather*}
\mathrm{E}\left(\mathrm{e}_{0}\right)=\mathrm{E}\left(\mathrm{e}_{1}\right)=0 \tag{1.6}\\
\mathrm{E}\left(\mathrm{e}_{0}^{2}\right)=\frac{\mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{ps}}\right)}{\overline{\mathrm{Y}}^{2}}=\frac{1}{\overline{\mathrm{Y}}^{2}}\left(\frac{1-\mathrm{f}}{\mathrm{n}}\right) \sum_{\mathrm{h}=1}^{\mathrm{L}} \omega_{\mathrm{h}} \mathrm{~S}_{\mathrm{yh}}^{2} \tag{1.7}\\
\mathrm{E}\left(\mathrm{e}_{1}^{2}\right)=\frac{\mathrm{V}\left(\overline{\mathrm{x}}_{\mathrm{ps}}\right)}{\overline{\mathrm{X}}^{2}}=\frac{1}{\overline{\mathrm{X}}^{2}}\left(\frac{1-\mathrm{f}}{\mathrm{n}}\right) \sum_{\mathrm{h}=1}^{\mathrm{L}} \omega_{\mathrm{h}} \mathrm{~S}_{\mathrm{xh}}^{2} \tag{1.8}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathrm{E}\left(\mathrm{e}_{0} \mathrm{e}_{1}\right)=\frac{\operatorname{Cov}\left(\overline{\mathrm{y}}_{\mathrm{ps}}, \overline{\mathrm{x}}_{\mathrm{ps}}\right)}{\overline{\mathrm{YX}}}=\frac{1}{\overline{\mathrm{YX}}}\left(\frac{1-\mathrm{f}}{\mathrm{n}}\right) \sum_{\mathrm{h}=1}^{\mathrm{L}} \omega_{\mathrm{h}} \mathrm{~S}_{\mathrm{yxh}} \tag{1.9}
\end{equation*}
$$

Accordingly, Onyeka (2012) obtained the unconditional bias and mean squared error of $\bar{y}_{\text {pss }}$, up to first order approximation, respectively as

$$
\begin{equation*}
\mathrm{B}\left(\overline{\mathrm{y}}_{\mathrm{pss}}\right)=\frac{\alpha \lambda \mathrm{g}}{2 \overline{\mathrm{X}}}\left(\frac{1-\mathrm{f}}{\mathrm{n}}\right) \sum_{\mathrm{h}=1}^{\mathrm{L}} \omega_{\mathrm{h}}\left(\alpha \lambda(\mathrm{~g}+1) R S_{\mathrm{xh}}^{2}-2 \mathrm{~S}_{\mathrm{yxh}}\right) \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{MSE}\left(\overline{\mathrm{y}}_{\mathrm{pss}}\right)=\left(\frac{1-\mathrm{f}}{\mathrm{n}}\right) \sum_{\mathrm{h}=1}^{\mathrm{L}} \omega_{\mathrm{h}}\left(\mathrm{~S}_{\mathrm{yh}}^{2}+\alpha^{2} \lambda^{2} \mathrm{~g}^{2} \mathrm{R}^{2} \mathrm{~S}_{\mathrm{xh}}^{2}-2 \alpha \lambda \mathrm{gRS}_{\mathrm{yxh}}\right) \tag{1.11}
\end{equation*}
$$

where $\lambda=\frac{\mathrm{a} \overline{\mathrm{X}}}{\mathrm{aX}+\mathrm{b}}$ and $\mathrm{R}=\frac{\overline{\mathrm{Y}}}{\overline{\mathrm{X}}}$. The (optimum) choice of α that minimizes (1.11) is $\alpha_{\text {opt }}=\frac{\beta_{0}}{\lambda \mathrm{gR}}$, and the resulting optimum unconditional mean squared error of $\overline{\mathrm{y}}_{\mathrm{pss}}$ is obtained as

$$
\begin{equation*}
\operatorname{MSE}_{\text {opt }}\left(\overline{\mathrm{y}}_{\mathrm{pss}}\right)=\left(\frac{1-\mathrm{f}}{\mathrm{n}}\right)\left(1-\rho_{0}^{2}\right) \sum_{\mathrm{h}=1}^{\mathrm{L}} \omega_{\mathrm{h}} \mathrm{~S}_{\mathrm{yh}}^{2} \tag{1.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{0}=\frac{\sum_{h=1}^{L} \omega_{h} S_{y x h}}{\sum_{h=1}^{L} \omega_{h} S_{x h}^{2}} \text {, and } \rho_{0}=\frac{\sum_{h=1}^{L} \omega_{h} S_{y x h}}{\sqrt{\left(\sum_{h=1}^{L} \omega_{h} S_{y h}^{2}\right)\left(\sum_{h=1}^{L} \omega_{h} S_{x h}^{2}\right)}} \tag{1.13}
\end{equation*}
$$

Notice that (1.12) is the same as the unconditional variance of the usual combined poststratified regression estimator, $\overline{\mathrm{y}}_{\mathrm{psREG}}=\overline{\mathrm{y}}_{\mathrm{ps}}-\hat{\beta}_{0}\left(\overline{\mathrm{x}}_{\mathrm{ps}}-\overline{\mathrm{X}}\right)$. This implies that the efficiency of the general family of estimators, $\bar{y}_{\text {pss }}$, proposed by Onyeka (2012), may not be improved beyond the efficiency of the customary combined regression-type estimator in post-stratified sampling.

iI. The Proposed Class of Estimators

Motivated by Onyeka (2012) and Srivenkataramana (1980), we propose a class of dual to ratio estimators of the population mean, $\overline{\mathrm{Y}}$, in poststratified sampling, using known population parameters of an auxiliary character x , as:

$$
\begin{equation*}
\overline{\mathrm{y}}_{\mathrm{pss}}^{*}=\overline{\mathrm{y}}_{\mathrm{ps}}\left(\frac{\alpha\left(\mathrm{ax}_{\mathrm{ps}}^{*}+\mathrm{b}\right)+(1-\alpha)(\mathrm{a} \overline{\mathrm{X}}+\mathrm{b})}{\mathrm{a} \overline{\mathrm{X}}+\mathrm{b}}\right)^{\underline{g}} \tag{2.1}
\end{equation*}
$$

where $\overline{\mathrm{x}}_{\mathrm{ps}}^{*}$ is a transformed sample mean of the auxiliary variable, x , based on the variable transformation, $x_{h i}^{*}=\frac{N \bar{X}-\mathrm{nx}_{\text {hi }}}{N-n}$ and satisfying the relationship:

$$
\begin{equation*}
\overline{\mathrm{X}}=\mathrm{f} \overline{\mathrm{x}}_{\mathrm{ps}}+(1-\mathrm{f}) \overline{\mathrm{x}}_{\mathrm{ps}}^{*} \tag{2.2}
\end{equation*}
$$

The transformed sample mean, $\overline{\mathrm{x}}_{\mathrm{ps}}^{*}$, in poststratified sampling, is defined along the line of authors like Srivenkataramana and Srinath (1976), Srivenkataramana (1980), and Sharma and Tailor (2010). Using the transformation, $x_{i}^{*}=\frac{N \bar{X}-n x_{i}}{N-n}, i=1,2, \ldots, N$, Srivenkataramana (1980) obtained a dual to ratio estimate of $\overline{\mathrm{Y}}$ in simple random sampling scheme as

$$
\begin{equation*}
\overline{\mathrm{y}}_{\mathrm{R}}^{(\mathrm{d})}=\overline{\mathrm{y}}\left(\frac{\overline{\mathrm{x}}^{*}}{\overline{\mathrm{x}}}\right) \tag{2.3}
\end{equation*}
$$

This means that the proposed estimator in (2.1) is a type of dual to ratio estimator in poststratified sampling when using information on known parameters of an auxiliary character, x , provided the constant g is positive. The proposed estimator in (2.1) becomes a type of dual to product estimator if the constant g is negative. Notice that the transformed sample mean, $\overline{\mathrm{x}}_{\mathrm{ps}}^{*}$, in (2.2) can be written in terms of e_{1} as

$$
\begin{equation*}
\overline{\mathrm{x}}_{\mathrm{ps}}^{*}=\overline{\mathrm{X}}\left(1-\pi \mathrm{e}_{1}\right) \tag{2.4}
\end{equation*}
$$

where $\pi=\frac{\mathrm{f}}{1-\mathrm{f}}=\frac{\mathrm{n}}{\mathrm{N}-\mathrm{n}}$. Consequently, the proposed class of estimators, $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$ in (2.1), can be rewritten in terms of e_{0} and e_{1} as

$$
\begin{equation*}
\overline{\mathrm{y}}_{\mathrm{pss}}^{*}=\overline{\mathrm{Y}}\left(1+\mathrm{e}_{0}\right)\left(1-\pi \alpha \lambda \mathrm{e}_{1}\right)^{\mathrm{g}} \tag{2.5}
\end{equation*}
$$

Assuming $\left|\pi \alpha \lambda \mathrm{e}_{1}\right|<1$, so that the series $\left(1-\pi \alpha \lambda \mathrm{e}_{1}\right)^{g}$ converges, and expanding (2.5) up to first order approximation in expected value, we obtain

$$
\begin{equation*}
\left(\overline{\mathrm{y}}_{\mathrm{pss}}^{*}-\overline{\mathrm{Y}}\right)=\overline{\mathrm{Y}}\left(\mathrm{e}_{0}-\pi \alpha \lambda \mathrm{ge}_{1}-\pi \alpha \lambda \mathrm{ge}_{0} \mathrm{e}_{1}+\frac{1}{2} \mathrm{~g}(\mathrm{~g}+1) \pi^{2} \alpha^{2} \lambda^{2} \mathrm{e}_{1}^{2}\right) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\overline{\mathrm{y}}_{\mathrm{pss}}^{*}-\overline{\mathrm{Y}}\right)^{2}=\overline{\mathrm{Y}}^{2}\left(\mathrm{e}_{0}^{2}+\pi^{2} \alpha^{2} \lambda^{2} \mathrm{~g}^{2} \mathrm{e}_{1}^{2}-2 \pi \alpha \lambda \mathrm{ge}_{0} \mathrm{e}_{1}\right) \tag{2.7}
\end{equation*}
$$

To obtain the unconditional bias and mean squared error of the proposed estimators $\overline{\mathrm{y}}_{\text {pss }}^{*}$ we take the unconditional expectations of (2.6) and (2.7), and use (1.6) - (1.9) to make the necessary substitutions. This gives the unconditional bias and mean squared error of the proposed class of estimators, $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$, up to first order approximation, respectively as

$$
\begin{equation*}
\mathrm{B}\left(\overline{\mathrm{y}}_{\mathrm{pss}}^{*}\right)=\left(\frac{1-\mathrm{f}}{\mathrm{n}}\right)\left(\frac{\pi \alpha \lambda \mathrm{g}}{2 \overline{\mathrm{X}}}\right)_{\mathrm{h}=1}^{\mathrm{L}} \omega_{\mathrm{h}}\left(\pi \alpha \lambda(\mathrm{~g}+1) \mathrm{RS}_{\mathrm{xh}}^{2}-2 \mathrm{~S}_{\mathrm{yxh}}\right) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{MSE}\left(\overline{\mathrm{y}}_{\mathrm{pss}}^{*}\right)=\left(\frac{1-\mathrm{f}}{\mathrm{n}}\right) \sum_{\mathrm{h}=1}^{\mathrm{L}} \omega_{\mathrm{h}}\left(\mathrm{~S}_{\mathrm{yh}}^{2}+\pi^{2} \alpha^{2} \lambda^{2} \mathrm{~g}^{2} \mathrm{R}^{2} \mathrm{~S}_{\mathrm{xh}}^{2}-2 \pi \alpha \lambda \mathrm{gRS} \mathrm{yxh}\right) \tag{2.9}
\end{equation*}
$$

Applying the least squares method, the (optimum) choice of α that minimizes (2.9), is obtained as

$$
\begin{equation*}
\alpha_{\mathrm{opt}}=\frac{\beta_{0}}{\pi \lambda \mathrm{gR}} \tag{2.10}
\end{equation*}
$$

and the resulting optimum unconditional mean squared error of $\bar{y}_{\mathrm{pss}}^{*}$ is obtained as

$$
\begin{equation*}
\operatorname{MSE}_{\text {opt }}\left(\overline{\mathrm{y}}_{\mathrm{pss}}^{*}\right)=\left(\frac{1-\mathrm{f}}{\mathrm{n}}\right)\left(1-\rho_{0}^{2}\right) \sum_{\mathrm{h}=1}^{\mathrm{L}} \omega_{\mathrm{h}} \mathrm{~S}_{\mathrm{yh}}^{2} \tag{2.11}
\end{equation*}
$$

We observe that the optimum mean square error of $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$, given in (2.11), is the same as the unconditional variance of the usual post-stratified regression estimator, $\overline{\mathrm{y}}_{\mathrm{psREG}}=\overline{\mathrm{y}}_{\mathrm{ps}}-\hat{\beta}_{0}\left(\overline{\mathrm{x}}_{\mathrm{ps}}-\overline{\mathrm{X}}\right)$, indicating that the efficiency of the proposed class of estimators, $\overline{\mathrm{y}}_{\text {pss }}^{*}$, just like the estimators, $\overline{\mathrm{y}}_{\text {pss }}$, proposed by Onyeka (2012), may not be improved beyond the efficiency of the customary regression-type estimator in post-stratified sampling.

iiI. Efficiency Comparisons

Here, we shall compare the efficiency of the proposed class of dual to ratio estimators, $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$, with those of some existing estimators of $\overline{\mathrm{Y}}$, including the usual poststratified sampling estimator, $\overline{\mathrm{y}}_{\mathrm{ps}}$, and the estimator, $\overline{\mathrm{y}}_{\mathrm{pss}}$, proposed by Onyeka (2012).
a) Efficiency Comparison of $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$ and $\overline{\mathrm{y}}_{\mathrm{ps}}$

To compare the efficiencies of the proposed dual to ratio estimator, $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$, and the usual poststratified sampling estimator, $\bar{y}_{p s}$, we let $A_{0}=\sqrt{\sum_{h=1}^{L} \omega_{h} S_{y h}^{2}}$ and $A_{1}=\sqrt{\sum_{h=1}^{L} \omega_{h} S_{x h}^{2}}$. Then, we can rewrite (1.2) and (2.9), respectively as:

$$
\begin{equation*}
\mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{ps}}\right)=\left(\frac{1-\mathrm{f}}{\mathrm{n}}\right) \mathrm{A}_{0}^{2} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{MSE}\left(\overline{\mathrm{y}}_{\mathrm{pss}}^{*}\right)=\left(\frac{1-\mathrm{f}}{\mathrm{n}}\right)\left(\mathrm{A}_{0}^{2}+\pi^{2} \alpha^{2} \lambda^{2} \mathrm{~g}^{2} \mathrm{R}^{2} \mathrm{~A}_{1}^{2}-2 \pi \alpha \lambda \mathrm{gR} \rho_{0} \mathrm{~A}_{0} \mathrm{~A}_{1}\right) \tag{3.2}
\end{equation*}
$$

so that

$$
\begin{equation*}
\mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{ps}}\right)-\operatorname{MSE}\left(\overline{\mathrm{y}}_{\mathrm{pss}}^{*}\right)=\left(\frac{1-\mathrm{f}}{\mathrm{n}}\right)\left(2 \pi \alpha \lambda \mathrm{gR} \rho_{0} \mathrm{~A}_{0} \mathrm{~A}_{1}-\pi^{2} \alpha^{2} \lambda^{2} \mathrm{~g}^{2} \mathrm{R}^{2} \mathrm{~A}_{1}^{2}\right) \tag{3.3}
\end{equation*}
$$

This shows that the proposed class of estimators, $\overline{\mathrm{y}}_{\text {pss }}^{*}$ is more efficient than the estimator, $\overline{\mathrm{y}}_{\mathrm{ps}}$, in terms of having a smaller mean squared error, if

$$
\begin{equation*}
\frac{\beta_{0}}{\pi \alpha \lambda \mathrm{gR}}>\frac{1}{2} \tag{3.4}
\end{equation*}
$$

provided $\mathrm{a} \neq 0, \alpha \neq 0$ and $\mathrm{g} \neq 0$. Note that if $\mathrm{a}=0, \alpha=0$ and $\mathrm{g}=0$ separately, the proposed estimator, $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$ in (2.1) reduces to the usual poststratified estimator, $\overline{\mathrm{y}}_{\mathrm{ps}}$.
b) Efficiency Comparison of $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$ and $\overline{\mathrm{y}}_{\mathrm{ps}}^{(\mathrm{R})}$

Here, we compare the efficiencies of the proposed estimator, $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$ and the ratio-type combined estimator in poststratified sampling, given by

$$
\begin{equation*}
\overline{\mathrm{y}}_{\mathrm{ps}}^{(\mathrm{R})}=\frac{\overline{\mathrm{y}}_{\mathrm{ps}}}{\overline{\mathrm{x}}_{\mathrm{ps}}} \overline{\mathrm{X}} \tag{3.5}
\end{equation*}
$$

with mean squared error, approximated up to first order, as

$$
\begin{equation*}
\operatorname{MSE}\left(\overline{\mathrm{y}}_{\mathrm{ps}}^{(\mathrm{R})}\right)=\left(\frac{1-\mathrm{f}}{\mathrm{n}}\right)\left(\mathrm{A}_{0}^{2}+\mathrm{R}^{2} \mathrm{~A}_{1}^{2}-2 \mathrm{R} \rho_{0} \mathrm{~A}_{0} \mathrm{~A}_{1}\right) \tag{3.6}
\end{equation*}
$$

Using (3.2) and (3.6), it can be shown that the proposed class of estimators, $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$ is more efficient than the ratio-type estimator, $\overline{\mathrm{y}}_{\mathrm{ps}}^{(\mathrm{R})}$, in terms of having a smaller mean squared error, if

$$
\begin{equation*}
\frac{\beta_{0}(1-\pi \alpha \lambda g)}{R}<\frac{1}{2} \tag{3.7}
\end{equation*}
$$

c) Efficiency Comparison of $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$ and $\overline{\mathrm{y}}_{\mathrm{ps}}^{(\mathrm{P})}$

Here, we compare the efficiencies of the proposed estimator, $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$ and the product-type combined estimator in poststratified sampling, given by

$$
\begin{equation*}
\overline{\mathrm{y}}_{\mathrm{ps}}^{(\mathrm{P})}=\frac{\overline{\mathrm{y}}_{\mathrm{ps}} \overline{\mathrm{x}}_{\mathrm{ps}}}{\overline{\mathrm{X}}} \tag{3.8}
\end{equation*}
$$

with mean squared error, approximated up to first order, as

$$
\begin{equation*}
\operatorname{MSE}\left(\overline{\mathrm{y}}_{\mathrm{ps}}^{(\mathrm{P})}\right)=\left(\frac{1-\mathrm{f}}{\mathrm{n}}\right)\left(\mathrm{A}_{0}^{2}+\mathrm{R}^{2} \mathrm{~A}_{1}^{2}+2 \mathrm{R} \rho_{0} \mathrm{~A}_{0} \mathrm{~A}_{1}\right) \tag{3.9}
\end{equation*}
$$

Using (3.2) and (3.9), it can be shown that the proposed class of estimators, $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$ is more efficient than the product-type estimator, $\overline{\mathrm{y}}_{\mathrm{ps}}^{(\mathrm{P})}$, in terms of having a smaller mean squared error, if

$$
\begin{equation*}
\frac{\beta_{0}(1+\pi \alpha \lambda \mathrm{g})}{\mathrm{R}}>-\frac{1}{2} \tag{3.10}
\end{equation*}
$$

Note that the ratio-type and product-type estimators, $\overline{\mathrm{y}}_{\mathrm{ps}}^{(\mathrm{R})}$ and $\overline{\mathrm{y}}_{\mathrm{ps}}^{(\mathrm{P})}$, are both members of the family of combined-type estimators, $\overline{\mathrm{y}}_{\text {pss }}$, proposed by Onyeka (2012).
d) Efficiency Comparison of $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$ and $\overline{\mathrm{y}}_{\mathrm{pss}}$

Here, we compare the efficiencies of the proposed estimator, $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$ and the estimator, $\overline{\mathrm{y}}_{\mathrm{pss}}$, proposed by Onyeka (2012), whose mean squared error can be rewritten from (1.11) as:

$$
\begin{equation*}
\operatorname{MSE}\left(\overline{\mathrm{y}}_{\mathrm{pss}}\right)=\left(\frac{1-\mathrm{f}}{\mathrm{n}}\right)\left(\mathrm{A}_{0}^{2}+\alpha^{2} \lambda^{2} \mathrm{~g}^{2} \mathrm{R}^{2} \mathrm{~A}_{1}^{2}-2 \alpha \lambda \mathrm{gR} \rho_{0} \mathrm{~A}_{0} \mathrm{~A}_{1}\right) \tag{3.11}
\end{equation*}
$$

Using (3.2) and (3.11), it can be shown that the proposed class of estimators, $\overline{\mathrm{y}}_{\text {pss }}^{*}$ is more efficient than the estimator, $\overline{\mathrm{y}}_{\text {pss }}$, in terms of having a smaller mean squared error, if

$$
\begin{equation*}
\frac{\beta_{0}(1-\pi)}{\alpha \lambda g R}<\frac{1}{2} \tag{3.12}
\end{equation*}
$$

provided $\mathrm{a} \neq 0, \alpha \neq 0$ and $\mathrm{g} \neq 0$, as expected. However, it is worthy of note that the estimators, $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$ and $\overline{\mathrm{y}}_{\mathrm{pss}}$ have equal efficiency under certain optimality conditions, namely,
if we choose $\alpha_{\text {opt }}=\frac{\beta_{0}}{\lambda \mathrm{gR}}$ for $\overline{\mathrm{y}}_{\mathrm{pss}}$ and $\alpha_{\mathrm{opt}}=\frac{\beta_{0}}{\pi \lambda \mathrm{gR}}$ for $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$. Under these conditions, both estimators have the same optimum mean squared error, (1.12) and (2.11), which is easily recognized as the variance of the usual poststratified regression-type estimator, $\bar{y}_{\text {psREG }}$.

iV. Empirical Illustration

Here, we use the data given in Onyeka (2012) to illustrate the properties of the estimators proposed in the present study. The data statistics, consisting mainly of population parameters, are shown in Table 1, while Table 2 shows the percentage relative efficiencies (PRE) of the proposed class of estimators, $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$ and the estimator, $\overline{\mathrm{y}}_{\mathrm{pss}}$, proposed by Onyeka (2012), over the usual poststratified estimator $\overline{\mathrm{y}}_{\mathrm{ps}}$ of $\overline{\mathrm{Y}}$ in poststratified sampling scheme. We shall consider special cases of the proposed estimator, $\overline{\mathrm{y}}_{\text {ps }}^{*}$, corresponding to the same special cases of $\bar{y}_{\text {pss }}$ discussed in Onyeka (2012).

Table 1: Data Statistics

POPULATION	M ALES $=$ STRATUM 1	FEMALES $=$ STRATUM 2
$\mathrm{N}=96$	$\mathrm{N}_{1}=72$	$\mathrm{N}_{2}=24$
$\mathrm{n}=20$	$\mathrm{n}_{1}=8$	$\mathrm{n}_{2}=12$
$\overline{\mathrm{X}}=68.13$	$\overline{\mathrm{X}}_{1}=68.11$	$\overline{\mathrm{X}}_{2}=68.17$
$\overline{\mathrm{Y}}=2.44$	$\bar{Y}_{1}=2.44$	$\bar{Y}_{2}=2.46$
$\mathrm{S}_{\mathrm{x}}=7.03$	$\mathrm{S}_{\mathrm{x} 1}=7.28$	$\mathrm{S}_{\mathrm{x} 2}=6.36$
$S_{x}^{2}=49.37$	$\mathrm{S}_{\mathrm{x} 1}^{2}=52.97$	$\mathrm{S}_{\mathrm{x} 2}^{2}=40.41$
$\mathrm{S}_{\mathrm{y}}=0.57$	$\mathrm{S}_{\mathrm{y} 1}=0.60$	$\mathrm{S}_{\mathrm{y} 2}=0.50$
$\mathrm{S}_{\mathrm{y}}^{2}=0.33$	$\mathrm{S}_{\mathrm{y} 1}^{2}=0.35$	$\mathrm{S}_{\mathrm{y} 2}^{2}=0.25$
$\mathrm{S}_{\mathrm{yx}}=3.26$	$\mathrm{S}_{\mathrm{y} \times 1}=3.43$	$\mathrm{S}_{\mathrm{y} \times 2}=2.75$
$\rho_{y x}=0.82$	$\rho_{\mathrm{y} \times 1}=0.80$	$\rho_{y \times 2}=0.90$
$\rho_{\text {yx }}^{2}=0.67$	${ }_{\mathrm{y} \times 1}=0.64$	$\rho_{y \times 2}^{2}=0.80$
$\mathrm{C}_{\mathrm{x}}=0.10$	$\mathrm{C}_{\mathrm{x} 1}=0.11$	$\mathrm{C}_{\mathrm{x} 2}=0.09$
$\mathrm{C}_{\mathrm{y}}=0.23$	$\mathrm{C}_{\mathrm{y} 1}=0.24$	$C^{2} 2=0.20$
$\beta_{1}(x)=-1.10$	$\beta_{11}(x)=-1.23$	$\beta_{12}(\mathrm{x})=0.50$
$\beta_{1}(\mathrm{y})=-0.11$	$\beta_{11}(y)=-0.14$	$\beta_{12}(y)=0.14$
$\beta_{2}(\mathrm{x})=3.83$	$\beta_{21}(x)=4.33$	$\beta_{22}(x)=1.34$
$\beta_{2}(\mathrm{y})=1.27$	$\beta_{21}(\mathrm{y})=1.40$	$\beta_{22}(y)=0.31$
$=0.04$	$\gamma_{1}=0.05$	$\gamma_{2}=0.16$
--	$\omega_{1}=0.75$	$\omega_{2}=0.25$
--	$\omega_{1}^{2}=0.56$	$\omega_{2}^{2}=0.06$

Table 2: PRE of $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$ and $\overline{\mathrm{y}}_{\mathrm{pss}}$ over $\overline{\mathrm{y}}_{\mathrm{ps}}$

ESTIMATORS	Constants \& Parameters				$\overline{\mathrm{y}}_{\mathrm{pss}}$		$\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$	
	α	g	a	b	MSE	PRE	MSE	PRE
1. Usual poststratified estimator, $\overline{\mathrm{y}}_{\mathrm{ps}}$	-	-	-	-	0.012864	100	0.012864	100
2. Ratio-type estimator,	1	1	1	0	0.006151	209.14	0.011308	113.76
3. Sisodia-Dwivedi (1981) estimator,	1	1	1	C_{x}	0.006158	208.90	0.011309	113.75
4. Singh-Kakran (1993) estimator (1),	1	1	1	$\beta_{2}(\mathrm{x})$	0.006381	201.60	0.011347	113.37
5. Upadhyaya-Singh (1999) estimator (1),	1	1	$\beta_{2}(\mathrm{x})$	C_{x}	0.006153	209.07	0.011308	113.76
6. Upadhyaya-Singh (1999) estimator (2),	1	1	$C_{\text {x }}$	$\beta_{2}(\mathrm{x})$	0.007984	161.12	0.011666	110.27
7. Singh-Tailor (2003) estimator (1),	1	1	1	$\rho_{y x}$	0.006202	207.42	0.011316	113.68
8. Product-type estimator,	1	-1	1	0	0.024637	52.21	0.016173	79.54
9. Pandey-Dubey (1988) estimator,	1	-1	1	C_{x}	0.024616	52.26	0.016167	79.57
10. Upadhyaya-Singh (1999) estimator (3),	1	-1	$\beta_{2}(\mathrm{x})$	C_{x}	0.024632	52.22	0.016171	79.55
11. Upadhyaya-Singh (1999) estimator (4),	1	-1	C_{x}	$\beta_{2}(\mathrm{x})$	0.019818	64.91	0.014781	87.03
12. G.N. Singh (2003) estimator (1),	1	-1	1	σ_{x}	0.023322	55.16	0.015789	81.47
13. G.N. Singh (2003) estimator (2),	1	-1	$\beta_{1}(\mathrm{x})$	σ_{x}	0.026145	49.20	0.016616	77.42
14. G.N. Singh (2003) estimator (3),	1	-1	$\beta_{2}(\mathrm{x})$	σ_{x}	0.024264	53.02	0.016064	80.08
$\begin{aligned} & \text { 15. Singh-Tailor (2003) } \\ & \text { estimator (2), } \end{aligned}$	1	-1	1	$\rho_{y x}$	0.024468	52.57	0.016123	79.79
$\begin{aligned} & \text { 16. Singh-Kakran (1993) } \\ & \text { estimator (2), } \end{aligned}$	1	-1	1	$\beta_{2}(\mathrm{x})$	0.023883	53.86	0.015953	80.64
17. Regression-type (Optimum) estimators					0.004422	290.91	0.004422	290.91

Table 2 shows that the estimators in the proposed class of estimators, $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$ are not always more efficient than the usual poststratified estimator $\overline{\mathrm{y}}_{\mathrm{ps}}$. The proposed class of estimators, $\overline{\mathrm{y}}_{\text {pss }}^{*}$ is more efficient than the usual poststratified estimator $\overline{\mathrm{y}}_{\mathrm{ps}}$ only if the efficiency
condition (3.4) is satisfied. The table also shows that the proposed dual to ratio-type estimator, $\overline{\mathrm{y}}_{\mathrm{pss}}^{\left(\mathrm{R}^{*}\right)}=\overline{\mathrm{y}}_{\mathrm{ps}}\left(\frac{\overline{\mathrm{x}}_{\mathrm{ps}}^{*}}{\overline{\mathrm{X}}}\right)$ with PRE of 113.76%, is more efficient than the usual poststratified estimator $\overline{\mathrm{y}}_{\mathrm{ps}}$, while the proposed dual to product-type estimator, $\overline{\mathrm{y}}_{\mathrm{pss}}^{\left(\mathrm{P}^{* *}\right)}=\overline{\mathrm{y}}_{\mathrm{ps}}\left(\frac{\overline{\mathrm{X}}}{\overline{\mathrm{X}}_{\mathrm{ps}}^{*}}\right)$ with PRE of 79.54%, is less efficient than the usual poststratified estimator \bar{y}_{ps}. In fact, table 2 reveals that all the dual to ratio-type estimators (for all $\mathrm{g}>0$) perform better than the usual poststratified estimator $\overline{\mathrm{y}}_{\mathrm{ps}}$, while the dual to product-type estimators (for all $\mathrm{g}<0$) are less efficient than the usual poststratified estimator $\overline{\mathrm{y}}_{\mathrm{ps}}$. Onyeka (2012) noted that this is expected since the given data set shows a strong positive correlation ($\rho_{y x}=0.82$, Table 1), between the study and auxiliary variables. The dual to product-type estimators are expected to perform better than $\overline{\mathrm{y}}_{\mathrm{ps}}$ and the dual to ratio-type estimators when there is a strong negative correlation between the study and auxiliary variables. Using table 2 to further compare the general performance of the proposed class of estimators, $\bar{y}_{\text {pss }}^{*}$ and the estimator, $\bar{y}_{\text {pss }}$ proposed by Onyeka (2012), we observed that for dual to ratio-type estimators, the estimator $\overline{\mathrm{y}}_{\text {pss }}$ performs better than the estimator $\overline{\mathrm{y}}_{\text {pss }}^{*}$, while for dual to product-type estimators, the estimator $\overline{\mathrm{y}}_{\text {pss }}^{*}$ performs better than the estimator $\overline{\mathrm{y}}_{\mathrm{pss}}$, in terms of having a smaller mean squared error. This is equally in line with the efficiency condition in (3.12). With the understanding that product-type estimators perform well when there is a strong negative correlation between the study and auxiliary variates, it therefore follows that the proposed estimator $\overline{\mathrm{y}}_{\text {pss }}^{*}$ should be preferred to the estimator $\overline{\mathrm{y}}_{\text {pss }}$, proposed by Onyeka (2012), when there is highly negative correlation between the study and auxiliary characters and we are using the dual to product-type estimators (instead of dual to ratio-type estimators) within the proposed class of combined estimators, $\overline{\mathrm{y}}_{\mathrm{pss}}^{*}$.

V. Concluding Remark

We have extended the work carried out by Onyeka (2012) by considering a general family of dual to ratio-type (and/or dual to product-type) combined estimators of $\overline{\mathrm{Y}}$, in poststratified sampling (PSS) scheme, using information on some known parameters of an auxiliary character. The proposed class of estimators is found, under some optimum conditions, to be as efficient as the poststratified regression estimator $\overline{\mathrm{y}}_{\text {psREG }}$. We also obtained conditions under which the proposed estimator performs better (in terms of having a smaller mean squared error) than the usual poststratified estimator and the estimator proposed by Onyeka (2012). Properties of the proposed general family of estimators are obtained up to first order approximation and supported with some empirical illustration.

References Références Referencias

1. Khoshnevisan, M., Singh, R., Chauhan, P., Sawan, N., and Smarandache, F. (2007). A general family of estimators for estimating population mean using known value of some population parameter(s), Far East Journal of Theoretical Statistics, 22, 181-191.
2. Koyuncu, N. and Kadilar, C. (2009). Ratio and product estimators in stratified random sampling, Journal of Statistical Planning and Inference 139 (8), 2552-2558.
3. Onyeka, A.C. (2012). Estimation of population mean in poststratified sampling using known value of some population parameter(s). Statistics in Transition-new series, 13(1), 65-78
4. Pandy, B.N. and Dubey, Vyas (1988): Modified product estimator using coefficient of variation of auxiliary variate, Assam Statistical Rev., 2(2), 64-66
5. Searls, D.T. (1964): The utilization of known coefficient of variation in the estimation procedure. Journal of American Statistical Association, 59, 1125-1126
6. Sharma, B. and Tailor, R. (2010). A New Ratio-Cum-Dual to Ratio Estimator of Finite Population Mean in Simple Random Sampling. Global Journal of Science Frontier Research, Vol. 10, Issue 1 (Ver 1.0), 27-31
7. Singh, G.N. (2003): On the improvement of product method of estimation in sample surveys. Jour. Ind. Soc. Agric. Statistics, 56(3), 267-275
8. Singh, H.P. and Kakran, M.S. (1993): A Modified Ratio Estimator Using Known Coefficients of Kurtosis of an Auxiliary Character (unpublished)
9. Singh, H.P. and Tailor, R. (2003): Use of known correlation coefficient in estimating the finite population mean. Statistics in Transition, 6(4), 555-560
10. Singh, H. P. and Tailor, R. (2005). Estimation of finite population mean using known correlation coefficient between auxiliary characters. Statistica, Anno LXV, 4, 407418.
11. Singh, J., Pandey, B.N. and Hirano, K. (1973): On the utilization of a known coefficient of kurtosis in the estimation procedure of variance. Ann. Inst. Stat. Math., 25, 51-55
12. Sisodia, B.V.S. and Dwivedi, V.K. (1981): A Modified Ratio Estimator Using Coefficient of Variation of Auxiliary Variable. Journal of Indian Society Agricultural Statistics 33, 13-18.
13. Srivenkataramana, T. (1980). A dual of ratio estimator in sample surveys. Biometrika, 67, 1, 199-204.
14. Srivenkataramana, T. and Srinath, K.P. (1976): Ratio and Product methods of estimation in sample surveys when the two variables are moderately correlated. Vignana Bharathi 2: 54-58.
15. Tailor, R. and Sharma, B. K. (2009). A Modified Ratio-Cum-Product Estimator of Finite Population Mean Using Known Coefficient of Variation and Coefficient of Kurtosis. Statistics in Transition-new series, Jul-09, Vol. 10, No. 1, 15-24.
16. Upadhyaya, L.N. and Singh, H.P. (1999): Use of Transformed Auxiliary Variable in Estimating the Finite Population Mean. Biometrical Journal 41(5), 627-636.

This page is intentionally left blank

Global Journal of Science Frontier Research MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 2 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Development of a Summation Formula in Connection with Hypergeometric and Gamma Function

By Salahuddin, R. K. Khola \& S. R. Yadav

Mewar University
Abstract - The aim of this paper is to derive a summation formula based on half argument in connection with Hypergeometric function and involving recurrence relation and Gauss summation theorem.

Keywords : contiguous relation, gauss second summation theorem, recurrence relation.
GJSFR-F Classification : MSC 2010: 33C05, 33C20, 33C45, 33C70

Strictly as per the compliance and regulations of :

epaper

Development of a Summation Formula in Connection with Hypergeometric and Gamma Function

Salahuddin ${ }^{\alpha}$, R. K. Khola ${ }^{\circ}$ \& S. R. Yadav ${ }^{\rho}$

Abstract - The aim of this paper is to derive a summation formula based on half argument in connection with Hypergeometric function and involving recurrence relation and Gauss summation theorem.
Keywords and Phrases : contiguous relation, gauss second summation theorem, recurrence relation.

I. Introduction

Generalized Gaussian Hypergeometric function of one variable is defined by

$$
{ }_{A} F_{B}\left[\begin{array}{cc}
a_{1}, a_{2}, \cdots, a_{A} & ; \\
b_{1}, b_{2}, \cdots, b_{B} & ;
\end{array}\right]=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{A}\right)_{k} z^{k}}{\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \cdots\left(b_{B}\right)_{k} k!}
$$

or

$$
{ }_{A} F_{B}\left[\begin{array}{ccc}
\left(a_{A}\right) & ; & \tag{1}\\
\left(b_{B}\right) & ; & z
\end{array}\right] \equiv{ }_{A} F_{B}\left[\begin{array}{ccc}
\left(a_{j}\right)_{j=1}^{A} & ; & \\
\left(b_{j}\right)_{j=1}^{B} & ; & z
\end{array}\right]=\sum_{k=0}^{\infty} \frac{\left(\left(a_{A}\right)\right)_{k} z^{k}}{\left(\left(b_{B}\right)\right)_{k} k!}
$$

where the parameters $b_{1}, b_{2}, \cdots, b_{B}$ are neither zero nor negative integers and A, B are non-negative integers and $|z|=1$.
Contiguous Relation is defined by
[Andrews p.363(9.16)]

Gauss second summation theorem is defined by [Prudnikov., 491(7.3.7.8)]

$$
\begin{align*}
& { }_{2} F_{1}\left[\begin{array}{cc}
a, b ; & \frac{1}{a} \\
\frac{a+b+1}{2} ; & \frac{2}{2}
\end{array}\right]=\frac{\Gamma\left(\frac{a+b+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{a+1}{2}\right) \Gamma\left(\frac{b+1}{2}\right)} \tag{3}\\
& =\frac{2^{(b-1)} \Gamma\left(\frac{b}{2}\right) \Gamma\left(\frac{a+b+1}{2}\right)}{\Gamma(b) \Gamma\left(\frac{a+1}{2}\right)} \tag{4}
\end{align*}
$$

In a monograph of Prudnikov et al., a summation theorem is given in the form [Prudnikov.,p.491(7.3.7.8)]

$$
{ }_{2} F_{1}\left[\begin{array}{ll}
a, b \tag{5}\\
\frac{a+b-1}{2} ; & \frac{1}{2}
\end{array}\right]=\sqrt{\pi}\left[\frac{\Gamma\left(\frac{a+b+1}{2}\right)}{\Gamma\left(\frac{a+1}{2}\right) \Gamma\left(\frac{b+1}{2}\right)}+\frac{2 \Gamma\left(\frac{a+b-1}{2}\right)}{\Gamma(a) \Gamma(b)}\right]
$$

Now using Legendre's duplication formula and Recurrence relation for Gamma function,
the above theorem can be written in the form

$$
{ }_{2} F_{1}\left[\begin{array}{lll}
a, b \tag{6}\\
\frac{a+b-1}{2} ; & \frac{1}{2}
\end{array}\right]=\frac{2^{(b-1)} \Gamma\left(\frac{a+b-1}{2}\right)}{\Gamma(b)}\left[\frac{\Gamma\left(\frac{b}{2}\right)}{\Gamma\left(\frac{a-1}{2}\right)}+\frac{2^{(a-b+1)} \Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{a+1}{2}\right)}{\{\Gamma(a)\}^{2}}+\frac{\Gamma\left(\frac{b+2}{2}\right)}{\Gamma\left(\frac{a+1}{2}\right)}\right]
$$

Recurrence relation is defined by

$$
\begin{align*}
& \Gamma(z+1)=z \Gamma(z) \tag{7}\\
& { }_{2} F_{1}\left[\begin{array}{ll}
\begin{array}{l}
a, b ; \\
\frac{a+b+37}{2} ;
\end{array} & \frac{1}{2}
\end{array}\right]=\frac{2^{b} \Gamma\left(\frac{a+b+37}{2}\right)}{(a-b) \Gamma(b)} \times \\
& \times\left[\frac { \Gamma (\frac { b } { 2 }) } { \Gamma (\frac { a + 1 } { 2 }) } \left\{\frac{131072 a(-6332659870762850625+15188465029114325025 a)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+\right.\right. \\
& +\frac{131072 a\left(-14354510691610713240 a^{2}+7524314127912551832 a^{3}-2523698606200763196 a^{4}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(585146416702456764 a^{5}-98283050207112680 a^{6}+12319487399406824 a^{7}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(-1174199725349222 a^{8}+86014818744998 a^{9}-4862169489320 a^{10}+211577650856 a^{11}\right)}{[17}+ \\
& {\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]} \\
& +\frac{131072 a\left(-7020044668 a^{12}+174281212 a^{13}-3132760 a^{14}+38488 a^{15}-289 a^{16}+a^{17}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(25321878164717979075 b-19523841512219551440 a b+47611998316914930072 a^{2} b\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(-12330825664600006416 a^{3} b+7687192319327829444 a^{4} b-1038346142047282320 a^{5} b\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(283129024934512456 a^{6} b-22414624986818768 a^{7} b+3231412550832642 a^{8} b\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(-155206622884720 a^{9} b+12794409439592 a^{10} b-366157152816 a^{11} b+17543988644 a^{12} b\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(-274185520 a^{13} b+7297080 a^{14} b-47600 a^{15} b+595 a^{16} b+2162023563730570920 b^{2}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
\end{align*}
$$

$$
\begin{aligned}
& +\frac{131072 a\left(64543172743280700360 a b^{2}-11107176191996794920 a^{2} b^{2}+26638838560038217560 a^{3} b^{2}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(-2867948454968860760 a^{4} b^{2}+1845548308154811400 a^{5} b^{2}-124702534849141480 a^{6} b^{2}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(35260676281141080 a^{7} b^{2}-1500336516820680 a^{8} b^{2}+222764240366360 a^{9} b^{2}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(-5784150923320 a^{10} b^{2}+484991616200 a^{11} b^{2}-6995348360 a^{12} b^{2}+334423320 a^{13} b^{2}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
\end{aligned}
$$

$$
+\frac{131072 a\left(-2042040 a^{14} b^{2}+52360 a^{15} b^{2}+20437724329066130184 b^{3}+2575515240037515888 a b^{3}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072 a\left(33363872491954862088 a^{2} b^{3}-2090930383100586720 a^{3} b^{3}+4873159786850521320 a^{4} b^{3}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072 a\left(-258151156619337520 a^{5} b^{3}+163023689214444520 a^{6} b^{3}-5972150284654400 a^{7} b^{3}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072 a\left(1664379337479320 a^{8} b^{3}-38955947128560 a^{9} b^{3}+5678665839000 a^{10} b^{3}-75925522400 a^{11} b^{3}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072 a\left(6182616440 a^{12} b^{3}-35709520 a^{13} b^{3}+1623160 a^{14} b^{3}+2610557152281130500 b^{4}\right)}{[17}+
$$

$$
\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]
$$

$$
+\frac{131072 a\left(15572154733539836460 a b^{4}+732482294468001000 a^{2} b^{4}+5851298044645884600 a^{3} b^{4}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072 a\left(-163646117957822500 a^{4} b^{4}+368261307782880820 a^{5} b^{4}-10339842738560720 a^{6} b^{4}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072 a\left(6256949185681040 a^{7} b^{4}-125626624472580 a^{8} b^{4}+33613458015060 a^{9} b^{4}-406746041240 a^{10} b^{4}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072 a\left(56687092280 a^{11} b^{4}-305965660 a^{12} b^{4}+23535820 a^{13} b^{4}+2172550998730044660 b^{5}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072 a\left(1004608127102243440 a b^{5}+3242956850341887448 a^{2} b^{5}+76055235302610256 a^{3} b^{5}\right)}{[}+
$$

$$
\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]
$$

$$
\begin{aligned}
& +\frac{131072 a\left(430788796363213596 a^{4} b^{5}-5907351875594400 a^{5} b^{5}+12781639991214864 a^{6} b^{5}\right)}{[17}+ \\
& {\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]} \\
& +\frac{131072 a\left(-192523576889952 a^{7} b^{5}+110161047202668 a^{8} b^{5}-1135650386640 a^{9} b^{5}+287146418328 a^{10} b^{5}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(-1401879024 a^{11} b^{5}+183579396 a^{12} b^{5}+185576437854776920 b^{6}+768237818623401560 a b^{6}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(116735444133526680 a^{2} b^{6}+263248376733566840 a^{3} b^{6}+3399221138266800 a^{4} b^{6}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(14691849210062640 a^{5} b^{6}-101267395503120 a^{6} b^{6}+209987898508080 a^{7} b^{6}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(-1593776507400 a^{8} b^{6}+855056340600 a^{9} b^{6}-3530373000 a^{10} b^{6}+834451800 a^{11} b^{6}\right)}{[17}+ \\
& {\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]} \\
& +\frac{131072 a\left(59177652660443128 b^{7}+37122270588325296 a b^{7}+80953716224732296 a^{2} b^{7}\right)}{17}+ \\
& {\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]} \\
& +\frac{131072 a\left(5503690017256640 a^{3} b^{7}+9557288389416240 a^{4} b^{7}+69140320048800 a^{5} b^{7}\right)}{\left[{ }^{17}\right.}+ \\
& {\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]} \\
& +\frac{131072 a\left(238397117389200 a^{6} b^{7}-782781595200 a^{7} b^{7}+1551234029400 a^{8} b^{7}-4639918800 a^{9} b^{7}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(2319959400 a^{1} 0 b^{7}+3287994950239450 b^{8}+11248058823729750 a b^{8}+2294394995865720 a^{2} b^{8}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(3442692988837960 a^{3} b^{8}+115095771016380 a^{4} b^{8}+161870114844900 a^{5} b^{8}+616153923000 a^{6} b^{8}\right)}{\left[{ }^{17}\right.}+ \\
& {\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]} \\
& +\frac{131072 a\left(1745291809800 a^{7} b^{8}-2149374150 a^{8} b^{8}+4059928950 a^{9} b^{8}+525728261810290 b^{9}\right)}{[17}+ \\
& {\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]} \\
& +\frac{131072 a\left(368667646701200 a b^{9}+648092452666120 a^{2} b^{9}+56591247876240 a^{3} b^{9}+64792026078780 a^{4} b^{9}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(1040587825200 a^{5} b^{9}+1221799794600 a^{6} b^{9}+1910554800 a^{7} b^{9}+4537567650 a^{8} b^{9}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{131072 a\left(18727536011800 b^{10}+56336707180600 a b^{10}+12392461389000 a^{2} b^{10}+14735070827400 a^{3} b^{10}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(571214351400 a^{4} b^{10}+526590436680 a^{5} b^{10}+3247943160 a^{6} b^{10}+3247943160 a^{7} b^{10}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(1658243409592 b^{11}+1171241432144 a b^{11}+1773637762904 a^{2} b^{11}+151878786080 a^{3} b^{11}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072 a\left(136066994280 a^{4} b^{11}+1925658000 a^{5} b^{11}+1476337800 a^{6} b^{11}+36288133700 b^{12}\right)}{[17}+
\end{aligned}
$$

$$
+\frac{131072 a\left(98497273420 a b^{12}+19917501240 a^{2} b^{12}+20082473320 a^{3} b^{12}+584116260 a^{4} b^{12}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072 a\left(417225900 a^{5} b^{12}+1818469940 b^{13}+1160821200 a b^{13}+1556610440 a^{2} b^{13}+94143280 a^{3} b^{13}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072 a\left(70607460 a^{4} b^{13}+22016360 b^{14}+54237480 a b^{14}+7652040 a^{2} b^{14}+6724520 a^{3} b^{14}+593096 b^{15}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072 a\left(272272 a b^{15}+324632 a^{2} b^{15}+2975 b^{16}+6545 a b^{16}+35 b^{17}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072 b\left(-6332659870762850625+25321878164717979075 a+2162023563730570920 a^{2}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072 b\left(20437724329066130184 a^{3}+2610557152281130500 a^{4}+2172550998730044660 a^{5}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072 b\left(185576437854776920 a^{6}+59177652660443128 a^{7}+3287994950239450 a^{8}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072 b\left(525728261810290 a^{9}+18727536011800 a^{10}+1658243409592 a^{11}+36288133700 a^{12}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072 b\left(1818469940 a^{13}+22016360 a^{14}+593096 a^{15}+2975 a^{16}+35 a^{17}+15188465029114325025 b\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072 b\left(-19523841512219551440 a b+64543172743280700360 a^{2} b+2575515240037515888 a^{3} b\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
\begin{aligned}
& +\frac{131072 b\left(15572154733539836460 a^{4} b+1004608127102243440 a^{5} b+768237818623401560 a^{6} b\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(37122270588325296 a^{7} b+11248058823729750 a^{8} b+368667646701200 a^{9} b\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(56336707180600 a^{10} b+1171241432144 a^{11} b+98497273420 a^{12} b+1160821200 a^{13} b\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(54237480 a^{14} b+272272 a^{15} b+6545 a^{16} b-14354510691610713240 b^{2}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(47611998316914930072 a b^{2}-11107176191996794920 a^{2} b^{2}+33363872491954862088 a^{3} b^{2}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(732482294468001000 a^{4} b^{2}+3242956850341887448 a^{5} b^{2}+116735444133526680 a^{6} b^{2}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(80953716224732296 a^{7} b^{2}+2294394995865720 a^{8} b^{2}+648092452666120 a^{9} b^{2}\right)}{\left[\prod^{18}\{a-b-(2 \omega-1)\}\right]\left[\prod^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{131072 b\left(12392461389000 a^{10} b^{2}+1773637762904 a^{11} b^{2}+19917501240 a^{12} b^{2}+1556610440 a^{13} b^{2}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(7652040 a^{14} b^{2}+324632 a^{15} b^{2}+7524314127912551832 b^{3}-12330825664600006416 a b^{3}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(26638838560038217560 a^{2} b^{3}-2090930383100586720 a^{3} b^{3}+5851298044645884600 a^{4} b^{3}\right)}{[18}+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{131072 b\left(76055235302610256 a^{5} b^{3}+263248376733566840 a^{6} b^{3}+5503690017256640 a^{7} b^{3}\right)}{\left[{ }^{18}\right.}+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{131072 b\left(3442692988837960 a^{8} b^{3}+56591247876240 a^{9} b^{3}+14735070827400 a^{10} b^{3}+151878786080 a^{11} b^{3}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(20082473320 a^{12} b^{3}+94143280 a^{13} b^{3}+6724520 a^{14} b^{3}-2523698606200763196 b^{4}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(7687192319327829444 a b^{4}-2867948454968860760 a^{2} b^{4}+4873159786850521320 a^{3} b^{4}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
\end{aligned}
$$

$$
\begin{gathered}
+\frac{131072 b\left(-163646117957822500 a^{4} b^{4}+430788796363213596 a^{5} b^{4}+3399221138266800 a^{6} b^{4}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
+\frac{131072 b\left(9557288389416240 a^{7} b^{4}+115095771016380 a^{8} b^{4}+64792026078780 a^{9} b^{4}+571214351400 a^{10} b^{4}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
+\frac{131072 b\left(136066994280 a^{11} b^{4}+584116260 a^{12} b^{4}+70607460 a^{13} b^{4}+585146416702456764 b^{5}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
+\frac{131072 b\left(-1038346142047282320 a b^{5}+1845548308154811400 a^{2} b^{5}-258151156619337520 a^{3} b^{5}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
\end{gathered}
$$

$$
+\frac{131072 b\left(368261307782880820 a^{4} b^{5}-5907351875594400 a^{5} b^{5}+14691849210062640 a^{6} b^{5}\right)}{\left[\prod_{\square}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\square}^{17}\{a-b+(2 o-1)\}\right]}+
$$

$$
\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]
$$

$$
+\frac{131072 b\left(69140320048800 a^{7} b^{5}+161870114844900 a^{8} b^{5}+1040587825200 a^{9} b^{5}+526590436680 a^{10} b^{5}\right)}{\lceil\stackrel{18}{\square}}+
$$

$$
\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]
$$

$$
+\frac{131072 b\left(1925658000 a^{11} b^{5}+417225900 a^{12} b^{5}-98283050207112680 b^{6}+283129024934512456 a b^{6}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072 b\left(-124702534849141480 a^{2} b^{6}+163023689214444520 a^{3} b^{6}-10339842738560720 a^{4} b^{6}\right)}{[18}+
$$

$$
\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]
$$

$$
+\frac{131072 b\left(12781639991214864 a^{5} b^{6}-101267395503120 a^{6} b^{6}+238397117389200 a^{7} b^{6}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072 b\left(616153923000 a^{8} b^{6}+1221799794600 a^{9} b^{6}+3247943160 a^{10} b^{6}+1476337800 a^{11} b^{6}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072 b\left(12319487399406824 b^{7}-22414624986818768 a b^{7}+35260676281141080 a^{2} b^{7}\right)}{[18}+
$$

$$
\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]
$$

$$
+\frac{131072 b\left(-5972150284654400 a^{3} b^{7}+6256949185681040 a^{4} b^{7}-192523576889952 a^{5} b^{7}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072 b\left(209987898508080 a^{6} b^{7}-782781595200 a^{7} b^{7}+1745291809800 a^{8} b^{7}+1910554800 a^{9} b^{7}\right)}{\left[\prod_{\square}^{18}\{a-b-(2 \varpi-1)\}\right][\stackrel{17}{\square}\{a-b+(2 o-1)\}]}+
$$

$$
+\frac{131072 b\left(3247943160 a^{10} b^{7}-1174199725349222 b^{8}+3231412550832642 a b^{8}-1500336516820680 a^{2} b^{8}\right)}{[18}+
$$

$$
\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]
$$

$$
\begin{aligned}
& +\frac{131072 b\left(1664379337479320 a^{3} b^{8}-125626624472580 a^{4} b^{8}+110161047202668 a^{5} b^{8}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(-1593776507400 a^{6} b^{8}+1551234029400 a^{7} b^{8}-2149374150 a^{8} b^{8}+4537567650 a^{9} b^{8}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(86014818744998 b^{9}-155206622884720 a b^{9}+222764240366360 a^{2} b^{9}-38955947128560 a^{3} b^{9}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(33613458015060 a^{4} b^{9}-1135650386640 a^{5} b^{9}+855056340600 a^{6} b^{9}-4639918800 a^{7} b^{9}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(4059928950 a^{8} b^{9}-4862169489320 b^{10}+12794409439592 a b^{10}-5784150923320 a^{2} b^{10}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(5678665839000 a^{3} b^{10}-406746041240 a^{4} b^{10}+287146418328 a^{5} b^{10}-3530373000 a^{6} b^{10}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(2319959400 a^{7} b^{10}+211577650856 b^{11}-366157152816 a b^{11}+484991616200 a^{2} b^{11}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(-75925522400 a^{3} b^{11}+56687092280 a^{4} b^{11}-1401879024 a^{5} b^{11}+834451800 a^{6} b^{11}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(-7020044668 b^{12}+17543988644 a b^{12}-6995348360 a^{2} b^{12}+6182616440 a^{3} b^{12}\right)}{\left[\prod^{18}\{a-b-(2 a-1)\}\right]\left[\prod^{17}\left\{a-b+\left(2 e^{18}\right)\right]\right.}+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{131072 b\left(-305965660 a^{4} b^{12}+183579396 a^{5} b^{12}+174281212 b^{13}-274185520 a b^{13}+334423320 a^{2} b^{13}\right)}{[18}+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{131072 b\left(-35709520 a^{3} b^{13}+23535820 a^{4} b^{13}-3132760 b^{1} 4+7297080 a b^{14}-2042040 a^{2} b^{14}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072 b\left(1623160 a^{3} b^{14}+38488 b^{15}-47600 a b^{15}+52360 a^{2} b^{15}-289 b^{16}+595 a b^{16}+b^{17}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}- \\
& -\frac{\Gamma\left(\frac{b+1}{2}\right)}{\Gamma\left(\frac{a}{2}\right)}\left\{\frac{262144\left(6332659870762850625+25321878164717979075 a-2162023563730570920 a^{2}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+\right. \\
& +\frac{262144\left(20437724329066130184 a^{3}-2610557152281130500 a^{4}+2172550998730044660 a^{5}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
\end{aligned}
$$

$$
\begin{gathered}
+\frac{262144\left(-185576437854776920 a^{6}+59177652660443128 a^{7}-3287994950239450 a^{8}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
+\frac{262144\left(525728261810290 a^{9}-18727536011800 a^{10}+1658243409592 a^{11}-36288133700 a^{12}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
+\frac{262144\left(1818469940 a^{13}-22016360 a^{14}+593096 a^{15}-2975 a^{16}+35 a^{17}+15188465029114325025 b\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
\end{gathered}
$$

$$
+\frac{262144\left(19523841512219551440 a b+64543172743280700360 a^{2} b-2575515240037515888 a^{3} b\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(15572154733539836460 a^{4} b-1004608127102243440 a^{5} b+768237818623401560 a^{6} b\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(-37122270588325296 a^{7} b+11248058823729750 a^{8} b-368667646701200 a^{9} b\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(56336707180600 a^{10} b-1171241432144 a^{11} b+98497273420 a^{12} b-1160821200 a^{13} b\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(54237480 a^{14} b-272272 a^{15} b+6545 a^{16} b+14354510691610713240 b^{2}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(47611998316914930072 a b^{2}+11107176191996794920 a^{2} b^{2}+33363872491954862088 a^{3} b^{2}\right)}{[17}+
$$

$$
\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]
$$

$$
+\frac{262144\left(-732482294468001000 a^{4} b^{2}+3242956850341887448 a^{5} b^{2}-116735444133526680 a^{6} b^{2}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(80953716224732296 a^{7} b^{2}-2294394995865720 a^{8} b^{2}+648092452666120 a^{9} b^{2}\right)}{[17}+
$$

$$
\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]
$$

$$
+\frac{262144\left(-12392461389000 a^{10} b^{2}+1773637762904 a^{11} b^{2}-19917501240 a^{12} b^{2}+1556610440 a^{13} b^{2}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(-7652040 a^{14} b^{2}+324632 a^{15} b^{2}+7524314127912551832 b^{3}+12330825664600006416 a b^{3}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(26638838560038217560 a^{2} b^{3}+2090930383100586720 a^{3} b^{3}+5851298044645884600 a^{4} b^{3}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(-76055235302610256 a^{5} b^{3}+263248376733566840 a^{6} b^{3}-5503690017256640 a^{7} b^{3}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(3442692988837960 a^{8} b^{3}-56591247876240 a^{9} b^{3}+14735070827400 a^{10} b^{3}-151878786080 a^{11} b^{3}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(20082473320 a^{12} b^{3}-94143280 a^{13} b^{3}+6724520 a^{14} b^{3}+2523698606200763196 b^{4}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(7687192319327829444 a b^{4}+2867948454968860760 a^{2} b^{4}+4873159786850521320 a^{3} b^{4}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(163646117957822500 a^{4} b^{4}+430788796363213596 a^{5} b^{4}-3399221138266800 a^{6} b^{4}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(9557288389416240 a^{7} b^{4}-115095771016380 a^{8} b^{4}+64792026078780 a^{9} b^{4}-571214351400 a^{10} b^{4}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(136066994280 a^{11} b^{4}-584116260 a^{12} b^{4}+70607460 a^{13} b^{4}+585146416702456764 b^{5}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(1038346142047282320 a b^{5}+1845548308154811400 a^{2} b^{5}+258151156619337520 a^{3} b^{5}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(368261307782880820 a^{4} b^{5}+5907351875594400 a^{5} b^{5}+14691849210062640 a^{6} b^{5}\right)}{\Gamma 17}+
$$

$$
\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]
$$

$$
+\frac{262144\left(-69140320048800 a^{7} b^{5}+161870114844900 a^{8} b^{5}-1040587825200 a^{9} b^{5}+526590436680 a^{10} b^{5}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(-1925658000 a^{11} b^{5}+417225900 a^{12} b^{5}+98283050207112680 b^{6}+283129024934512456 a b^{6}\right)}{[17}+
$$

$$
\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]
$$

$$
+\frac{262144\left(124702534849141480 a^{2} b^{6}+163023689214444520 a^{3} b^{6}+10339842738560720 a^{4} b^{6}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(12781639991214864 a^{5} b^{6}+101267395503120 a^{6} b^{6}+238397117389200 a^{7} b^{6}-616153923000 a^{8} b^{6}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(1221799794600 a^{9} b^{6}-3247943160 a^{10} b^{6}+1476337800 a^{11} b^{6}+12319487399406824 b^{7}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
\begin{gathered}
+\frac{262144\left(125626624472580 a^{4} b^{8}+110161047202668 a^{5} b^{8}+1593776507400 a^{6} b^{8}+1551234029400 a^{7} b^{8}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
+\frac{262144\left(2149374150 a^{8} b^{8}+4537567650 a^{9} b^{8}+86014818744998 b^{9}+155206622884720 a b^{9}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
\end{gathered}
$$

$$
+\frac{262144\left(222764240366360 a^{2} b^{9}+38955947128560 a^{3} b^{9}+33613458015060 a^{4} b^{9}+1135650386640 a^{5} b^{9}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(855056340600 a^{6} b^{9}+4639918800 a^{7} b^{9}+4059928950 a^{8} b^{9}+4862169489320 b^{10}\right)}{\ulcorner 17}+
$$

$$
\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]
$$

$$
+\frac{262144\left(12794409439592 a b^{10}+5784150923320 a^{2} b^{10}+5678665839000 a^{3} b^{10}+406746041240 a^{4} b^{10}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(287146418328 a^{5} b^{10}+3530373000 a^{6} b^{10}+2319959400 a^{7} b^{10}+211577650856 b^{11}\right)}{\lceil\underline{17}}+
$$

$$
\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]
$$

$$
+\frac{262144\left(366157152816 a b^{11}+484991616200 a^{2} b^{11}+75925522400 a^{3} b^{11}+56687092280 a^{4} b^{11}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(1401879024 a^{5} b^{11}+834451800 a^{6} b^{11}+7020044668 b^{12}+17543988644 a b^{12}+6995348360 a^{2} b^{12}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(6182616440 a^{3} b^{12}+305965660 a^{4} b^{12}+183579396 a^{5} b^{12}+174281212 b^{13}+274185520 a b^{13}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{262144\left(334423320 a^{2} b^{13}+35709520 a^{3} b^{13}+23535820 a^{4} b^{13}+3132760 b^{14}+7297080 a b^{14}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
\begin{gathered}
+\frac{262144\left(2042040 a^{2} b^{14}+1623160 a^{3} b^{14}+38488 b^{15}+47600 a b^{15}+52360 a^{2} b^{15}+289 b^{16}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
+\frac{262144\left(595 a b^{16}+b^{17}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
\end{gathered}
$$

$$
+\frac{262144\left(6332659870762850625+15188465029114325025 a+14354510691610713240 a^{2}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{262144\left(7524314127912551832 a^{3}+2523698606200763196 a^{4}+585146416702456764 a^{5}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{262144\left(98283050207112680 a^{6}+12319487399406824 a^{7}+1174199725349222 a^{8}+86014818744998 a^{9}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{262144\left(4862169489320 a^{10}+211577650856 a^{11}+7020044668 a^{12}+174281212 a^{13}+3132760 a^{14}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{262144\left(38488 a^{15}+289 a^{16}+a^{17}+25321878164717979075 b+19523841512219551440 a b\right)}{}+
$$

$$
\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]
$$

$$
+\frac{262144\left(47611998316914930072 a^{2} b+12330825664600006416 a^{3} b+7687192319327829444 a^{4} b\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{262144\left(1038346142047282320 a^{5} b+283129024934512456 a^{6} b+22414624986818768 a^{7} b\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{262144\left(3231412550832642 a^{8} b+155206622884720 a^{9} b+12794409439592 a^{10} b+366157152816 a^{11} b\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{262144\left(17543988644 a^{12} b+274185520 a^{13} b+7297080 a^{14} b+47600 a^{15} b+595 a^{16} b\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{262144\left(-2162023563730570920 b^{2}+64543172743280700360 a b^{2}+11107176191996794920 a^{2} b^{2}\right)}{18}+
$$

$$
\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]
$$

$$
+\frac{262144\left(26638838560038217560 a^{3} b^{2}+2867948454968860760 a^{4} b^{2}+1845548308154811400 a^{5} b^{2}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{262144\left(124702534849141480 a^{6} b^{2}+35260676281141080 a^{7} b^{2}+1500336516820680 a^{8} b^{2}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
\begin{aligned}
& +\frac{262144\left(222764240366360 a^{9} b^{2}+5784150923320 a^{10} b^{2}+484991616200 a^{11} b^{2}+6995348360 a^{12} b^{2}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(334423320 a^{13} b^{2}+2042040 a^{14} b^{2}+52360 a^{15} b^{2}+20437724329066130184 b^{3}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(-2575515240037515888 a b^{3}+33363872491954862088 a^{2} b^{3}+2090930383100586720 a^{3} b^{3}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\rho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(4873159786850521320 a^{4} b^{3}+258151156619337520 a^{5} b^{3}+163023689214444520 a^{6} b^{3}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(5972150284654400 a^{7} b^{3}+1664379337479320 a^{8} b^{3}+38955947128560 a^{9} b^{3}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(5678665839000 a^{10} b^{3}+75925522400 a^{11} b^{3}+6182616440 a^{12} b^{3}+35709520 a^{13} b^{3}+1623160 a^{14} b^{3}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(-2610557152281130500 b^{4}+15572154733539836460 a b^{4}-732482294468001000 a^{2} b^{4}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(5851298044645884600 a^{3} b^{4}+163646117957822500 a^{4} b^{4}+368261307782880820 a^{5} b^{4}\right)}{[]^{18}\{ }+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{262144\left(10339842738560720 a^{6} b^{4}+6256949185681040 a^{7} b^{4}+125626624472580 a^{8} b^{4}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(33613458015060 a^{9} b^{4}+406746041240 a^{10} b^{4}+56687092280 a^{11} b^{4}+305965660 a^{12} b^{4}\right)}{\left[\prod^{18}\{ \right.}+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{262144\left(23535820 a^{13} b^{4}+2172550998730044660 b^{5}-1004608127102243440 a b^{5}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(3242956850341887448 a^{2} b^{5}-76055235302610256 a^{3} b^{5}+430788796363213596 a^{4} b^{5}\right)}{[18}+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{262144\left(5907351875594400 a^{5} b^{5}+12781639991214864 a^{6} b^{5}+192523576889952 a^{7} b^{5}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(110161047202668 a^{8} b^{5}+1135650386640 a^{9} b^{5}+287146418328 a^{10} b^{5}+1401879024 a^{11} b^{5}\right)}{\left[\prod^{18}\{a-b-(2 a-1)\}\right]\left[{ }^{17}\{a-b+(2 a)\}\right]}+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{262144\left(183579396 a^{12} b^{5}-185576437854776920 b^{6}+768237818623401560 a b^{6}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(-116735444133526680 a^{2} b^{6}+263248376733566840 a^{3} b^{6}-3399221138266800 a^{4} b^{6}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(14691849210062640 a^{5} b^{6}+101267395503120 a^{6} b^{6}+209987898508080 a^{7} b^{6}+1593776507400 a^{8} b^{6}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(855056340600 a^{9} b^{6}+3530373000 a^{10} b^{6}+834451800 a^{11} b^{6}+59177652660443128 b^{7}\right)}{\left[{ }^{18}\right.}+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{262144\left(-37122270588325296 a b^{7}+80953716224732296 a^{2} b^{7}-5503690017256640 a^{3} b^{7}\right)}{[18}+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{262144\left(9557288389416240 a^{4} b^{7}-69140320048800 a^{5} b^{7}+238397117389200 a^{6} b^{7}+782781595200 a^{7} b^{7}\right)}{[18}+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{262144\left(1551234029400 a^{8} b^{7}+4639918800 a^{9} b^{7}+2319959400 a^{10} b^{7}-3287994950239450 b^{8}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(11248058823729750 a b^{8}-2294394995865720 a^{2} b^{8}+3442692988837960 a^{3} b^{8}\right)}{\left[{ }^{18}\right.}+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{262144\left(-115095771016380 a^{4} b^{8}+161870114844900 a^{5} b^{8}-616153923000 a^{6} b^{8}+1745291809800 a^{7} b^{8}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(2149374150 a^{8} b^{8}+4059928950 a^{9} b^{8}+525728261810290 b^{9}-368667646701200 a b^{9}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(648092452666120 a^{2} b^{9}-56591247876240 a^{3} b^{9}+64792026078780 a^{4} b^{9}-1040587825200 a^{5} b^{9}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(1221799794600 a^{6} b^{9}-1910554800 a^{7} b^{9}+4537567650 a^{8} b^{9}-18727536011800 b^{10}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(56336707180600 a b^{10}-12392461389000 a^{2} b^{10}+14735070827400 a^{3} b^{10}-571214351400 a^{4} b^{10}\right)}{[18}+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{262144\left(526590436680 a^{5} b^{10}-3247943160 a^{6} b^{10}+3247943160 a^{7} b^{10}+1658243409592 b^{11}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{262144\left(-1171241432144 a b^{11}+1773637762904 a^{2} b^{11}-151878786080 a^{3} b^{11}+136066994280 a^{4} b^{11}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(-1925658000 a^{5} b^{11}+1476337800 a^{6} b^{11}-36288133700 b^{12}+98497273420 a b^{12}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(-19917501240 a^{2} b^{12}+20082473320 a^{3} b^{12}-584116260 a^{4} b^{12}+417225900 a^{5} b^{12}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(1818469940 b^{13}-1160821200 a b^{13}+1556610440 a^{2} b^{13}-94143280 a^{3} b^{13}+70607460 a^{4} b^{13}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{262144\left(-22016360 b^{14}+54237480 a b^{14}-7652040 a^{2} b^{14}+6724520 a^{3} b^{14}+593096 b^{15}-272272 a b^{15}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& \left.\left.+\frac{262144\left(324632 a^{2} b^{15}-2975 b^{16}+6545 a b^{16}+35 b^{17}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}\right\}\right]
\end{aligned}
$$

iii. Evaluation of Main Summation Formula (8)

Substituting $c=\frac{a+b+37}{2}$ and $z=\frac{1}{2}$ in equation (2), and after that involving Gauss theorem, we get

$$
\text { L.H.S }=a \frac{2^{b} \Gamma\left(\frac{a+b+37}{2}\right)}{\Gamma(b)}\left[\frac { \Gamma (\frac { b } { 2 }) } { \Gamma (\frac { a + 1 } { 2 }) } \left\{\frac{131072(-6332659870762850625+15188465029114325025 a)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+\right.\right.
$$

$$
+\frac{131072\left(-14354510691610713240 a^{2}+7524314127912551832 a^{3}-2523698606200763196 a^{4}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(585146416702456764 a^{5}-98283050207112680 a^{6}+12319487399406824 a^{7}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(-1174199725349222 a^{8}+86014818744998 a^{9}-4862169489320 a^{10}+211577650856 a^{11}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(-7020044668 a^{12}+174281212 a^{13}-3132760 a^{14}+38488 a^{15}-289 a^{16}+a^{17}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(25321878164717979075 b-19523841512219551440 a b+47611998316914930072 a^{2} b\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(-12330825664600006416 a^{3} b+7687192319327829444 a^{4} b-1038346142047282320 a^{5} b\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
\begin{aligned}
& +\frac{131072\left(-2867948454968860760 a^{4} b^{2}+1845548308154811400 a^{5} b^{2}-124702534849141480 a^{6} b^{2}\right)}{\left[\prod^{17}\{a-b]\right.}+ \\
& {\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]} \\
& +\frac{131072\left(35260676281141080 a^{7} b^{2}-1500336516820680 a^{8} b^{2}+222764240366360 a^{9} b^{2}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(-5784150923320 a^{10} b^{2}+484991616200 a^{11} b^{2}-6995348360 a^{12} b^{2}+334423320 a^{13} b^{2}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(-2042040 a^{14} b^{2}+52360 a^{15} b^{2}+20437724329066130184 b^{3}+2575515240037515888 a b^{3}\right)}{\left[{ }^{17}\{ \right.}+ \\
& {\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]} \\
& +\frac{131072\left(33363872491954862088 a^{2} b^{3}-2090930383100586720 a^{3} b^{3}+4873159786850521320 a^{4} b^{3}\right)}{[17}+ \\
& {\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]} \\
& +\frac{131072\left(-258151156619337520 a^{5} b^{3}+163023689214444520 a^{6} b^{3}-5972150284654400 a^{7} b^{3}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(1664379337479320 a^{8} b^{3}-38955947128560 a^{9} b^{3}+5678665839000 a^{10} b^{3}-75925522400 a^{11} b^{3}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(6182616440 a^{12} b^{3}-35709520 a^{13} b^{3}+1623160 a^{14} b^{3}+2610557152281130500 b^{4}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(15572154733539836460 a b^{4}+732482294468001000 a^{2} b^{4}+5851298044645884600 a^{3} b^{4}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(-163646117957822500 a^{4} b^{4}+368261307782880820 a^{5} b^{4}-10339842738560720 a^{6} b^{4}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
\end{aligned}
$$

$$
\begin{array}{r}
+\frac{131072\left(6256949185681040 a^{7} b^{4}-125626624472580 a^{8} b^{4}+33613458015060 a^{9} b^{4}-406746041240 a^{10} b^{4}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
+\frac{131072\left(56687092280 a^{11} b^{4}-305965660 a^{12} b^{4}+23535820 a^{13} b^{4}+2172550998730044660 b^{5}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
+\frac{131072\left(1004608127102243440 a b^{5}+3242956850341887448 a^{2} b^{5}+76055235302610256 a^{3} b^{5}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
+\frac{131072\left(430788796363213596 a^{4} b^{5}-5907351875594400 a^{5} b^{5}+12781639991214864 a^{6} b^{5}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
\end{array}
$$

$$
+\frac{131072\left(-192523576889952 a^{7} b^{5}+110161047202668 a^{8} b^{5}-1135650386640 a^{9} b^{5}+287146418328 a^{10} b^{5}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]
$$

$$
+\frac{131072\left(-1593776507400 a^{8} b^{6}+855056340600 a^{9} b^{6}-3530373000 a^{10} b^{6}+834451800 a^{11} b^{6}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(5503690017256640 a^{3} b^{7}+9557288389416240 a^{4} b^{7}+69140320048800 a^{5} b^{7}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]
$$

$$
+\frac{131072\left(-1401879024 a^{11} b^{5}+183579396 a^{12} b^{5}+185576437854776920 b^{6}+768237818623401560 a b^{6}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(116735444133526680 a^{2} b^{6}+263248376733566840 a^{3} b^{6}+3399221138266800 a^{4} b^{6}\right)}{[17}+
$$

$$
+\frac{131072\left(14691849210062640 a^{5} b^{6}-101267395503120 a^{6} b^{6}+209987898508080 a^{7} b^{6}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(59177652660443128 b^{7}+37122270588325296 a b^{7}+80953716224732296 a^{2} b^{7}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(238397117389200 a^{6} b^{7}-782781595200 a^{7} b^{7}+1551234029400 a^{8} b^{7}-4639918800 a^{9} b^{7}\right)}{[17}+
$$

$$
+\frac{131072\left(2319959400 a^{1} 0 b^{7}+3287994950239450 b^{8}+11248058823729750 a b^{8}+2294394995865720 a^{2} b^{8}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(3442692988837960 a^{3} b^{8}+115095771016380 a^{4} b^{8}+161870114844900 a^{5} b^{8}+616153923000 a^{6} b^{8}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(1745291809800 a^{7} b^{8}-2149374150 a^{8} b^{8}+4059928950 a^{9} b^{8}+525728261810290 b^{9}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(368667646701200 a b^{9}+648092452666120 a^{2} b^{9}+56591247876240 a^{3} b^{9}+64792026078780 a^{4} b^{9}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(1040587825200 a^{5} b^{9}+1221799794600 a^{6} b^{9}+1910554800 a^{7} b^{9}+4537567650 a^{8} b^{9}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(18727536011800 b^{10}+56336707180600 a b^{10}+12392461389000 a^{2} b^{10}+14735070827400 a^{3} b^{10}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(571214351400 a^{4} b^{10}+526590436680 a^{5} b^{10}+3247943160 a^{6} b^{10}+3247943160 a^{7} b^{10}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(1658243409592 b^{11}+1171241432144 a b^{11}+1773637762904 a^{2} b^{11}+151878786080 a^{3} b^{11}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(136066994280 a^{4} b^{11}+1925658000 a^{5} b^{11}+1476337800 a^{6} b^{11}+36288133700 b^{12}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(98497273420 a b^{12}+19917501240 a^{2} b^{12}+20082473320 a^{3} b^{12}+584116260 a^{4} b^{12}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(417225900 a^{5} b^{12}+1818469940 b^{13}+1160821200 a b^{13}+1556610440 a^{2} b^{13}+94143280 a^{3} b^{13}\right)}{17}+
$$

$$
\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]
$$

$$
+\frac{131072\left(70607460 a^{4} b^{13}+22016360 b^{14}+54237480 a b^{14}+7652040 a^{2} b^{14}+6724520 a^{3} b^{14}+593096 b^{15}\right)}{[17}+
$$

$$
\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]
$$

$$
\left.+\frac{131072\left(272272 a b^{15}+324632 a^{2} b^{15}+2975 b^{16}+6545 a b^{16}+35 b^{17}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}\right\}-
$$

$$
-\frac{\Gamma\left(\frac{b+1}{2}\right)}{\Gamma\left(\frac{a+2}{2}\right)}\left\{\frac{131072\left(6332659870762850625+25321878164717979075 a-2162023563730570920 a^{2}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}\right.
$$

$$
+\frac{131072\left(20437724329066130184 a^{3}-2610557152281130500 a^{4}+2172550998730044660 a^{5}\right)}{\left[\frac{17}{\square}\right.}+
$$

$$
\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]
$$

$$
+\frac{131072\left(-185576437854776920 a^{6}+59177652660443128 a^{7}-3287994950239450 a^{8}\right)}{\left[\stackrel{17}{\prod}\{a-b-(2 \varepsilon-1)\}\right]\left[{ }_{\square}^{8}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]
$$

$$
\begin{aligned}
& +\frac{131072\left(525728261810290 a^{9}-18727536011800 a^{10}+1658243409592 a^{11}-36288133700 a^{12}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(1818469940 a^{13}-22016360 a^{14}+593096 a^{1} 5-2975 a^{16}+35 a^{17}+15188465029114325025 b\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(19523841512219551440 a b+64543172743280700360 a^{2} b-2575515240037515888 a^{3} b\right)}{\left[{ }^{17}\right.}+ \\
& {\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]} \\
& +\frac{131072\left(15572154733539836460 a^{4} b-1004608127102243440 a^{5} b+768237818623401560 a^{6} b\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(-37122270588325296 a^{7} b+11248058823729750 a^{8} b-368667646701200 a^{9} b\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(56336707180600 a^{10} b-1171241432144 a^{11} b+98497273420 a^{12} b-1160821200 a^{13} b\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(54237480 a^{14} b-272272 a^{15} b+6545 a^{16} b+14354510691610713240 b^{2}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(47611998316914930072 a b^{2}+11107176191996794920 a^{2} b^{2}+33363872491954862088 a^{3} b^{2}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(-732482294468001000 a^{4} b^{2}+3242956850341887448 a^{5} b^{2}-116735444133526680 a^{6} b^{2}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(80953716224732296 a^{7} b^{2}-2294394995865720 a^{8} b^{2}+648092452666120 a^{9} b^{2}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(-12392461389000 a^{10} b^{2}+1773637762904 a^{11} b^{2}-19917501240 a^{12} b^{2}+1556610440 a^{13} b^{2}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(-7652040 a^{14} b^{2}+324632 a^{15} b^{2}+7524314127912551832 b^{3}+12330825664600006416 a b^{3}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(26638838560038217560 a^{2} b^{3}+2090930383100586720 a^{3} b^{3}+5851298044645884600 a^{4} b^{3}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(-76055235302610256 a^{5} b^{3}+263248376733566840 a^{6} b^{3}-5503690017256640 a^{7} b^{3}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{131072\left(9557288389416240 a^{7} b^{4}-115095771016380 a^{8} b^{4}+64792026078780 a^{9} b^{4}-571214351400 a^{10} b^{4}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(136066994280 a^{11} b^{4}-584116260 a^{12} b^{4}+70607460 a^{13} b^{4}+585146416702456764 b^{5}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(1038346142047282320 a b^{5}+1845548308154811400 a^{2} b^{5}+258151156619337520 a^{3} b^{5}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(368261307782880820 a^{4} b^{5}+5907351875594400 a^{5} b^{5}+14691849210062640 a^{6} b^{5}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(-69140320048800 a^{7} b^{5}+161870114844900 a^{8} b^{5}-1040587825200 a^{9} b^{5}+526590436680 a^{10} b^{5}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(-1925658000 a^{11} b^{5}+417225900 a^{12} b^{5}+98283050207112680 b^{6}+283129024934512456 a b^{6}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
\end{aligned}
$$

$$
+\frac{131072\left(124702534849141480 a^{2} b^{6}+163023689214444520 a^{3} b^{6}+10339842738560720 a^{4} b^{6}\right)}{17}+
$$

$$
\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]
$$

$$
+\frac{131072\left(12781639991214864 a^{5} b^{6}+101267395503120 a^{6} b^{6}+238397117389200 a^{7} b^{6}-616153923000 a^{8} b^{6}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
+\frac{131072\left(1221799794600 a^{9} b^{6}-3247943160 a^{10} b^{6}+1476337800 a^{11} b^{6}+12319487399406824 b^{7}\right)}{{ }^{17}}+
$$

$$
\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]
$$

$$
+\frac{131072\left(22414624986818768 a b^{7}+35260676281141080 a^{2} b^{7}+5972150284654400 a^{3} b^{7}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+
$$

$$
\begin{aligned}
& +\frac{131072\left(6256949185681040 a^{4} b^{7}+192523576889952 a^{5} b^{7}+209987898508080 a^{6} b^{7}+782781595200 a^{7} b^{7}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(1745291809800 a^{8} b^{7}-1910554800 a^{9} b^{7}+3247943160 a^{10} b^{7}+1174199725349222 b^{8}\right)}{\left[\prod^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& {\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]} \\
& +\frac{131072\left(3231412550832642 a b^{8}+1500336516820680 a^{2} b^{8}+1664379337479320 a^{3} b^{8}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(125626624472580 a^{4} b^{8}+110161047202668 a^{5} b^{8}+1593776507400 a^{6} b^{8}+1551234029400 a^{7} b^{8}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(2149374150 a^{8} b^{8}+4537567650 a^{9} b^{8}+86014818744998 b^{9}+155206622884720 a b^{9}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(222764240366360 a^{2} b^{9}+38955947128560 a^{3} b^{9}+33613458015060 a^{4} b^{9}+1135650386640 a^{5} b^{9}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(855056340600 a^{6} b^{9}+4639918800 a^{7} b^{9}+4059928950 a^{8} b^{9}+4862169489320 b^{10}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(12794409439592 a b^{10}+5784150923320 a^{2} b^{10}+5678665839000 a^{3} b^{10}+406746041240 a^{4} b^{10}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(287146418328 a^{5} b^{10}+3530373000 a^{6} b^{10}+2319959400 a^{7} b^{10}+211577650856 b^{11}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(366157152816 a b^{11}+484991616200 a^{2} b^{11}+75925522400 a^{3} b^{11}+56687092280 a^{4} b^{11}\right)}{\left[\prod^{17}\{ \right.}+ \\
& {\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]} \\
& +\frac{131072\left(1401879024 a^{5} b^{11}+834451800 a^{6} b^{11}+7020044668 b^{12}+17543988644 a b^{12}+6995348360 a^{2} b^{12}\right)}{[17}+ \\
& {\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]} \\
& +\frac{131072\left(6182616440 a^{3} b^{12}+305965660 a^{4} b^{12}+183579396 a^{5} b^{12}+174281212 b^{13}+274185520 a b^{13}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}+ \\
& +\frac{131072\left(334423320 a^{2} b^{13}+35709520 a^{3} b^{13}+23535820 a^{4} b^{13}+3132760 b^{14}+7297080 a b^{14}\right)}{\left[{ }^{17}\{ \right.}+ \\
& {\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]} \\
& +\frac{131072\left(2042040 a^{2} b^{14}+1623160 a^{3} b^{14}+38488 b^{15}+47600 a b^{15}+52360 a^{2} b^{15}+289 b^{16}\right)}{[17}+ \\
& {\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\frac{131072\left(595 a b^{16}+b^{17}\right)}{\left[\prod_{\varepsilon=1}^{17}\{a-b-(2 \varepsilon-1)\}\right]\left[\prod_{\zeta=1}^{18}\{a-b+(2 \zeta-1)\}\right]}\right\}\right]- \\
& -\frac{2^{b+1} \Gamma\left(\frac{a+b+37}{2}\right)}{\Gamma(b)}\left[\frac { \Gamma (\frac { b + 1 } { 2 }) } { \Gamma (\frac { a } { 2 }) } \left\{\frac{131072(6332659870762850625+15188465029114325025 a)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+\right.\right. \\
& +\frac{131072\left(14354510691610713240 a^{2}+7524314127912551832 a^{3}+2523698606200763196 a^{4}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(585146416702456764 a^{5}+98283050207112680 a^{6}+12319487399406824 a^{7}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(1174199725349222 a^{8}+86014818744998 a^{9}+4862169489320 a^{10}+211577650856 a^{11}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(7020044668 a^{12}+174281212 a^{13}+3132760 a^{14}+38488 a^{1} 5+289 a^{16}+a^{17}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(25321878164717979075 b+19523841512219551440 a b+47611998316914930072 a^{2} b\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(12330825664600006416 a^{3} b+7687192319327829444 a^{4} b+1038346142047282320 a^{5} b\right)}{\left[{ }^{18}\right.}+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{131072\left(283129024934512456 a^{6} b+22414624986818768 a^{7} b+3231412550832642 a^{8} b\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(155206622884720 a^{9} b+12794409439592 a^{10} b+366157152816 a^{11} b+17543988644 a^{12} b\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(274185520 a^{13} b+7297080 a^{14} b+47600 a^{15} b+595 a^{16} b-2162023563730570920 b^{2}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(64543172743280700360 a b^{2}+11107176191996794920 a^{2} b^{2}+26638838560038217560 a^{3} b^{2}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(2867948454968860760 a^{4} b^{2}+1845548308154811400 a^{5} b^{2}+124702534849141480 a^{6} b^{2}\right)}{\left[{ }^{18}\right.}+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{131072\left(35260676281141080 a^{7} b^{2}+1500336516820680 a^{8} b^{2}+222764240366360 a^{9} b^{2}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
\end{aligned}
$$

$+\frac{131072\left(5784150923320 a^{10} b^{2}+484991616200 a^{11} b^{2}+6995348360 a^{12} b^{2}+334423320 a^{13} b^{2}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+$

$$
+\frac{131072\left(2042040 a^{14} b^{2}+52360 a^{15} b^{2}+20437724329066130184 b^{3}-2575515240037515888 a b^{3}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(33363872491954862088 a^{2} b^{3}+2090930383100586720 a^{3} b^{3}+4873159786850521320 a^{4} b^{3}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(258151156619337520 a^{5} b^{3}+163023689214444520 a^{6} b^{3}+5972150284654400 a^{7} b^{3}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(1664379337479320 a^{8} b^{3}+38955947128560 a^{9} b^{3}+5678665839000 a^{10} b^{3}+75925522400 a^{11} b^{3}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(6182616440 a^{12} b^{3}+35709520 a^{13} b^{3}+1623160 a^{14} b^{3}-2610557152281130500 b^{4}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(15572154733539836460 a b^{4}-732482294468001000 a^{2} b^{4}+5851298044645884600 a^{3} b^{4}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(163646117957822500 a^{4} b^{4}+368261307782880820 a^{5} b^{4}+10339842738560720 a^{6} b^{4}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(6256949185681040 a^{7} b^{4}+125626624472580 a^{8} b^{4}+33613458015060 a^{9} b^{4}+406746041240 a^{10} b^{4}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(56687092280 a^{11} b^{4}+305965660 a^{12} b^{4}+23535820 a^{13} b^{4}+2172550998730044660 b^{5}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(-1004608127102243440 a b^{5}+3242956850341887448 a^{2} b^{5}-76055235302610256 a^{3} b^{5}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(430788796363213596 a^{4} b^{5}+5907351875594400 a^{5} b^{5}+12781639991214864 a^{6} b^{5}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(192523576889952 a^{7} b^{5}+110161047202668 a^{8} b^{5}+1135650386640 a^{9} b^{5}+287146418328 a^{10} b^{5}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(1401879024 a^{11} b^{5}+183579396 a^{12} b^{5}-185576437854776920 b^{6}+768237818623401560 a b^{6}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
\begin{aligned}
&+ \frac{131072\left(-116735444133526680 a^{2} b^{6}+263248376733566840 a^{3} b^{6}-3399221138266800 a^{4} b^{6}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
&+\frac{131072\left(14691849210062640 a^{5} b^{6}+101267395503120 a^{6} b^{6}+209987898508080 a^{7} b^{6}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
&+ \frac{131072\left(1593776507400 a^{8} b^{6}+855056340600 a^{9} b^{6}+3530373000 a^{10} b^{6}+834451800 a^{11} b^{6}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
&+\frac{131072\left(59177652660443128 b^{7}-37122270588325296 a b^{7}+80953716224732296 a^{2} b^{7}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
\end{aligned}
$$

$$
+\frac{131072\left(-5503690017256640 a^{3} b^{7}+9557288389416240 a^{4} b^{7}-69140320048800 a^{5} b^{7}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(238397117389200 a^{6} b^{7}+782781595200 a^{7} b^{7}+1551234029400 a^{8} b^{7}+4639918800 a^{9} b^{7}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(2319959400 a^{1} 0 b^{7}-3287994950239450 b^{8}+11248058823729750 a b^{8}-2294394995865720 a^{2} b^{8}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(3442692988837960 a^{3} b^{8}-115095771016380 a^{4} b^{8}+161870114844900 a^{5} b^{8}-616153923000 a^{6} b^{8}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(1745291809800 a^{7} b^{8}+2149374150 a^{8} b^{8}+4059928950 a^{9} b^{8}+525728261810290 b^{9}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(-368667646701200 a b^{9}+648092452666120 a^{2} b^{9}-56591247876240 a^{3} b^{9}+64792026078780 a^{4} b^{9}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(-1040587825200 a^{5} b^{9}+1221799794600 a^{6} b^{9}-1910554800 a^{7} b^{9}+4537567650 a^{8} b^{9}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(-18727536011800 b^{10}+56336707180600 a b^{10}-12392461389000 a^{2} b^{10}+14735070827400 a^{3} b^{10}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(-571214351400 a^{4} b^{10}+526590436680 a^{5} b^{10}-3247943160 a^{6} b^{10}+3247943160 a^{7} b^{10}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(1658243409592 b^{11}-1171241432144 a b^{11}+1773637762904 a^{2} b^{11}-151878786080 a^{3} b^{11}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
\begin{gathered}
+\frac{131072\left(136066994280 a^{4} b^{11}-1925658000 a^{5} b^{11}+1476337800 a^{6} b^{11}-36288133700 b^{12}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
+\frac{131072\left(98497273420 a b^{12}-19917501240 a^{2} b^{12}+20082473320 a^{3} b^{12}-584116260 a^{4} b^{12}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
+\frac{131072\left(417225900 a^{5} b^{12}+1818469940 b^{13}-1160821200 a b^{13}+1556610440 a^{2} b^{13}-94143280 a^{3} b^{13}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
+\frac{131072\left(70607460 a^{4} b^{13}-22016360 b^{14}+54237480 a b^{14}-7652040 a^{2} b^{14}+6724520 a^{3} b^{14}+593096 b^{15}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
+\frac{131072\left(-272272 a b^{15}+324632 a^{2} b^{15}-2975 b^{16}+6545 a b^{16}+35 b^{17}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}- \\
-\frac{\Gamma\left(\frac{b+2}{2}\right)}{\Gamma\left(\frac{a+1}{2}\right)}\left\{\frac{131072\left(-6332659870762850625+25321878164717979075 a+2162023563730570920 a^{2}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}\right. \\
+\frac{131072\left(20437724329066130184 a^{3}+2610557152281130500 a^{4}+2172550998730044660 a^{5}\right)}{\left[\prod_{=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\Omega=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
\end{gathered}
$$

$$
+\frac{131072\left(185576437854776920 a^{6}+59177652660443128 a^{7}+3287994950239450 a^{8}+525728261810290 a^{9}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(18727536011800 a^{10}+1658243409592 a^{11}+36288133700 a^{12}+1818469940 a^{13}+22016360 a^{14}\right)}{\ulcorner\ulcorner }+
$$

$$
\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]
$$

$$
+\frac{131072\left(593096 a^{15}+2975 a^{16}+35 a^{17}+15188465029114325025 b-19523841512219551440 a b\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(64543172743280700360 a^{2} b+2575515240037515888 a^{3} b+15572154733539836460 a^{4} b\right)}{[18}+
$$

$$
\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]
$$

$$
+\frac{131072\left(1004608127102243440 a^{5} b+768237818623401560 a^{6} b+37122270588325296 a^{7} b\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(11248058823729750 a^{8} b+368667646701200 a^{9} b+56336707180600 a^{10} b+1171241432144 a^{11} b\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(98497273420 a^{12} b+1160821200 a^{13} b+54237480 a^{14} b+272272 a^{15} b+6545 a^{16} b\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
\begin{aligned}
& +\frac{131072\left(-14354510691610713240 b^{2}+47611998316914930072 a b^{2}-11107176191996794920 a^{2} b^{2}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(33363872491954862088 a^{3} b^{2}+732482294468001000 a^{4} b^{2}+3242956850341887448 a^{5} b^{2}\right)}{\left[{ }^{18}\right.}+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{131072\left(116735444133526680 a^{6} b^{2}+80953716224732296 a^{7} b^{2}+229439\right.}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{131072\left(648092452666120 a^{9} b^{2}+12392461389000 a^{10} b^{2}+1773637762904 a^{11} b^{2}+19917501240 a^{12} b^{2}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(1556610440 a^{13} b^{2}+7652040 a^{14} b^{2}+324632 a^{15} b^{2}+7524314127912551832 b^{3}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(-12330825664600006416 a b^{3}+26638838560038217560 a^{2} b^{3}-2090930383100586720 a^{3} b^{3}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(5851298044645884600 a^{4} b^{3}+76055235302610256 a^{5} b^{3}+263248376733566840 a^{6} b^{3}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(5503690017256640 a^{7} b^{3}+3442692988837960 a^{8} b^{3}+56591247876240 a^{9} b^{3}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\rho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(14735070827400 a^{10} b^{3}+151878786080 a^{11} b^{3}+20082473320 a^{12} b^{3}+94143280 a^{13} b^{3}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(6724520 a^{14} b^{3}-2523698606200763196 b^{4}+7687192319327829444 a b^{4}\right)}{\left[{ }^{18}\right.}+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{131072\left(-2867948454968860760 a^{2} b^{4}+4873159786850521320 a^{3} b^{4}-163646117957822500 a^{4} b^{4}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(430788796363213596 a^{5} b^{4}+3399221138266800 a^{6} b^{4}+9557288389416240 a^{7} b^{4}\right)}{[18}+ \\
& {\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]} \\
& +\frac{131072\left(115095771016380 a^{8} b^{4}+64792026078780 a^{9} b^{4}+571214351400 a^{10} b^{4}+136066994280 a^{11} b^{4}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(584116260 a^{12} b^{4}+70607460 a^{13} b^{4}+585146416702456764 b^{5}-1038346142047282320 a b^{5}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{131072\left(1845548308154811400 a^{2} b^{5}-258151156619337520 a^{3} b^{5}+368261307782880820 a^{4} b^{5}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(-5907351875594400 a^{5} b^{5}+14691849210062640 a^{6} b^{5}+69140320048800 a^{7} b^{5}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(161870114844900 a^{8} b^{5}+1040587825200 a^{9} b^{5}+526590436680 a^{10} b^{5}+1925658000 a^{11} b^{5}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
& +\frac{131072\left(-124702534849141480 a^{2} b^{6}+163023689214444520 a^{3} b^{6}-10339842738560720 a^{4} b^{6}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
\end{aligned}
$$

$$
+\frac{131072\left(12781639991214864 a^{5} b^{6}-101267395503120 a^{6} b^{6}+238397117389200 a^{7} b^{6}+616153923000 a^{8} b^{6}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(1221799794600 a^{9} b^{6}+3247943160 a^{10} b^{6}+1476337800 a^{11} b^{6}+12319487399406824 b^{7}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(-22414624986818768 a b^{7}+35260676281141080 a^{2} b^{7}-5972150284654400 a^{3} b^{7}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(6256949185681040 a^{4} b^{7}-192523576889952 a^{5} b^{7}+209987898508080 a^{6} b^{7}-782781595200 a^{7} b^{7}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(1745291809800 a^{8} b^{7}+1910554800 a^{9} b^{7}+3247943160 a^{10} b^{7}-1174199725349222 b^{8}\right)}{\left[\frac{18}{\square}\right.}+
$$

$$
\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]
$$

$$
+\frac{131072\left(3231412550832642 a b^{8}-1500336516820680 a^{2} b^{8}+1664379337479320 a^{3} b^{8}\right)}{[18}+
$$

$$
\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]
$$

$$
+\frac{131072\left(-125626624472580 a^{4} b^{8}+110161047202668 a^{5} b^{8}-1593776507400 a^{6} b^{8}+1551234029400 a^{7} b^{8}\right)}{\lceil 18}+
$$

$$
\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]
$$

$$
+\frac{131072\left(-2149374150 a^{8} b^{8}+4537567650 a^{9} b^{8}+86014818744998 b^{9}-155206622884720 a b^{9}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(222764240366360 a^{2} b^{9}-38955947128560 a^{3} b^{9}+33613458015060 a^{4} b^{9}-1135650386640 a^{5} b^{9}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(855056340600 a^{6} b^{9}-4639918800 a^{7} b^{9}+4059928950 a^{8} b^{9}-4862169489320 b^{10}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(12794409439592 a b^{10}-5784150923320 a^{2} b^{10}+5678665839000 a^{3} b^{10}-406746041240 a^{4} b^{10}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(287146418328 a^{5} b^{10}-3530373000 a^{6} b^{10}+2319959400 a^{7} b^{10}+211577650856 b^{11}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
+\frac{131072\left(-366157152816 a b^{11}+484991616200 a^{2} b^{11}-75925522400 a^{3} b^{11}+56687092280 a^{4} b^{11}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+
$$

$$
\begin{gathered}
+\frac{131072\left(-1401879024 a^{5} b^{11}+834451800 a^{6} b^{11}-7020044668 b^{12}+17543988644 a b^{12}-6995348360 a^{2} b^{12}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
+\frac{131072\left(6182616440 a^{3} b^{12}-305965660 a^{4} b^{12}+183579396 a^{5} b^{12}+174281212 b^{13}-274185520 a b^{13}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
+\frac{131072\left(334423320 a^{2} b^{13}-35709520 a^{3} b^{13}+23535820 a^{4} b^{13}-3132760 b^{14}+7297080 a b^{14}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
+\frac{131072\left(-2042040 a^{2} b^{14}+1623160 a^{3} b^{14}+38488 b^{15}-47600 a b^{15}+52360 a^{2} b^{15}-289 b^{16}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}+ \\
\left.+\frac{131072\left(595 a b^{16}+b^{17}\right)}{\left[\prod_{\varpi=1}^{18}\{a-b-(2 \varpi-1)\}\right]\left[\prod_{\varrho=1}^{17}\{a-b+(2 \varrho-1)\}\right]}\right]
\end{gathered}
$$

On simplification the result (8) is derived.

References Références Referencias

1. Andrews, L.C. ; Special Function of mathematics for Engineers, McGraw-Hill Co Inc., New York, 1992.
2. Arora, Asish, Singh, Rahul, Salahuddin. ; Development of a family of summation formulae of half argument using Gauss and Bailey theorems , Journal of Rajasthan Academy of Physical Sciences., 7 (2008), 335-342.
3. Bells, Richard., Wong, Roderick ; Special Function, A Graduate Text. Cambridge Studies in Advanced Mathematics, 2010.
4. Lavoie, J. L., Grondin, F. and Rathie, A.K.; Generalizations of Watson's theorem on the sum of a ${ }_{3} F_{2}$, Indian J. Math., 34(1992), 23-32.
5. Lavoie, J. L., Grondin, F. and Rathie, A.K.; Generalizations of Whipple's theorem on the sum of $\mathrm{a}_{3} F_{2}$, J. Comput. Appl. Math., 72(1996), 293-300.
6. Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O.I.; Integrals and Series Vol. 3: More Special Functions. Nauka, Moscow, 1986. Translated from the Russian by G.G. Gould, Gordon and Breach Science Publishers, New York, Philadelphia, London, Paris, Montreux, Tokyo, Melbourne, 1990.
7. Rainville, E. D.; The contiguous function relations for ${ }_{p} F_{q}$ with applications to Bateman's $J_{n}^{u, v}$ and Rice's $H_{n}(\zeta, p, \nu)$, Bull. Amer. Math. Soc., 51(1945), 714-723.
8. Salahuddin, Chaudhary, M.P ; Development of some summation formulae using Hypergeometric function, Global journal of Science Frontier Research, 10(2010),36- 48.
9. Salahuddin ; Two summation formulae based on half argument associated to Hypergeometic function, Global journal of Science Frontier Research, 10(2010),08-19.

This page is intentionally left blank

Global Journal of Science Frontier Research
MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 2 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Some New Properties of Generalized Polynomials and \bar{H}-Function Associated with Feynman Integrals

By V.G.Gupta \& Nawal Kishor Jangid

University of Rajasthan
Abstract - In the present paper we study the integrals involving generalized polynomials (multivariable) and the \bar{H}-function. The \bar{H}-function was proposed by Inayat-Hussain which contain a certain class of Feynman integrals, the exact partition function of the Gaussian model in statistical mechanics and several other functions as its particular cases. Our integrals are unified in nature and act as key formulae from which we can derive as particular cases, integrals involving a large number of simpler special functions and polynomials. For the sake of illustration, we give here some particular cases of our main integral which are also new and of interest by themselves. At the end, we give applications of our main findings by interconnecting them with the Riemann-Liouville type of fractional integral operator. The results obtained by us are basic in nature and are likely to find useful applications in several fields notably electricals networks, probability theory and statistical mechanics.

Keywords : feynman integrals, \bar{H} - function, generalized polynom ials, fractional integral operator.
GJSFR-F Classification : MSC 2010: 08A40, 81Q30

Strictly as per the compliance and regulations of:

© 2013. V.G.Gupta \& Nawal Kishor Jangid. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In the present paper we study the integrals involving generalized polynomials (multivariable) and the $\bar{H}-$ function. The \bar{H}-function was proposed by Inayat-Hussain which contain a certain class of Feynman integrals, the exact partition function of the Gaussian model in statistical mechanics and several other functions as its particular cases. Our integrals are unified in nature and act as key formulae from which we can derive as particular cases, integrals involving a large number of simpler special functions and polynomials. For the sake of illustration, we give here some particular cases of our main integral which are also new and of interest by themselves. At the end, we give applications of our main findings by interconnecting them with the Riemann-Liouville type of fractional integral operator. The results obtained by us are basic in nature and are likely to find useful applications in several fields notably electricals networks, probability theory and statistical mechanics.

Keywords : feynman integrals, \bar{H}-function, generalized polynom ials, fractional integral operator.

I. Introduction

Feynman path integrals are reformulation of quantum mechanics and are more fundamental than the conventional one in terms of operators because in the domain of quantum cosmology the conventional formulation may fail but Feynman path integrals still apply [6]. Inayat-Hussain [9] has pointed out the usefulness of Feynman integrals in the study and development of simple and multiple variable hypergeometric series which in turn are very useful in statistical mechanics. Hussain has introduced in another paper [10] the \bar{H}-function which is a new generalization of the familiar H-function of Fox [4]. The \bar{H}-function contains the exact partition function of the Gaussian model in statistical mechanics, functions useful in testing hypothesis and several others as its special cases. The \bar{H}-function has been defined and represented as follows [2].

$$
\bar{H}_{P, Q}^{M, N}[z]=\bar{H}_{P, Q}^{M, N}\left[z \left\lvert\, \begin{array}{l}
\left(a_{j}, \alpha_{j} ; A_{j}\right)_{1, N},\left(a_{j}, \alpha_{j}\right)_{N+1, P} \tag{1.1}\\
\left(b_{j}, \beta_{j}\right)_{1, M},\left(b_{j}, \beta_{j} ; B_{j}\right)_{M+1, Q}
\end{array}\right.\right]=\frac{1}{2 \pi \omega} \int_{-i \infty}^{+i \infty} \phi(\xi) z^{\xi} d \xi
$$

[^1]Where

$$
\begin{equation*}
\phi(\xi)=\frac{\prod_{j=1}^{M} \Gamma\left(b_{j}-\beta_{j} \xi\right) \prod_{j=1}^{N}\left\{\Gamma\left(1-a_{j}+\alpha_{j} \xi\right)\right\}^{A_{j}}}{\prod_{j=M+1}^{Q}\left\{\Gamma\left(1-b_{j}+\beta_{j} \xi\right)\right\}^{B_{j}} \prod_{j=N+1}^{P} \Gamma\left(a_{j}-\alpha_{j} \xi\right)} \tag{1.2}
\end{equation*}
$$

which contains fractional powers of some of the gamma functions. Here, and throughout the paper $a_{j}(j=1, \ldots, P)$, and $b_{j}(j=1, \ldots, Q)$ are complex parameters, $\alpha_{j} \geq 0(j=1, \ldots, P), \quad \beta_{j} \geq 0(j=1, \ldots, Q)$ (not all zero simultaneously) and the exponents order to avoid the singularities of the gamma functions and to keep those singularities on appropriate sides. Again, for $A_{j}(j=1, \ldots, N)$ not an integer, the poles of the gamma functions of the numerator in (1.2) are converted to branch points. However, as long as there is no coincidence of poles from any $\Gamma\left(b_{j}-\beta_{j} \xi\right)(\mathrm{j}=1, \ldots, \mathrm{M})$ and $\Gamma\left(1-a_{j}-\alpha_{j} \xi\right)(\mathrm{j}=$ $1, \ldots, \mathrm{~N})$ pair, the branch cuts can be chosen so that the path of integration can be distorted in the usual manner.

Evidently, when the exponents A_{j} and B_{j} all take an integer values, the \bar{H} function reduces to the well known Fox's H-function [4].

The following sufficient conditions for the absolute convergence of the defining integral for
\bar{H}-function given by equation (1.1) have been given by Buschman and Srivastava[2].

$$
\begin{equation*}
\theta=\sum_{j=1}^{M}\left|\beta_{j}\right|+\sum_{j=1}^{N}\left|A_{j} \alpha_{j}\right|-\sum_{j=M+1}^{Q}\left|B_{j} \beta_{j}\right|-\sum_{j=N+1}^{P}\left|\alpha_{j}\right|>0 \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
|\arg z|<\frac{1}{2} \theta \pi . \tag{1.4}
\end{equation*}
$$

where θ is given by (1.3).
The behaviour of the \bar{H}-function for small values of $|z|$ follows easily from a result recently given by Rathie [13, p. 306, eq. (6.9)], we have

$$
\begin{equation*}
\bar{H}_{P, Q}^{M, N}[z]=o\left(|z|^{\alpha}\right), \alpha=\operatorname{Min}_{1 \leq j \leq M}\left\{\operatorname{Re}\left(b_{j} / \beta_{j}\right)\right\} \text { for small }|z| . \tag{1.5}
\end{equation*}
$$

Investigations of the convergence conditions, all possible types of contours, type of critical points of the integrand of (1.1), etc. can be made by an interested reader by following analogous techniques given in the well known works of Braaksma [1], Hai and Yakubovich [8]. We however omit the details.

Srivastava ([14], P.185,eq.(7)) has defined and introduced the generalized polynomials (multivariable)

$$
\begin{align*}
& S_{n_{1}, \ldots, n_{r}}^{m_{1}, \ldots, m_{r}}\left[x_{1}, \ldots, x_{r}\right]= \\
& \quad \sum_{k_{1}=0}^{\left[n_{1} / m_{1}\right]} \ldots \sum_{k_{r}=0}^{\left[n_{r} / m_{r}\right]} \frac{\left(-n_{1}\right)_{m_{1} k_{1}}}{k_{1}!} \ldots \frac{\left(-n_{r}\right)_{m_{r} k_{r}}}{k_{r}!} A\left[n_{1}, k_{1} ; \ldots ; n_{r}, k_{r}\right] x^{k_{1}} \ldots, x^{k_{r}} \tag{1.6}
\end{align*}
$$

where $\mathrm{n}_{\mathrm{i}}=0,1,2, \ldots(\mathrm{I}=1, \ldots, \mathrm{r}), \mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{r}}$ are an arbitrary positive integers and the coefficients $A\left[n_{1}, k_{1} ; \ldots ; n_{r}, k_{r}\right]$ are arbitrary constants, real or complex .

iI. Integrals Required

The following integrals will be required in our results

$$
\begin{gather*}
\int_{0}^{b} x^{\lambda-1}(b-x)^{\eta-1} d x=b^{\lambda+\eta-1} B(\lambda, \eta) \quad ; \operatorname{Re}(\lambda)>0, \operatorname{Re}(\eta)>0 \tag{2.1}\\
\int_{0}^{u} x^{\mu-1}(u-x)^{v-1} e^{\alpha x} d x=B(v, \mu) u^{\mu+\nu-1}{ }_{1} F_{1}(\mu ; \mu+v ; \alpha u) ; \tag{2.2}\\
\operatorname{Re}(\mu)>0, \operatorname{Re}(\nu)>0 \\
\int_{0}^{u} x^{-\mu-1}(u-x)^{\mu-1} e^{-\alpha / x} d x=\alpha^{-\mu} u^{\mu-1} \Gamma(\mu) e^{-\alpha / u} ; \operatorname{Re}(\mu)>0, u>0 \tag{2.3}
\end{gather*}
$$

iII. Main Integrals

a) First Integral

We shall establish the following integral formulas:

$$
\begin{gather*}
\int_{0}^{b} x^{\rho-1}(b-x)^{\sigma-1} \bar{H}_{P, Q}^{M, N}\left[z x^{u}(b-x)^{v} \left\lvert\, \begin{array}{l}
\left(a_{j}, \alpha_{j} ; A_{j}\right)_{1, N},\left(a_{j}, \alpha_{j}\right)_{N+1, P} \\
\left(b_{j}, \beta_{j}\right)_{1, M},\left(b_{j}, \beta_{j} ; B_{j}\right)_{M+1, Q}
\end{array}\right.\right] \times \\
S_{n_{1}, \ldots, n_{r}}^{m_{1}, \ldots m_{r}}\left[z_{1} x^{\lambda_{1}}(b-x)^{\mu_{1}}, \ldots, z_{r} x^{\lambda r}(b-x)^{\mu_{r}}\right] \mathrm{dx} \\
=b^{\rho+\sigma+\sum_{i=1}^{r}\left(\lambda_{i}+\mu_{i}\right)^{2} k_{i}-1} \sum_{k_{1}=0}^{\left[n_{1} / m_{1}\right]} \ldots \sum_{k_{r}=0}^{\left[n_{r} / m_{r}\right]} \frac{\left(-n_{1}\right)_{m_{1} k_{1}}}{k_{1}!} \ldots \frac{\left(-n_{r}\right)_{m_{r} k_{r}}}{k_{r}!} A\left[n_{1}, k_{1} ; \ldots ; n_{r}, k_{r}\right] \prod_{i=1}^{r} z_{i}^{k_{i}} \\
\bar{H}_{P+2, Q+1}^{M, N+2}\left[z b^{u+v}\left[\left(1-\rho-\sum_{\neq 1}^{r} \lambda_{i} k_{i}, u ; 1\right),\left(1-\sigma-\sum_{\mp=1}^{r} \mu_{i} k_{i}, v ; 1\right),\left(a_{j}, \alpha_{j} ; A_{j}\right)_{1, N},\left(a_{j}, \alpha_{j}\right)_{N+1, P}\right]\right. \tag{3.1}\\
\left.\left(b_{j}, \beta_{j}\right)_{1, M},\left(b_{j}, \beta_{j} ; B_{j}\right)_{M+1, Q},\left(1-\rho-\sigma-\sum_{\mp=1}^{r}\left(\lambda_{i}+\mu_{i}\right) k_{i}, u+v ; 1\right)\right]
\end{gather*}
$$

valid under the conditions

(i) $u \geq 0, v \geq 0$ (not both zero simultaneously
(ii) $\operatorname{Re}(\rho)+\sum_{i=1}^{r} \lambda_{i}\left(\frac{n_{i}}{m_{i}}\right)+u \min _{1 \leq j \leq M}\left[\operatorname{Re}\left(b_{j} / \beta_{j}\right)\right]>0$

$$
\operatorname{Re}(\sigma)+\sum_{i=1}^{r} \mu_{i}\left(\frac{n_{i}}{m_{i}}\right)+v \min _{1 \leq j \leq M}\left[\operatorname{Re}\left(b_{j} / \beta_{j}\right)\right]>0
$$

(iii) The \bar{H} - function occurring in (3.1) satisfy conditions corresponding appropriately to those given by (1.3) and (1.4).
b) Second Integral

$$
\begin{gather*}
\int_{0}^{b} x^{\rho-1}(b-x)^{\sigma-1} e^{\alpha x} \bar{H}_{P, Q}^{M, N}\left[z x^{u}(b-x)^{v} e^{\delta x} \left\lvert\, \begin{array}{l}
\left(a_{j}, \alpha_{j} ; A_{j}\right)_{1, N},\left(a_{j}, \alpha_{j}\right)_{N+1, P} \\
\left(b_{j}, \beta_{j}\right)_{1, M},\left(b_{j}, \beta_{j} ; B_{j}\right)_{M+1, Q}
\end{array}\right.\right] \times \\
S_{n_{1}, \ldots, n_{r}}^{m_{1}, \ldots m_{r}}\left[z_{1} X^{\lambda_{1}}(b-x)^{\mu_{1}}, \ldots, z_{r} x^{2 r}(b-x)^{\mu_{r}}\right] \mathrm{dx} \\
=b^{\rho+\sigma+\sum_{i=1}^{r}\left(\lambda_{i}+\mu_{i}\right) k_{i}-1} \sum_{k_{1}=0}^{\left[n_{1}, m_{1}\right]} \ldots \sum_{k_{r}=0}^{\left[n_{r} / m_{r}\right]} \frac{\left(-n_{1}\right)_{m_{1} k_{1}}}{k_{1}!} \ldots \frac{\left(-n_{r}\right)_{m_{r} k_{r}}}{k_{r}!} \frac{b^{t}}{t!} A\left[n_{1}, k_{1} ; \ldots ; n_{r}, k_{r}\right] \prod_{i=1}^{r} z_{i}^{k_{i}} \\
\bar{H}_{P+3, Q+2}^{M, N+3}\left[z b^{u+v}\left[\left(1-\rho-\sum_{i=1}^{r} \lambda_{i} k_{i}-t, u ; 1\right),\left(1-\sigma-\sum_{i=1}^{r} \mu_{i} k_{i}, v ; 1\right),(-\alpha, \delta ; r),\left(a_{j}, \alpha_{j} ; A_{j}\right)_{1, N},\left(a_{j}, \alpha_{j}\right)_{N+1, P}\right]\right. \tag{3.2}\\
\left.\left(b_{j}, \beta_{j}\right)_{1, M},\left(b_{j}, \beta_{j} ; B_{j}\right)_{M+1, Q},(1-\alpha, \delta ; r),\left(1-\rho-\sigma-\sum_{i=1}^{r}\left(\lambda_{i}+\mu_{i}\right) k_{i}-t, u+v ; 1\right)\right]
\end{gather*}
$$

where the \bar{H}-function occurring in the left hand side of (3.2) stands for the new generalized H -function defined by (1.1) and $s_{n_{1}, \ldots, n_{r}}^{m_{1}, \ldots, n_{r}}\left[x_{1}, \ldots, x_{r}\right]$ stands for the generalized polynomials given in(1.6).

The above integral holds true under the following conditions:-
(i) $\operatorname{Re}(\rho, \sigma)>0, \mathrm{u}, \mathrm{v} \geq 0$,
(ii) when $\min \left(\mu_{i}, \lambda_{i}\right) \geq 0$ for all $\mathrm{I}=1, \ldots, \mathrm{r}$ (not all zero simulteneously).

I $\quad \operatorname{Re}(\rho)+\sum_{i=1}^{r} \lambda_{i}\left[\frac{n_{i}}{m_{i}}\right]+u \min _{1 \leq j \leq M} \operatorname{Re}\left(b_{j} / B_{j}\right)>0$

$$
\text { II } \quad \operatorname{Re}(\sigma)+\sum_{i=1}^{r} \mu_{i}\left[\frac{n_{i}}{m_{i}}\right]+v \min _{1 \leq j \leq M} \operatorname{Re}\left(b_{j} / B_{j}\right)>0
$$

(iii) when $\max \left(\mu_{i}, \lambda_{i}\right)<0$ for all $\mathrm{I}=1, \ldots, \mathrm{r}$ (not all zero simulteneously).

$$
\text { I } \quad \operatorname{Re}(\rho)+\sum_{i=1}^{r} \lambda_{i}\left[\frac{n_{i}}{m_{i}}\right]+u \min _{1 \leq j \leq M} \operatorname{Re}\left(b_{j} / B_{j}\right)>0
$$

$$
\text { II } \operatorname{Re}(\sigma)+\sum_{i=1}^{r} \mu_{i}\left[\frac{n_{i}}{m_{i}}\right]+v \min _{1 \leq j \leq M} \operatorname{Re}\left(b_{j} / B_{j}\right)>0
$$

(iv) when $\lambda_{i} \geq 0$ and $\mu_{i}<0$ inequalities I and IV are satisfied.
(v) when $\lambda_{i}<0$ and $\mu_{i} \geq 0$ inequalities II and III are satisfied.
c) Third Integral

The above result is valid under the following conditions :-
(i) $\operatorname{Re}(\alpha)>0, \delta>0$
(ii) when $\lambda_{i}>0, \rho>0$
when $\lambda_{i}<0, \rho+\sum_{i=1}^{r} \lambda_{i}\left[\frac{n_{i}}{m_{i}}\right]>0$

$$
\begin{align*}
& \int_{0}^{b} x^{-\rho-1}(b-x)^{\rho-1} e^{-\alpha / x} \bar{H}_{P, Q}^{M, N}\left[z e^{-\delta / x} \left\lvert\, \begin{array}{l}
\left(a_{j}, \alpha_{j} ; A_{j}\right)_{1, N},\left(a_{j}, \alpha_{j}\right)_{N+1, P} \\
\left(b_{j}, \beta_{j}\right)_{1, M},\left(b_{j}, \beta_{j} ; B_{j}\right)_{M+1, Q},
\end{array}\right.\right] \times \\
& S_{n_{1}, \ldots, n_{r}}^{m_{1}, \ldots, m_{r}}\left[Z_{1} X^{-\lambda_{1}}(b-x)^{\lambda_{1}}, \ldots, z_{r} X^{-\lambda r}(b-x)^{\lambda_{r}}\right] \mathrm{dx} \\
& =b^{\rho+\sum_{i=1}^{r} \lambda_{i} k_{i}-1} e^{-\alpha / b} \sum_{k_{1}=0}^{\left[n_{1} / m_{1}\right]} \ldots \sum_{k_{r}=0}^{\left[n_{r} / m_{r}\right]} \frac{\left(-n_{1}\right)_{m_{1} k_{1}}}{k_{1}!} \ldots \frac{\left(-n_{r}\right)_{m_{r} k_{r}}}{k_{r}!} A\left[n_{1}, k_{1} ; \ldots ; n_{r}, k_{r}\right] \prod_{i=1}^{r} z_{i}^{k_{i}} \Gamma\left(\rho+\sum_{i=1}^{r} \lambda_{i} k_{i}\right) \times \\
& \bar{H}_{P+1, Q+1}^{M, N+1}\left[z b^{u+v} \left\lvert\, \begin{array}{l}
\left(1-\alpha, \delta ; \rho+\sum_{i=1}^{r} \lambda_{i} k_{i}\right),\left(a_{j}, \alpha_{j} ; A_{j}\right)_{1, N},\left(a_{j}, \alpha_{j}\right)_{N+1, P} \\
\left(b_{j}, \beta_{j}\right)_{1, M},\left(b_{j}, \beta_{j} ; B_{j}\right)_{M+1, Q},\left(-\alpha, \delta ; \rho+\sum_{i=1}^{r} \lambda_{i} k_{i}\right)
\end{array}\right.\right] \tag{3.3}
\end{align*}
$$

PROOF :- To establish the integral (3.1), we express the generalized polynomials occurring in the left hand side in the series form given by (1.6) and the \bar{H}-function in terms of Mellin-Barnes contour integral given by (1.1) and then interchanging the order of summation and integration (which is permissible under the conditions stated with (3.1)) so that the left hand side of (3.1) (say Δ) assume the following after little simplification

$$
\begin{gather*}
\Delta=\sum_{k_{1}=0}^{\left[n_{1} / m_{1}\right]} \ldots \sum_{k_{r}=0}^{\left[n_{r} / m_{r}\right]} \frac{\left(-n_{1}\right)_{m_{1} k_{1}}}{k_{1}!} \ldots \frac{\left(-n_{r}\right)_{m_{r} k_{r}}}{k_{r}!} A\left[n_{1}, k_{1} ; \ldots ; n_{r}, k_{r}\right] \prod_{i=1}^{r} z_{i}^{k_{i}} \frac{1}{2 \pi i} \int_{-i \infty}^{+i \infty} \theta(s) z^{s} \\
\left\{\int_{0}^{b} x^{\rho+\sum_{i=1}^{r} \lambda_{i} k_{i}+u s-1}(b-x)^{\sigma+\sum_{i=1}^{r} \mu_{i} k_{i}+v s-1} d x\right\} d s \tag{3.4}
\end{gather*}
$$

On evaluating the inner integral occurring in (3.4) by using Eulerian integral (2.1) and on reinterpreting the Mellin-Barnes contour integral in terms of the \bar{H} - function given by (1.1), we easily arrive at the desired result (3.1).

Similarly the integrals (3.2) and (3.3) can also be established in the same manner by using the integral (2.2) and the integral (2.3) respectively.

IV. Special Case

(i) If we take $A\left(n_{1}, k_{1} ; \ldots ; n_{r}, k_{r}\right)=\prod_{i=1}^{r} A\left(n_{i}, k_{i}\right)$ in the definition of generalized polynomials occurring in the left hand side of the integral (3.1), we get

$$
\begin{gather*}
\int_{0}^{b} x^{\rho-1}(b-x)^{\sigma-1} \bar{H}_{P, Q}^{M, N}\left[z x^{u}(b-x)^{v} \left\lvert\, \begin{array}{l}
\left(a_{j}, \alpha_{j} ; A_{j}\right)_{1, N},\left(a_{j}, \alpha_{j}\right)_{N+1, P} \\
\left(b_{j}, \beta_{j}\right)_{1, M},\left(b_{j}, \beta_{j} ; B_{j}\right)_{M+1, Q}
\end{array}\right.\right] \times \prod_{i=1}^{r} S_{n_{i}}^{m_{i}}\left[z_{i} X^{\lambda_{i}}(b-x)^{\mu_{i}}\right] \mathrm{dx} \\
=b^{\rho+\sigma+\sum_{i=1}^{r}\left(\lambda_{i}+\mu_{i}\right) k_{i}-1} \sum_{k_{1}=0}^{\left[n_{1} / m_{1}\right]} \ldots \sum_{k_{r}=0}^{\left[n_{r} / m_{r}\right]} \frac{\left(-n_{1}\right)_{m_{1} k_{1}}}{k_{1}!} \ldots \frac{\left(-n_{r}\right)_{m_{r} k_{r}}}{k_{r}!} \prod_{i=1}^{r} A\left(n_{i}, k_{i}\right) \prod_{i=1}^{r} z_{i}^{k_{i}} \\
\bar{H}_{P+2, Q+1}^{M, N+2}\left[z b^{u+v}\left[\begin{array}{c}
\left.\left(1-\rho-\sum_{i=1}^{r} \lambda_{i} k_{i}, u ; 1\right),\left(1-\sigma-\sum_{i=1}^{r} \mu_{i} k_{i}, v ; 1\right),\left(a_{j}, \alpha_{j} ; A_{j}\right)_{1, N},\left(a_{j}, \alpha_{j}\right)_{N+1, P}\right] \\
\left(b_{j}, \beta_{j}\right)_{1, M},\left(b_{j}, \beta_{j} ; B_{j}\right)_{M+1, Q},\left(1-\rho-\sigma-\sum_{i=1}^{r}\left(\lambda_{i}+\mu_{i}\right) k_{i}, u+v ; 1\right)
\end{array}\right]\right. \tag{4.1}
\end{gather*}
$$

(a) Taking $\mathrm{i}=2$ in our result (4.1), we obtain the result discussed by Gupta and Soni [7, p.100, eq.(2.1)].

$$
\begin{array}{r}
\int_{0}^{b} x^{\rho-1}(b-x)^{\sigma-1} \bar{H}_{P, Q}^{M, N}\left[\begin{array}{r}
\left.z x^{u}(b-x)^{v} \left\lvert\, \begin{array}{l}
\left(a_{j}, \alpha_{j} ; A_{j}\right)_{1, N},\left(a_{j}, \alpha_{j}\right)_{N+1, P} \\
\left(b_{j}, \beta_{j}\right)_{1, M},\left(b_{j}, \beta_{j} ; B_{j}\right)_{M+1, Q}
\end{array}\right.\right] \times \\
S_{n_{1}}^{m_{1}}\left[z_{1} X^{\lambda_{1}}(b-x)^{\mu_{1}}\right] S_{n_{2}}^{m_{2}}\left[z_{2} X^{\lambda_{2}}(b-x)^{\mu_{2}}\right] d x
\end{array} .\right.
\end{array}
$$

$$
\begin{gather*}
=b^{\rho+\sigma-1} \sum_{k_{1}=0}^{\left[n_{1} / m_{1}\right]} \sum_{k_{2}=0}^{\left[n_{2} / m_{2}\right]} \frac{\left(-n_{1}\right)_{m_{1} k_{1}}}{k_{1}!} \frac{\left(-n_{2}\right)_{m_{2} k_{2}}}{k_{2}!} A\left[n_{1}, k_{1} ; n_{2}, k_{2}\right] z_{1}^{k_{1}} z_{2}^{k_{2}} b^{\left(\lambda_{1}+\mu_{1}\right) k_{1}+\left(\lambda_{2}+\mu_{2}\right) k_{2}} \\
\bar{H}_{P+2, Q+1}^{M, N+2}\left[z b^{u+v}\left[\begin{array}{c}
\left(1-\rho-\lambda_{1} k_{1}-\lambda_{2} k_{2}, u ; 1\right),\left(1-\sigma-\mu_{1} k_{1}-\mu_{2} k_{2}, v ; 1\right),\left(a_{j}, \alpha_{j} ; A_{j}\right)_{1, N},\left(a_{j}, \alpha_{j}\right)_{N+1, P} \\
\left(b_{j}, \beta_{j}\right)_{1, M},\left(b_{j}, \beta_{j} ; B_{j}\right)_{M+1, Q},\left(1-\rho-\sigma-\left(\lambda_{1}+\mu_{1}\right) k_{1}-\left(\lambda_{2}+\mu_{2}\right) k_{2}, u+v ; 1\right)
\end{array}\right]\right. \tag{4.1.1}
\end{gather*}
$$

(b) Taking $\mathrm{i}=1$ in the result (4.1), we obtain the result discussed by Gupta and Soni [7, p.101, eq.(3.1)].

$$
\begin{gather*}
\int_{0}^{b} x^{\rho-1}(b-x)^{\sigma-1} \bar{H}_{P, Q}^{M, N}\left[z x^{u}(b-x)^{v} \left\lvert\, \begin{array}{c}
\left(a_{j}, \alpha_{j} ; A_{j}\right)_{1, N},\left(a_{j}, \alpha_{j}\right)_{N+1, P} \\
\left(b_{j}, \beta_{j}\right)_{1, M},\left(b_{j}, \beta_{j} ; B_{j}\right)_{M+1, Q}
\end{array}\right.\right] \times \\
S_{n_{1}}^{m_{1}}\left[z_{1} x^{\lambda_{1}}(b-x)^{\mu_{1}}\right] d x \\
=b^{\rho+\sigma-1} \sum_{k_{1}=0}^{\left[n_{1} / m_{1}\right]} \frac{\left(-n_{1}\right)_{m_{1} k_{1}}}{k_{1}!} A\left[n_{1}, k_{1} z_{1} z_{1}^{k_{1}} b^{\left(\lambda_{1}+\mu_{1}\right) k_{1}}\right. \\
\bar{H}_{P+2, Q+1}^{M, N+2}\left[z b^{u+v}\left[\begin{array}{l}
\left(1-\rho-\lambda_{1} k_{1}, u ; 1\right),\left(1-\sigma-\mu_{1} k_{1}, v ; 1\right),\left(a_{j}, \alpha_{j} ; A_{j}\right)_{1, N},\left(a_{j}, \alpha_{j}\right)_{N+1, P} \\
\left(b_{j}, \beta_{j}\right)_{1, M},\left(b_{j}, \beta_{j} ; B_{j}\right)_{M+1, Q},\left(1-\rho-\sigma-\left(\lambda_{1}+\mu_{1}\right) k_{1}, u+v ; 1\right)
\end{array}\right]\right. \tag{4.1.2}
\end{gather*}
$$

In the similar manner if we put $\mathrm{i}=2$ and $\mathrm{i}=1$ in both the integrals (3.2) and (3.3), we obtain the known results given by Mishra Rupakshi [11, p.42, eq.(1.3.1)] and [11, p.43, eq. (1.3.2)].
(iv) Taking the exponents $A_{j}=B_{j}=1$ in the \bar{H} - function occurring in the left hand side of the integrals (3.1), (3.2) and (3.3) we get the results in terms of well known Fox's Hfunction.

The importance of the main integral of the present paper lies in its many fold generality. Again several integrals obtained by various authors and lying scattered in the literature also follow as simple special cases of our findings. Thus, if we reduce the \bar{H} -
function occurring on the left hand side of (4.1.1) to the Fox's H function and the generalized polynomials $s_{n_{1}, \ldots, n_{r}}^{m_{1}, \ldots m_{r}}\left[x_{1}, \ldots, x_{r}\right]$ occurring therein to unity, we get a known integral [5,p.202].

V. Applications

We shall define the Rieman - Liouville fractional derivative of a function $f(x)$ of order σ (or, alternatively, $-\sigma^{\text {th }}$ order fractional integral) [3,p.181;12,p.49] by (5.1)
where q is a positive integer and the integral exists.
For simplicity the special case of the fractional derivative operator ${ }_{a} D_{x}^{\sigma}$ when $\mathrm{a}=$ 0 will be written as D_{x}^{σ}. Thus we have

$$
\begin{equation*}
D_{x}^{\sigma} \equiv{ }_{0} D_{x}^{\sigma} \tag{5.2}
\end{equation*}
$$

Now by setting $\mathrm{b}=\mathrm{x}$ and $\mathrm{x}=\mathrm{t}$ in the main integral (3.1), it can be written as the following fractional integral formula :

$$
\begin{gather*}
D_{x}^{-\sigma}\left\{t^{\rho-1} \bar{H}_{P, Q}^{M, N}\left[z t^{u}(x-t)^{v} \left\lvert\, \begin{array}{l}
\left(a_{j}, \alpha_{j} ; A_{j}\right)_{1, N},\left(a_{j}, \alpha_{j}\right)_{N+1, P} \\
\left(b_{j}, \beta_{j}\right)_{1, M},\left(b_{j}, \beta_{j} ; B_{j}\right)_{M+1, Q},
\end{array}\right.\right] \times S_{n_{1}, \ldots, n_{r}}^{m_{1}, \ldots m_{r}}\left[z_{1} t^{\lambda_{1}}(x-t)^{\mu_{1}} \ldots z_{r} t^{\lambda_{r}}(x-t)^{\mu_{r}}\right]\right\} \\
\\
=\frac{x^{\rho+\sigma-1}}{\Gamma(\sigma)} \sum_{k_{1}=0}^{\left[n_{1} / m_{1}\right]} \ldots \sum_{k^{\prime}=0}^{\left[n_{r} / m_{r}\right]} \frac{\left(-n_{1}\right)_{m_{1} k_{1}} \ldots\left(-n_{r}\right)_{m^{\prime} k^{\prime}}}{k_{1}!\ldots\left[n_{r}!, k_{1} ; \ldots ; n_{r}, k_{r}\right] \prod_{i=1}^{r} z_{i}^{k_{i}} x^{\left(\lambda_{i}+\mu_{i}\right) k_{i}} \times} \tag{5.3}\\
\bar{H}_{P+2, Q+1}^{M, N+2}\left[z x^{u+v}\left(\begin{array}{c}
\left.\left.1-\rho-\sum_{i=1}^{r} \lambda_{i} k_{i}, u ; 1\right),\left(1-\sigma-\sum_{i=1}^{r} \mu_{i} k_{i}, v ; 1\right),\left(a_{j}, \alpha_{j} ; A_{j}\right)_{1, N},\left(a_{j}, \alpha_{j}\right)_{N+1, P}\right] \\
\left(b_{j}, \beta_{j}\right)_{1_{1, M}},\left(b_{j}, \beta_{j} ; B_{j}\right)_{M+1, Q},\left(1-\rho-\sigma-\sum_{i=1}^{r}\left(\lambda_{i}+\mu_{i}\right) k_{i}, u+v ; 1\right)
\end{array}\right]\right.
\end{gather*}
$$

where $\operatorname{Re}(\sigma)>0$ and all the conditions of validity mentioned with (3.1) are satisfied.
The fractional integral formula given by (5.3) is also quite general in nature and can easily yield Riemann-Liouville fractional integrals of a large number of simpler functions polynomials merely by specializing the parameters of \bar{H}-function and $S_{n_{1}, \ldots, n_{r}}^{m_{1}, \ldots, m_{r}}\left[x_{1}, \ldots, x_{r}\right]$, occurring in it which may find applications in electromagnetic theory and probability.

Acknowledgement

The authors are thankful to Professor H.M.Srivastava of the university of Victoria, Victoria B.C.Canada for giving useful suggestions towards the improvement of this paper.

References Références Referencias

1. Braaksma B.L.J., Asymptotic expansisons and analytic continuations for a class of Bernes-integrals, Compositio Math., 15(1963), 239-341.
2. Buschman R.G. and Srivastava H.M., The \bar{H}-function associated with a certain class of Feynman integrals, J. Phys. A: Math. Gen., 23(1990), 4707-4710.
3. Erdelyi A., Magnus W., Oberhettinger F. and Tricomi F.G.,Tables of integral transforms, Vol. II, McGraw hill, New York (1954).
4. Fox C., The G and H functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98(1961), 395-429.
5. Goyal G.K., A finite integral involving H-function, Proc.Nat. Acad. Sci. India Sect., 39(A) (1969), 201-203.
6. Grosche C. and Steiner F., Handbook of Feynman path integrals, Springer tracts in modern physics Vol. 145, Springer-Verlag Berlin Heidelberg, New York, (1998).
7. Gupta K.C. and Soni R.C. New Properties of a generalization of Hypergeometric Series Associated with Feynman Integrals, KYUNGPOOK Math. J. 41(2001), 97-104.
8. Hai N.T. and Yakubovich S.B., The double Melline-Barnes type integrals and their applications to convolution theory, World Scientific Publishing Co.Pvt. Ltd., Singapore, New Jersy, London, Hong Kong, (1992).
9. Inayat-Hussain A.A., New properties of Hypergeometric series derivable from Feynman integrals: I. Transformation and reduction formulae, J.Phys. A: Math. Gen., 20(1987), 4109-4117.
10. Inayat-Hussain A.A., New properties of Hypergeometric series derivable from Feynman integrals: II. A generalization of the H-function, J. Phys. A: Math. Gen. 20(1987), 4119-4128.
11. Mishra Rupakshi, A Ph.D. Thesis, University of Rajasthan, Jaipur.
12. Oldham K.B. and Spanier J. The fractional calculus, Academic Press New York (1974).
13. Rathie A.K., A new generalization of generalized Hypergeometric functions, Le Mathematiche Fasc. II., 52(1997), 297-310.
14. Srivastava H.M., A multilinear generating function for the Konhauser sets of biorthogonal Polynomials suggested by the Laguerre polynomials, Pacific, J. Math. 117(1985), 183-191.
15. Srivastava H.M., Gupta K.C. and Goyal S.P., The H-functions of one and two variables with applications, South assian Publishers, New Delhi, Madras (1982).

This page is intentionally left blank

Global Journal of Science Frontier Research Mathematics and Decision Sciences
Volume 13 Issue 2 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

$(1,2)$ - Domination in Some Harmonius Graphs

By N. Murugesan \& Deepa.S.Nair

Mathematics Government Arts College
Abstract - In this paper we discuss (1, 2) - domination in some harmonious graphs namely ladder graph, wheel graph and tetrahedral graph.

Keywords : dominating set, domination number, (1,2) - dominating set, (1,2) - domination number.

GJSFR-F Classification : MSC 2010: 05C10, AMS: 05C69

Strictly as per the compliance and regulations of :

© 2013. N. Murugesan \& Deepa.S.Nair. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

$(1,2)$ - Domination in Some Harmonius Graphs

N. Murugesan ${ }^{\alpha}$ \& Deepa.S.Nair ${ }^{\circ}$

Abstract - In this paper we discuss (1, 2) - domination in some harmonious graphs namely ladder graph, wheel graph and tetrahedral graph.
Keywords : dominating set, domination number, $(1,2)$ - dominating set, $(1,2)$ - domination number.

I. Introduction

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph. A subset D of V is a dominating set of G if every vertex of V - D is adjacent to a vertex of D . The domination number of G , denoted by $\gamma(\mathrm{G})$, is the minimum cardinality of a dominating set of G.

A (1,2) - dominating set in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a set S having the property that for every vertex v in $\mathrm{V}-\mathrm{S}$ there is atleast one vertex in S at distance 1 from v and a second vertex in S at distance almost 2 from v. The order of the smallest $(1,2)$ - dominating set of G is called the $(1,2)$ - domination number of G and we denote it by $\gamma_{(1,2)}$.

A harmonius graph is a connected labeled graph with n graph edges in which all graph vertices can be labeled with distinct integers $(\bmod n)$ so that the sums of the pairs of numbers at the ends of each graph edge are also distinct (mod n). The ladder graph and wheel graph are harmonius. The n-ladder graph can be defined as $\mathrm{P}_{2} \square \mathrm{P}_{\mathrm{n}}$, where P_{n} is a path graph. It is therefore equal to the $2 \times n$ grid graph. This graph looks like a ladder, having two rails and n rungs between them. A wheel graph Wn of order n , contains a cycle of order n-1, and for which every graph vertex in the cycle is connected to one other graph vertex. The tetrahedral graph is the platonic graph that is the unique polyledral graph on four nodes which is also the complete graph K_{4} and therefore the wheel graph W_{4}.

[^2]
II. (1,2)-Domination in Ladder Graphs

In this section we consider ladder graphs of order upto 10 and find out their domination number and (1,2) - domination number.
i) For $\mathrm{n}=1$,

This is a graph of order $2 .(1,2)$ - domination number is defined for graphs of order atleast 3.

For $\mathrm{n}=2$,

$\{1,2\}$ is a dominating set and also a (1,2) - dominating set. $\{1,2\}$ is a dominating set.
$\therefore \quad \gamma_{(1,2)}=2 \quad$ and $\gamma=2$.
For $n=3$,

$\{1,2,3\}$ is a $(1,2)$ - dominating set. $\{2,5\}$ is a dominating set.

$$
\therefore \quad \gamma_{(1,2)}=3 \quad \text { and } \gamma=2 .
$$

For $\mathrm{n}=4$,

$\{1,2,3,4\}$ is a $(1,2)$ - dominating set. $\{1,3,5,7\}$ is a dominating set.
$\gamma_{(1,2)}=4$ and $\gamma=4$.

For $\mathrm{n}=5$,

$\{1,2,3,4,5\}$ is a $(1,2)$ - dominating set. $\{1,3,6,8\}$ is a dominating set.
$\gamma_{(1,2)}=5 \quad$ and $\gamma=4$.
For $\mathrm{n}=6$,

$\{1,2,3,4,5,6\}$ is a $(1,2)$ - dominating set. $\{1,3,5,7,9,11\}$ is a dominating set.
$\gamma_{(1,2)}=6$ and $\gamma=6$.

For $\mathrm{n}=7$,

$\{1,2,3,4,5,6,7\}$ is a $(1,2)$ - dominating set. $\{1,4,6,8,11,13\}$ is a dominating set. $\gamma_{(1,2)}=7$ and $\gamma=6$.

For $n=8$,

$\{1,2,3,4,5,6,7,8\}$ is a $(1,2)$ - dominating set. $\{1,3,5,7,9,11,13,15\}$ is a dominating set. $\gamma_{(1,2)}=8 \quad$ and $\gamma=8$.

$\{1,2,3,4,5,6,7,8,9\}$ is a (1,2) - dominating set. $\{1,3,5,7,10,13,14,15\}$ is a dominating set. $\gamma_{(1,2)}=9 \quad$ and $\gamma=8$.

For $\mathrm{n}=10$,

$\{1,2,3,4,5,6,7,8,9,10\}$ is a (1,2) - dominating set. $\{1,3,5,7,9,11,13,15,17,19\}$ is a dominating set.
$\gamma_{(1,2)}=10 \quad$ and $\gamma=10$.

From the above examples we have the following theorems.

Theorem 2.1

For a ladder graph $L_{n},(1,2)$ - domination number is n. That is, $\gamma_{(1,2)}\left(L_{n}\right)=n$.
Proof :
For a ladder graph L_{n}, there are $3 n-2$ edges and $2 n$ vertices. Also there are n vertices in both the rails. Suppose a vertex v_{1} in the first rail is adjacent to a vertex u_{1} in the second rail. Then all the remaining vertices in the first rail will be at distance greater than 1 from u_{1}. So to form a $(1,2)$ - dominating set we have to include all the vertices in one rail. So the $(1,2)$ - domination number is n.

Theorem 2.2

For a ladder graph L_{n} with n even, $\gamma\left(L_{n}\right)=n$.
Proof :
Each L_{n} has $3 n-2$ edges and $2 n$ vertices. If n is even, the vertices in the inner rungs, that
is, $\frac{\mathrm{n}}{2}$ rungs can form a dominating set. So the number of vertices in the dominating set will be n, since each rung contains two vertices. Hence $\gamma\left(L_{n}\right)=n$.

Theorem 2.3

For a ladder graph L_{n} with n odd, $\gamma\left(\mathrm{L}_{\mathrm{n}}\right)=\mathrm{n}-1$.
Proof :
Each L_{n} has $3 n-2$ edges and $2 n$ vertices. Since n is odd, the vertices in the middle rung will be at equal distance from the vertices in the outer rungs. So if we take the two vertices of the middle rung and one vertex each from the alternate rungs, that set will form a dominating set. So since there are n rungs, the set will consist of $n-1$ vertices. So the domination number is $\mathrm{n}-1$. Hence $\gamma\left(\mathrm{L}_{\mathrm{n}}\right)=\mathrm{n}-1$.

iii. Relation Between Domination Number and (1,2)-Domination Number of Ladder Graphs

Lemma 3.1([5],p.782)
In a graph G, domination number is less than or equal to $(1,2)$-domination number.

Proof:

Let G be a graph and D be its dominating set. Then every vertex in V-D is adjacent to a vertex in D. That is, in D, for every vertex u, there is a vertex which is at distance 1 from u. But it is not necessary that there is a second vertex at distance atmost 2 from u. So if we find a (1,2)- dominating set ,it will contain more vertices or atleast equal number of vertices than the dominating set. So the domination number is less than or equal to $(1,2)$ - domination number.

This is true for ladder graphs also.
From the examples discussed in section 2 we have the following theorems

Theorem 3.1

For a ladder graph L_{n} with n even, the domination number and $(1,2)$ - domination number are equal.

Proof :
In a ladder graph, there are 2 n vertices and $3 \mathrm{n}-2$ edges. The n vertices in one rail form a (1.2) - dominating set. If n is even the number of inner rungs will be $\frac{n}{2}$ even. And the vertices of these inner rungs form a dominating set. Since each rung contains 2 vertices, the dominating set will consist of n vertices. Hence the domination number and $(1,2)$ domination number are equal.

Theorem 3.2

For n odd, the domination number of a ladder graph L_{n} is less than the (1.2) domination number.

Proof :
For a ladder graph with n odd, the number of inner rungs will be ($n-2$), odd. The vertices of the middle rung and one vertex each from the alternate rungs will form a dominating set. So altogether we will get ($n-1$) vertices. That is, the domination number is ($n-1$). But the $(1,2)$ - domination number is n. Hence the domination number is less than the $(1,2)$ - domination number.

Consider the following wheel graphs.

W_{11}

Theorem 4.1

The domination number of a wheel graph is 1 . That is, $\gamma\left(\mathrm{W}_{\mathrm{n}}\right)=1$
Proof :
In a wheel graph it contains a cycle of order $n-1$ every graph vertex in the cycle is connected to one other graph vertex. In a wheel W_{n}, there is a vertex with degree $\mathrm{n}-1$. So that vertex is adjacent to all other vertices. Hence the domination number is one.

Theorem 4.2

For a wheel graph W_{n}, $(1,2)$ - domination number is 2 .
That is, $\gamma_{(1,2)}\left(W_{n}\right)=2$.
Proof :
The dominating set of a wheel graph consists of only one vertex. By the definition of $(1,2)$ - dominating set, it should contain atleast two vertices. So if we take the central vertex and any one of the vertex from the cycle, that will form a $(1,2)$ - dominating set. The cardinality of the $(1,2)$ - dominating is 2 . Hence $\gamma_{(1,2)}\left(W_{n}\right)=2$.

V. (1,2)- Domination in the Tetrahedral Graphs

Consider the following graphs

Theorem 5.1
For a tetrahedral graphs, there does not exist any (1,2) - dominating set.
Proof :
A tetrahedral graph is also a complete graph K_{4}. We proved in paper [5] that $(1,2)$ domination is not possible in complete graphs. We cannot find a $(1,2)$ - dominating set in tetrahedral graphs.

VI. Conclusion

Here we discussed the (1,2)-domination in three types of harmonius graphs. The domination number of ladder graphs is less than or equal to (1.2) - domination number which agrees to the result of previous paper [5]. $(1,2)$ - domination is not possible in tetrahedral graphs.

References Références Referencias

1. Allan R.B. and R. Laskar, On domination and independent domination number of a graph, Discr. Math, 23, 73-76 (1978)
2. Cockayne E.J. and S.T. Hedetneimi, Towards a theory of domination in graphs, Networks, 7 247-261, (1977)
3. Frank Harary,Graph Theory, Narosa Publishing Home (1969).
4. Haynes T.W., Hedetniemi S.T. and Slater P.J., Fundamentals of domination in Graphs, Marcel Dekker, New York, 1998.
5. Murugesan N. and Deepa S. Nair, $(1,2)$ - domination in Graphs, J. Math. Comput. Sci., Vol.2, 2012, No.4, 774-783.
6. Murugesan N. and Deepa S. Nair, The Domination and Independence of Some Cubic Bipartite Graphs, Int. J. Contemp. Math Sciences, Vol.6, 2011, No.13, 611-618.
7. Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall, Inc., USA, 1974.
8. Steve Hedetniemi, Sandee Hedetniemi, (1,2) - Domination in Graphs.

Global Journal of Science Frontier Research
MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 2 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Pathway Fractional Integral Operator Concerning to Polynomials

By Saroj Kumari

Singhania University
Abstract - We have made an attempt to study a pathway fractional integral operator concerning to pathway model and pathway probability density for product of some special functions with a general class of polynomials. Our results are quite general in nature and hence compass a large number of results hitherto in the literature.

Keywords : pathway fractional integral operator, fox h-function, m-series, a general class of polynomials, mittag-leffler function.

GJSFR-F Classification : MSC 2010: 26A33, 11B83

Strictly as per the compliance and regulations of :

© 2013. Saroj Kumari. This is a research/review paper, distributed under the terms of the Creative Commons AttributionNoncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
epaper

Pathway Fractional Integral Operator Concerning to Polynomials

Saroj Kumari

Abstract - We have made an attempt to study a pathway fractional integral operator concerning to pathway model and pathway probability density for product of some special functions with a general class of polynomials. Our results are quite general in nature and hence compass a large number of results hitherto in the literature.
Keywords : pathway fractional integral operator, fox h-function, m-series, a general class of polynomials, mittag-leffler function.

I. Introduction

The pathway fractional integral operator introduced by Nair [13] as follows

$$
\begin{equation*}
\left(P_{0+}^{(\eta, \alpha)} f\right)(x)=x^{\eta} \int_{0}^{\left[\frac{x}{a(1-\alpha)}\right]}\left[1-\frac{a(1-\alpha) t}{x}\right]^{\frac{\eta}{1-\alpha}} f(t) d t \tag{1.1}
\end{equation*}
$$

where $f(x) \in L(a, b), \eta \in C, a>0, R(\eta)>0, \alpha<1$ (pathway parameter).
The pathway model introduced by Mathai [] and studied by Mathai and Haubold ([10], [11]). For real α, the pathway model for scalar random variables is represented by the following probability density function (p.d.f.)W.

$$
\begin{equation*}
f(x)=c|x|^{\gamma-1}\left[1-a(1-\alpha)|x|^{\delta}\right]^{\frac{\beta}{1-\alpha}} \tag{1.2}
\end{equation*}
$$

$\gamma>0, \delta>0, \beta>0, \mathrm{x} \in(-\infty, \infty),\left[1-\mathrm{a}(1-\alpha)|\mathrm{x}|^{\delta}\right]>0, \mathrm{C}$ is the normalizing constant and α is called the pathway parameter. For real α, the normalizing constant is as follows:

$$
\begin{equation*}
\mathrm{c}=\frac{1}{2} \frac{\delta[\mathrm{a}(1-\alpha)]^{\frac{\gamma}{\delta}} \Gamma\left(\frac{\gamma}{\delta}+\frac{\beta}{1-\alpha}+1\right)}{\Gamma\left(\frac{\gamma}{\delta}\right) \Gamma\left(\frac{\beta}{1-\alpha}+1\right)}, \quad \alpha<1 \tag{1.3}
\end{equation*}
$$

[^3]\[

$$
\begin{align*}
& =\frac{1}{2} \frac{\delta[\mathrm{a}(1-\alpha)]^{\frac{\gamma}{\delta}} \Gamma\left(\frac{\beta}{\alpha-1}\right)}{\Gamma\left(\frac{\gamma}{\delta}\right) \Gamma\left(\frac{\beta}{\alpha-1}-\frac{\gamma}{\delta}\right)} \text { for } \frac{1}{\alpha-1}-\frac{\gamma}{\delta}>0, \alpha<1 \tag{1.4}\\
& =\frac{1}{2} \frac{\delta(\mathrm{a} \beta)^{\frac{\gamma}{\delta}}}{\Gamma\left(\frac{\gamma}{\delta}\right)} \text { for } \alpha \rightarrow 1 \tag{1.5}
\end{align*}
$$
\]

remains in the extended generalized type - 1 beta family. The pathway density in (1.2) for $\alpha<1$, includes the extended type -1 beta density, the triangular density, the uniform density and many other p.d.f. For $\alpha>1$, we have

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\mathrm{c}|\mathrm{x}|^{\gamma-1}\left[1+\mathrm{a}(\alpha-1)|\mathrm{x}|^{\delta}\right]^{-\frac{\beta}{\alpha-1}} \tag{1.6}
\end{equation*}
$$

where $\alpha>1, \delta>0, \beta \geq 0, \mathrm{x} \in(-\infty, \infty)$, which is extended generalized type 2 beta model for real x. It includes the type -2 beta density. The F-density, the Student- t density, the Cauchy density and many more.

Here it is considered only the case of pathway parameter $\alpha<1$. For $\alpha \rightarrow 0$ (1.2) and (1.6) take the exponential form, since

$$
\begin{gather*}
\lim _{\alpha \rightarrow 1} \mathrm{c}|\mathrm{x}|^{\gamma-1}\left[1-\mathrm{a}\left(1-\alpha|\mathrm{x}|^{\delta}\right]^{\frac{\eta}{1-\alpha}}=\lim _{\mathrm{x} \rightarrow 1} \mathrm{c}|\mathrm{x}|^{\gamma-1}\left[1+\mathrm{a}(\alpha-1)|\mathrm{x}|^{\delta}\right]^{-\frac{\eta}{\alpha-1}}\right. \\
=\mathrm{c}|\mathrm{x}|^{\gamma-1} \mathrm{e}^{-a \eta|\mathrm{x}|^{\delta}} \tag{1.7}
\end{gather*}
$$

This includes the generalized Gamma-, the Weibull -, the Chi-square, the Laplace, and the Maxwell-Boltzmann and other related densities,

$$
\text { when } \alpha \rightarrow 1\left[1-\frac{\mathrm{a}(1-\alpha) \mathrm{t}}{\mathrm{x}}\right]^{\frac{\eta}{1-\alpha}} \rightarrow d^{-\frac{\mathrm{a} \mathrm{\eta}}{\mathrm{x}} \mathrm{t}} \mathrm{U}
$$

the operator (1.1) reduces to the Laplace integral transform of f with parameter $\frac{\mathrm{a} \eta}{\mathrm{x}}$

$$
\begin{gathered}
\left(P_{0+}^{(\eta, 1)} f\right)(x)=x^{\eta} \int_{0}^{\infty} e^{-\frac{a \eta}{x} t} f(t) d t \\
=x^{\eta} \operatorname{Lt}\left(\frac{a \eta}{x}\right)
\end{gathered}
$$

when $\alpha=0, \mathrm{a}=1$, then replacing η by $\eta-1$ in (1.1) the integral operator reduces to the Riemann-Liouville fractional integral operator.
Srivastava [15] introduced the general class of polynomials

$$
\begin{align*}
& \mathrm{S}_{\mathrm{n}}^{\mathrm{m}}[\mathrm{x}]=\sum_{\ell=0}^{[\mathrm{n} / \mathrm{m}]} \frac{(-\mathrm{n})}{\ell!} \mathrm{A}_{\mathrm{n}, \ell} \mathrm{x}^{\ell} \\
& =\psi_{1}(\ell) \ell=0,1,2, \ldots \tag{1.9}
\end{align*}
$$

when m is an arbitrary positive integer and the coefficients $A_{n, \ell}(n, \ell \geq 0)$ are arbitrary constants, real or complex.
The following generalized M-series was introduced by Sharma and Jain [16]

$$
\begin{align*}
& \rho_{\rho}^{\alpha^{\prime}, \beta^{\prime}}{ }_{\sigma}(\mathrm{z})=\sum_{\mathrm{k}=0}^{\infty} \frac{\left(\mathrm{a}_{1}^{\prime}\right)_{k} \ldots\left(\mathrm{a}_{\rho}^{\prime}\right)_{k} z^{k}}{\left(\mathrm{~b}_{1}^{\prime}\right)_{\mathrm{k}} \ldots\left(\mathrm{~b}_{\sigma}^{\prime}\right)_{k} \Gamma\left(\alpha^{\prime} \mathrm{k}+\beta^{\prime}\right)} \\
& \quad=\psi_{2}(\mathrm{k}) \tag{1.10}
\end{align*}
$$

where $\mathrm{z}, \alpha^{\prime}, \beta^{\prime} \in \mathrm{C}, \operatorname{Re}\left(\alpha^{\prime}\right)>0, \forall \mathrm{z}$ if $\rho \leq \sigma,|\mathrm{z}|<\left(\alpha^{\prime}\right)^{\alpha^{\prime}}$, for other details see [16].
The series representation of Fox H-function [6] was studied by Skinbinski [14]

$$
\begin{align*}
& H_{P, Q}^{M, N}\left[z \left\lvert\, \begin{array}{c}
\binom{\left(e_{\mathrm{p}}, \mathrm{E}_{\mathrm{P}}\right)}{\left(\mathrm{f}_{\mathrm{Q}}, \mathrm{~F}_{\mathrm{Q}}\right)}
\end{array}\right.\right]=\sum_{\mathrm{h}=1}^{\mathrm{N}} \sum_{\mathrm{v}=0}^{\infty} \frac{(-1)^{\mathrm{v}} \chi(\xi)}{\mathrm{v}!\mathrm{E}_{\mathrm{h}}}\left(\frac{1}{\mathrm{z}}\right)^{\xi}, \\
& \xi=\frac{\mathrm{e}_{\mathrm{h}}-\mathrm{v}-1}{\mathrm{E}_{\mathrm{h}}} \text { and }(\mathrm{h}=1, \ldots, \mathrm{~N}) \tag{1.11}
\end{align*}
$$

and

$$
\begin{equation*}
\chi(\xi)=\frac{\prod_{j=1}^{M} \Gamma\left(f_{j}+F_{j} \xi\right) \prod_{\substack{j=1 \\ j \neq h}}^{N} \Gamma\left(1-e_{j}-E_{j} \xi\right)}{\prod_{j=m+1}^{Q} \Gamma\left(1-f_{j}-F_{j} \xi\right) \prod_{j=N+1}^{P} \Gamma\left(e_{j}+\xi E_{j}\right)} \tag{1.12}
\end{equation*}
$$

For convergence conditions and other details see [].
For the sake of brevity

$$
\begin{align*}
& \mathrm{T}_{1}=\sum_{1}^{\mathrm{N}} \mathrm{E}_{1}-\sum_{\mathrm{N}+1}^{\mathrm{P}} \mathrm{E}_{\mathrm{i}}+\sum_{1}^{\mathrm{M}} \mathrm{~F}_{\mathrm{i}}-\sum_{\mathrm{N}+1}^{\mathrm{Q}} \mathrm{~F}_{\mathrm{i}} \tag{1.13}\\
& \mathrm{~T}_{2}=\sum_{1}^{\mathrm{n}} \alpha_{\mathrm{i}}-\sum_{\mathrm{n}+1}^{\mathrm{p}} \alpha_{i}+\sum_{1}^{\mathrm{m}} \beta_{\mathrm{i}}-\sum_{\mathrm{m}+1}^{\mathrm{q}} \beta_{\mathrm{i}} \tag{1.14}
\end{align*}
$$

iI. Main Results

Theorem 1. Let $\eta, \omega \in C, \alpha<1, c, b, \in \operatorname{Re} \operatorname{Re}(\beta)>0, \operatorname{Re}(\delta)>0, \operatorname{Re}\left(1+\frac{h}{1-\alpha}\right)>0$, $\operatorname{Re}\left(\omega+\delta \frac{\mathrm{f}_{\mathrm{j}}}{\mathrm{F}_{\mathrm{j}}}\right)>0, \operatorname{Re}\left(\omega+\beta \frac{\mathrm{b}_{\mathrm{j}}^{\prime}}{\beta_{\mathrm{j}}^{\prime}}\right)>0,|\arg \mathrm{c}|<\frac{1}{2} \mathrm{~T}_{1} \pi,|\arg \mathrm{~b}|<\frac{1}{2} \mathrm{~T}_{2} \pi, \mathrm{~T}_{1}, \mathrm{~T}_{2}>0, \rho \leq \sigma$, $|\mathrm{d}|<\left(\alpha^{\prime}\right)^{\alpha^{\prime}}, \beta^{*}>0, \mathrm{~m}^{\prime}$ is an arbitrary positive integer and the coefficients $\mathrm{A}_{\mathrm{n}^{\prime}, \mathrm{R}}\left(\mathrm{n}^{\prime}, \ell \geq 0\right)$ are arbitrary constants, real or complex. Then

$$
\begin{align*}
& =\frac{\psi_{1}(\mathrm{k}) \psi_{2}(\ell)\left(\mathrm{d}^{\prime}\right)^{\ell} \mathrm{d}^{\mathrm{k}} \mathrm{x}^{\left.\eta+\omega+\beta^{* k-(} \beta^{\prime}\right)^{\ell}} \Gamma\left(1+\frac{\eta}{1-\alpha}\right)}{[\mathrm{a}(1-\alpha)]^{\omega-\beta * \mathrm{k}-\left(\beta^{\prime}\right)^{\ell} \Gamma(\alpha \mathrm{k}+\beta)}} \mathrm{H}_{\mathrm{P}, \mathrm{Q}}^{\mathrm{M}, \mathrm{~N}}\left[\frac{\mathrm{C} \mathrm{x}^{\delta}}{\mathrm{a}(1-\alpha)^{\delta}} \left\lvert\, \begin{array}{l}
\left(\mathrm{e}_{\mathrm{P}}, \mathrm{E}_{\mathrm{P}}\right) \\
\left(\mathrm{f}_{\mathrm{Q}}, \mathrm{~F}_{\mathrm{Q}}\right)
\end{array}\right.\right] \\
& H_{p+1, q+1}^{m, n+1}\left[\frac{\mathrm{~b} \mathrm{x}^{\beta}}{\mathrm{a}(1-\alpha)^{\beta}} \left\lvert\, \begin{array}{l}
\left(1-\omega+\delta+\beta * \mathrm{k}+\left(\beta^{\prime}\right) \ell, \beta\right),\left(\mathrm{a}_{\mathrm{p}}, \alpha_{\mathrm{p}}\right) \\
\left(\mathrm{b}_{\mathrm{q}}, \beta \mathrm{q},,\left(-\omega+\delta+\beta * \mathrm{k}+\left(\beta^{\prime}\right) \ell-\frac{\eta}{1-\alpha}, \beta\right)\right.
\end{array}\right.\right] . \tag{2.1}
\end{align*}
$$

Proof. Making use of (1.9), (1.10), (1.11) and (1.1) with applying a known result [1], we find the required result.
Theorem 2. Let $\eta, \gamma, \delta, \beta, \mathrm{T}_{1}, \mathrm{~T}_{2}>0, \operatorname{Re}(\eta)>0, \operatorname{Re}(\gamma)>0, \operatorname{Re}(\omega)>0$,

$$
\operatorname{Re}\left(1+\frac{\eta}{1-\alpha}\right)>\operatorname{Max} .[0,-\operatorname{Re}(\omega)], b, c \in R, \alpha<1, \operatorname{Re}\left(\omega+\delta \frac{f_{j}}{F_{j}}\right)>0, j=1, \ldots, M
$$

$|\arg \mathrm{c}|<\frac{1}{2} \mathrm{~T}_{1} \pi, \rho \leq \sigma,|\mathrm{d}|<\left(\alpha^{\prime}\right)^{\alpha^{\prime}}, \beta^{*}, \beta^{\prime}>0, \mathrm{~m}^{\prime}$ is an arbitrary positive integer and the coefficients $A_{n^{\prime}, \ell}\left(\mathrm{n}^{\prime}, \ell \geq 0\right)$ are arbitrary constants, real or complex. Then

$$
\begin{aligned}
& P_{0+}^{(\eta, \alpha)}\left\{t^{\omega-1}{ }_{\rho}^{\alpha^{\prime}, \beta^{\prime}} M_{\sigma}\left[d^{-\beta^{*}}\right] S_{n^{\prime}}^{m^{\prime}}\left[d^{\prime} t^{-\beta^{\prime \prime}}\right] H_{P, Q}^{M, N}\left[c t^{\delta} \left\lvert\, \begin{array}{c}
\left(e_{P}, E_{P}\right) \\
\left(f_{Q}, F_{Q}\right)
\end{array}\right.\right] E_{\beta, \rho}^{\gamma}\left(b t^{\beta}\right)\right\} \\
& =\frac{\psi_{1}(\mathrm{k}) \psi_{2}(\ell)\left(\mathrm{d}^{\prime}\right)^{\ell} \mathrm{d}^{\mathrm{k}} \mathrm{x}^{\eta+\omega+\beta * \mathrm{k}-\left(\beta^{\prime}\right)^{\ell}} \Gamma\left(1+\frac{\eta}{1-\alpha}\right)}{\Gamma(\gamma) \Gamma[\mathrm{a}(1-\alpha)]^{\omega-\beta * \mathrm{k}-\left(\beta^{\prime}\right)^{\ell} \Gamma(\alpha \mathrm{k}+\beta)}} \mathrm{H}_{\mathrm{P}, \mathrm{Q}}^{\mathrm{M}, \mathrm{~N}}\left[\frac{\mathrm{c} \mathrm{x}^{\delta}}{\mathrm{a}(1-\alpha)^{\delta}} \left\lvert\, \begin{array}{l}
\left(\mathrm{e}_{\mathrm{P}}, \mathrm{E}_{\mathrm{P}}\right) \\
\left(\mathrm{f}_{\mathrm{Q}}, \mathrm{~F}_{\mathrm{Q}}\right)
\end{array}\right.\right]
\end{aligned}
$$

where $\mathrm{E}_{\beta, \omega}^{\gamma}(\mathrm{b})$ is the generalized Mittag-Leffler function (see [8],[10]).
Proof. The result in (2.2) can be obtained from Theorem 1 by putting $\mathrm{m}=1=\eta, \mathrm{p}=1$, $q=2, b_{1}=0, \beta_{1}=1, b_{2}=1-\omega, \beta_{2}=\beta, \alpha_{1}=1-\gamma$ and $\alpha_{1}=1$. We get the desired result
Theorem 3. Let $\eta, \gamma, v \in C, \delta>0, \alpha<1, \rho \leq \sigma,|d|<\left(\alpha^{\prime}\right)^{\alpha^{\prime}}, \operatorname{Re}(\eta)>0, c \in R$,

$$
\operatorname{Re}(\gamma+\mathrm{v})>0, \operatorname{Re}\left(1+\frac{\eta}{1-\alpha}\right)>0, \operatorname{Re}\left(\gamma+\delta \frac{\mathrm{f}_{\mathrm{j}}}{\mathrm{~F}_{\mathrm{j}}}\right)>0, \mathrm{j}=1, \ldots, \mathrm{M},|\arg \mathrm{c}|<\frac{1}{2} \mathrm{~T}_{1} \pi, \mathrm{~T}_{1}>0,
$$

$\beta^{*}, \beta^{\prime}>0, m^{\prime}$ is an arbitrary positive integer and the coefficients $A_{n^{\prime}, \ell}\left(n^{\prime}, \ell \geq 0\right)$ are arbitrary constants, real or complex. Then

$$
\begin{align*}
& P_{0+}^{(\eta, \alpha)}\left\{\left(\frac{\mathrm{t}}{2}\right)^{\gamma-1}{ }_{\rho}^{\alpha^{\prime}, \beta^{\prime}} \mathrm{M}_{\sigma}\left[\mathrm{d}\left(\frac{\mathrm{t}}{2}\right)^{\beta^{*}}\right] \mathrm{S}_{\mathrm{n}^{\prime}}^{\mathrm{m}^{\prime}}\left[\mathrm{d}^{\prime}\left(\frac{\mathrm{t}}{2}\right)^{\beta^{\prime \prime}}\right] H_{P, Q}^{M, \mathrm{~N}}\left[\mathrm{C}\left(\frac{\mathrm{t}}{2}\right)^{\delta} \left\lvert\, \begin{array}{l}
\left(\mathrm{e}_{\mathrm{P}}, \mathrm{E}_{\mathrm{P}}\right) \\
\left(\mathrm{f}_{\mathrm{Q}}, \mathrm{~F}_{\mathrm{Q}}\right)
\end{array}\right.\right] \mathrm{J}_{\mathrm{v}}(\mathrm{t})\right\} \\
& =\frac{\psi_{1}(\mathrm{k}) \psi_{2}(\ell) \mathrm{d}^{\mathrm{k}}\left(\mathrm{~d}^{\prime}\right)^{\ell} \mathrm{x}^{\eta+\gamma+\mathrm{v}-\beta * \mathrm{k}-\left(\beta^{\prime}\right)^{\ell}} \Gamma\left(1+\frac{\eta}{1-\alpha}\right)}{\Gamma[\mathrm{a}(1-\alpha)]^{\gamma+\mathrm{v}-\beta * \mathrm{k}-\left(\beta^{\prime}\right)^{\ell}} 2^{\gamma+\mathrm{v}+\eta-\beta * \mathrm{k}-\left(\beta^{\prime}\right)^{\ell}}} \mathrm{H}_{\mathrm{P}, \mathrm{Q}}^{\mathrm{M}, \mathrm{~N}}\left[\frac{\mathrm{c} \mathrm{X}^{\delta}}{\mathrm{a}(1-\alpha)^{\delta}} \left\lvert\, \begin{array}{l}
\left(\begin{array}{c}
\left.\mathrm{e}_{\mathrm{P}}, \mathrm{E}_{\mathrm{P}}\right) \\
\left(\mathrm{f}_{\mathrm{Q}}, \mathrm{~F}_{\mathrm{Q}}\right)
\end{array}\right]
\end{array}\right.\right] \\
& \cdot{ }_{1} \psi_{2}\left[-\frac{\mathrm{x}^{2}}{4 \mathrm{a}^{2}(1-\alpha)^{2}} \left\lvert\, \begin{array}{l}
\left(\gamma+\mathrm{v}-\delta-\beta * \mathrm{k}+\left(\beta^{\prime}\right) \ell, 2\right) \\
\left(1+\gamma+\mathrm{v}-\delta-\beta * \mathrm{k}-\left(\beta^{\prime}\right) \ell+\frac{\eta}{1-\alpha}, 2\right),(\mathrm{v}+1,1)
\end{array}\right.\right] \tag{2.3}
\end{align*}
$$

Here ${ }_{\mathrm{p}} \Psi_{\mathrm{q}}$ denotes the generalized Wright hypergeometric function ([17], [18]).
Proof. The result in (2.3) can be established by letting $p=0, q=-2, n=0, m=1, b_{1}=$ $0, \quad \beta_{1}=1, \mathrm{~b}_{2}=-\mathrm{v}, \beta_{2}=1, \omega=\gamma+\mathrm{v}, \mathrm{b}^{\prime}=1, \beta=2$ and replacing t by $\frac{\mathrm{t}}{2} \quad$ after \quad a little simplification, we get the required result.

III. Special Cases

1. Putting $\beta^{*} \rightarrow 0, \delta \rightarrow 0$ in the result (2.1), we find a result recently derived by Chaurasia and Ghiya [1] when making ρ, ρ_{1} and $\rho_{2} \rightarrow 0$.
2. Letting $\beta^{*} \rightarrow 0, n^{\prime} \rightarrow 0$ in (2.1) through (2.3), we get the results recently obtained by Chaurasia and Gill [2].
3. Taking $\mathrm{n}^{\prime} \rightarrow 0$ in the results (2.1) through (2.3), we get the results recently established by Chaurasia and Singh [4].
4. Giving suitable values to the parameters in the results (2.1) through (2.3), we have the results recently derived by Nair [13].

A large number of simpler corresponding results involving simpler functions can be obtained easily merely by specializing the parameters in then.

References Références Referencias

1. Chaurasia, V.B.L. and Ghiya, Neeti, Pathway fractional integral operator pertaining to special functions, Global J. Sci. Front. Res., 10(6) (rer. 1.0) (2010), 79-83.
2. Chaurasia, V.B.L. and Gill, Vinod, Pathway fractional integral operator involving Hfunctions, J. Fract. Cal. Appl. 4(15) (2013), 1-9.
3. Chaurasia, V.B.L. and Chand, Gulshan, Pathway fractional integral operator involving H -functions and a general class of polynomials (Communicated).
4. Chaurasia, V.B.L. and Singh, Jaswant, Pathway fractional integral operator associated with certain special functions (Communicated).
5. Erdélyi, A. et al., Higher transcendental functions, Vol.I, McGraw-Hill, New York, 1953.
6. Fox, C., The G and H-functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98 (1961), 395-429.
7. Kilbas, A.A., Saigo, M. and Saxena, R.K., Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transform Special Functions, 15 (2004), 31-49.
8. Kilbas, A.A., Srivastava, H.M. and Trugillo, J.J., Theory and applications of fractional differential equations, Elsevier, Amterdam, 2006.
9. Mathai, A.M., A pathway to matrix variate gamma and normal densities, Linear Algebra and Its Applications, 399 (2005), 317-328.
10. Mathai, A.M. and Haubold, H.J., On generalized distribution and pathways, Phy. Letters, 372 (2008), 2109-2113.
11. Mathai, A.M. and Haubold, H.J., Pathway models, superstatistics, trellis statistics and a generalized measure of entrophy, Physica, A 375 (2007), 110-122.
12. Mathai, A.M. and Saxena, R.K., The H-function with applications in Statistics and other Disciplines, Wiley, New York, 1978.
13. Nair, Seema S., Pathway fractional integration operator, Fract. Cal. Appl. Anal., 12(3) (23009), 237-259.
14. Skinbinski, P., Some expansion theorems for the H-function, Ann. Polon. Maths., 23 (1970), 125-138.
15. Srivastava, H.M., A contour integral involving Fox's H-function, Indian J. Math., 14 (1972), 1-6.
16. Sharma, Manoj and Jain, Renu, A note on a generalized M-series as a special function of fractional calculus, Fract. Cal. Appl. Anal., 12(4) (2009), 449-452.
17. Wright, E.M., The asymptotic expansion of the generalized Bessel function, Proc. London Math. Soc., 38 (1934), 257-270.
18. Wright, E.M., The generalized Bessel function of order greater then one, Quart. J. Math. Oxford Ser., 11 (1940), 36-48.

Global Journal of Science Frontier Research MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 2 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

The Integration of Certain Products of Special Functions

By Saroj Kumari

Singhania University
Abstract - The aim of the present paper is to obtain a finite integral involving a product of Fujiwara's polynomial [7], M-series [15], a general class of polynomial [10], with the H-function of several complex variables [11]. The results are quite general in nature hence encompass many new, known and unknown results hitherto in the literature.

GJSFR-F Classification : MSC 2010: 11580

Strictly as per the compliance and regulations of :

© 2013. Saroj Kumari. This is a research/review paper, distributed under the terms of the Creative Commons AttributionNoncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Integration of Certain Products of Special Functions

Saroj Kumari

Abstract - The aim of the present paper is to obtain a finite integral involving a product of Fujiwara's polynomial [7], M -series [15], a general class of polynomial [10], with the H -function of several complex variables [11]. The results are quite general in nature hence encompass many new, known and unknown results hitherto in the literature.

I. Introduction

Srivastava [10] introduced a general class of polynomials (see also Srivastava and Singh [14])

$$
\begin{align*}
& S_{q}^{\mathrm{p}}[\mathrm{x}]=\sum_{\mathrm{s}=0}^{[\mathrm{q} / \mathrm{p}]} \frac{(-\mathrm{q})_{\mathrm{ps}}}{\mathrm{~s}!} A_{\mathrm{q}, \mathrm{~s}} \mathrm{x}^{\mathrm{s}}, \\
& =\Phi_{3}(\mathrm{~s}) \quad \mathrm{q}=0,1,2, \ldots \tag{1.1}
\end{align*}
$$

where p is an arbitrary positive integer and the coefficients $A_{q, s}(q, s \geq 0)$ are arbitrary coefficients, real or complex.

The series representation of the multivariable H -function (Srivastava and Panda [11]) studied by Olkha and Chaurasia ([8], [9]) is given as follows:

$$
\begin{aligned}
& \mathrm{H}\left[\mathrm{z}_{1}, \ldots, \mathrm{Z}_{\mathrm{r}}\right]=\mathrm{H}^{0, \lambda^{\prime}:\left(\mathrm{u}^{\prime}, \mathrm{v}^{\prime}\right) ; \ldots ;\left(\mathrm{u}^{(\mathrm{r})}, \mathrm{v}^{(\mathrm{r})}\right)} \begin{array}{l}
\mathrm{A}^{\prime}, \mathrm{C}^{\prime}:\left[\mathrm{B}^{\prime}, \mathrm{D}^{\prime}\right] ; \ldots ;\left[\mathrm{B}^{(\mathrm{r})}, \mathrm{D}^{(\mathrm{r})}\right]
\end{array} \\
& {\left[\begin{array}{l}
{\left[(\mathrm{a}): \theta^{\prime}, \ldots, \theta^{(\mathrm{r})}\right]:\left[\mathrm{b}^{\prime}: \phi^{\prime}\right] ; \ldots ;\left[\mathrm{b}^{(\mathrm{r})}: \phi^{(\mathrm{r})}\right] ;} \\
{\left[(\mathrm{c}): \psi_{1}, \ldots, \psi^{(\mathrm{r})}\right]:\left[\mathrm{d}^{\prime}: \delta^{\prime}\right] ; \ldots ;\left[\mathrm{d}^{(\mathrm{r})}: \delta^{(\mathrm{r})}\right] ;}
\end{array} \mathrm{Z}_{1}, \ldots, \mathrm{Z}_{\mathrm{r}}\right]} \\
& =\sum_{m_{i}=1}^{u^{(i)}} \sum_{n_{i}=0}^{\infty} \Phi_{1} \Phi_{2} \frac{\prod_{i=1}^{r}\left(z_{i}\right)^{U_{i}}(-1)^{\sum_{i=1}^{r}\left(n_{i}\right)}}{\prod_{i=1}^{r}\left(\delta_{m_{i}}^{(i)}\right) n_{i}!}
\end{aligned}
$$

[^4]where
\[

$$
\begin{equation*}
\Phi_{1}=\frac{\prod_{j=1}^{\lambda^{\prime}} \Gamma\left[1-a_{j}+\sum_{i=1}^{r} \theta_{j}^{(i)} U_{i}\right]}{\prod_{j=\lambda^{\prime}+1}^{A^{\prime}} \Gamma\left[a_{j}-\sum_{i=1}^{r} \theta_{j}^{(i)} U_{i}\right] \prod_{j=1}^{C^{\prime}}\left[1-c_{j}+\sum_{i=1}^{r} \psi_{j}^{(i)} U_{i}\right]}, \tag{1.3}
\end{equation*}
$$

\]

$$
\Phi_{2}=\frac{\prod_{\substack{j=1 \\ j \neq m_{i}}}^{u^{(i)}} \Gamma\left(d_{j}^{(i)}-\delta_{j}^{(i)} U_{i}\right) \prod_{j=1}^{v^{(i)}} \Gamma\left(1-b_{j}^{(i)}+\phi_{j}^{(i)} U_{i}\right)}{\prod_{j=u^{(i)}+1}^{D^{(i)}} \Gamma\left(1-d_{j}^{(i)}+\delta_{j}^{(i)} U_{i}\right) \prod_{j=v^{(i)}+1}^{B^{(i)}} \Gamma\left(b_{j}^{(i)}-\phi_{j}^{(i)} U_{i}\right)}
$$

Ref.

Srivastava and Panda [12] introduced the multivariable H-function as follows:

$$
\left.\begin{array}{c}
\mathrm{H}\left[\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{R}}\right]=\mathrm{H}_{\mathrm{A}, \mathrm{C}:\left[\mathrm{M}^{\prime}, \mathrm{N}^{\prime}\right] ; \ldots ;\left[\mathrm{M}^{(\mathrm{R})}, \mathrm{N}^{(\mathrm{R})}\right]}^{0, \lambda:\left(\alpha^{\prime}, \beta^{\prime}\right) ; \ldots ;\left(\alpha^{(\mathrm{R})} \beta^{(\mathrm{R})}\right)} \\
{\left[\begin{array}{l}
{\left[(\mathrm{g}): \gamma^{\prime} ; \ldots ; \gamma^{(\mathrm{R})}\right]:\left[\mathrm{q}^{\prime} \cdot \eta^{\prime}\right] ; \ldots ;\left[\mathrm{q}^{(\mathrm{R})}, \eta^{(\mathrm{R})}\right] ;} \\
\left.(\mathrm{f}): \xi^{\prime} ; \ldots ; \xi^{(\mathrm{R})}\right]:\left[\mathrm{p}^{\prime}, \epsilon^{\prime}\right) ; \ldots ;\left[\mathrm{p}^{(\mathrm{R})}, \epsilon^{(\mathrm{R})}\right] ;
\end{array} \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{R}}\right.} \tag{1.9}
\end{array}\right] .
$$

For the sake of brevity

$$
\begin{gather*}
T_{i}=\sum_{j=1}^{\lambda} \gamma_{j}^{(i)}-\sum_{j=1}^{C} \xi_{j}^{(i)}+\sum_{j=1}^{M^{(i)}} \eta_{j}^{(i)}-\sum_{j=1}^{N^{(i)}} \epsilon_{j}^{(i)} \leq 0, \tag{1.10}\\
\Omega_{i}=\sum_{j=\lambda+1}^{A} \gamma_{j}^{(i)}-\sum_{j=1}^{C} \xi_{j}^{(i)}+\sum_{j=1}^{\beta^{(i)}} \eta_{j}^{(i)}-\sum_{j=\beta^{(i)}+1}^{M_{j}^{(i)}} \eta_{j}^{(i)}+\sum_{j=1}^{\alpha^{(i)}} \epsilon_{j}^{(i)}-\sum_{j=\alpha^{(i)}+1}^{N^{(i)}} \epsilon_{j}^{(i)}>0 \tag{1.11}
\end{gather*}
$$

$$
\begin{gather*}
\left|\arg \left(\mathrm{y}_{\mathrm{i}}\right)\right|<\frac{1}{2} \Omega_{\mathrm{i}} \pi, \forall=1, \ldots, \mathrm{R} \tag{1.12}\\
\alpha \tag{1.13}\\
\mathrm{p}^{\prime} \mathrm{M}_{\mathrm{q}^{\prime}}[\mathrm{y}]=\sum_{\mathrm{s}^{\prime}=0}^{\infty} \frac{\left(\mathrm{a}_{1}\right)_{\mathrm{s}^{\prime}} \ldots\left(\mathrm{a}_{\mathrm{p}^{\prime}}\right)_{\mathrm{s}^{\prime}}}{\left(\mathrm{b}_{1}\right)_{\mathrm{s}^{\prime}} \ldots\left(\mathrm{b}_{\mathrm{q}^{\prime}}\right)_{\mathrm{s}^{\prime}}} \frac{\mathrm{y}^{\mathrm{s}^{\prime}}}{\Gamma\left(\alpha \mathrm{s}^{\prime}+1\right)}
\end{gather*}
$$

Here $\alpha \in \mathrm{C}, \operatorname{Re}(\alpha)>0,\left(\mathrm{a}_{\mathrm{j}}\right)_{\mathrm{k}^{\prime}},\left(\mathrm{b}_{\mathrm{j}}\right)_{\mathrm{k}^{\prime}}$ are the Pochammer symbols. The series in (1.13) is defined when none of the parameters $\mathrm{b}_{\mathrm{j}} \mathrm{s}, \mathrm{j}=1,2, \ldots, \mathrm{q}$, is a negative integer or zero. If any numerator parameter a_{j} is negative integer or zero, then the series terminates to a polynomial in y. The series is convergent if $p^{\prime} \leq q^{\prime}$ and $-y-<1$. For other details see [].

iI. Main Theorem

The transformation is valid under the following conditions:
(i) $h_{i}, h_{i}^{\prime}, T_{i}, \Omega_{i}, D^{*}=\tau(b-a), k>0, i=1, \ldots, R, i^{\prime}=1, \ldots, r, k^{\prime}>0$
(ii) $\operatorname{Re}(\rho)>-1, \operatorname{Re}\left(\sigma+\sum_{\mathrm{i}=1}^{\mathrm{R}} \mathrm{h}_{\mathrm{i}} \frac{\mathrm{p}_{\mathrm{j}}^{(\mathrm{i})}}{\epsilon_{\mathrm{j}}^{(\mathrm{i})}}+\sum_{\mathrm{i}^{\prime}=1}^{\mathrm{r}} \mathrm{h}_{\mathrm{i}^{\prime}}^{\prime} \frac{\mathrm{d}^{(\mathrm{i})}}{\delta_{j}^{(\mathrm{i})}}\right)>-1$
(iii) $\quad F_{n}(\rho, \omega ; t)$ is Fujiwar's polynomial $[7]$.
(iv) p is an arbitrary positive integer and the coefficients $\mathrm{A}_{\mathrm{q}, \mathrm{s}}(\mathrm{q}, \mathrm{s} \geq 0)$ are arbitrary coefficients, real or complex.
(v) $\left|\arg \left(y_{i}\right)\right|<\frac{1}{2} \Omega_{i}, T_{i}, \Omega_{i}$ are given in (1.10) and (1.11).
(vi) $\quad \mathrm{p}^{\prime} \leq \mathrm{q}^{\prime},|\mathrm{y}|<1$.

Thus, the following transformation holds

$$
\begin{gathered}
\int_{a}^{b}(t-a)^{\rho}(b-t)^{\sigma} F_{n}(\rho, \omega ; t) S_{q}^{p}\left[x(b-t)^{k}\right]_{p^{\prime}}^{M_{q^{\prime}}^{\alpha}}\left[y(b-t)^{k^{\prime}}\right] \\
. H\left[z_{1}(b-t)^{h^{\prime}}, \ldots, z_{r}(b-t)^{h^{\prime}}\right] H\left[y_{1}(b-t)^{h}, y_{R}(b-t)^{h_{R}}\right] d t \\
=\sum_{m_{i}=1}^{u^{(i)}} \sum_{n_{i}=0}^{\infty} \Phi_{1} \Phi_{2} \Phi_{3}(s) \Phi_{4}\left(s^{\prime}\right) \Gamma(1+\rho+n)(b-a)^{\rho+\sigma+1+\sum_{i=1}^{r} h_{i}^{\prime} U_{i}+k_{s}+k^{\prime} s^{\prime}} \\
\frac{(-1)^{i=1}}{\sum_{i}^{r}\left(n_{i}\right)+n+k s+k^{\prime} s^{\prime}} \prod_{i=1}^{r}\left(z_{i}\right)^{U_{i}}\left(D^{*}\right)^{\eta} \\
\prod_{i=1}^{r}\left(\left(\delta_{m_{i}}^{(i)}\right) n_{i}!\right) n!
\end{gathered}
$$

$$
\begin{align*}
& \begin{array}{c}
\mathrm{H}^{0, \lambda+2} \quad:\left(\alpha^{\prime}, \beta^{\prime}\right) ; \ldots ;\left(\alpha^{(\mathrm{R})}{ }_{\left., \beta^{(\mathrm{R})}\right)}^{\mathrm{A}+2, \mathrm{C}+2:\left[\mathrm{M}^{\prime}, \mathrm{N}^{\prime}\right] ; \ldots ;\left[\mathrm{M}^{(\mathrm{R})}, \mathrm{N}^{(\mathrm{R})}\right]}\right]
\end{array} \\
& {\left[\omega-\sigma-\sum_{i=1}^{r} h_{i}^{\prime} U_{i}-k s-k^{\prime} s^{\prime}: h_{1}, \ldots, h_{R}\right],\left[-\sigma-\sum_{i=1}^{r} h_{i}^{\prime} U_{i}-k s-k^{\prime} s^{\prime}: h_{1}, \ldots, h_{r}\right],} \\
& {\left[\omega+n-\sigma-\sum_{i=1}^{r} h_{i}^{\prime} U_{i}-k s-k^{\prime} s^{\prime}: h_{1}, \ldots, h_{R}\right],\left[-1-\rho-n-\sigma-\sum_{i=1}^{r} h_{i}^{\prime} U_{i}-k s-k^{\prime} s: h_{1}, \ldots, h_{R}\right],} \\
& \begin{array}{l}
\left.\left[(\mathrm{g}): \gamma^{\prime}, \ldots, \gamma^{(\mathrm{R})}\right]:\left[\mathrm{q}^{\prime}: \eta^{\prime}\right] ; \ldots ;\left[\mathrm{q}^{(\mathrm{R})}, \eta^{(\mathrm{R})}\right] ; y_{1}(\mathrm{~b}-\mathrm{a})^{\mathrm{h}_{1}}, \ldots, \mathrm{y}_{\mathrm{R}}(\mathrm{~b}-\mathrm{a})^{\mathrm{h}_{\mathrm{R}}}\right] . \\
{\left[(\mathrm{f}): \xi^{\prime}, \ldots, \xi^{(\mathrm{R})}\right]:\left[\mathrm{p}^{\prime}: \epsilon^{\prime}\right] ; \ldots ;\left[\mathrm{p}^{(\mathrm{R})}, \epsilon^{(\mathrm{R})}\right] ;}
\end{array} \tag{2.1}
\end{align*}
$$

To derive (2.1), we express the general class of polynomials, M-series, the multivariable H -function in series form with the help of (1.2), (1.1) and (1.13) and then changing the order of integration and summation which is valid with the conditions stated and evaluating the remaining integral with the help of a known result of Chaurasia and Sharma ([2], p.269, eqn. (2.1)), we arrive at the desired result.

IV. Special Cases

(i) Assigning suitable values to the parameters with appealing to a known result ([11], p.139, eqn.(4.11)), after a little simplification, we have the following result

Theorem (A)

The transformation is valid under the following conditions
(a) $\operatorname{Re}(\rho)>-1, \operatorname{Re}(\sigma)>-1$
(b) $\quad h_{j}>0, h_{i^{\prime}}^{\prime}>0, k>0, k^{\prime}>0, j=1, \ldots, R, i^{\prime}=1, \ldots, r, D^{*}=\tau(b-a)$ where

$$
\Delta_{j}=1+\sum_{i=1}^{\mu} \xi_{i}^{(j)}+\sum_{i=1}^{B^{(j)}} \epsilon_{i}^{(j)}-\sum_{i=1}^{\lambda} \gamma_{i}^{(j)}-\sum_{i=1}^{\alpha^{(j)}} \eta_{i}^{(j)} \quad(j=1, \ldots, R)
$$

(c) The equality holds when $-y_{j}-<L_{j}, j=1, \ldots, R$ with the L_{j} defined by equation (5.3), p. 157 in [12].
(d) p is an positive integer and the coefficients $A_{q, s}(q, s \geq 0)$ are arbitrary coefficients, real or complex.
(e) $\quad F_{n}(\rho, \omega ; t)$ is Fujiwara polynomial [7].
(f) $\quad \mathrm{p}^{\prime} \leq \mathrm{q}^{\prime}$ and $|\mathrm{y}|<1$.

$$
\int_{a}^{b}(t-a)^{\rho}(b-t)^{\sigma} F_{n}(\rho, \omega ; t) S_{q}^{p}\left[x(b-t)^{k}\right]_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left[y(b-t)^{k^{\prime}}\right]
$$

$$
\begin{aligned}
& . F_{C: D^{\prime} ; \ldots ; D^{(r)}}^{A: B^{\prime} ; \ldots ; B^{(r)}}\left[z_{1}(b-t)^{h^{\prime}}, \ldots, z_{r}(b-t)^{\mathrm{h}^{\prime}}\right] \\
& . F_{\mu: \beta^{\prime} ;, \ldots, \beta^{(R)}}^{\lambda: \alpha^{\prime} ; \ldots ; \alpha^{(R)}}\left[y_{1}(b-t)^{h_{1}}, \ldots, y_{R}(b-t)^{h_{R}}\right] d t
\end{aligned}
$$

$$
=\sum_{m_{1}, \ldots, m_{r}=0}^{\infty} \Phi_{3}(\mathrm{~s}) \Phi_{4}\left(\mathrm{~s}^{\prime}\right) \frac{\prod_{\mathrm{i}=1}^{\mathrm{A}}\left(\mathrm{a}_{\mathrm{i}}\right)_{\mathrm{m}_{1} \theta_{1}+\ldots+\mathrm{m}_{\mathrm{r}} \theta_{\mathrm{i}}^{(\mathrm{r})}} \prod_{\mathrm{i}=1}^{\mathrm{B}^{\prime}}\left(\mathrm{b}^{\prime}\right)_{\mathrm{m}_{1} \phi_{\mathrm{i}}} \ldots}{\prod_{\mathrm{i}=1}^{\mathrm{C}}(\mathrm{c})_{m_{1} \psi_{1}+\ldots+\mathrm{m}_{\mathrm{r}} \psi_{\mathrm{i}}^{(\mathrm{rr}}} \prod_{\mathrm{i}=1}^{\mathrm{D}^{\prime}}\left(\mathrm{d}^{\prime}\right)_{m_{1} \delta_{i}^{\prime}} \ldots}
$$

$$
\cdot \frac{\prod_{i=1}^{B^{(r)}}\left(b_{i}^{(r)}\right)_{m_{r} \phi_{i}^{(r)}}}{\prod_{i=1}^{D_{1}^{(r)}}\left(d_{i}^{(r)}\right)_{m_{r} \delta_{i}^{(t)}}^{m_{1}}} \frac{z_{1}!}{m_{1}!} \ldots \frac{z_{r}^{m_{r}}}{m_{r}!} \frac{(-1)^{n}}{n!}(b-a)^{=r+s+1+\sum_{i=1}^{r} h^{\prime} m_{i}+s k+s^{\prime} k^{\prime}}
$$

$$
\frac{\left.\Gamma(1+\rho+\mathrm{n}) \Gamma\left(1+\sigma+\sum_{\mathrm{i}=1}^{\mathrm{r}} \mathrm{~h}^{\prime} \mathrm{m}_{\mathrm{i}}+\mathrm{sk}+\mathrm{s}^{\prime} \mathrm{k}^{\prime}\right)\right)}{\left.\Gamma\left(1+\sigma-\omega-\mathrm{n}+\sum_{\mathrm{i}=1}^{\mathrm{r}} \mathrm{~h}^{\prime} \mathrm{m}_{\mathrm{i}}+\mathrm{sk}+\mathrm{s}^{\prime} \mathrm{k}^{\prime}\right)\right)}
$$

$$
\cdot \frac{\Gamma\left(1+\sigma-\omega+\sum_{i=1}^{r} h^{\prime} m_{i}+s k+s^{\prime} k^{\prime}\right)}{\Gamma\left(1+\omega+\mathrm{n}+\sigma+\sum_{i=1}^{r} h^{\prime} m_{i}+s k+s^{\prime} k^{\prime}\right)}
$$

$$
. \mathrm{F}_{\mu+2: \beta^{\prime} ; \ldots ; \beta^{(\mathrm{R})}}^{\lambda+2: \alpha^{\prime} ; \ldots ; \alpha^{(\mathrm{R})}}\left[\begin{array}{l}
{\left[1+\sigma+\sum_{\mathrm{i}=1}^{\mathrm{r}} \mathrm{~h}^{\prime} \mathrm{m}_{\mathrm{i}}+\mathrm{sk}+\mathrm{s}^{\prime} \mathrm{k}^{\prime}: \mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{R}} \mathrm{R}\right]}
\end{array}\right],
$$

$$
\left[1+\sigma-\omega+\sum_{i=1}^{\mathrm{r}} \mathrm{~h}^{\prime} m_{\mathrm{i}}+\mathrm{sk}+s^{\prime} \mathrm{k}^{\prime}: \mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{R}}\right],\left[(\mathrm{g}): \gamma^{\prime}, \ldots, \gamma^{(\mathrm{R})}\right]:\left[(\mathrm{q}): \eta^{\prime}\right] ; \ldots\left[\left(\mathrm{q}^{(\mathrm{R})}: \eta^{(\mathrm{R})}\right] ;\right.
$$

(ii) Taking $\mathrm{r}=1=\mathrm{R}$ in (2.1), we have the following result

Theorem (B)

The transformation is valid under the following conditions
(a) $\operatorname{Re}(1+\rho)>0, h, h^{\prime}, k, k^{\prime}, T>0,|\arg (y)|<\frac{1}{2} T \pi, D^{*}=\tau(b-a)$
(b) $\operatorname{Re}\left(\sigma+h^{\prime} \frac{p_{j}}{\epsilon_{j}}+h \frac{d_{j^{\prime}}}{\delta_{j^{\prime}}}+1\right)>0, j=1, \ldots, u, j^{\prime}=1, \ldots, \alpha$.
(c) p is an positive integer and the coefficient $A_{q, s}(q, s \geq 0)$ are arbitrary
(d) $\quad F_{n}(\rho, \omega ; t)$ is Fujiwara polynomial [7].
(e) $\quad \mathrm{p}^{\prime} \leq \mathrm{q}^{\prime}$ and $|\mathrm{y}|<1$.

Thus, the following transformation holds

$$
\begin{align*}
& \int_{a}^{b}(t-a)^{\rho}(b-t)^{\sigma} F_{n}(\rho, \omega ; t) S_{q}^{p}\left[x(b-t)^{k}\right]_{p^{\prime}} M_{q^{\prime}}^{\alpha}\left[y(b-t)^{k^{\prime}}\right] \\
& . H_{B, D}^{u, v}\left[\left.\begin{array}{l}
{\left[b^{\prime}: \phi\right]} \\
{\left[d^{\prime}: \delta\right]}
\end{array} \right\rvert\, z(b-t)^{h^{\prime}}\right] H_{M, N}^{\alpha^{\prime}, \beta^{\prime}}\left[\left.\begin{array}{l}
{\left[q^{\prime}:: \eta\right.} \\
{\left[p^{\prime}:: \in\right.}
\end{array} \right\rvert\, y^{\prime}(b-t)^{h}\right] d t \\
& =\sum_{m_{1}=0}^{u} \sum_{n_{1}=0}^{\infty} \Phi_{1}^{*} \Phi_{3}(\mathrm{~s}) \Phi_{4}\left(\mathrm{~s}^{\prime}\right)(-1)^{\mathrm{n}_{1}} \mathrm{z}^{\mathrm{U}}\left(\mathrm{D}^{*}\right)^{\mathrm{n}} \frac{(\mathrm{~b}-\mathrm{a})^{\rho+\sigma+1+h^{\prime} \mathrm{U}+\mathrm{sk}+\mathrm{s}^{\prime} \mathrm{k}^{\prime}} \Gamma(1+\rho+\mathrm{n})}{\mathrm{n}!\mathrm{n}_{1}!\delta n_{1}} \\
& . H_{M+2, N+2}^{\alpha, \beta+2}\left[\begin{array}{l}
{\left[\omega-\sigma-h^{\prime} U-s k-s^{\prime} k: h\right],\left[-\sigma-h^{\prime} U-s k-s^{\prime} k^{\prime}: h\right],\left[b b^{\prime}: \phi\right] ;} \\
{\left[(d: \delta],\left[\omega+n-\sigma-\eta^{\prime} U-s k-s^{\prime} k^{\prime}: h\right],\left[-1-\rho-\eta-\sigma-h^{\prime} U-s k-s^{\prime} k^{\prime}: h\right] ;\right.}
\end{array} y^{\prime}(b-a)^{h}\right] . \tag{4.2}
\end{align*}
$$

(iii) When $\mathrm{k}^{\prime} \rightarrow 0, \mathrm{q} \rightarrow 0$, the result in (2.1), (4.1) and (4.2) reduce to the result obtained by Chaurasia and Chand [3].
(iv) Putting $\mathrm{q} \rightarrow 0, \mathrm{~h}_{\mathrm{i}}^{\prime} \rightarrow 1, \mathrm{y} \rightarrow 0, \mathrm{i}=1, \ldots, \mathrm{r}$ in (2), we have a result due to Chaurasia and Sharma [3].
(v) The results derived by the equations (3.2) and (3.3) in [2] can be obtained from our results.
(vi) Setting $\mathrm{a}=-1, \mathrm{~b}=1=\lambda, \mathrm{q} \rightarrow 0, \mathrm{y} \rightarrow 0, \mathrm{~h}_{\mathrm{i}}^{\prime}=1, \mathrm{i}=1, \ldots, \mathrm{r}$ in (2.1), we get a known result of Srivastava and Panda [11].
(vii) Taking $\mathrm{q} \rightarrow 0, \mathrm{y} \rightarrow 0, \mathrm{~h}_{\mathrm{i}}^{\prime}=1, \mathrm{i}=1, \ldots, \mathrm{r}$ the result in (4.1) reduces to a known result derived by Chaurasia and Sharma in [3].
(viii) The results (2.1),(4.1) and (4.2) established by Chaurasia and Singh in [4] can be reduced as a particular cases of our results.

A great number of interesting transformation formulae as special cases of our results can be derived, but we omit them here for lack of space.

Acknowledgement

The author is thankful to Principal Dr. V.B.L. Chaurasia of the Institute of Local Self Government College, Jaipur, for his keen interest and many valuable suggestions in the preparation of this paper.

References Références Referencias

1. Chaurasia, V.B.L., On generalized Lauricella functions, Math. Revue D'analyse Numr. el de Theorie de L'approximation Mathematica Tomb 18(41) 2(1976), 125-130.
2. Chaurasia, V.B.L. and Sharma, S.C., An integral involving extended Jacobi polynomials and H-function of several complex variables, Vij. Pari. Anu. Pat. 27(3) (1984), 267-272.
3. Chaurasia, V.B.L. and Chand Gulshan, An integral involving extended Jacobi polynomial, Global J. Sci. Front Research, 12(5) (2012), 13-18.
4. Chaurasia, V.B.L.and Singh, Jaswant, A finite integral pertaining to Fujiwara polynomial and a general class of polynomials (Communicated for publication).
5. Chiney, S.P. and Bhonsle, B.R., Some results involving Jacobi polynomials, Rev. Univ. Nac. Tucuman, A, mat. fir. teor, Tucuman, 25(1) (1975),7-11.
6. Fox, C., The G and H-functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98(1961), 395-429.
7. Fujiwara, J., A unified presentation of classical orthogonal polynomials, Math. Japan, 11 (1966), 133-148.
8. Olkha, G.S. and Chaurasia, V.B.L., Some integral transforms involving the Hfunction, Kyungpook Math. J., 22 (1982), 309-315.
9. Olkha, G.S. and Chaurasia, V.B.L., Series representation for the H-function of several complex variables, Math. Edu., 19(1) (1985), 38-40.
10. Srivastava, H.M., A contour integral involving Fox's function, Indian J. Math., 14 (1972), 1-6.
11. Srivastava, H.M. and Panda, R., Expansion Theorem for the H-function of several complex variables, J. Reine Angew. Math., 288 (1976), 129-145.
12. Srivastava, H.M. and Panda, R., Some bilateral generating functions for a class of generalized hypergeometric polynomials, J. Reine Angew. Math. 283/284 (1976),265274.
13. Srivastava, H.M. and Daoust, M.C., A note on convergence of Kampé de Fériet double hypergeometric series, Math. Nachr., 53(1972), 151-159.
14. Srivastava, H.M. and Singh, N.P., The integration of certain products of the multivariable H -function with a general class of polynomials, Rend. Circ. Mat. Palermo, 32 (1983), 157-187.
15. Sharma, M., Fractional integration and fractional differentiation of the M-series, Fractional Cal. Appl. Anal., 11(2)(2008),187-191.

This page is intentionally left blank

Global Journal of Science Frontier Research MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 2 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

On Certain Indefinite Elliptic Integrals

By Salahuddin \& M. P. Chaudhary

P.D.M College of Engineering

Abstract - In this paper we have developed some formulae related to indefinite integrals in association with Hypergeometric functions.

Keywords : pochhammer symbol; gaussian hypergeometric function; complete elliptic integrals; kampé de fériet double hypergeometric function and srivastava's triple hypergeometric function. GJSFR-F Classification : MSC 2010: 33C75, 33E05

Strictly as per the compliance and regulations of :

© 2013. Salahuddin \& M. P. Chaudhary. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

On Certain Indefinite Elliptic Integrals

Salahuddin ${ }^{\alpha}$ \& M. P. Chaudhary ${ }^{\sigma}$

Abstract - In this paper we have developed some formulae related to indefinite integrals in association with Hypergeometric functions.

Keywords and Phrases : pochhammer symbol; gaussian hypergeometric function; complete elliptic integrals; kampé de fériet double hypergeometric function and sri- vastava's triple hypergeometric function.

I. Introduction and Preliminaries

The Pochhammer's symbol or Appell's symbol or shifted factorial or rising factorial or generalized factorial function is defined by

$$
(b, k)=(b)_{k}=\frac{\Gamma(b+k)}{\Gamma(b)}= \begin{cases}b(b+1)(b+2) \cdots(b+k-1) ; & \text { if } k=1,2,3, \cdots \\ 1 & ; \\ k! & \text { if } k=0 \\ ; & \text { if } b=1, k=1,2,3, \cdots\end{cases}
$$

where b is neither zero nor negative integer and the notation Γ stands for Gamma function.

a) Generalized Gaussian Hypergeometric Function

Generalized ordinary hypergeometric function of one variable is defined by

$$
{ }_{A} F_{B}\left[\begin{array}{ccc}
a_{1}, a_{2}, \cdots, a_{A} & ; & \\
b_{1}, b_{2}, \cdots, b_{B} & ; & z
\end{array}\right]=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{A}\right)_{k} z^{k}}{\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \cdots\left(b_{B}\right)_{k} k!}
$$

or

$$
{ }_{A} F_{B}\left[\begin{array}{ccc}
\left(a_{A}\right) & ; & \tag{1.1}\\
\left(b_{B}\right) & ; & z
\end{array}\right] \equiv{ }_{A} F_{B}\left[\begin{array}{ccc}
\left(a_{j}\right)_{j=1}^{A} & ; & \\
\left(b_{j}\right)_{j=1}^{B} & ; & z
\end{array}\right]=\sum_{k=0}^{\infty} \frac{\left(\left(a_{A}\right)\right)_{k} z^{k}}{\left(\left(b_{B}\right)\right)_{k} k!}
$$

where denominator parameters $b_{1}, b_{2}, \cdots, b_{B}$ are neither zero nor negative integers and A, B are non-negative integers.

b) Kampje de Fjeriet's General Double Hypergeometric Function

In 1921, Appell's four double hypergeometric functions $F_{1}, F_{2}, F_{3}, F_{4}$ and their confluent forms $\Phi_{1}, \Phi_{2}, \Phi_{3}, \Psi_{1}, \Psi_{2}, \Xi_{1}, \Xi_{2}$ were unified and generalized by Kampé de Fériet.
We recall the definition of general double hypergeometric function of Kampé de Fériet in slightly modified notation of H.M.Srivastava and R.Panda:

[^5]where for convergence
(i) $A+B<E+G+1, A+D<E+H+1 \quad ;|x|<\infty, \quad|y|<\infty$, or
(ii) $A+B=E+G+1, A+D=E+H+1$, and

c) Srivastava's General Triple Hypergeometric Function

In 1967, H. M. Srivastava defined a general triple hypergeometric function $F^{(3)}$ in the following form

$$
\begin{array}{r}
F^{(3)}\left[\begin{array}{rl}
\left(a_{A}\right)::\left(b_{B}\right) ;\left(d_{D}\right) ;\left(e_{E}\right):\left(g_{G}\right) ;\left(h_{H}\right) ;\left(l_{L}\right) ; & x, y, z \\
\left(m_{M}\right)::\left(n_{N}\right) ;\left(p_{P}\right) ;\left(q_{Q}\right):\left(r_{R}\right) ;\left(s_{S}\right) ;\left(t_{T}\right) ;
\end{array}\right] \\
=\sum_{i, j, k=0}^{\infty} \frac{\left(\left(a_{A}\right)\right)_{i+j+k}\left(\left(b_{B}\right)\right)_{i+j}\left(\left(d_{D}\right)\right)_{j+k}\left(\left(e_{E}\right)\right)_{k+i}\left(\left(g_{G}\right)\right)_{i}\left(\left(h_{H}\right)\right)_{j}\left(\left(l_{L}\right)\right)_{k} x^{i} y^{j} z^{k}}{\left(\left(m_{M}\right)\right)_{i+j+k}\left(\left(n_{N}\right)\right)_{i+j}\left(\left(p_{P}\right)\right)_{j+k}\left(\left(q_{Q}\right)\right)_{k+i}\left(\left(r_{R}\right)\right)_{i}\left(\left(s_{S}\right)\right)_{j}\left(\left(t_{T}\right)\right)_{k} i!j!k!} \tag{1.3}
\end{array}
$$

d) Wright's Generalized Hypergeometric Function

$$
\begin{gather*}
{ }_{p} \Psi_{q}\left[\begin{array}{ccc}
\left(\alpha_{1}, A_{1}\right), \cdots,\left(\alpha_{p}, A_{p}\right) & ; & \\
\left(\lambda_{1}, B_{1}\right), \cdots,\left(\lambda_{q}, B_{q}\right) & ; & x
\end{array}\right]=\sum_{m=0}^{\infty} \frac{\Gamma\left(\alpha_{1}+m A_{1}\right) \Gamma\left(\alpha_{2}+m A_{2}\right) \cdots \Gamma\left(\alpha_{p}+m A_{p}\right) x^{m}}{\Gamma\left(\lambda_{1}+m B_{1}\right) \Gamma\left(\lambda_{2}+m B_{2}\right) \cdots \Gamma\left(\lambda_{q}+m A_{q}\right) m!} \\
{ }_{p} \Psi_{q}^{*}\left[\begin{array}{cc}
\left(\alpha_{1}, A_{1}\right), \cdots,\left(\alpha_{p}, A_{p}\right) & ; \\
\left(\lambda_{1}, B_{1}\right), \cdots,\left(\lambda_{q}, B_{q}\right) & ;
\end{array}\right]=\sum_{m=0}^{\infty} \frac{\left(\alpha_{1}\right)_{m A_{1}}\left(\alpha_{2}\right)_{m A_{2}} \cdots\left(\alpha_{p}\right)_{m A_{p}} x^{m}}{\left(\lambda_{1}\right)_{m B_{1}}\left(\lambda_{2}\right)_{m B_{2}} \cdots\left(\lambda_{q}\right)_{m B_{q}} m!} \tag{1.4}
\end{gather*}
$$

II. Main Integrals

$$
\int \frac{\mathrm{d} x}{\sqrt{(1+x \sinh x)}}=
$$

$$
=-\cosh x \sinh ^{m+1} x\left(-\sinh ^{2} x\right)^{\frac{-m-1}{2}} F_{0 ; 1}^{1 ; 2}\left[\begin{array}{ccc}
\frac{1}{2} & ; \frac{1}{2}, \frac{1-m}{2} & ; \tag{2.1}\\
-; \frac{3}{2} & ; & -x, \cosh ^{2} x
\end{array}\right]+\text { Constant }
$$

$\int \frac{\mathrm{d} x}{\sqrt{(1+x \cosh x)}}=-\frac{\sinh x \cosh ^{m+1} x}{(m+1) \sqrt{-\sinh ^{2} x}} F_{0 ; 1}^{1 ; 2}\left[\begin{array}{ccc}\frac{1}{2} ; \frac{1}{2}, \frac{m+1}{2} & ; & -x, \cosh ^{2} x \\ -; \frac{m+3}{2} & ; & \text { Constant }\end{array}\right.$

$$
\begin{align*}
& \int \frac{\mathrm{d} x}{\sqrt{(1+x \tanh x)}}=\frac{\tanh ^{m+1} x}{(m+1)} F_{0 ; 1}^{1 ; 2}\left[\begin{array}{ccc}
\frac{1}{2} ; 1, \frac{m+1}{2} & ; & \\
-; \frac{m+3}{2} & ; & -x, \tanh ^{2} x
\end{array}\right]+\text { Constant } \tag{2.3}\\
& \int \frac{\mathrm{d} x}{\sqrt{(1+x \operatorname{coth} x)}}=\frac{\operatorname{coth}^{m+1} x}{(m+1)} F_{0 ; 1}^{1 ; 2}\left[\begin{array}{ccc}
\frac{1}{2} ; 1, \frac{m+1}{2} & ; & -x, \operatorname{coth}^{2} x \\
-; \frac{m+3}{2} & ; &
\end{array}\right]+\text { Constant } \tag{2.4}\\
& \int \frac{\mathrm{d} x}{\sqrt{(1+x \operatorname{sech} x)}}= \\
& =\sinh x \cosh ^{2}(x)^{\frac{m+1}{2}} \operatorname{sech}^{m+1} x F_{0 ; 1}^{1 ; 2}\left[\begin{array}{ccc}
\frac{1}{2} ; \frac{1}{2}, \frac{1+m}{2} & ; & -x,-\sinh ^{2} x \\
-; \frac{3}{2} & ; &
\end{array}\right]+\text { Constant } \\
& \int \frac{\mathrm{d} x}{\sqrt{(1+x \operatorname{cosech} x)}}= \\
& =\cosh x\left(-\sinh ^{2}(x)\right)^{\frac{m+1}{2}} \operatorname{cosech}^{m+1} x F_{0 ; 1}^{1 ; 2}\left[\begin{array}{ccc}
\frac{1}{2} ; \frac{1}{2}, \frac{1+m}{2} & ; & \\
-; \frac{3}{2} & ; & -x, \cosh ^{2} x
\end{array}\right]+\text { Constant }
\end{align*}
$$

iii. Derivation of Integrals

Derivation of integral (2.1)

$$
\begin{gathered}
\int \frac{\mathrm{d} x}{\sqrt{(1+x \sinh x)}}=\int(1+x \sinh x)^{-\frac{1}{2}} \mathrm{~d} x=\int\{1-(-x \sinh x)\}^{-\frac{1}{2}} \mathrm{~d} x \\
\int \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{m}(-x)^{m}}{m!} \sinh ^{m} x \mathrm{dx}=\sum_{\mathrm{m}=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{\mathrm{m}}(-\mathrm{x})^{\mathrm{m}}}{\mathrm{~m}!} \int \sinh ^{\mathrm{m}} \mathrm{x} \mathrm{dx} \\
=\sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{m}(-x)^{m}}{m!}(-\cosh x) \sinh ^{m+1} x\left(-\sinh ^{2} x\right)^{\frac{-m-1}{2}}{ }_{2} F_{1}\left[\begin{array}{c}
\frac{1}{2}, \frac{1-m}{2} \\
\frac{3}{2}
\end{array} ; \cosh ^{2} x\right]+\text { Constant } \\
=-\cosh x \sinh ^{m+1} x\left(-\sinh ^{2} x\right)^{\frac{-m-1}{2}} F_{0 ; 1}^{1 ; 2}\left[\begin{array}{ccc}
\frac{1}{2} ; \frac{1}{2}, \frac{1-m}{2} & ; & -x, \cosh ^{2} x \\
-; \frac{3}{2} & ;
\end{array}\right]+\text { Constant }
\end{gathered}
$$

Derivation of integral (2.2)

$$
\begin{aligned}
& \int \frac{\mathrm{d} x}{\sqrt{(1+x \cosh x)}}=\int(1+x \cosh x)^{-\frac{1}{2}} \mathrm{~d} x=\int\{1-(-x \cosh x)\}^{-\frac{1}{2}} \mathrm{~d} x \\
& \int \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{m}(-x)^{m}}{m!} \cosh ^{m} x \mathrm{dx}=\sum_{\mathrm{m}=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{\mathrm{m}}(-\mathrm{x})^{\mathrm{m}}}{\mathrm{~m}!} \int \cosh ^{\mathrm{m}} \mathrm{x} \mathrm{dx} \\
= & \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{m}(-x)^{m}}{m!} \frac{(-\sinh x) \cosh ^{m+1} x}{(m+1) \sqrt{-\sinh ^{2} x}}{ }_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{2}, \frac{m+1}{2} & ; \\
\frac{m+3}{2} & \left.\cosh ^{2} x\right]+ \text { Constant }
\end{array}\right.
\end{aligned}
$$

$$
=-\frac{\sinh x \cosh ^{m+1} x}{(m+1) \sqrt{-\sinh ^{2} x}} F_{0 ; 1}^{1 ; 2}\left[\begin{array}{ccc}
\frac{1}{2} ; \frac{1}{2}, \frac{m+1}{2} & ; & \\
-\frac{m+3}{2} & ; & -x, \cosh ^{2} x
\end{array}\right]+\text { Constant }
$$

Derivation of integral (2.3)

$$
\begin{aligned}
& \int \frac{\mathrm{d} x}{\sqrt{(1+x \tanh x)}}=\int(1+x \tanh x)^{-\frac{1}{2}} \mathrm{~d} x=\int\{1-(-x \tanh x)\}^{-\frac{1}{2}} \mathrm{~d} x \\
& \int \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{m}(-x)^{m}}{m!} \tanh ^{m} x \mathrm{dx}=\sum_{\mathrm{m}=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{\mathrm{m}}(-\mathrm{x})^{\mathrm{m}}}{\mathrm{~m}!} \int \tanh ^{\mathrm{m}} \mathrm{x} \mathrm{dx} \\
& =\sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{m}(-x)^{m}}{m!} \frac{\tanh ^{m+1} x}{(m+1)}{ }_{2} F_{1}\left[\begin{array}{cc}
1, \frac{m+1}{2} \\
\frac{m+3}{2}
\end{array} ; \tanh ^{2} x\right]+\text { Constant } \\
& = \\
& \frac{\tanh ^{m+1} x}{(m+1)} F_{0 ; 1}^{1 ; 2}\left[\begin{array}{ccc}
\frac{1}{2} ; 1, \frac{m+1}{2} \\
-; \frac{m+3}{2} & ; & \left.-x, \tanh ^{2} x\right]+ \text { Constant }
\end{array}\right.
\end{aligned}
$$

Derivation of integral (2.4)

$$
\begin{aligned}
& \int \frac{\mathrm{d} x}{\sqrt{(1+x \operatorname{coth} x)}}=\int(1+x \operatorname{coth} x)^{-\frac{1}{2}} \mathrm{~d} x=\int\{1-(-x \operatorname{coth} x)\}^{-\frac{1}{2}} \mathrm{~d} x \\
& \int \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{m}(-x)^{m}}{m!} \operatorname{coth}^{m} x \mathrm{dx}=\sum_{\mathrm{m}=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{\mathrm{m}}(-\mathrm{x})^{\mathrm{m}}}{\mathrm{~m}!} \int \operatorname{coth}^{\mathrm{m}} \mathrm{x} \mathrm{dx} \\
= & \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{m}(-x)^{m}}{m!} \frac{\operatorname{coth}^{m+1} x}{(m+1)}{ }_{2} F_{1}\left[\begin{array}{cc}
1, \frac{m+1}{2} \\
\frac{m+3}{2}
\end{array} ; \operatorname{coth}^{2} x\right]+\text { Constant } \\
= & \frac{\operatorname{coth}^{m+1} x}{(m+1)} F_{0 ; 1}^{1 ; 2}\left[\begin{array}{ccc}
\frac{1}{2} ; 1, \frac{m+1}{2} & ; & -x, \operatorname{coth}^{2} x \\
-; \frac{m+3}{2} & ; & \text { Constant }
\end{array} .\right.
\end{aligned}
$$

Derivation of integral (2.5)

$$
\begin{gathered}
\int \frac{\mathrm{d} x}{\sqrt{(1+x \operatorname{sech} x)}}=\int(1+x \operatorname{sech} x)^{-\frac{1}{2}} \mathrm{~d} x=\int\{1-(-x \operatorname{sech} x)\}^{-\frac{1}{2}} \mathrm{~d} x \\
\int \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{m}(-x)^{m}}{m!} \operatorname{sech}^{m} x \mathrm{dx}=\sum_{\mathrm{m}=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{\mathrm{m}}(-\mathrm{x})^{\mathrm{m}}}{\mathrm{~m}!} \int \operatorname{sech}^{\mathrm{m}} \mathrm{x} \mathrm{dx} \\
=\sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{m}(-x)^{m}}{m!} \sinh x \cosh ^{2}(x)^{\frac{m+1}{2}} \operatorname{sech}^{m+1} x_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{2}, \frac{m+1}{2} & \left.;-\sinh ^{2} x\right]+ \text { Constant } \\
\frac{3}{2} & ;
\end{array}\right. \\
=\sinh x \cosh ^{2}(x)^{\frac{m+1}{2}} \operatorname{sech}^{m+1} x F_{0 ; 1}^{1 ; 2}\left[\begin{array}{ccc}
\frac{1}{2} & ; \frac{1}{2}, \frac{1+m}{2} & ; \\
-; \frac{3}{2} & ; & \left.-\sinh ^{2} x\right]+ \text { Constant }
\end{array}\right.
\end{gathered}
$$

Derivation of integral (2.6)

$$
\begin{gathered}
\int \frac{\mathrm{d} x}{\sqrt{(1+x \operatorname{cosech} x)}}=\int(1+x \operatorname{cosech} x)^{-\frac{1}{2}} \mathrm{~d} x=\int\{1-(-x \operatorname{cosech} x)\}^{-\frac{1}{2}} \mathrm{~d} x \\
\int \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{m}(-x)^{m}}{m!} \operatorname{cosech}^{m} x \mathrm{dx}=\sum_{\mathrm{m}=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{\mathrm{m}}(-\mathrm{x})^{\mathrm{m}}}{\mathrm{~m}!} \int \operatorname{cosech}^{\mathrm{m}} \mathrm{x} \mathrm{dx} \\
=\sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{m}(-x)^{m}}{m!} \cosh x\left(-\sinh ^{2}(x)\right)^{\frac{m+1}{2}} \operatorname{cosech}^{m+1} x_{2} F_{1}\left[\begin{array}{cc}
\frac{1}{2}, \frac{m+1}{2} & ; \\
\frac{3}{2} & \cosh ^{2} x
\end{array}\right]+\text { Constant } \\
=\cosh x\left(-\sinh ^{2}(x)\right)^{\frac{m+1}{2}} \operatorname{cosech}^{m+1} x F_{0 ; 1}^{1 ; 2}\left[\begin{array}{ccc}
\frac{1}{2} ; \frac{1}{2}, \frac{1+m}{2} & ; & -x, \cosh ^{2} x \\
-; \frac{3}{2} & ; &
\end{array}\right]+\text { Constant }
\end{gathered}
$$

References Références Referencias

1. Agarwal, R. P.; Resonance of Ramanujan's Mathematics. Vol. I, New Age International (P) Ltd., New Delhi, 1996.
2. Agarwal, R. P.; Resonance of Ramanujan's Mathematics. Vol. II, New Age International (P) Ltd., New Delhi, 1996.
3. Agarwal, R. P.; Resonance of Ramanujan's Mathematics. Vol. III, New Age International (P) Ltd., New Delhi, 1999.
4. Berndt, B. C.; Ramanujan's Notebooks. Part I, Springer-Verlag, New York, 1985.
5. Berndt, B. C.; Ramanujan's Notebooks. Part II, Springer-Verlag, New York, 1989.
6. Berndt, B. C.; Ramanujan's Notebooks. Part III, Springer-Verlag, New York, 1991.
7. Berndt, B. C.; Ramanujan's Notebooks. Part IV, Springer-Verlag, New York, 1994.
8. Berndt, B. C.; Ramanujan's Notebooks. Part V, Springer-Verlag, New York, 1998.
9. Saigo, M. and Srivastava, H. M.; The behavior of the fourth type of Lauricella's hypergeometric series in n variables near the boundaries of its convergence region. J. Austral. Math. Soc., Series A, 57(1994), 281-294.
10. Srivastava, H.M. and Daoust, M.C. ; A note on the convergence of Kampé de Fériet double hypergeometric series.Math.Nachr.53(1972).151-159.
11. Srivastava, H. M., Gupta, K. C. and Goyal, S. P.; The H-Functions of One and Two Variables with Applications. South Asian Publishers, New Delhi and Madras, 1982.
12. Qureshi,M.I ., Salahuddin.,Chaudhary, M. P. and Quraishi, K.A.; Evaluation of Certain Elliptic Type Single, Double Integrals of Ramanujan and Erdélyi, J. Mathematics Research., 2(2010), 148-156.

Global Journals Inc. (US) Guidelines Handbook 2013

WWW.GLOBALJOURNALS.ORG

FELLOWS

FELLOW OF ASSOCIATION OF RESEARCH SOCIETY IN SCIENCE (FARSS)

- 'FARSS' title will be awarded to the person after approval of Editor-in-Chief and Editorial Board. The title 'FARSS" can be added to name in the following manner. eg. Dr. John E. Hall, Ph.D., FARSS or William Walldroff Ph. D., M.S., FARSS
- Being FARSS is a respectful honor. It authenticates your research activities. After becoming FARSS, you can use 'FARSS' title as you use your degree in suffix of your name. This will definitely will enhance and add up your name. You can use it on your Career Counseling Materials/CV/Resume/Visiting Card/Name Plate etc.
- 60% Discount will be provided to FARSS members for publishing research papers in Global Journals Inc., if our Editorial Board and Peer Reviewers accept the paper. For the life time, if you are author/co-author of any paper bill sent to you will automatically be discounted one by 60%
- FARSS will be given a renowned, secure, free professional email address with 100 GB of space eg.johnhall@globaljournals.org. You will be facilitated with Webmail, SpamAssassin, Email Forwarders, Auto-Responders, Email Delivery Route tracing, etc.
- FARSS member is eligible to become paid peer reviewer at Global Journals Inc. to earn up to 15% of realized author charges taken from author of respective paper. After reviewing 5 or more papers you can request to transfer the amount to your bank account or to your PayPal account.
- Eg. If we had taken 420 USD from author, we can send 63 USD to your account.
- FARSS member can apply for free approval, grading and certification of some of their Educational and Institutional Degrees from Global Journals Inc. (US) and Open Association of Research,Society U.S.A.
- After you are FARSS. You can send us scanned copy of all of your documents. We will verify, grade and certify them within a month. It will be based on your academic records, quality of research papers published by you, and 50 more criteria. This is beneficial for your job interviews as recruiting organization need not just rely on you for authenticity and your unknown qualities, you would have authentic ranks of all of your documents. Our scale is unique worldwide.
- FARSS member can proceed to get benefits of free research podcasting in Global Research Radio with their research documents, slides and online movies.
- After your publication anywhere in the world, you can upload you research paper with your recorded voice or you can use our professional RJs to record your paper their voice. We can also stream your conference videos and display your slides online.
- FARSS will be eligible for free application of Standardization of their Researches by Open Scientific Standards. Standardization is next step and level after publishing in a journal. A team of research and professional will work with you to take your research to its next level, which is worldwide open standardization.
- FARSS is eligible to earn from their researches: While publishing his paper with Global Journals Inc. (US), FARSS can decide whether he/she would like to publish his/her research in closed manner. When readers will buy that individual research paper for reading, 80% of its earning by Global Journals Inc. (US) will be transferred to FARSS member's bank account after certain threshold balance. There is no time limit for collection. FARSS member can decide its price and we can help in decision.

MEMBER OF ASSOCIATION OF RESEARCH SOCIETY IN SCIENCE (MARSS)

- 'MARSS' title will be awarded to the person after approval of Editor-in-Chief and Editorial Board. The title 'MARSS" can be added to name in the following manner. eg. Dr. John E. Hall, Ph.D., MARSS or William Walldroff Ph. D., M.S., MARSS
- Being MARSS is a respectful honor. It authenticates your research activities. After becoming MARSS, you can use 'MARSS' title as you use your degree in suffix of your name. This will definitely will enhance and add up your name. You can use it on your Career Counseling Materials/CV/Resume/Visiting Card/Name Plate etc.
- 40% Discount will be provided to MARSS members for publishing research papers in Global Journals Inc., if our Editorial Board and Peer Reviewers accept the paper. For the life time, if you are author/co-author of any paper bill sent to you will automatically be discounted one by 60\%
- MARSS will be given a renowned, secure, free professional email address with 30 GB of space eg.johnhall@globaljournals.org. You will be facilitated with Webmail, SpamAssassin, Email Forwarders, Auto-Responders, Email Delivery Route tracing, etc.
- MARSS member is eligible to become paid peer reviewer at Global Journals Inc. to earn up to 10% of realized author charges taken from author of respective paper. After reviewing 5 or more papers you can request to transfer the amount to your bank account or to your PayPal account.
- MARSS member can apply for free approval, grading and certification of some of their Educational and Institutional Degrees from Global Journals Inc. (US) and Open Association of Research,Society U.S.A.
- MARSS is eligible to earn from their researches: While publishing his paper with Global Journals Inc. (US), MARSS can decide whether he/she would like to publish his/her research in closed manner. When readers will buy that individual research paper for reading, 40% of its earning by Global Journals Inc. (US) will be transferred to MARSS member's bank account after certain threshold balance. There is no time limit for collection. MARSS member can decide its price and we can help in decision.

AUXILIARY MEMbERSHIPS

ANNUAL MEMBER

- Annual Member will be authorized to receive e-Journal GJSFR for one year (subscription for one year).
- The member will be allotted free 1 GB Web-space along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted free 500 MB email space.

PAPER PUBLICATION

- The members can publish paper once. The paper will be sent to two-peer reviewer. The paper will be published after the acceptance of peer reviewers and Editorial Board.

Process of submission of Research Paper

The Area or field of specialization may or may not be of any category as mentioned in 'Scope of Journal' menu of the GlobalJournals.org website. There are 37 Research Journal categorized with Six parental Journals GJCST, GJMR, GJRE, GJMBR, GJSFR, GJHSS. For Authors should prefer the mentioned categories. There are three widely used systems UDC, DDC and LCC. The details are available as 'Knowledge Abstract' at Home page. The major advantage of this coding is that, the research work will be exposed to and shared with all over the world as we are being abstracted and indexed worldwide.

The paper should be in proper format. The format can be downloaded from first page of 'Author Guideline' Menu. The Author is expected to follow the general rules as mentioned in this menu. The paper should be written in MS-Word Format (*.DOC,*.DOCX).

The Author can submit the paper either online or offline. The authors should prefer online submission. Online Submission: There are three ways to submit your paper:
(A) (I) First, register yourself using top right corner of Home page then Login. If you are already registered, then login using your username and password.
(II) Choose corresponding Journal.
(III) Click 'Submit Manuscript’. Fill required information and Upload the paper.
(B) If you are using Internet Explorer, then Direct Submission through Homepage is also available.
(C) If these two are not conveninet, and then email the paper directly to dean@globaljournals.org.

Offline Submission: Author can send the typed form of paper by Post. However, online submission should be preferred.

Preferred Author Guidelines

MANUSCRIPT STYLE INSTRUCTION (Must be strictly followed)

Page Size: $8.27^{\prime \prime} \times 11^{\prime \prime}$

- Left Margin: 0.65
- Right Margin: 0.65
- Top Margin: 0.75
- Bottom Margin: 0.75
- Font type of all text should be Swis 721 Lt BT.
- Paper Title should be of Font Size 24 with one Column section.
- Author Name in Font Size of 11 with one column as of Title.
- Abstract Font size of 9 Bold, "Abstract" word in Italic Bold.
- Main Text: Font size 10 with justified two columns section
- Two Column with Equal Column with of 3.38 and Gaping of . 2
- First Character must be three lines Drop capped.
- Paragraph before Spacing of 1 pt and After of 0 pt .
- Line Spacing of 1 pt
- Large Images must be in One Column
- Numbering of First Main Headings (Heading 1) must be in Roman Letters, Capital Letter, and Font Size of 10.
- Numbering of Second Main Headings (Heading 2) must be in Alphabets, Italic, and Font Size of 10.

You can use your own standard format also.

Author Guidelines:

1. General,
2. Ethical Guidelines,
3. Submission of Manuscripts,
4. Manuscript's Category,
5. Structure and Format of Manuscript,
6. After Acceptance.

1. GENERAL

Before submitting your research paper, one is advised to go through the details as mentioned in following heads. It will be beneficial, while peer reviewer justify your paper for publication.

Scope

The Global Journals Inc. (US) welcome the submission of original paper, review paper, survey article relevant to the all the streams of Philosophy and knowledge. The Global Journals Inc. (US) is parental platform for Global Journal of Computer Science and Technology, Researches in Engineering, Medical Research, Science Frontier Research, Human Social Science, Management, and Business organization. The choice of specific field can be done otherwise as following in Abstracting and Indexing Page on this Website. As the all Global
© Copyright by Global Journals Inc.(US) | Guidelines Handbook

Journals Inc. (US) are being abstracted and indexed (in process) by most of the reputed organizations. Topics of only narrow interest will not be accepted unless they have wider potential or consequences.

2. ETHICAL GUIDELINES

Authors should follow the ethical guidelines as mentioned below for publication of research paper and research activities.

Papers are accepted on strict understanding that the material in whole or in part has not been, nor is being, considered for publication elsewhere. If the paper once accepted by Global Journals Inc. (US) and Editorial Board, will become the copyright of the Global Journals Inc. (US).

Authorship: The authors and coauthors should have active contribution to conception design, analysis and interpretation of findings. They should critically review the contents and drafting of the paper. All should approve the final version of the paper before submission

The Global Journals Inc. (US) follows the definition of authorship set up by the Global Academy of Research and Development. According to the Global Academy of R\&D authorship, criteria must be based on:

1) Substantial contributions to conception and acquisition of data, analysis and interpretation of the findings.
2) Drafting the paper and revising it critically regarding important academic content.
3) Final approval of the version of the paper to be published.

All authors should have been credited according to their appropriate contribution in research activity and preparing paper. Contributors who do not match the criteria as authors may be mentioned under Acknowledgement.

Acknowledgements: Contributors to the research other than authors credited should be mentioned under acknowledgement. The specifications of the source of funding for the research if appropriate can be included. Suppliers of resources may be mentioned along with address.

Appeal of Decision: The Editorial Board's decision on publication of the paper is final and cannot be appealed elsewhere.

Permissions: It is the author's responsibility to have prior permission if all or parts of earlier published illustrations are used in this paper.

Please mention proper reference and appropriate acknowledgements wherever expected.
If all or parts of previously published illustrations are used, permission must be taken from the copyright holder concerned. It is the author's responsibility to take these in writing.

Approval for reproduction/modification of any information (including figures and tables) published elsewhere must be obtained by the authors/copyright holders before submission of the manuscript. Contributors (Authors) are responsible for any copyright fee involved.

3. SUBMISSION OF MANUSCRIPTS

Manuscripts should be uploaded via this online submission page. The online submission is most efficient method for submission of papers, as it enables rapid distribution of manuscripts and consequently speeds up the review procedure. It also enables authors to know the status of their own manuscripts by emailing us. Complete instructions for submitting a paper is available below.

Manuscript submission is a systematic procedure and little preparation is required beyond having all parts of your manuscript in a given format and a computer with an Internet connection and a Web browser. Full help and instructions are provided on-screen. As an author, you will be prompted for login and manuscript details as Field of Paper and then to upload your manuscript file(s) according to the instructions.

To avoid postal delays, all transaction is preferred by e-mail. A finished manuscript submission is confirmed by e-mail immediately and your paper enters the editorial process with no postal delays. When a conclusion is made about the publication of your paper by our Editorial Board, revisions can be submitted online with the same procedure, with an occasion to view and respond to all comments.

Complete support for both authors and co-author is provided.

4. MANUSCRIPT'S CATEGORY

Based on potential and nature, the manuscript can be categorized under the following heads:
Original research paper: Such papers are reports of high-level significant original research work.
Review papers: These are concise, significant but helpful and decisive topics for young researchers.
Research articles: These are handled with small investigation and applications
Research letters: The letters are small and concise comments on previously published matters.

5.STRUCTURE AND FORMAT OF MANUSCRIPT

The recommended size of original research paper is less than seven thousand words, review papers fewer than seven thousands words also. Preparation of research paper or how to write research paper, are major hurdle, while writing manuscript. The research articles and research letters should be fewer than three thousand words, the structure original research paper; sometime review paper should be as follows:

Papers: These are reports of significant research (typically less than 7000 words equivalent, including tables, figures, references), and comprise:
(a)Title should be relevant and commensurate with the theme of the paper.
(b) A brief Summary, "Abstract" (less than 150 words) containing the major results and conclusions.
(c) Up to ten keywords, that precisely identifies the paper's subject, purpose, and focus.
(d) An Introduction, giving necessary background excluding subheadings; objectives must be clearly declared.
(e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition; sources of information must be given and numerical methods must be specified by reference, unless non-standard.
(f) Results should be presented concisely, by well-designed tables and/or figures; the same data may not be used in both; suitable statistical data should be given. All data must be obtained with attention to numerical detail in the planning stage. As reproduced design has been recognized to be important to experiments for a considerable time, the Editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned un-refereed;
(g) Discussion should cover the implications and consequences, not just recapitulating the results; conclusions should be summarizing.
(h) Brief Acknowledgements.
(i) References in the proper form.

Authors should very cautiously consider the preparation of papers to ensure that they communicate efficiently. Papers are much more likely to be accepted, if they are cautiously designed and laid out, contain few or no errors, are summarizing, and be conventional to the approach and instructions. They will in addition, be published with much less delays than those that require much technical and editorial correction.

The Editorial Board reserves the right to make literary corrections and to make suggestions to improve briefness.

It is vital, that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

Format

Language: The language of publication is UK English. Authors, for whom English is a second language, must have their manuscript efficiently edited by an English-speaking person before submission to make sure that, the English is of high excellence. It is preferable, that manuscripts should be professionally edited.

Standard Usage, Abbreviations, and Units: Spelling and hyphenation should be conventional to The Concise Oxford English Dictionary. Statistics and measurements should at all times be given in figures, e.g. 16 min , except for when the number begins a sentence. When the number does not refer to a unit of measurement it should be spelt in full unless, it is 160 or greater.

Abbreviations supposed to be used carefully. The abbreviated name or expression is supposed to be cited in full at first usage, followed by the conventional abbreviation in parentheses.

Metric SI units are supposed to generally be used excluding where they conflict with current practice or are confusing. For illustration, 1.4 I rather than $1.4 \times 10-3 \mathrm{~m} 3$, or 4 mm somewhat than $4 \times 10-3 \mathrm{~m}$. Chemical formula and solutions must identify the form used, e.g. anhydrous or hydrated, and the concentration must be in clearly defined units. Common species names should be followed by underlines at the first mention. For following use the generic name should be constricted to a single letter, if it is clear.

Structure

All manuscripts submitted to Global Journals Inc. (US), ought to include:

Title: The title page must carry an instructive title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) wherever the work was carried out. The full postal address in addition with the email address of related author must be given. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining and indexing.

Abstract, used in Original Papers and Reviews:

Optimizing Abstract for Search Engines

Many researchers searching for information online will use search engines such as Google, Yahoo or similar. By optimizing your paper for search engines, you will amplify the chance of someone finding it. This in turn will make it more likely to be viewed and/or cited in a further work. Global Journals Inc. (US) have compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.

Key Words

A major linchpin in research work for the writing research paper is the keyword search, which one will employ to find both library and Internet resources.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy and planning a list of possible keywords and phrases to try.

Search engines for most searches, use Boolean searching, which is somewhat different from Internet searches. The Boolean search uses "operators," words (and, or, not, and near) that enable you to expand or narrow your affords. Tips for research paper while preparing research paper are very helpful guideline of research paper.

Choice of key words is first tool of tips to write research paper. Research paper writing is an art.A few tips for deciding as strategically as possible about keyword search:

- One should start brainstorming lists of possible keywords before even begin searching. Think about the most important concepts related to research work. Ask, "What words would a source have to include to be truly valuable in research paper?" Then consider synonyms for the important words.
- It may take the discovery of only one relevant paper to let steer in the right keyword direction because in most databases, the keywords under which a research paper is abstracted are listed with the paper.
- One should avoid outdated words.

Keywords are the key that opens a door to research work sources. Keyword searching is an art in which researcher's skills are bound to improve with experience and time.

Numerical Methods: Numerical methods used should be clear and, where appropriate, supported by references.

Acknowledgements: Please make these as concise as possible.

References

References follow the Harvard scheme of referencing. References in the text should cite the authors' names followed by the time of their publication, unless there are three or more authors when simply the first author's name is quoted followed by et al. unpublished work has to only be cited where necessary, and only in the text. Copies of references in press in other journals have to be supplied with submitted typescripts. It is necessary that all citations and references be carefully checked before submission, as mistakes or omissions will cause delays.

References to information on the World Wide Web can be given, but only if the information is available without charge to readers on an official site. Wikipedia and Similar websites are not allowed where anyone can change the information. Authors will be asked to make available electronic copies of the cited information for inclusion on the Global Journals Inc. (US) homepage at the judgment of the Editorial Board.

The Editorial Board and Global Journals Inc. (US) recommend that, citation of online-published papers and other material should be done via a DOI (digital object identifier). If an author cites anything, which does not have a DOI, they run the risk of the cited material not being noticeable.

The Editorial Board and Global Journals Inc. (US) recommend the use of a tool such as Reference Manager for reference management and formatting.

Tables, Figures and Figure Legends

Tables: Tables should be few in number, cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g. Table 4, a self-explanatory caption and be on a separate sheet. Vertical lines should not be used.

Figures: Figures are supposed to be submitted as separate files. Always take in a citation in the text for each figure using Arabic numbers, e.g. Fig. 4. Artwork must be submitted online in electronic form by e-mailing them.

Preparation of Electronic Figures for Publication
Even though low quality images are sufficient for review purposes, print publication requires high quality images to prevent the final product being blurred or fuzzy. Submit (or e-mail) EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Do not use pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings) in relation to the imitation size. Please give the data for figures in black and white or submit a Color Work Agreement Form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution (at final image size) ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs) : >350 dpi; figures containing both halftone and line images: $>650 \mathrm{dpi}$.

Color Charges: It is the rule of the Global Journals Inc. (US) for authors to pay the full cost for the reproduction of their color artwork. Hence, please note that, if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a color work agreement form before your paper can be published.

Figure Legends: Self-explanatory legends of all figures should be incorporated separately under the heading 'Legends to Figures'. In the full-text online edition of the journal, figure legends may possibly be truncated in abbreviated links to the full screen version. Therefore, the first 100 characters of any legend should notify the reader, about the key aspects of the figure.

6. AFTER ACCEPTANCE

Upon approval of a paper for publication, the manuscript will be forwarded to the dean, who is responsible for the publication of the Global Journals Inc. (US).

6.1 Proof Corrections

The corresponding author will receive an e-mail alert containing a link to a website or will be attached. A working e-mail address must therefore be provided for the related author.

Acrobat Reader will be required in order to read this file. This software can be downloaded
(Free of charge) from the following website:
www.adobe.com/products/acrobat/readstep2.html. This will facilitate the file to be opened, read on screen, and printed out in order for any corrections to be added. Further instructions will be sent with the proof.

Proofs must be returned to the dean at dean@globaljournals.org within three days of receipt.
As changes to proofs are costly, we inquire that you only correct typesetting errors. All illustrations are retained by the publisher. Please note that the authors are responsible for all statements made in their work, including changes made by the copy editor.

6.2 Early View of Global Journals Inc. (US) (Publication Prior to Print)

The Global Journals Inc. (US) are enclosed by our publishing's Early View service. Early View articles are complete full-text articles sent in advance of their publication. Early View articles are absolute and final. They have been completely reviewed, revised and edited for publication, and the authors' final corrections have been incorporated. Because they are in final form, no changes can be made after sending them. The nature of Early View articles means that they do not yet have volume, issue or page numbers, so Early View articles cannot be cited in the conventional way.

6.3 Author Services

Online production tracking is available for your article through Author Services. Author Services enables authors to track their article once it has been accepted - through the production process to publication online and in print. Authors can check the status of their articles online and choose to receive automated e-mails at key stages of production. The authors will receive an e-mail with a unique link that enables them to register and have their article automatically added to the system. Please ensure that a complete e-mail address is provided when submitting the manuscript.

6.4 Author Material Archive Policy

Please note that if not specifically requested, publisher will dispose off hardcopy \& electronic information submitted, after the two months of publication. If you require the return of any information submitted, please inform the Editorial Board or dean as soon as possible.

6.5 Offprint and Extra Copies

A PDF offprint of the online-published article will be provided free of charge to the related author, and may be distributed according to the Publisher's terms and conditions. Additional paper offprint may be ordered by emailing us at: editor@globaljournals.org .

Before start writing a good quality Computer Science Research Paper, let us first understand what is Computer Science Research Paper? So, Computer Science Research Paper is the paper which is written by professionals or scientists who are associated to Computer Science and Information Technology, or doing research study in these areas. If you are novel to this field then you can consult about this field from your supervisor or guide.

TECHNIQUES FOR WRITING A GOOD QUALITY RESEARCH PAPER:

1. Choosing the topic: In most cases, the topic is searched by the interest of author but it can be also suggested by the guides. You can have several topics and then you can judge that in which topic or subject you are finding yourself most comfortable. This can be done by asking several questions to yourself, like Will I be able to carry our search in this area? Will I find all necessary recourses to accomplish the search? Will I be able to find all information in this field area? If the answer of these types of questions will be "Yes" then you can choose that topic. In most of the cases, you may have to conduct the surveys and have to visit several places because this field is related to Computer Science and Information Technology. Also, you may have to do a lot of work to find all rise and falls regarding the various data of that subject. Sometimes, detailed information plays a vital role, instead of short information.
2. Evaluators are human: First thing to remember that evaluators are also human being. They are not only meant for rejecting a paper. They are here to evaluate your paper. So, present your Best.
3. Think Like Evaluators: If you are in a confusion or getting demotivated that your paper will be accepted by evaluators or not, then think and try to evaluate your paper like an Evaluator. Try to understand that what an evaluator wants in your research paper and automatically you will have your answer.
4. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.
5. Ask your Guides: If you are having any difficulty in your research, then do not hesitate to share your difficulty to your guide (if you have any). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work then ask the supervisor to help you with the alternative. He might also provide you the list of essential readings.
6. Use of computer is recommended: As you are doing research in the field of Computer Science, then this point is quite obvious.
7. Use right software: Always use good quality software packages. If you are not capable to judge good software then you can lose quality of your paper unknowingly. There are various software programs available to help you, which you can get through Internet.
8. Use the Internet for help: An excellent start for your paper can be by using the Google. It is an excellent search engine, where you can have your doubts resolved. You may also read some answers for the frequent question how to write my research paper or find model research paper. From the internet library you can download books. If you have all required books make important reading selecting and analyzing the specified information. Then put together research paper sketch out.
9. Use and get big pictures: Always use encyclopedias, Wikipedia to get pictures so that you can go into the depth.
10. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right! It is a good habit, which helps to not to lose your continuity. You should always use bookmarks while searching on Internet also, which will make your search easier.
11. Revise what you wrote: When you write anything, always read it, summarize it and then finalize it.
12. Make all efforts: Make all efforts to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in introduction, that what is the need of a particular research paper. Polish your work by good skill of writing and always give an evaluator, what he wants.
13. Have backups: When you are going to do any important thing like making research paper, you should always have backup copies of it either in your computer or in paper. This will help you to not to lose any of your important.
14. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. Using several and unnecessary diagrams will degrade the quality of your paper by creating "hotchpotch." So always, try to make and include those diagrams, which are made by your own to improve readability and understandability of your paper.
15. Use of direct quotes: When you do research relevant to literature, history or current affairs then use of quotes become essential but if study is relevant to science then use of quotes is not preferable.
16. Use proper verb tense: Use proper verb tenses in your paper. Use past tense, to present those events that happened. Use present tense to indicate events that are going on. Use future tense to indicate future happening events. Use of improper and wrong tenses will confuse the evaluator. Avoid the sentences that are incomplete.
17. Never use online paper: If you are getting any paper on Internet, then never use it as your research paper because it might be possible that evaluator has already seen it or maybe it is outdated version.
18. Pick a good study spot: To do your research studies always try to pick a spot, which is quiet. Every spot is not for studies. Spot that suits you choose it and proceed further.
19. Know what you know: Always try to know, what you know by making objectives. Else, you will be confused and cannot achieve your target.
20. Use good quality grammar: Always use a good quality grammar and use words that will throw positive impact on evaluator. Use of good quality grammar does not mean to use tough words, that for each word the evaluator has to go through dictionary. Do not start sentence with a conjunction. Do not fragment sentences. Eliminate one-word sentences. Ignore passive voice. Do not ever use a big word when a diminutive one would suffice. Verbs have to be in agreement with their subjects. Prepositions are not expressions to finish sentences with. It is incorrect to ever divide an infinitive. Avoid clichés like the disease. Also, always shun irritating alliteration. Use language that is simple and straight forward. put together a neat summary.
21. Arrangement of information: Each section of the main body should start with an opening sentence and there should be a changeover at the end of the section. Give only valid and powerful arguments to your topic. You may also maintain your arguments with records.
22. Never start in last minute: Always start at right time and give enough time to research work. Leaving everything to the last minute will degrade your paper and spoil your work.
23. Multitasking in research is not good: Doing several things at the same time proves bad habit in case of research activity. Research is an area, where everything has a particular time slot. Divide your research work in parts and do particular part in particular time slot.
24. Never copy others' work: Never copy others' work and give it your name because if evaluator has seen it anywhere you will be in trouble.
25. Take proper rest and food: No matter how many hours you spend for your research activity, if you are not taking care of your health then all your efforts will be in vain. For a quality research, study is must, and this can be done by taking proper rest and food.
26. Go for seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources.
27. Refresh your mind after intervals: Try to give rest to your mind by listening to soft music or by sleeping in intervals. This will also improve your memory.
28. Make colleagues: Always try to make colleagues. No matter how sharper or intelligent you are, if you make colleagues you can have several ideas, which will be helpful for your research.
29. Think technically: Always think technically. If anything happens, then search its reasons, its benefits, and demerits.
30. Think and then print: When you will go to print your paper, notice that tables are not be split, headings are not detached from their descriptions, and page sequence is maintained.
31. Adding unnecessary information: Do not add unnecessary information, like, I have used MS Excel to draw graph. Do not add irrelevant and inappropriate material. These all will create superfluous. Foreign terminology and phrases are not apropos. One should NEVER take a broad view. Analogy in script is like feathers on a snake. Not at all use a large word when a very small one would be sufficient. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grunt readers. Amplification is a billion times of inferior quality than sarcasm.
32. Never oversimplify everything: To add material in your research paper, never go for oversimplification. This will definitely irritate the evaluator. Be more or less specific. Also too, by no means, ever use rhythmic redundancies. Contractions aren't essential and shouldn't be there used. Comparisons are as terrible as clichés. Give up ampersands and abbreviations, and so on. Remove commas, that are, not necessary. Parenthetical words however should be together with this in commas. Understatement is all the time the complete best way to put onward earth-shaking thoughts. Give a detailed literary review.
33. Report concluded results: Use concluded results. From raw data, filter the results and then conclude your studies based on measurements and observations taken. Significant figures and appropriate number of decimal places should be used. Parenthetical remarks are prohibitive. Proofread carefully at final stage. In the end give outline to your arguments. Spot out perspectives of further study of this subject. Justify your conclusion by at the bottom of them with sufficient justifications and examples.
34. After conclusion: Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium though which your research is going to be in print to the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects in your research.

Informal Guidelines of Research Paper Writing

Key points to remember:

- Submit all work in its final form.
- Write your paper in the form, which is presented in the guidelines using the template
- Please note the criterion for grading the final paper by peer-reviewers

Final Points

A purpose of organizing a research paper is to let people to interpret your effort selectively. The journal requires the following sections, submitted in the order listed, each section to start on a new page.

The introduction will be compiled from reference matter and will reflect the design processes or outline of basis that direct you to make study. As you will carry out the process of study, the method and process section will be constructed as like that. The result segment will show related statistics in nearly sequential order and will direct the reviewers next to the similar intellectual paths throughout the data that you took to carry out your study. The discussion section will provide understanding of the data and projections as to the implication of the results. The use of good quality references all through the paper will give the effort trustworthiness by representing an alertness of prior workings.

Writing a research paper is not an easy job no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record keeping are the only means to make straightforward the progression.

General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear

- Adhere to recommended page limits

Mistakes to evade

- Insertion a title at the foot of a page with the subsequent text on the next page
- Separating a table/chart or figure - impound each figure/table to a single page
- Submitting a manuscript with pages out of sequence

In every sections of your document

- Use standard writing style including articles ("a", "the," etc.)
- Keep on paying attention on the research topic of the paper
- Use paragraphs to split each significant point (excluding for the abstract)
- Align the primary line of each section
- Present your points in sound order
- Use present tense to report well accepted
- Use past tense to describe specific results
- Shun familiar wording, don't address the reviewer directly, and don't use slang, slang language, or superlatives
- Shun use of extra pictures - include only those figures essential to presenting results

Title Page:

Choose a revealing title. It should be short. It should not have non-standard acronyms or abbreviations. It should not exceed two printed lines. It should include the name(s) and address (es) of all authors.

Abstract

:

The summary should be two hundred words or less. It should briefly and clearly explain the key findings reported in the manuscript-must have precise statistics. It should not have abnormal acronyms or abbreviations. It should be logical in itself. Shun citing references at this point.

An abstract is a brief distinct paragraph summary of finished work or work in development. In a minute or less a reviewer can be taught the foundation behind the study, common approach to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Yet, use comprehensive sentences and do not let go readability for briefness. You can maintain it succinct by phrasing sentences so that they provide more than lone rationale. The author can at this moment go straight to shortening the outcome. Sum up the study, with the subsequent elements in any summary. Try to maintain the initial two items to no more than one ruling each.

- Reason of the study - theory, overall issue, purpose
- Fundamental goal
- To the point depiction of the research
- Consequences, including definite statistics - if the consequences are quantitative in nature, account quantitative data; results of any numerical analysis should be reported
- Significant conclusions or questions that track from the research(es)

Approach:

- Single section, and succinct
- As a outline of job done, it is always written in past tense
- A conceptual should situate on its own, and not submit to any other part of the paper such as a form or table
- Center on shortening results - bound background information to a verdict or two, if completely necessary
- What you account in an conceptual must be regular with what you reported in the manuscript
- Exact spelling, clearness of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else

Introduction:

The Introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable to comprehend and calculate the purpose of your study without having to submit to other works. The basis for the study should be offered. Give most important references but shun difficult to make a comprehensive appraisal of the topic. In the introduction, describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will have no attention in your result. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here. Following approach can create a valuable beginning:

- Explain the value (significance) of the study
- Shield the model - why did you employ this particular system or method? What is its compensation? You strength remark on its appropriateness from a abstract point of vision as well as point out sensible reasons for using it.
- Present a justification. Status your particular theory (es) or aim(s), and describe the logic that led you to choose them.
- Very for a short time explain the tentative propose and how it skilled the declared objectives.

Approach:

- Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done.
- Sort out your thoughts; manufacture one key point with every section. If you make the four points listed above, you will need a least of four paragraphs.
- Present surroundings information only as desirable in order hold up a situation. The reviewer does not desire to read the whole thing you know about a topic.
- Shape the theory/purpose specifically - do not take a broad view.
- As always, give awareness to spelling, simplicity and correctness of sentences and phrases.

Procedures (Methods and Materials):

This part is supposed to be the easiest to carve if you have good skills. A sound written Procedures segment allows a capable scientist to replacement your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt for the least amount of information that would permit another capable scientist to spare your outcome but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section. When a technique is used that has been well described in another object, mention the specific item describing a way but draw the basic principle while stating the situation. The purpose is to text all particular resources and broad procedures, so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step by step report of the whole thing you did, nor is a methods section a set of orders.

Materials:

- Explain materials individually only if the study is so complex that it saves liberty this way.
- Embrace particular materials, and any tools or provisions that are not frequently found in laboratories.
- Do not take in frequently found.
- If use of a definite type of tools.
- Materials may be reported in a part section or else they may be recognized along with your measures.

Methods:

- Report the method (not particulars of each process that engaged the same methodology)
- Describe the method entirely
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures
- Simplify - details how procedures were completed not how they were exclusively performed on a particular day.
- If well known procedures were used, account the procedure by name, possibly with reference, and that's all.

Approach:

- It is embarrassed or not possible to use vigorous voice when documenting methods with no using first person, which would focus the reviewer's interest on the researcher rather than the job. As a result when script up the methods most authors use third person passive voice.
- Use standard style in this and in every other part of the paper - avoid familiar lists, and use full sentences.

What to keep away from

- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings - save it for the argument.
- Leave out information that is immaterial to a third party.

Results:

The principle of a results segment is to present and demonstrate your conclusion. Create this part a entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Carry on to be to the point, by means of statistics and tables, if suitable, to present consequences most efficiently.You must obviously differentiate material that would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matter should not be submitted at all except requested by the instructor.

- Sum up your conclusion in text and demonstrate them, if suitable, with figures and tables.
- In manuscript, explain each of your consequences, point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation an exacting study.
- Explain results of control experiments and comprise remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or in manuscript form. What to stay away from
- Do not discuss or infer your outcome, report surroundings information, or try to explain anything.
- Not at all, take in raw data or intermediate calculations in a research manuscript.
- Do not present the similar data more than once.
- Manuscript should complement any figures or tables, not duplicate the identical information.
- Never confuse figures with tables - there is a difference.

Approach

- As forever, use past tense when you submit to your results, and put the whole thing in a reasonable order.
- Put figures and tables, appropriately numbered, in order at the end of the report
- If you desire, you may place your figures and tables properly within the text of your results part.

Figures and tables

- If you put figures and tables at the end of the details, make certain that they are visibly distinguished from any attach appendix materials, such as raw facts
- Despite of position, each figure must be numbered one after the other and complete with subtitle
- In spite of position, each table must be titled, numbered one after the other and complete with heading
- All figure and table must be adequately complete that it could situate on its own, divide from text

Discussion:
The Discussion is expected the trickiest segment to write and describe. A lot of papers submitted for journal are discarded based on problems with the Discussion. There is no head of state for how long a argument should be. Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implication of the study. The purpose here is to offer an understanding of your results and hold up for all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of result should be visibly described. Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved with prospect, and let it drop at that.

- Make a decision if each premise is supported, discarded, or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."
- Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work
- You may propose future guidelines, such as how the experiment might be personalized to accomplish a new idea.
- Give details all of your remarks as much as possible, focus on mechanisms.
- Make a decision if the tentative design sufficiently addressed the theory, and whether or not it was correctly restricted.
- Try to present substitute explanations if sensible alternatives be present.
- One research will not counter an overall question, so maintain the large picture in mind, where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

Approach:

- When you refer to information, differentiate data generated by your own studies from available information
- Submit to work done by specific persons (including you) in past tense.
- Submit to generally acknowledged facts and main beliefs in present tense.

Administration Rules Listed Before Submitting Your Research Paper to Global Journals Inc. (US)

Please carefully note down following rules and regulation before submitting your Research Paper to Global Journals Inc. (US):

Segment Draft and Final Research Paper: You have to strictly follow the template of research paper. If it is not done your paper may get rejected.

- The major constraint is that you must independently make all content, tables, graphs, and facts that are offered in the paper. You must write each part of the paper wholly on your own. The Peer-reviewers need to identify your own perceptive of the concepts in your own terms. NEVER extract straight from any foundation, and never rephrase someone else's analysis.
- Do not give permission to anyone else to "PROOFREAD" your manuscript.
- Methods to avoid Plagiarism is applied by us on every paper, if found guilty, you will be blacklisted by all of our collaborated research groups, your institution will be informed for this and strict legal actions will be taken immediately.)
- To guard yourself and others from possible illegal use please do not permit anyone right to use to your paper and files.

Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals Inc. (US).

Topics	Grades		
	A-B	C-D	E-F
Abstract	Clear and concise with appropriate content, Correct format. 200 words or below	Unclear summary and no specific data, Incorrect form	No specific data with ambiguous information
		Above 200 words	Above 250 words
Introduction	Containing all background details with clear goal and appropriate details, flow specification, no grammar and spelling mistake, well organized sentence and paragraph, reference cited	Unclear and confusing data, appropriate format, grammar and spelling errors with unorganized matter	Out of place depth and content, hazy format
Methods and Procedures	Clear and to the point with well arranged paragraph, precision and accuracy of facts and figures, well organized subheads	Difficult to comprehend with embarrassed text, too much explanation but completed	Incorrect and unorganized structure with hazy meaning
Result	Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake	Complete and embarrassed text, difficult to comprehend	Irregular format with wrong facts and figures
Discussion	Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph reference cited	Wordy, unclear conclusion, spurious	Conclusion is not cited, unorganized, difficult to comprehend
References	Complete and correct format, well organized	Beside the point, Incomplete	Wrong format and structuring

A

Appropriate • 99
Approximation • 14, 16, 19, 30, 41, 168
Auxiliary • 14, 15, 16, 28, 41, 43

C

Coefficients • 101, 136, 138, 147, 148, 152, 156, 163, 166
Concerning • 132, 134, 136, 138, 148, 150

D

Domination • 119, 121, 122, 123, 124, 125, 126, 127, 128, 130

E

Electromagnetic • 115
Elliptic • 171, 173, 174, 176, 177
Estimators • 14, 16, 18, 28, 30, 32, 34, 36, 39, 41, 43, 45

G

Generalized • 4, 11, 97, 99, 103, 107, 114, 116, 134, 136, 148, 150, 168, 171

H

Harmonius • 119, 121, 122, 123, 124, 125, 126, 127, 128, 130
Hypergeometric • 97, 148, 168, 171, 173, 177

I

Illustration • 41, 97
Intuitionistic • 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

M

Mappings $\cdot 1,3,4,5,6,7,8,9,10,11,12,13$
Multivariable • 97, 100, 152, 154, 163, 168

N

Normalizing • 132

0

Occurring • 103, 107, 112, 114, 115

P

Pathway • 132, 134, 150
Polynomials • 97, 99, 101, 103, 105, 107, 112, 114,
$116,118,132,134,136,138,148,150$
Poststratified • 14, 15, 16, 28, 32, 34, 36, 37, 38, 39, 41, 43

S

Satisfying • 1, 3, 4, 10, 28
Specializing • 115, 149
T

Tetrahedral • 119, 128, 130

V

Variance • 18, 28, 30, 36, 43

L

Global Journal of Science Frontier Research

Visit us on the Web at www.GlobalJournals.org | www.JournalofScience.org or email us at helpdesk@globaljournals.org

[^0]: Author σ : Department of Mathematics and Statistic Dr. Hari Singh Gour University, Sagar (M.P.) 470003.

[^1]: Author α : Department of Mathematics, University of Rajasthan, Jaipur - 302055, Rajasthan, India.
 Author σ : Department of Mathematics, Swami Keshvanand Institute of Technology, Management and Gramothan, Ramnagaria, Jaipur-302025, Rajkasthan, India.

[^2]: Author $\alpha \sigma$: Post Graduate and Research Department of Mathematics Government Arts College, Coimbatore-18, India. E-mail : deepamtcr@gmail.com

[^3]: Author : [Research Scholar, Singhania University, Pacheri Bari, Jhunjhunu-333515]. 136-B, Rajendra Path, 21, South Colony, Niwaru Road, Jhotwara, Jaipur (Raj).

[^4]: Author: [Research Scholar, Singhania University, Pacheri Bari, Jhunjhunu-333515] 136-B, Rajendra Path, 21, South Colony, Niwaru Road, Jhotwara, Jaipur (Raj).

[^5]: Author a : P.D.M College of Engineering, Bahadurgarh, Haryana, India. E-mails : s/udn@yahoo.com, vs/udn@gmail.com
 Author σ : International Scientific Research and Welfare Organization, New Delhi, India. E-mail : mpchaudhary 2000@yahoo.com

