Global JOURNAL

OF SCIENCE FRONTIER RESEARCH: F

Mathematics and Decision Sciences

Integral Operator Associated
Multipliers of Distributions Spaces

Analytic and Numeric Solution Highlights

Development of Discrete Version

Discovering Thoughts, Inventing Future

VOLUME 13 ISSUE 3 VERSION 1.0

Global Journal of Science Frontier Research: F Mathematics \& Decision Sciences

Global Journal of Science Frontier Research: F Mathematics \& Decision Sciences
Volume 13 Issue 3 (Ver. 1.0)
© Global Journal of Science Frontier Research . 2013.

All rights reserved.
This is a special issue published in version 1.0 of "Global Journal of Science Frontier Research." By Global Journals Inc.

All articles are open access articles distributed under "Global Journal of Science Frontier Research"

Reading License, which permits restricted use. Entire contents are copyright by of "Global Journal of Science Frontier Research" unless otherwise noted on specific articles.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without written permission.

The opinions and statements made in this book are those of the authors concerned. Ultraculture has not verified and neither confirms nor denies any of the foregoing and no warranty or fitness is implied.

Engage with the contents herein at your own risk.

The use of this journal, and the terms and conditions for our providing information, is governed by our Disclaimer, Terms and Conditions and Privacy Policy given on our website http://globaljournals.us/terms-and-condition/ menu-id-1463/

By referring / using / reading / any type of association / referencing this journal, this signifies and you acknowledge that you have read them and that you accept and will be bound by the terms thereof.

All information, journals, this journal, activities undertaken, materials, services and our website, terms and conditions, privacy policy, and this journal is subject to change anytime without any prior notice.

Incorporation No.: 0423089
License No.: 42125/022010/1186
Registration No.: 430374 Import-Export Code: 1109007027 Employer Identification Number (EIN): USA Tax ID: 98-0673427

Global Journals Inc.

(A Delaware USA Incorporation with "Good Standing"; Reg. Number: 0423089)
Sponsors: Open Association of Research Society
Open Scientific Standards

Publisher's Headquarters office

Global Journals Inc., Headquarters Corporate Office, Cambridge Office Center, II Canal Park, Floor No. 5th, Cambridge (Massachusetts), Pin: MA 02141 United States
USA Toll Free: +001-888-839-7392
USA Toll Free Fax: +001-888-839-7392

Offset Typesetting

Open Association of Research Society, Marsh Road, Rainham, Essex, London RM13 8EU United Kingdom.

Packaging \& Continental Dispatching

Global Journals, India

Find a correspondence nodal officer near you
To find nodal officer of your country, please email us at local@globaljournals.org
eContacts

Press Inquiries: press@globaljournals.org Investor Inquiries: investers@globaljournals.org Technical Support: technology@globaljournals.org Media \& Releases: media@globaljournals.org

Pricing (Including by Air Parcel Charges):
For Authors:
22 USD (B/W) \& 50 USD (Color)
Yearly Subscription (Personal \& Institutional):
200 USD (B/W) \& 250 USD (Color)

Editorial Board Members (HON.)

John A. Hamilton,"Drew" Jr.,
Ph.D., Professor, Management
Computer Science and Software Engineering
Director, Information Assurance Laboratory
Auburn University

Dr. Henry Hexmoor

IEEE senior member since 2004
Ph.D. Computer Science, University at
Buffalo
Department of Computer Science
Southern Illinois University at Carbondale

Dr. Osman Balci, Professor

Department of Computer Science Virginia Tech, Virginia University Ph.D.and M.S.Syracuse University, Syracuse, New York
M.S. and B.S. Bogazici University, Istanbul, Turkey

Yogita Bajpai
M.Sc. (Computer Science), FICCT
U.S.A.Email:
yogita@computerresearch.org

Dr. T. David A. Forbes

Associate Professor and Range
Nutritionist
Ph.D. Edinburgh University - Animal
Nutrition
M.S. Aberdeen University - Animal Nutrition
B.A. University of Dublin- Zoology

Dr. Wenying Feng

Professor, Department of Computing \&
Information Systems
Department of Mathematics
Trent University, Peterborough,
ON Canada K9J 7B8

Dr. Thomas Wischgoll

Computer Science and Engineering, Wright State University, Dayton, Ohio
B.S., M.S., Ph.D.
(University of Kaiserslautern)

Dr. Abdurrahman Arslanyilmaz

Computer Science \& Information Systems
Department
Youngstown State University
Ph.D., Texas A\&M University
University of Missouri, Columbia
Gazi University, Turkey

Dr. Xiaohong He

Professor of International Business
University of Quinnipiac
BS, Jilin Institute of Technology; MA, MS, PhD,. (University of Texas-Dallas)

Burcin Becerik-Gerber

University of Southern California
Ph.D. in Civil Engineering
DDes from Harvard University
M.S. from University of California, Berkeley \& Istanbul University

Dr. Bart Lambrecht

Director of Research in Accounting and FinanceProfessor of Finance Lancaster University Management School BA (Antwerp); MPhil, MA, PhD (Cambridge)

Dr. Carlos García Pont

Associate Professor of Marketing
IESE Business School, University of
Navarra
Doctor of Philosophy (Management),
Massachusetts Institute of Technology
(MIT)
Master in Business Administration, IESE, University of Navarra
Degree in Industrial Engineering, Universitat Politècnica de Catalunya

Dr. Fotini Labropulu

Mathematics - Luther College
University of ReginaPh.D., M.Sc. in
Mathematics
B.A. (Honors) in Mathematics University of Windso

Dr. Lynn Lim

Reader in Business and Marketing Roehampton University, London BCom, PGDip, MBA (Distinction), PhD, FHEA

Dr. Mihaly Mezei

ASSOCIATE PROFESSOR
Department of Structural and Chemical
Biology, Mount Sinai School of Medical Center
Ph.D., Etvs Lornd University
Postdoctoral Training, New York University

Dr. Söhnke M. Bartram

Department of Accounting and
FinanceLancaster University Management
SchoolPh.D. (WHU Koblenz)
MBA/BBA (University of Saarbrücken)

Dr. Miguel Angel Ariño

Professor of Decision Sciences
IESE Business School
Barcelona, Spain (Universidad de Navarra)
CEIBS (China Europe International Business School).
Beijing, Shanghai and Shenzhen
Ph.D. in Mathematics
University of Barcelona
BA in Mathematics (Licenciatura)
University of Barcelona

Philip G. Moscoso

Technology and Operations Management IESE Business School, University of Navarra
Ph.D in Industrial Engineering and
Management, ETH Zurich
M.Sc. in Chemical Engineering, ETH Zurich

Dr. Sanjay Dixit, M.D.
Director, EP Laboratories, Philadelphia VA
Medical Center
Cardiovascular Medicine - Cardiac
Arrhythmia
Univ of Penn School of Medicine

Dr. Han-Xiang Deng

MD., Ph.D

Associate Professor and Research
Department Division of Neuromuscular

Medicine

Davee Department of Neurology and Clinical
NeuroscienceNorthwestern University
Feinberg School of Medicine

Dr. Pina C. Sanelli
Associate Professor of Public Health
Weill Cornell Medical College
Associate Attending Radiologist
NewYork-Presbyterian Hospital
MRI, MRA, CT, and CTA
Neuroradiology and Diagnostic Radiology
M.D., State University of New York at

Buffalo,School of Medicine and Biomedical Sciences

Dr. Roberto Sanchez

Associate Professor
Department of Structural and Chemical
Biology
Mount Sinai School of Medicine
Ph.D., The Rockefeller University

Dr. Wen-Yih Sun

Professor of Earth and Atmospheric
SciencesPurdue University Director
National Center for Typhoon and
Flooding Research, Taiwan
University Chair Professor
Department of Atmospheric Sciences, National Central University, Chung-Li, TaiwanUniversity Chair Professor Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan.Ph.D., MS The University of Chicago, Geophysical Sciences
BS National Taiwan University, Atmospheric Sciences
Associate Professor of Radiology

Dr. Michael R. Rudnick
M.D., FACP

Associate Professor of Medicine
Chief, Renal Electrolyte and
Hypertension Division (PMC)
Penn Medicine, University of
Pennsylvania
Presbyterian Medical Center, Philadelphia
Nephrology and Internal Medicine Certified by the American Board of Internal Medicine

Dr. Bassey Benjamin Esu

B.Sc. Marketing; MBA Marketing; Ph.D Marketing
Lecturer, Department of Marketing, University of Calabar Tourism Consultant, Cross River State Tourism Development Department Co-ordinator, Sustainable Tourism Initiative, Calabar, Nigeria

Dr. Aziz M. Barbar, Ph.D.

IEEE Senior Member
Chairperson, Department of Computer Science
AUST - American University of Science \& Technology
Alfred Naccash Avenue - Ashrafieh

President Editor (HON.)

Dr. George Perry, (Neuroscientist)

Dean and Professor, College of Sciences
Denham Harman Research Award (American Aging Association)
ISI Highly Cited Researcher, Iberoamerican Molecular Biology Organization
AAAS Fellow, Correspondent Member of Spanish Royal Academy of Sciences
University of Texas at San Antonio
Postdoctoral Fellow (Department of Cell Biology)
Baylor College of Medicine
Houston, Texas, United States

Chief Author (HON.)

Dr. R.K. Dixit
M.Sc., Ph.D., FICCT

Chief Author, India
Email: authorind@computerresearch.org

DEAN \& EDITOR-IN-Chief (HON.)

Vivek Dubey(HON.)

MS (Industrial Engineering),
MS (Mechanical Engineering)
University of Wisconsin, FICCT
Editor-in-Chief, USA
editorusa@computerresearch.org

Sangita Dixit

M.Sc., FICCT

Dean \& Chancellor (Asia Pacific)
deanind@computerresearch.org

Suyash Dixit

(B.E., Computer Science Engineering), FICCTT President, Web Administration and Development, CEO at IOSRD
COO at GAOR \& OSS

Er. Suyog Dixit

(M. Tech), BE (HONS. in CSE), FICCT

SAP Certified Consultant
CEO at IOSRD, GAOR \& OSS
Technical Dean, Global Journals Inc. (US)
Website: www.suyogdixit.com
Email:suyog@suyogdixit.com

Pritesh Rajvaidya

(MS) Computer Science Department
California State University
BE (Computer Science), FICCT
Technical Dean, USA
Email: pritesh@computerresearch.org
Luis Galárraga
J!Research Project Leader
Saarbrücken, Germany

Contents of the Volume

i. Copyright Notice
ii. Editorial Board Members
iii. Chief Author and Dean
iv. Table of Contents
v. From the Chief Editor's Desk
vi. Research and Review Papers

1. Pathway Integral Operator Associated with Aleph-Function and General Polynomials. 1-6
2. Generalizations of 2D-Canonical Sine-Sine Transform. 7-13
3. Some Subclasses of P-Valent Analytic Functions. 15-25
4. A Summation Formula Clung to Contiguous Relation. 27-39
5. A Logit Regression Analysis of Homeowners in Nigeria. 41-45
6. The Development of Discrete Version of Laplace Transformation (Sigma (σ) Transformation) Obtained from the Relationship between Laplace and Fourier Transformations. 47-55
7. Analytic and Numeric Solution of Linear Partial Differential Equation of Fractional Order. 57-71
8. Multipliers of Distributions Spaces. 73-80
vii. Auxiliary Memberships
viii. Process of Submission of Research Paper
ix. Preferred Author Guidelines
x. Index

Global Journal of Science Frontier Research

Pathway Integral Operator Associated with Aleph-Function and General Polynomials

By Dr. Rinku Jain \& Dr. Kirti Arekar
K.J. Somaiya Institute of Management Studies \& Research, India

Abstract - This paper is devoted to the study of a pathway fractional integral operator associated with the pathway model and pathway probability density for the κ - function and a generalized polynomial in the kernel. By specializing the coefficients and various parameters in the generalized polynomials and $\boldsymbol{\aleph}$ - function, our main theorem would readily yield several interesting results.

Keywords : pathway fractional integral operator, aleph function (א- function), generalized polynomial.

GJSFR-F Classification : MSC 2010 : 11S23, 33C45

Strictly as per the compliance and regulations of :

© 2013. Dr. Rinku Jain \& Dr. Kirti Arekar. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
epaper
3d virtual
journal

Pathway Integral Operator Associated with Aleph-Function and General Polynomials

Dr. Rinku Jain α \& Dr. Kirti Arekar ${ }^{\sigma}$

Abstract - This paper is devoted to the study of a pathway fractional integral operator associated with the pathway model and pathway probability density for the κ - function and a generalized polynomial in the kernel. By specializing the coefficients and various parameters in the generalized polynomials and κ - function, our main theorem would readily yield several interesting results.
Keywords : pathway fractional integral operator, aleph function (\mathbf{x}-function), generalized polynomial.

I. Introduction

In the last three decades several authors have made significant contribution in the field of fractional calculus. Fractional calculus has been applied to almost every field of science, engineering, and Mathematics. The most popular one, we are based on here, is the Riemann-Liouville fractional integral operator [7]. The Pathway fractional integral operator, as an extension of Riemann-Liouville fractional integral operator, introduced by Nair [8] is defined in the following manner

$$
\begin{equation*}
\left.\left(P_{0+}^{(\eta, \alpha)} f\right)(x)=x \eta^{\left[\frac{x}{a(1-\alpha)}\right.} \int_{0}^{\left[1-\frac{a(1-\alpha) t}{x}\right]}\right] \frac{\eta}{(1-\alpha)} f(t) d t \tag{1.1}
\end{equation*}
$$

Where $f(x) \in L(a, b), \eta \in \mathbb{C}, \operatorname{Re}(\eta)>0, a>0$ and 'pathway parameter' $\alpha<1$.
The Pathway model is introduced by Mathai [1] and studied further by Mathai and Haubold[2], [3]. For real scalar α, the Pathway model for scalar random variables is represented by the following probability density function

$$
\begin{equation*}
f(x)=c|x|^{\gamma-1}\left[1-a(1-\alpha)|x|^{\delta}\right]^{\frac{\beta}{1-\alpha}} \tag{1.2}
\end{equation*}
$$

$-\infty<\mathrm{x}<\infty, \delta>0, \beta \geq 0,\left[1-a(1-\alpha)|x|^{\delta}\right]>0, \gamma>0$, where c is the normalizing constant and α is called the pathway parameter. For real α, the normalizing constant is as follows:

[^0] the extended generalized type-1 beta family. The Pathway density in (1.2), for $\alpha<1$,
includes the extended type-1 beta density, the triangular density, the uniform density and many other p.d.f.
For $\alpha>1$, we have
\[

$$
\begin{equation*}
f(x)=c|x|^{\gamma-1}\left[1+a(\alpha-1)|x|^{\delta}\right]^{-\frac{\beta}{\alpha-1}} \tag{1.6}
\end{equation*}
$$

\]

$-\infty<\mathrm{x}<\infty, \delta>0, \beta \geq 0,\left[1-a(\alpha-1)|x|^{\delta}\right]>0, \gamma>0$, which is extended generalized type-2 beta model for real x . t includes the type-2 beta density, the F density, the Student-t density, and Cauchy density and many more.

Here, we consider only the case of Pathway parameter $\alpha<1$. For $\alpha \rightarrow 1$ both (1.2) and (1.6) take the exponential form, since

$$
\begin{gather*}
\lim _{\alpha \rightarrow \mathbf{1}} c|x|^{\gamma-1}\left[1-a(1-\alpha)|x|^{\delta}\right]^{\frac{\beta}{1-\alpha}}=c|x|^{\gamma-1}\left[1+a(\alpha-1)|x|^{\delta}\right]^{-\frac{\beta}{\alpha-1}} \tag{1.7}\\
=c|x|^{\gamma-1} e^{-\alpha \eta|x| \delta}
\end{gather*}
$$

This includes the generalized Gamma-, the Weibull-, the Chi-Square the Laplace and other related densities. For more details on the Pathway model, the reader is referred to the recent papers of [2], [3].

II. Pathway Integral Operator of An \mathfrak{k} - Function

The Aleph \aleph-function introduced by Sudland et al. [6] which is defined as a contour integral of Mellin Barnes Type:

For $\alpha<1$, it is a finite range density with $\left[1-\left.\left.a(1-\alpha)\right|^{\delta}\right|^{\delta}\right]>0$ and (1.2) remains in

$$
\begin{align*}
c & =\frac{1}{2} \frac{\delta[a(1-\alpha)]^{\frac{\gamma}{\delta}} \Gamma\left(\frac{\gamma}{\delta}+\frac{\beta}{1-\alpha}+1\right)}{\Gamma\left(\frac{\gamma}{\delta}\right) \Gamma\left(\frac{\beta}{1-\alpha}+1\right)}, \text { for } \alpha<1, \tag{1.3}\\
& =\frac{1}{2} \frac{\delta[a(\alpha-1)]^{\frac{\gamma}{\delta}} \Gamma\left(\frac{\beta}{1-\alpha}\right)}{\Gamma\left(\frac{\gamma}{\delta}\right) \Gamma\left(\frac{\beta}{\alpha-1}-\frac{\gamma}{\delta}\right)}, \text { for } \frac{1}{\alpha-1}-\frac{\gamma}{\delta}>0, \alpha>1, \tag{1.4}\\
& =\frac{1}{2} \frac{\delta[a \beta]^{\frac{\gamma}{\delta}}}{\Gamma\left(\frac{\gamma}{\delta}\right)}, \text { for } \alpha \rightarrow 1 .
\end{align*}
$$

$$
\begin{gather*}
\aleph[Z]=\aleph_{p_{i}, q_{i}, \tau_{i} ; r}^{m, n}[Z]_{=\aleph_{p_{i}}, q_{i}, \tau_{i} ; r}^{m, n}\left[z\left(\frac{x}{y}\right)^{q} \left\lvert\, \begin{array}{l}
\left(a_{j}, A_{j}\right)_{1, n}, \ldots,\left[\tau_{j}\left(a_{j}, A_{j}\right)\right]_{n+1, p i} \\
\left(b_{j}, B_{j}\right)_{1, m}, \ldots,\left[\tau_{j}\left(b_{j}, B_{j}\right)\right]_{m+1, q i}
\end{array}\right.\right] \\
=\frac{1}{2 \pi \omega} \int_{L} \Omega_{p_{i}, q_{i}, \tau_{i} ; r}^{m(s) z^{-s} d s} . \tag{2.1}
\end{gather*}
$$

for all $\mathrm{z} \neq \mathrm{o}, \omega=\sqrt{-1}$ and

$$
\begin{equation*}
\Omega_{p_{i}, q_{i}, \tau_{i} ; r}^{m, n}(s)=\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}+B_{j} s\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}-A_{j} s\right)}{\sum_{i-1}^{r} \tau_{i} \prod_{j=n+1}^{p_{i}} \Gamma\left(a_{j i}+A_{j i} s\right) \prod_{j=m+1}^{q_{i}} \Gamma\left(1-b_{j i}-B_{j i} s\right)} \tag{2.2}
\end{equation*}
$$

The integration path $\ell=\ell_{i \rho_{\infty}}, \gamma \in \mathrm{R}$ extends from γ-ion to $\gamma+\mathrm{i} \infty$, and is such that the poles, assumed to be simple, of $\Gamma\left(1-a_{j}-A_{j} s\right), j=\overline{1, n}$ do not coincide with the pole $\Gamma\left(b_{j}+B_{j} s\right), j=\overline{1, m}$. The parameters pi, qi are non-negative integers satisfying $0 \leq \mathrm{n} \leq$ pi, $1 \leq \mathrm{m} \leq \mathrm{qi}, \tau_{i}>0$ for $i=\overline{1, r}$. The parameters $\mathrm{Aj}, \mathrm{B}_{\mathrm{j}}, \mathrm{A}_{\mathrm{ji}}, \mathrm{B}_{\mathrm{ji}}>0$ and aj, bj $\mathrm{a}_{\mathrm{ji}}, \mathrm{b}_{\mathrm{ji}} \in \mathrm{C}$. The empty product in (1.3) is interpreted as unity. The existence conditions for the defining integral (1.1) are given below:

$$
\begin{gather*}
\psi_{l}>0, \quad|\arg (z)|<\frac{\pi}{2} \psi_{l} \quad l=\overline{1, r} ; \tag{2.3}\\
\psi_{l} \geq 0, \quad|\arg (z)|<\frac{\pi}{2} \psi_{l} \quad \text { and } \mathfrak{R}\left\{\varsigma_{l}\right\}+1<0, \tag{2.4}\\
\psi_{l}=\sum_{j=1}^{n} A_{j}+\sum_{j=1}^{m} B_{j}-\tau_{l}\left(\sum_{j=n+1}^{p_{l}} A_{j l}+\sum_{j=m+1}^{q_{l}} B_{j l}\right) \tag{2.5}\\
S_{l}=\sum_{j=1}^{m} b_{j}-\sum_{j=1}^{n} a_{j}+\tau_{l}\left(\sum_{j=m+1}^{q_{l}} b_{j l}-\sum_{j=n+1}^{p_{l}} a_{j l}\right)+\frac{1}{2}\left(p_{l}-q_{l}\right) \quad l=\overline{1, r} . \tag{2.6}
\end{gather*}
$$

Where

The general polynomials of R variables given by Srivastava [5] defined and represented as:

$$
\begin{align*}
& S_{n_{1}, \ldots, n_{R}}^{m_{1}, \ldots, m_{R}}\left[x_{1}, \ldots x_{R}\right]=\begin{array}{c}
{\left[\begin{array}{c}
n_{1} / m_{1} \\
m_{1}
\end{array}\right]} \\
s_{1}=0
\end{array} \sum_{n_{R}}^{\left[\begin{array}{c}
n_{R} \\
s_{R}
\end{array}\right]} \quad \begin{array}{c}
\left(-n_{1}\right) m_{1} s_{1} \\
\angle s_{1}
\end{array} \ldots \frac{\left(-n_{R}\right) m_{R} s_{R}}{\angle s_{R}} \tag{2.7}\\
& A\left[n_{1}, s_{1} ; \ldots ; n_{R}{ }^{s}{ }\right]^{x_{1} s_{1} \ldots x_{R}{ }^{s} R}
\end{align*}
$$

$\stackrel{m}{\infty}$ Where m_{i} is an arbitrary positive integer and coefficients $A\left[n_{1}, s_{1} ; \ldots ; n_{R}{ }^{s}{ }_{R}\right\rfloor$ are arbitrary constants, real or complex.

Theorem1. With the set of sufficient conditions (2.3), (2.4), (2.5) and (2.6), let (η, u,
$\left.u_{1}, \ldots, u_{R}, \beta \in \mathbb{C}\right), \operatorname{Re}\left(1+\frac{\eta}{1-\alpha}\right)>0, \alpha<1, \operatorname{Re}\left(\eta, u, u_{1}, \ldots, u_{R}, \beta\right)>0$ and m_{i} is an arbitrary positive integer and coefficients $A\left\lfloor n_{1}, s_{1} ; \ldots ; n_{R}{ }_{R}\right\rfloor$ are arbitrary constants, real or complex, then

$$
\begin{aligned}
& P_{0+}^{(\eta, \alpha)}\left[x^{u-1} S_{n_{1}, \ldots, n_{R}}^{m_{1}, \ldots m_{2}}\left[x^{u_{i}}, \ldots, x{ }^{u} R\right]{ }_{p_{p}, q_{i}, \tau_{i} ; r}^{\left.m, x^{\beta}\right]}\right] \\
& =\begin{array}{c}
{\left[\begin{array}{l}
n_{1} / m_{1}
\end{array}\right]} \\
\sum_{1}=0
\end{array} \underset{\sum_{R} \ldots}{\left[\begin{array}{c}
n_{R} / m_{R}
\end{array}\right]} \frac{\left(-n_{1}\right) m_{1} s_{1}}{\angle s_{1}} \ldots \frac{\left(-n_{R}\right) m_{R} s_{R}}{\angle s_{R}} A\left[n_{1}, s_{1} ; \ldots ; n_{R} s_{R}\right] \\
& \frac{x^{\eta+u+u_{i} k_{i}+\ldots+u^{k} R^{k}} \Gamma\left(1+\frac{\eta}{1-\alpha}\right)}{[a(1-\alpha)]^{u+u_{i} k_{i}+\ldots+u_{R} k_{R}}}
\end{aligned}
$$

Proof: The Theorem 1 can be evaluated by using the definitions (1.1), (2.1) and (2.7) then by interchange the order of integrations and summations (which is permissible under the conditions stated above), evaluate the inner integral by making use of beta function formula, we arrive at the desired result.
Theorem2. Let $\left(\eta, u, u_{1}, \ldots, u_{R}, \beta \in \mathbb{C}\right), \operatorname{Re}\left(1+\frac{\eta}{1 \alpha}\right)>\underset{-}{0}, \alpha<1, \operatorname{Re}\left(\eta, u, u_{1}, \ldots, u_{R}, \beta\right)>0$ and m is an arbitrary positive integer and coefficients $A\left\lfloor n_{1}, s_{1} ; \ldots ; n_{R} s_{R}\right\rfloor$ are arbitrary constants, real or complex, then

$$
\begin{align*}
& P_{0+}^{(\eta, \alpha)}\left[x^{u-1} S_{n_{1}, \ldots, n_{R}}^{m_{1}, \ldots m_{R}}\left[x^{u_{i}}, \ldots, x^{u} R\right] H_{p, q,[}^{m, n}\left[x^{\beta}\right]\right] \\
& =\underset{\sum_{1}=0}{\left[\begin{array}{l}
n_{1} / m_{1}
\end{array}\right]} \sum_{s_{R}=0}^{\left[\begin{array}{l}
n_{R} / m_{R}
\end{array}\right]} \frac{\left(-n_{1}\right) m_{1} s_{1}}{\angle s_{1}} \ldots \frac{\left(-n_{R}\right) m_{R} s_{R}}{\angle s_{R}} A\left[n_{1}, s_{1} ; \ldots ; n_{R} s_{R}\right] \\
& \frac{x^{\eta+u+u_{i} k_{i}+\ldots+u^{k}{ }^{k} R} \Gamma\left(1+\frac{\eta}{1-\alpha}\right)}{[a(1-\alpha)]^{u+u_{i} k_{i}+\ldots+u_{R} k^{k}}} \\
& H_{p+1, q+1,}^{m, n+1}\left[\frac{x^{\beta}}{[a(1-\alpha)]^{\beta}} \left\lvert\, \begin{array}{c}
{\left[1-u-\left(u_{i} s_{1}+\ldots+u_{R} s_{R}\right) ; \beta\right],\left(a_{j}, A_{j}\right)_{1, n^{\prime}, \ldots,\left[\left(a_{j}, A_{j}\right)\right]_{n+1, p}}^{\left(b_{j}, B_{j}\right)_{1, m}, \ldots,\left[\left(b_{j}, B_{j}\right)\right]_{m+1, q},\left[-u-\left(u_{i} s_{1}+\ldots+u_{R}{ }^{s}\right) ; \beta\right]}}
\end{array}\right.\right], \\
& \text { Where } H_{p, q,}^{m},[x] \text { is the Fox's H- Function [4]. } \tag{2.9}
\end{align*}
$$

Proof: The result in (2.2) can be derived from Theorem 1 by taking $\tau_{1}=\ldots=\tau_{\mathrm{r}}=1$ and $\mathrm{r}=1$. We have the required result.

Theorem3. Suppose that the conditions corresponding to Theorem 2 are satisfied. Then

$$
\begin{aligned}
& \frac{x^{\eta+u+u_{1} s_{1}} \Gamma\left(1+\frac{\eta}{1-\alpha}\right)}{[a(1-\alpha)]^{u+u_{1} k_{1}}} \\
& \aleph_{p_{i}+1, q_{i}+1, \tau_{i} ;} ;{ }^{m, n+1}\left[\frac{x^{\beta}}{[a(1-\alpha)]^{\beta}} \left\lvert\, \begin{array}{c}
\left.\left[1-u-u_{i} s_{1}\right) ; \beta\right],\left(a_{j}, A_{j}\right)_{1, n}, \ldots,\left[\tau_{j}\left(a_{j}, A_{j}\right)\right]_{n+1, p i} \\
\left(b_{j}, B_{j}\right)_{1, m}, \ldots,\left[\tau_{j}\left(b_{j}, B_{j}\right)\right]_{m+1, q i},\left[-u-u_{i} s_{1} ; \beta\right]
\end{array}\right.\right],
\end{aligned}
$$

where $\mathrm{H}_{\mathrm{n}}(\mathrm{x})$ is the Hermite polynomials.

Proof: In Theorem 1, if we take $\mathrm{R}=1, \mathrm{~m}_{1}=2$ and $A_{n_{1}, s_{1}}=(-1)^{s_{1}}$, then we get the desired result.

III. Special Cases

1. Letting $\mathrm{R}=1$ in the result (2.9), we get the result recently obtained by Chaurasia and Ghiya [9] for ρ, ρ_{1}, and $\rho_{2} \rightarrow 0$.
2. Letting $n_{i} \rightarrow 0, i^{\prime}=1, \ldots, R$, in the result (2.9), we get the result obtained by Nair
3. A.M. Mathai, A pathway to matrix-variate gamma and normal densities, Linear Algebra and Its Applications 396 (2005), 317-328.
4. A.M. Mathai and H.J. Haubold, On generalized distributions and pathways, Physics Letters 372 (2008), 2109-2113.
5. A.M. Mathai and H.J. Haubold, Pathway models, superstatistics, Trallis statistics and a generalized measure of entropy, Physica A 375 (2007), 110-122.
6. Fox, C. The G and H-functions as symmetrical Fourier kernels. Trans. Amer. Math. Soc. 98, (1961), 395-429.
7. H. M. Srivastava, A multilinear generating function for the Konhausar sets of biortogonal polynomials suggested by the Laguerre polynomials, pacific J.Math. 177 (1985), 183-191.
8. N Südland, B Baumann and TF Nonnenmacher. Open problem: who knows about the Aleph (※)-functions?. Fract. Calc. Appl. Anal. 1(4): 401-402, 1998
9. S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, New York (1993).
10. S. S. Nair, Pathway fractional Integration operator, Fractional Calculus and Applied Analysis 12(3) (2009), 237-252.
11. B. L. Chaurasia and Neeti Ghiya, Pathway fractional integral Operator pertaining to special functions, Global J. Sci., Front. Res., 10(6)(Ver.1.0),(2010), 79-83.

Global Journal of Science Frontier Research Mathematics and Decision Sciences
Volume 13 Issue 3 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Generalizations of 2D-Canonical Sine-Sine Transform

By S.B.Chavhan
YeshwantMahavidyalaya, India

Abstract - Integral transform, fractional integral transform is a flourishing filed of active research due to its wide range of application. Fourier transform, fractional Fourier transform is probably the most intensively studied among all fractional transforms, similarly 2D canonical sine-sine transforms, and 2D canonical cosine-cosine is a powerful mathematical tool for processing images. In this paper the canonical 2D sine-sine transform is define in generalized sense. And various testing functions spaces defined by using Gelfand-shilov technique. Also uniqueness theorem, modulation theorems are proved.

Keywords : 2D canonical sine-sine transform, testing function space, generalized functions, fourier transform.

GJSFR-F Classification : MSC 2010: 47D09

Strictly as per the compliance and regulations of:

© 2013. S.B.Chavhan. This is a research/review paper, distributed under the terms of the Creative Commons AttributionNoncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Generalizations of 2D-Canonical Sine-Sine Transform

S.B.Chavhan

Abstract

Integral transform, fractional integral transform is a flourishing filed of active research due to its wide range of application. Fourier transform, fractional Fourier transform is probably the most intensively studied among all fractional transforms, similarly 2D canonical sine-sine transforms, and 2D canonical cosine-cosine is a powerful mathematical tool for processing images. In this paper the canonical 2D sine-sine transform is define in generalized sense. And various testing functions spaces defined by using Gelfand-shilov technique. Also uniqueness theorem, modulation theorems are proved. Keywords : 2D canonical sine-sine transform, testing function space, generalized functions, fourier transform.

I. Introduction

Integral transforms have been successfully used for almost two centuries is solving many problems in mathematical physical, applied mathematics and engineering science. Historically origin of the integral transform is P.S. Laplace and J.Fourier. Laplace transform is useful, for evaluating certain definite integral [2].
The definition of canonical sine-sine transform as follows [1].

$$
\{2 D C S S T f(t, x)\}(s, w)=\left\langle f(t, x), K_{s_{1}}(t, x) K_{s_{2}}(x, w)\right\rangle
$$

In the present paper, 2D sine-sine transform is extended in the distribution sense. The plan of the paper is as follows. The definitions are given in section 2. In section 3, testing functionspace is defined by Galfand-shilovtechnique [3],[4].Section 4 some result on countable union space are proved. In section5, inversion and uniqueness theorem are stated. In section 6, modulations theorems are given. The notations and terminology as per zemanian [5], [6].

II. Definition Two Dimensional Canonical Sine-Sine Transform

Let $E^{\prime}(R \times R)$ denote the dual of $E(R \times R)$. Therefore the generalized canonical sine transform of $f(t, x) \in E^{\prime}(R \times R)$ is defined as

$$
\begin{aligned}
& \{2 \operatorname{DCST} f(t, x)\}(s, w) \\
& \quad=(-1) \frac{1}{\sqrt{2 \pi i b}} \frac{1}{\sqrt{2 \pi i b}} e^{\frac{i}{2}\left(\frac{d}{b} s^{2}\right.} e^{\frac{i}{2}\left(\frac{d}{b}\right) w^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin \left(\frac{s}{b} t\right) \sin \left(\frac{w}{b} x\right) e^{\frac{i}{2}\left(\frac{a}{b}\right)^{t^{2}}} e^{\frac{i}{2}\left(\frac{a}{b}\right) x^{2}} f(t, x) d x d t
\end{aligned}
$$

[^1]Where

$$
\gamma_{E, k}\left\{K_{s_{1}}(t, s) K_{s_{2}}(x, w)\right\}=\begin{gathered}
\text { sup } \\
\\
-\infty<x<\infty<\infty
\end{gathered}\left|D_{t}^{k} D_{x}^{l} K_{s_{1}}(t, s) K_{s_{2}}(x, w)\right|<\infty
$$

iif. Different S-Type Testing Function Spaces

In this section we have defined s-type testing function spaces by imposing conditions not only on the decreases of the fundamental functions at infinity, but also on the growth of their derivatives as the order of derivative increases. Clearly, $S s^{a, b}$ space will be extension of testing function space D, so that these spaces have been successfully, used in pseudo differential operator theory.
a) The space SS $_{\gamma}^{a, b}$:

It is given by

$$
\begin{equation*}
S S_{\gamma}^{a, b}=\left\{\phi: \phi \in E_{+} / \sigma_{l, k, p} \phi(t, x)=\frac{\sup }{I_{1}}\left|t^{l} D_{t}^{k} D_{x}^{p} \phi(t, x)\right| \leq C_{k p} A^{\prime} . l^{l v}\right\} \tag{3.1}
\end{equation*}
$$

The constant $\mathrm{C}_{\mathrm{k}, \mathrm{p}}$ and A depend on ϕ.
b) The space SS $^{a b, \beta}$:
$S S^{a, b, \beta}$ this space is given by

$$
\begin{equation*}
S S^{a, b, \beta}=\left\{\phi . \phi \in E_{+} / \rho_{l, k, p} \phi(t, x)=\sup \left|t^{l} D_{t}^{k} D_{x}^{p} \phi(t, x)\right| \leq C_{l, p} B^{k} k^{k \beta}\right\} \tag{3.2}
\end{equation*}
$$

The constants $C_{l, p}$ and B depend on ϕ.
c) The space $\mathrm{SS}_{\gamma}^{a, b, \beta}$

This space is formed by combining the condition (3.1) and (3.2)

$$
\begin{equation*}
S S_{\gamma}^{a, b, \beta}=\left\{\phi: \phi \in E_{+} / \xi_{l, k, p} \phi(t, x)==_{I_{1}}^{\text {sup }}\left|t^{l} D_{t}^{k} D_{x}^{p} \phi(t, x)\right| \leq C A^{l} l^{l y} B^{k} k^{k, \beta}\right\} \tag{3.3}
\end{equation*}
$$

$l, k, p=0,1,2 \ldots$. Where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ depend on ϕ.
d) The space $\mathrm{SS}_{\gamma, m}^{a, b, \beta}$

It is defined as,

$$
\begin{equation*}
S S_{\gamma, m}^{a, b}=\left\{\phi: \phi \in E_{+} / \sigma_{l, k, p} \phi(t, x)==_{I_{1}}^{\text {sup }}\left|t^{l} D_{t}^{k} D_{x}^{p} \phi(t, x)\right| \leq C_{k, p, \mu}(m+\mu)^{l} l^{l y}\right\} \tag{3.4}
\end{equation*}
$$

For any $\mu>0$ where m is the constant, depending on the function ϕ.
e) The space SS $^{a, b, \beta, n}$

This space is given by

$$
\begin{equation*}
S S^{a, b, \beta, n}=\left\{\phi: \phi \in E_{+} / \rho_{l, k, p} \phi(t, x)==_{I_{1}}^{\text {sup }}\left|t^{l} D_{t}^{k} D_{x}^{p} \phi(t, x)\right| \leq C_{l, p, \delta}(n+\delta)^{k} k^{k \beta \beta}\right\} \tag{3.5}
\end{equation*}
$$

For any $\delta>0$ where n the constant is depends on the function ϕ.
f) The space SS $_{\gamma, m}^{a, b, \beta, n}$

This space is defined by combining the conditions in (3.4) and (3.5).

$$
\begin{gather*}
S S_{\gamma, m}^{a, b, \beta, n}=\left\{\phi: \phi \in E_{+}\left|\xi_{l, k, p} \phi(t, x)=_{I_{1}}^{\text {sup }}\right| t^{l} D_{t}^{k} D_{x}^{p} \phi(t, x) \mid\right. \\
\left.\leq C_{\mu \delta}(m+\mu)^{l}(n+\delta)^{k} \cdot l^{l} k^{k \beta}\right\} \tag{3.6}
\end{gather*}
$$

IV. Results on Countable Unions-Type Space

Proposition 4.1: If $m_{1}<m_{2}$ then $S S_{\gamma, m_{1}}^{a, b} \subset S S_{\gamma, m_{2}}^{a, b}$. The topology of $S S_{\gamma, m_{1}}^{a, b}$ is equivalent to the topology induced on $S S_{\gamma, m_{1}}^{a, b}$ by $S S_{\gamma, m_{2}}^{a, b}$

$$
\text { i.e } T_{\gamma, m_{1}}{ }^{a, b} \sim T_{\gamma, m_{2}}{ }^{a, b} / S S_{\gamma, m_{1}}^{a, b}
$$

Proof: For $\phi \in S S_{\gamma, m_{1}}^{a, b}$ and $\delta_{l, k, p}(\phi) \leq C_{k, \mu}\left(m_{1}+\mu\right)^{l} l^{l \gamma}$

$$
\leq C_{k, \mu, p}\left(m_{2}+\mu\right)^{l} l^{l^{l}} \quad \text { Thus, } S S_{\gamma, m_{1}}^{a, b} \subset s s_{\gamma, m_{2}}^{a, b}
$$

The space $S S_{\gamma}^{a, b}$ can be expressed as union of countable normed spaces.
Proposition 4.2: $S S_{\gamma}^{a, b}=\bigcup_{i=1}^{\infty} S S_{\gamma, m_{1}}^{a, b}$ and if the space $S S_{\gamma}^{a, b}$ is equipped with strict inductive limit topology $S_{a, b, m}$ defined by injective map from $S S_{\gamma, m_{1}}^{a, b}$ to $S S_{\gamma}^{a, b}$ then the sequence $\left\{\phi_{n}\right\}$ in $S S_{\gamma}^{a, b}$ converges to zero.

Proof: we show that $S S_{\gamma}^{a, b}=\bigcup_{i=1}^{\infty} S S_{\gamma \cdot m_{1}}^{a, b}$

$$
\begin{align*}
\delta_{l, k, p}(\phi(t, x)) & =I_{I_{1}}^{\sup }\left|t^{l} D_{t}^{k} D_{x}^{p} \phi_{n}(t, x)\right| \\
& \leq C_{k, p} A^{l} l^{l \gamma}, \tag{4.1}
\end{align*}
$$

where A is some positive constant, choose an integer $m=m_{A}$ and $\mu=0$ such that $C_{k, p} A^{l} \leq C_{k, p}(m+\mu)^{l}$.
Then (4.1) we get $\phi \in S S_{\gamma, m_{1}}^{a, b}$ implying that $S S_{\gamma}^{a, b}=\bigcup_{i=1}^{\infty} S S_{\gamma, m_{1}}^{a, b}$
Proposition 4.3: If $\gamma_{1}<\gamma_{2}$ and $\beta_{1}<\beta_{2}$ then $S S_{\gamma_{1}}^{a, b, \beta_{1}} \subset S S_{\gamma_{2}}^{a, b, \beta_{2}}$ and the topology of $S S_{\gamma_{i}}^{a, b, \beta_{i}}$ is equivalent to the topology induced on $S S_{\gamma_{1}}^{a, b, \beta_{1}}$ by $S S_{\gamma_{2}}^{a b, \beta_{2}}$.
Proof: Let $\phi \in S S_{\gamma_{1}}^{a b, \beta_{1}}$

$$
\xi_{l, k, p}(\phi)=_{I_{1}}^{\sup }\left|t^{l} D_{t}^{k} D_{x}^{p} \phi(t, x)\right|
$$

$$
\begin{aligned}
& \leq C A^{l} l^{l \gamma_{1}} B^{k} k^{k \beta_{1}} \\
& \leq C A^{l} l^{l \gamma_{2}} \cdot B^{p} k^{p, \beta_{2}} \quad \text { wherel, } k, p=0,1,2,3
\end{aligned}
$$

Hence $\phi \in S S_{\gamma_{2}}^{a, b, \beta_{2}}$. Consequently, $S S_{\gamma_{1}}^{a, b, \beta_{1}} \subset S S_{\gamma_{2}}^{a, b, \beta_{2}}$. The topology of $S S_{\gamma_{1}}^{a, b, \beta_{1}}$
Is equivalent to the topology $T_{\gamma_{2}}^{a, b, \beta_{2}} / S S_{\gamma_{2}}^{a, b, \beta_{2}}$
It is clear from the definition of topologies of these spaces.

Proposition 4.4: $S S^{a, b}=\bigcup_{\gamma_{i} \beta_{i}=1}^{\infty} S S_{\gamma_{i}}^{a, b, \beta_{i}}$ and if the space $S S^{a, b}$ is equipped with the strict $S S^{a, b}$ inductive limit topology defined by the injective maps from $S S_{\gamma_{i}}^{a, b, \beta_{i}}$ to $S S^{a, b}$ then the sequence $\left\{\phi_{n}\right\}$ in $S S^{a, b}$ converges to zero iff $\left\{\phi_{n}\right\}$ is contained in some $S S_{\gamma_{i}}^{a, b, \beta_{i}}$ and converges to zero.

Proof: $S S^{a, b}=\bigcup_{\gamma_{i} \beta_{i}=1}^{\infty} S S_{\gamma_{i}}^{a, b, \beta_{i}}$
Clearly

$$
\bigcup_{\gamma_{i} \beta_{i}}^{\infty} \operatorname{SS}_{1=}^{a, b, \gamma_{i}} \subset S S^{a}
$$

For proving other inclusion, let $\phi(t, x) \in S S^{a, b}$ then

$$
\eta_{l, k, p}(\phi)=_{I_{1}}^{\sup }\left|t^{l} D_{t}^{k} D_{x}^{p} \phi(t, x)\right|,
$$

is bounded by some number. We can choose integers γ_{m} and β_{m} such that

$$
\eta_{l, k, p}(\phi) \leq C A^{l} l^{l, \gamma} B^{k, m}, k^{k, \beta, m}
$$

$\therefore \phi \in S S_{\gamma_{i}}^{a, b, \beta_{i}}$ for some integer γ_{i} and β_{i}
Hence $S S^{a, b} \subset \bigcup_{\gamma_{i} \beta_{i}=1}^{\infty} S S_{\gamma_{i}}^{a, b, \beta_{i}}$ Thus $S S^{a, b}=\bigcup_{\gamma_{i} \beta_{i}=1}^{\infty} S S_{\gamma_{i}}^{a, b, \beta_{i}}$

V. Inversion and Uniqueness Theorems

Theorem 5.1: (Inversion) If $\{2 D \operatorname{CSST} f(t, x)\}(s, w)$ is canonical sine-sine transform of $f(t, x)$ then inverse of transform is given by

$$
\begin{aligned}
& f(t, x) \\
& =-\sqrt{\frac{2 \pi i}{b}} \sqrt{\frac{2 \pi i}{b}} e^{\frac{-i}{2}\left(\frac{a}{b}\right)^{t^{2}}} e^{\frac{-i}{2}\left(\frac{a}{b}\right) x^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin \left(\frac{s}{b} t\right) \sin \left(\frac{w}{b} x\right) e^{\frac{-i}{2}\left(\frac{d}{b}\right) s^{2}} e^{\frac{-i}{2}\left(\frac{d}{b}\right) w^{2}}\{2 D \operatorname{CSST} f(t, x)\}(s, w) d s d w
\end{aligned}
$$

Theorem 5.2: (Uniqueness) If $\{2 \operatorname{DCSST} f(t, x)\}(s, w)$ and $\{2 \operatorname{DCSST} g(t, x)\}(s, w)$ are 2D canonical sine-sine transform and sup $p f \subset s_{a}$ and s_{b} also sup $p g \subset s_{a}$ and s_{b}
Where $s_{a}=\left\{t: t \in R^{n},|t| \leq a, a>0\right\}$ and $s_{b}=\left\{x: x \in R^{n},|x| \leq b, b>0\right\}$
If $\{2 D \operatorname{CSST} f(t, x)\}(s, w)=\{2 \operatorname{CSST} g(t, x)\}(s, w)$ then, $f=g$ in the sense of equality in $D^{\prime}(I)$

Proof: By inversion theorem

$$
\begin{aligned}
& f-g= \\
& -e^{\left.\frac{-i}{2}\left(\frac{a}{b}\right)^{2} t^{-i}\left(\frac{a}{2}\right)\right)^{2} x^{2}}\left[\left(\sqrt{\frac{2 \pi i}{b}} \sqrt{\frac{2 \pi i}{b}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{i}{2}\left(\frac{d}{b}\right) s^{2}} e^{\frac{-i}{2}\left(\frac{d}{b}\right) w^{2}} \sin \left(\frac{s}{b} t\right) \sin \left(\frac{w}{b} x\right)\{2 D \operatorname{CSST} f(t, x)\}(s, w) d s d w,\right)\right. \\
& \left.-\left(\sqrt{\frac{2 \pi i}{b}} \sqrt{\frac{2 \pi i}{b}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{\frac{-i}{2}\left(\frac{d}{b}\right)} s^{2} e^{\frac{-i}{2}\left(\frac{d}{b}\right) w^{2}} \sin \left(\frac{s}{b} t\right) \sin \left(\frac{w}{b} x\right)\{2 D \operatorname{CSST} g(t, x)\}(s, w) d s d w,\right)\right] \\
& \therefore f-g=-\sqrt{\frac{2 \pi i}{b}} \sqrt{\frac{2 \pi i}{b}} e^{-\frac{i}{2}\left(\frac{a}{b}\right) t^{2}} e^{-\frac{i}{2}\left(\frac{a}{b}\right) x^{2}} \int_{-\infty}^{\infty} e^{-\frac{i}{2}\left(\frac{d}{b}\right) s^{2}} e^{-\frac{i}{2}\left(\frac{d}{b}\right) s^{2}} \sin \left(\frac{s}{b} x\right) \sin \left(\frac{w}{b} x\right) \\
& {[\{2 \operatorname{DCSST} f(t, x)\}-\{2 \operatorname{DCSSTg}(t, x)\}] d s d w}
\end{aligned}
$$

Thus $f=g$ in $D^{\prime}(I)$

VI. Modulation Theorems for Canonical Sine-Sine Transform

Theorem 6.1: If $\{2 \operatorname{DCSST} f(t, x)\}(s, w)$ is canonical sine-sine transform of $f(t, x)$ then

$$
\begin{gathered}
\{2 D C S S T \cos \mu t f(t, x)\}(s, w) \\
=\frac{e^{-\frac{i}{2}\left(\mu^{2} b d\right)}}{2}\left[e^{-i(s \mu d)}\{2 D C S S T f(t, x)\}(s+\mu b, w)+e^{i(\mu s d)}\{2 D C S S T f(t, x)\}(s-\mu b, w)\right]
\end{gathered}
$$

Proof: Definition of two dimensional canonical sine-sine transform $f(t, x)$ is

$$
\begin{aligned}
& \{2 \operatorname{DCSS} f(t, x)\}(s, w) \\
& =-\frac{1}{\sqrt{2 \pi i b}} \frac{1}{\sqrt{2 \pi i b}} e^{\frac{i}{2}\left(\frac{d}{b}\right) s^{2}} e^{\frac{i}{2}\left(\frac{d}{b}\right) w^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin \left(\frac{s}{b} t\right) \sin \left(\frac{w}{b} x\right) e^{\frac{i}{2}\left(\frac{a}{b}\right) t^{2}} e^{\frac{i}{2}\left(\frac{a}{b}\right) x^{2}} f(t, x) d x d t \\
& \{2 D C S S T \cos \mu t f(t, x)\}(s, w)
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{1}{\sqrt{2 \pi i b}} \frac{1}{\sqrt{2 \pi i b}} e^{\frac{i}{2}\left(\frac{d}{b}\right)^{2}} e^{\frac{i}{2}\left(\frac{d}{b}\right) w^{2}}{\underset{-\infty}{-\infty} \infty}_{\infty}^{\infty} \sum_{-\infty}^{\infty} \sin \left(\frac{s-\mu b}{b}\right) t \sin \left(\frac{w}{b} x\right) e^{\frac{i}{2}\left(\frac{a}{b}\right)^{2}} e^{\frac{i}{2}\left(\frac{a}{b}\right) x^{2}} f(t, x) d x d t\right] \\
& =\frac{1}{2}\left[e^{-i(s, s)} e^{-\frac{i}{2}\left(u^{2} b d\right)}\{2 D C S S T f(t, x)\}(s+u b, w)+e^{i(s, s)} e^{\frac{-i}{2}\left(\mu^{2} b d\right)}\{2 D C S S T f(t, x)\}(s-u b, w)\right] \\
& \{2 D C S S T \cos \mu t f(t, x)\}(s, w) \\
& =\frac{e^{-\frac{i}{2}\left(\mu^{2} b d\right)}}{2}\left[e^{-i(s \mu d)}\{2 D \operatorname{CSST} f(t, x)\}(s+\mu b, w)+e^{i(\mu s d)}\{2 D \operatorname{CSST} f(t, x)\}(s-\mu b, w)\right]
\end{aligned}
$$

Theorem 6.2 If $\{2 \operatorname{DCSST} f(t, x)\}(s, w)$ is canonical sine-sine transform of $f(t, x)$ then

$$
\begin{gathered}
\{2 D C S S T \sin \mu t f(t, x)\}(s, w)= \\
\frac{i e^{-\frac{i}{2}\left(\mu^{2} b d\right)}}{2}\left[e^{-i(s \mu d)}\{2 D C C S T f(t, x)\}(s+\mu b, w)-e^{i(\mu s d)}\{2 D C C S T f(t, x)\}(s-\mu b, w)\right]
\end{gathered}
$$

Theorem 6.3 If $\{2 \operatorname{DCSST} f(t, x)\}(s, w)$ is canonical sine-sine transform of $f(t, x)$ then

$$
\begin{aligned}
& \left\{2 \operatorname{DCSSTe}^{i \mu t} f(t, x)\right\}(s, w) \\
& \qquad=\frac{e^{-\frac{i}{2}\left(\mu^{2} b d\right)}}{2}\left[e^{-i(s \mu t)}(\{2 \operatorname{DCSST} f(t, x)\}(s+\mu b, w)-\{2 \operatorname{DCCST} f(t, x)\}(s+\mu b, w))\right.
\end{aligned}
$$

$$
\left.+e^{i(s \mu t)}(\{2 D C S S T f(t, x)\}(s-\mu b, w)+\{2 D C C S T f(t, x)\}(s-\mu b, w))\right]
$$

Proof: Since $\left\{2 D \operatorname{CSST} e^{i \mu t} f(t, x)\right\}(s, w)=\{2 D \operatorname{CSST}(\cos \mu t+i \sin \mu t) f(t, x)\}(s, w)$

$$
\begin{aligned}
& \left\{2 D C S S T e^{i \mu t} f(t, x)\right\}(s, w)=\{2 D C S S T \cos \mu t f(t, x)\}(s, w)+i\{2 D C S S T \sin \mu t f(t, x)\}(s, w) \\
& -\frac{e^{-\frac{i}{2}\left(\mu^{2} b d\right)}}{2}\left[e^{-i(s \mu d)}\{2 D C C S T f(t, x)\}(s+\mu b, w)-e^{i(s \mu d)}\{2 D C C S T f(t, x)\}(s-\mu b, w)\right] \\
& \frac{e^{-\frac{i}{2}\left(\mu^{2} b d\right)}}{2}\left[e^{-i(s s d)}\{2 D C S S T f(t, x)\}(s+\mu b, w)+e^{i(s \mu d)}\{2 D C S S T f(t, x)\}(s-\mu b, w)\right. \\
& \left.-e^{-i(s, s t)}\{2 D C C S T f(t, x)\}(s+\mu b, w)+e^{i(s \mu d)}\{2 D C S C T f(t, x)\}(s-\mu b, w)\right] \\
& \left\{2 D C S S T e^{i \mu t} f(t, x)\right\}(s, w)=\frac{e^{-\frac{i}{2}\left(\mu^{2} b d\right)}}{2}\left[e^{-i(s \mu d)}(\{2 D C S S T f(t, x)\}(s+\mu b, w)-\{2 D C C S T f(t, x)\}(s+\mu b, w))\right. \\
& \left.\quad+e^{i(s \mu d t)}\left\{\left\{^{2} D C S S T f(t \cdot x)\right\}(s-\mu b, w)+\left\{{ }^{2} D C C S T f(t \cdot x)\right\}(s-\mu b, w)\right)\right]
\end{aligned}
$$

ViI. Conclusion

In this paper 2D canonical sine-sine transform is generalized in the distributional sense. Uniqueness theorem is proved and various testing functions specs defined by using Gelfand-shilov technique, topology properties are discussed. And lastly modulation theorems are proved.

References Références Referencias

1. Chavhan S.B. BorkarV.C.,"Operator of Two Dimensional Generalized Canonical Sine Transform. IJERD.Vol. 4 Issue 2. (2012). 10-14
2. DebnathLokenath and BhattaDambaru. "Integral transforms and their applications," Chapman and Hall/CRC Taylor and Francis Group Boca Raton London New York
3. Gelfand I.M. and Shilov G.E., "Generalized Functions," Volume I Academic Press, New York, 1964.
4. Gelfand I.M. and Shilov G.E., "Generalized Functions," Volume II, Academic Press, New York, 1967.
5. Zemanian A.H., "Distribution theory and transform analysis," McGraw Hill, New York, 1965.
6. Zemanian A.H., Generalized integral transform," Inter Science Publisher's New York, 1968.

This page is intentionally left blank

Global Journal of Science Frontier Research MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 3 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Some Subclasses of P-Valent Analytic Functions

By M. P. Jeyaraman, T. K. Suresh \& E. Keshava Reddy
Easwari Engineering College, Chennai

Abstract - The object of the present paper is to derive the sufficient conditions for certain subclasses of p-valent analytic functions in the open unit disk. A number of known results would follow upon specializing the parameters involved in our main results. Also, sufficient conditions are found for function to be univalent.

Keywords : analytic functions, univalent, p-valently starlike functions, p-valently convex functions. GJSFR-F Classification : MSC 2010: 11E45

Strictly as per the compliance and regulations of :

© 2013. M. P. Jeyaraman, T. K. Suresh \& E. Keshava Reddy. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

M. P. Jeyaraman ${ }^{\text {a }}$, T. K. Suresh $^{\sigma}$ \& E. Keshava Reddy ${ }^{\rho}$

Some Subclasses of P-Valent Analytic

Functions

$\overline{\text { Abstract }- \text { The object of the present paper is to derive the sufficient conditions for certain subclasses of } p \text {-valent analytic }}$ functions in the open unit disk. A number of known results would follow upon specializing the parameters involved in our main results. Also, sufficient conditions are found for function to be univalent.
Keywords and phrases : analytic functions, univalent, p-valently starlike functions, p-valently convex functions.

I. Introduction and Preliminaries

Let $\mathcal{A}(p)$ denote the class of functions of the form

$$
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad(p \in \mathbb{N}=\{1,2, \ldots\})
$$

which are analytic and p-valent in the open unit disk $\mathbb{U}:=\{z:|z|<1\}$. Let \mathcal{S} be the class of analytic and univalent functions in \mathbb{U}. We note that $\mathcal{A}(1) \equiv \mathcal{S}$.

A function $f \in \mathcal{A}(p)$ is said to be in the class $\mathcal{S}^{*}(p, \alpha)$ of p-valently starlike of order α in \mathbb{U} if and only if it satisfies the inequality

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(z \in \mathbb{U} ; 0 \leq \alpha<p)
$$

On the other hand, a function $f \in \mathcal{A}(p)$ is said to be in the class $\mathcal{K}(p, \alpha)$ of p-valently convex of order α in \mathbb{U} if and only if it satisfies the inequality

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \quad(z \in \mathbb{U} ; 0 \leq \alpha<p)
$$

In particular, we write $\mathcal{S}^{*}(1,0):=\mathcal{S}^{*}, \mathcal{K}(1,0):=\mathcal{K}$, where \mathcal{S}^{*} and \mathcal{K} are the usual subclass of \mathcal{A}, consisting of functions which are starlike and convex, respectively (see [1, 2]).

[^2]The object of the present paper is to investigate various properties of the following classes of analytic and p-valent function defined as follows.

A function $f \in \mathcal{A}(p)$ is said to be a member of the class $\mathcal{B}(\gamma, \beta, p, \alpha)$ if and only if it satisfies the inequality

$$
\begin{gather*}
\left|\left(\frac{\beta \gamma z^{3} f^{\prime \prime \prime}(z)+(2 \beta \gamma+\beta-\gamma) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\beta \gamma z^{2} f^{\prime \prime}(z)+(\beta-\gamma) z f^{\prime}(z)+(1-\beta+\gamma) f(z)}\right)-p\right|<p-\alpha \tag{1}\\
(0 \leq \gamma \leq \beta \leq 1 ; 0 \leq \alpha<p ; p \in \mathbb{N})
\end{gather*}
$$

for some α, for all $z \in \mathbb{U}$.
Note that the condition (1) implies that

$$
\begin{gathered}
\operatorname{Re}\left\{\frac{\beta \gamma z^{3} f^{\prime \prime \prime}(z)+(2 \beta \gamma+\beta-\gamma) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\beta \gamma z^{2} f^{\prime \prime}(z)+(\beta-\gamma) z f^{\prime}(z)+(1-\beta+\gamma) f(z)}\right\}>\alpha, \\
(0 \leq \gamma \leq \beta \leq 1 ; 0 \leq \alpha<p ; p \in \mathbb{N}) .
\end{gathered}
$$

We note that $\mathcal{B}(0, \beta, p, \alpha) \equiv \mathcal{T}_{\beta}(p ; \alpha)$ is the class studied by Irmak and Raina in [3]. The important subclasses such as $\mathcal{S}^{*}(p, \alpha), \mathcal{K}(p, \alpha), \mathcal{S}^{*}$ and \mathcal{K} are seen to be easily identifiable with the aforesaid class.

In recent times, Irmak et al. [3] and Prajapat [9] investigated certain subclasses of multivalent analytic functions and obtained some sufficient conditions for these classes. In this paper, motivated by the aforementioned works, we obtained sufficient conditions for functions to be a member of the class $\mathcal{B}(\gamma, \beta, p, \alpha)$. We also indicate some special cases and consequences of the main result. The other results investigated include certain inequalities for p-valent functions which characterize the properties of starlikeness and convexity in the open unit disk. Furthermore our result unifies the result for a functions belonging to the class of p-valently starlike function of order α and p-valently convex function of order α.

In order to derive our main results, we need the following Lemmas.
Lemma 1. [4] Let $w(z)$ be the non-constant and analytic function in \mathbb{U} with $w(0)=$ 0 . If $|w(z)|$ attains its maximum value on the circle $|z|=r<1$ at a point z_{0}, then

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right) \tag{2}
\end{equation*}
$$

where $k \geq 1$ is a real number.
Lemma 2. [5] Let Ω be a set in the complex plane \mathbb{C} and suppose that $\Phi(z)$ is a mapping from $\mathbb{C}^{2} \times \mathbb{U}$ to \mathbb{C} which satisfies $\Phi(i x, y ; z) \notin \Omega$ for $z \in \mathbb{U}$, and for all real x, y such that $y \leq-n\left(1+x^{2}\right) / 2$. If the function $q(z)=1+q_{n} z^{n}+q_{n+1} z^{n+1}+\cdots$ is analytic in \mathbb{U} such that $\Phi\left(q(z), z q^{\prime}(z) ; z\right) \in \Omega$ for all $z \in \mathbb{U}$, then $\operatorname{Re} q(z)>0$.

Lemma 3. [7] Let δ be the complex number, Re $\delta>0$, and λ be a complex number, $|\lambda| \leq 1, \lambda \neq-1$ and let $h(z)=z+a_{2} z^{2}+\cdots$ be a regular function on \mathbb{U}. If

$$
\left.\left.|\lambda| z\right|^{2 \delta}+\left(1-|z|^{2 \delta}\right) \frac{z h^{\prime \prime}(z)}{\delta h^{\prime}(z)} \right\rvert\, \leq 1
$$

for all $z \in \mathbb{U}$, then the function

$$
\begin{aligned}
F_{\delta}(z) & =\left(\delta \int_{0}^{z} t^{\delta-1} h^{\prime}(t) d t\right)^{1 / \delta} \\
& =z+\frac{2 a_{2}}{\delta+1} z^{2}+\left(\frac{3 a_{3}}{\delta+2}+\frac{2 \delta(1-\delta) a_{2}^{2}}{(\delta+1)^{2}}\right) z^{3}+\cdots
\end{aligned}
$$

is regular and univalent in \mathbb{U}.
Lemma 4. [8] Let δ be a complex number, $\operatorname{Re} \delta>0$, and λ a complex number, $|\lambda|<1$, and $h \in \mathcal{A}$. If

$$
\frac{1-|z|^{2 \operatorname{Re} \delta}}{\operatorname{Re} \delta}\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq 1-|\lambda|
$$

for all $z \in \mathbb{U}$, then for any complex number $\eta, \operatorname{Re} \eta \geq \operatorname{Re} \delta$, the function

$$
F_{\eta}(z)=\left(\eta \int_{0}^{z} t^{\eta-1} h^{\prime}(t) d t\right)^{1 / \eta}
$$

is in the class \mathcal{S}.
Lemma 5. [6] Let $p(z)$ be analytic in $\mathbb{U}, p(0)=1, p(z) \neq 0$ in \mathbb{U} and suppose that there exists a point $z_{0} \in \mathbb{U}$ such that

$$
|\arg (p(z))|<\frac{\pi}{2} \alpha, \quad \text { for }|z|<\left|z_{0}\right|, \quad\left|\arg \left(p\left(z_{0}\right)\right)\right|=\frac{\pi}{2} \alpha
$$

where $0<\alpha \leq 1$, then we have

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i k \alpha
$$

where

$$
\begin{gathered}
k \geq \frac{1}{2}\left(a+\frac{1}{a}\right) \geq 1 \text { when } \quad \arg \left(p\left(z_{0}\right)\right)=\frac{\pi}{2} \alpha, \\
k \leq-\frac{1}{2}\left(a+\frac{1}{a}\right) \leq-1 \text { when } \quad \arg \left(p\left(z_{0}\right)\right)=-\frac{\pi}{2} \alpha, \\
p\left(z_{0}\right)^{1 / \alpha}= \pm a i, \quad(a>0) .
\end{gathered}
$$

iI. Main Results

By using Lemma 2, we first prove the following theorem.
Theorem 6. Let $f \in \mathcal{A}(p)$. Define a function $G_{\beta, \gamma}$ by
$G_{\beta, \gamma}(z):=\beta \gamma z^{2} f^{\prime \prime}(z)+(\beta-\gamma) z f^{\prime}(z)+(1-\beta+\gamma) f(z), \quad(0 \leq \gamma \leq \beta \leq 1 ; z \in \mathbb{U})$, and if $G_{\beta, \gamma}(z)$ satisfies

$$
\operatorname{Re}\left\{\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}\left(2+\frac{z G_{\beta, \gamma}^{\prime \prime}(z)}{G_{\beta, \gamma}^{\prime}(z)}-\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}\right)\right\}>p\left(1-\frac{n}{2}\right)+\frac{n}{2} \alpha
$$

$$
(0 \leq \gamma \leq \beta \leq 1 ; 0 \leq \alpha<p ; p, n \in \mathbb{N})
$$

then $f(z) \in \mathcal{B}(\gamma, \beta, p, \alpha)$.
Proof. Let $f \in \mathcal{A}(p)$. Define a function $w(z)$ in \mathbb{U} by

$$
\begin{equation*}
\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}=p+(p-\alpha) w(z),(0 \leq \gamma \leq \beta \leq 1 ; 0 \leq \alpha<p ; p \in \mathbb{N}) \tag{3}
\end{equation*}
$$

then the function $w(z)$ is analytic in \mathbb{U}, and $w(0)=0$.
A computation using (3) shows that

$$
\begin{aligned}
\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}\left(2+\frac{z G_{\beta, \gamma}^{\prime \prime}(z)}{G_{\beta, \gamma}^{\prime}(z)}-\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}\right) & =(p-\alpha)\left[z w^{\prime}(z)+w(z)\right]+p \\
& =\Phi\left(w(z), z w^{\prime}(z) ; z\right)
\end{aligned}
$$

where $\Phi(r, s ; z)=(p-\alpha)[s+r]+p$.
For all real x, y satisfying $y \leq-n\left(1+x^{2}\right) / 2$, we have

$$
\begin{aligned}
\operatorname{Re} \Phi(i x, y ; z) & =\operatorname{Re}\{(p-\alpha)[y+i x]+p\} \\
& \leq-\frac{n}{2}(p-\alpha)\left(1+x^{2}\right)+p \\
& \leq-\frac{n}{2}(p-\alpha)+p \\
& =p\left(1-\frac{n}{2}\right)+\frac{n}{2} \alpha .
\end{aligned}
$$

Let $\Omega=\left\{w: \operatorname{Re} w>p\left(1-\frac{n}{2}\right)+\frac{n}{2} \alpha\right\}$. Then $\Phi\left(w(z), z w^{\prime}(z) ; z\right) \in \Omega$ and $\Phi(i x, y ; z) \notin \Omega$ for all real x and $y \leq-n\left(1+x^{2}\right) / 2, z \in \mathbb{U}$.

By using Lemma 2, we have $\operatorname{Re} w(z)>0$, which implies that

$$
\operatorname{Re}\left\{\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}\right\}>\alpha,(0 \leq \gamma \leq \beta \leq 1 ; 0 \leq \alpha<p ; p \in \mathbb{N})
$$

and hence $f(z) \in \mathcal{B}(\gamma, \beta, p, \alpha)$.
By setting $\gamma=\beta=0$ in Theorem 6, we have following corollary.
Corollary 7. If $f \in \mathcal{A}(p)$ satisfies

$$
\begin{gathered}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\left(2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)\right\}>p\left(1-\frac{n}{2}\right)+\frac{n}{2} \alpha \\
(0 \leq \alpha<p ; p, n \in \mathbb{N}),
\end{gathered}
$$

then $f(z) \in \mathcal{S}^{*}(p, \alpha)$.
Its further case when $\alpha=0$ and $p=1$, Corollary 7 reduces to Corollary 8 .

Corollary 8. If $f \in \mathcal{A}$ satisfies

$$
\begin{gathered}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\left(2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)\right\}>1-\frac{n}{2} \\
(n \in \mathbb{N})
\end{gathered}
$$

then $f(z) \in \mathcal{S}^{*}$.
By taking $\gamma=0, \beta=1$ in Theorem 6 , we have the following corollary.
Corollary 9. If $f \in \mathcal{A}(p)$ satisfies

$$
\begin{gathered}
\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\left(1+\frac{z^{2} f^{\prime \prime \prime}(z)+2 z f^{\prime \prime}(z)}{z f^{\prime \prime}(z)+f^{\prime}(z)}-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>p\left(1-\frac{n}{2}\right)+\frac{n}{2} \alpha \\
(0 \leq \alpha<p ; p, n \in \mathbb{N})
\end{gathered}
$$

then $f(z) \in \mathcal{K}(p, \alpha)$.
A further case of Corollary 9 , when $\alpha=0, p=1$ gives the following corollary.
Corollary 10. If $f \in \mathcal{A}$ satisfies

$$
\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\left(1+\frac{z^{2} f^{\prime \prime \prime}(z)+2 z f^{\prime \prime}(z)}{z f^{\prime \prime}(z)+f^{\prime}(z)}-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>1-\frac{n}{2}
$$

then $f(z) \in \mathcal{K}$.
Theorem 11. Let $-1<b<a \leq 1,0 \leq \alpha<p, p \in \mathbb{N}$ such that $p(1+\alpha)+a \leq 2 p(p-b)+b$. If $G_{\beta, \gamma}(z)$ satisfies the inequality

$$
\begin{equation*}
\left|1+\frac{z G_{\beta, \gamma}^{\prime \prime}(z)}{G_{\beta, \gamma}^{\prime}(z)}-\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}\right|<\frac{p(a+b)}{(p+a)(p-b)} \quad(z \in \mathbb{U}) \tag{4}
\end{equation*}
$$

then $f(z) \in \mathcal{B}(\gamma, \beta, p, \alpha)$.
Proof. Define a function $w(z)$ by

$$
\begin{equation*}
\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}=\frac{p+a w(z)}{p-b w(z)} \quad(z \in \mathbb{U}) \tag{5}
\end{equation*}
$$

Then $w(z)$ is analytic in \mathbb{U} and $w(0)=0$. By the logarithmic differentiation of (5), we get

$$
\begin{equation*}
1+\frac{z G_{\beta, \gamma}^{\prime \prime}(z)}{G_{\beta, \gamma}^{\prime}(z)}-\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}=\frac{p(a+b) z w^{\prime}(z)}{(p+a w(z))(p-b w(z))} \tag{6}
\end{equation*}
$$

Now suppose that there exists $z_{0} \in \mathbb{U}$ such that

$$
\max _{|z|<\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1
$$

then from Lemma 1, we have (2). Letting $w\left(z_{0}\right)=e^{i \theta}$, from (6), we have

$$
\left|1+\frac{z_{0} G_{\beta, \gamma}^{\prime \prime}\left(z_{0}\right)}{G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}-\frac{z_{0} G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}{G_{\beta, \gamma}\left(z_{0}\right)}\right|=\left|\frac{p(a+b) k e^{i \theta}}{\left(p+a e^{i \theta}\right)\left(p-b e^{i \theta}\right)}\right| \geq \frac{p(a+b)}{(p+a)(p-b)} .
$$

This contradicts our assumption (4). Therefore $|w(z)|<1$ holds true for all $z \in \mathbb{U}$. Thus we conclude from (5) that

$$
\begin{aligned}
\left|\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}-p\right| & =\left|\frac{p+a w(z)}{p-b w(z)}-p\right| \\
& <\frac{p+a-p(p-b)}{p-b} \\
& \leq p-\alpha \quad(z \in \mathbb{U})
\end{aligned}
$$

which implies that $f(z) \in \mathcal{B}(\gamma, \beta, p, \alpha)$.
Theorem 12. Let $f \in \mathcal{A}(p)$. If $G_{\beta, \gamma}(z)$ satisfies anyone of the following conditions:

$$
\begin{align*}
& \left|1+\frac{z G_{\beta, \gamma}^{\prime \prime}(z)}{G_{\beta, \gamma}^{\prime}(z)}-\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}\right|<\frac{p-\alpha}{2 p-\alpha}, \tag{7}\\
& \left|\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}\left(1+\frac{z G_{\beta, \gamma}^{\prime \prime}(z)}{G_{\beta, \gamma}^{\prime}(z)}-\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}\right)\right|<p-\alpha, \tag{8}\\
& \left|\frac{1+\frac{z G_{\beta, \gamma}^{\prime \prime}(z)}{G_{\beta, \gamma}^{\prime}(z)}}{\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}}-1\right|<\frac{p-\alpha}{(2 p-\alpha)^{2}}, \tag{9}\\
& \left|\frac{1+\frac{z G_{\beta, \gamma}^{\prime \prime}(z)}{G_{\beta, \gamma}^{\prime}(z)}-p}{\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}-p}-1\right|<\frac{1}{(2 p-\alpha)}, \tag{10}\\
& \operatorname{Re}\left\{\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}\left(\frac{1+\frac{z G_{\beta, \gamma}^{\prime \prime}(z)}{G_{\beta, \gamma}^{\prime}(z)}-p}{\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}-p}-1\right)\right\}<1, \tag{11}\\
& (0 \leq \gamma \leq \beta \leq 1 ; 0 \leq \alpha<p ; p \in \mathbb{N}),
\end{align*}
$$

then $f(z) \in \mathcal{B}(\gamma, \beta, p, \alpha)$.

Proof. Let $f \in \mathcal{A}(p)$. Define a function $w(z)$ in \mathbb{U} by

$$
\begin{equation*}
\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}=p+(p-\alpha) w(z),(0 \leq \gamma \leq \beta \leq 1 ; 0 \leq \alpha<p ; p \in \mathbb{N}) \tag{12}
\end{equation*}
$$

then the function $w(z)$ is analytic in \mathbb{U}, and $w(0)=0$.
It follows from (12) that

$$
\begin{equation*}
1+\frac{z G_{\beta, \gamma}^{\prime \prime}(z)}{G_{\beta, \gamma}^{\prime}(z)}-\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}=\frac{(p-\alpha) z w^{\prime}(z)}{p+(p-\alpha) w(z)} . \tag{13}
\end{equation*}
$$

Hence, from (12) and (13), we have

$$
\begin{gather*}
\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}\left(1+\frac{z G_{\beta, \gamma}^{\prime \prime}(z)}{G_{\beta, \gamma}^{\prime}(z)}-\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}\right)=(p-\alpha) z w^{\prime}(z), \tag{14}\\
\frac{1+\frac{z G_{\beta, \gamma}^{\prime \prime}(z)}{G_{\beta, \gamma}^{\prime}(z)}}{\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}}-1=\frac{(p-\alpha) z w^{\prime}(z)}{[p+(p-\alpha) w(z)]^{2}} \tag{15}\\
\frac{1+\frac{z G_{\beta, \gamma}^{\prime \prime}(z)}{G_{\beta, \gamma}^{\prime}(z)}-p}{\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}-p}-1=\frac{z w^{\prime}(z)}{w(z)} \frac{1}{p+(p-\alpha) w(z)} \tag{16}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}\left(\frac{1+\frac{z G_{\beta, \gamma}^{\prime \prime}(z)}{G_{\beta, \gamma}^{\prime}(z)}-p}{\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}-p}-1\right)=\frac{z w^{\prime}(z)}{w(z)} \tag{17}
\end{equation*}
$$

Now, suppose there exists $z_{0} \in \mathbb{U}$ such that

$$
\max _{|z|<\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1
$$

then from Lemma 1, we have (2). Therefore, letting $w\left(z_{0}\right)=e^{i \theta}$ in each of (13)-(17), we obtain that

$$
\begin{gathered}
\left|1+\frac{z_{0} G_{\beta, \gamma}^{\prime \prime}\left(z_{0}\right)}{G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}-\frac{z_{0} G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}{G_{\beta, \gamma}\left(z_{0}\right)}\right|=\left|\frac{(p-\alpha) k e^{i \theta}}{p+(p-\alpha) e^{i \theta}}\right| \geq \frac{p-\alpha}{2 p-\alpha} \\
\left|\frac{z_{0} G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}{G_{\beta, \gamma}\left(z_{0}\right)}\left(1+\frac{z_{0} G_{\beta, \gamma}^{\prime \prime}\left(z_{0}\right)}{G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}-\frac{z_{0} G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}{G_{\beta, \gamma}\left(z_{0}\right)}\right)\right|=\left|(p-\alpha) k e^{i \theta}\right| \geq(p-\alpha),
\end{gathered}
$$

$$
\begin{aligned}
& \left|\frac{1+\frac{z_{0} G_{\beta, \gamma}^{\prime \prime}\left(z_{0}\right)}{G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}}{\frac{z_{0} G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}{G_{\beta, \gamma}\left(z_{0}\right)}}-1\right|=\left|\frac{(p-\alpha) k e^{i \theta}}{\left(p+(p-\alpha) e^{i \theta}\right)^{2}}\right| \geq \frac{p-\alpha}{(2 p-\alpha)^{2}}, \\
& \left|\frac{1+\frac{z_{0} G_{\beta, \gamma}^{\prime \prime}\left(z_{0}\right)}{G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}-p}{\frac{z_{0} G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}{G_{\beta, \gamma}\left(z_{0}\right)}-p}-1\right|=\left|\frac{k}{p+(p-\alpha) e^{i \theta}}\right| \geq \frac{1}{(2 p-\alpha)}, \\
& \operatorname{Re}\left\{\frac{z_{0} G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}{G_{\beta, \gamma}\left(z_{0}\right)}\left(\frac{1+\frac{z_{0} G_{\beta, \gamma}^{\prime \prime}\left(z_{0}\right)}{G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}-p}{\frac{z_{0} G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}{G_{\beta, \gamma}\left(z_{0}\right)}-p}-1\right)\right\}=k \geq 1, \\
& (0 \leq \gamma \leq \beta \leq 1 ; 0 \leq \alpha<p ; p \in \mathbb{N}),
\end{aligned}
$$

which contradict our assumption (7)-(11), respectively. Therefore $|w(z)|<1$ holds true for all $z \in \mathbb{U}$. From (12), we have

$$
\left|\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}-p\right|=|(p-\alpha) w(z)|<(p-\alpha),(0 \leq \gamma \leq \beta \leq 1 ; 0 \leq \alpha<p ; p \in \mathbb{N})
$$

which implies that

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}\right\}=\operatorname{Re}\left\{\frac{\beta \gamma z^{3} f^{\prime \prime \prime}(z)+(2 \beta \gamma+\beta-\gamma) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\beta \gamma z^{2} f^{\prime \prime}(z)+(\beta-\gamma) z f^{\prime}(z)+(1-\beta+\gamma) f(z)}\right\}>\alpha \\
&(0 \leq \gamma \leq \beta \leq 1 ; 0 \leq \alpha<p ; p \in \mathbb{N})
\end{aligned}
$$

and hence $f(z) \in \mathcal{B}(\gamma, \beta, p, \alpha)$.
Remark 1. By taking $\gamma=0 ; \gamma=\beta=0 ; \gamma=0$ and $\beta=1 ; \gamma=\beta=\alpha=0$ and $p=1 ; \gamma=\alpha=0$ and $\beta=p=1$ in Theorem 12, we get the results of Irmak and Raina [3, Theorem 1, Corollary 1-4].
Theorem 13. Let $0 \leq \gamma \leq \beta \leq 1 ; 0 \leq \alpha<1, \delta$ be a complex number, $\operatorname{Re} \delta \geq \frac{3-2 \alpha}{2-\alpha}$ and λ be a complex number which satisfies the inequality

$$
\begin{equation*}
|\lambda| \leq 1-\frac{3-2 \alpha}{\operatorname{Re} \delta(2-\alpha)} \tag{18}
\end{equation*}
$$

If $F_{\beta, \gamma}(z):=\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}$ is regular in \mathbb{U} and

$$
\begin{equation*}
\left|1+\frac{z G_{\beta, \gamma}^{\prime \prime}(z)}{G_{\beta, \gamma}^{\prime}(z)}-\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}\right| \leq \frac{1-\alpha}{2-\alpha} \quad(z \in \mathbb{U}) \tag{19}
\end{equation*}
$$

then the function

$$
\begin{equation*}
F(z)=\left(\delta \int_{0}^{z} t^{\delta-1} \frac{G_{\beta, \gamma}^{\prime}(t)}{G_{\beta, \gamma}(t)} d t\right)^{1 / \delta} \tag{20}
\end{equation*}
$$

is univalent in \mathbb{U}.
Proof. Define a function

$$
h(z)=\int_{0}^{z} \frac{F_{\beta, \gamma}(t)}{t} d t
$$

then we have $h(0)=h^{\prime}(0)-1=0$. Also a simple computation yields $h^{\prime}(z)=\frac{F_{\beta, \gamma}(z)}{z}$ and

$$
\begin{equation*}
\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}=\frac{z F_{\beta, \gamma}^{\prime}(z)}{F_{\beta, \gamma}(z)}-1 \tag{21}
\end{equation*}
$$

From (21), we have

$$
\begin{align*}
\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| & \leq\left|\frac{z F_{\beta, \gamma}^{\prime}(z)}{F_{\beta, \gamma}(z)}\right|+1 \\
& =\left|1+\frac{z G_{\beta, \gamma}^{\prime \prime}(z)}{G_{\beta, \gamma}^{\prime}(z)}-\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}\right|+1 . \tag{22}
\end{align*}
$$

Hence, from (19) and (22), we have

$$
\begin{equation*}
\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq \frac{3-2 \alpha}{2-\alpha} . \tag{23}
\end{equation*}
$$

Using (23), we have

$$
\begin{aligned}
\left.\left.|\lambda| z\right|^{2 \delta}+\left(1-|z|^{2 \delta}\right) \frac{z h^{\prime \prime}(z)}{\delta h^{\prime}(z)} \right\rvert\, & \leq|\lambda|+\left|\frac{z h^{\prime \prime}(z)}{\delta h^{\prime}(z)}\right| \\
& \leq|\lambda|+\frac{1}{\operatorname{Re} \delta} \frac{3-2 \alpha}{2-\alpha} .
\end{aligned}
$$

Again using (18), we have

$$
\left.\left.|\lambda| z\right|^{2 \delta}+\left(1-|z|^{2 \delta}\right) \frac{z h^{\prime \prime}(z)}{\delta h^{\prime}(z)} \right\rvert\, \leq 1 .
$$

Applying Lemma 3, we obtain that the function $F(z)$ defined by (20) is univalent in \mathbb{U}.

We obtain Theorem 14 below, by using Lemma 4 and the same techniques as in the proof of Theorem 13.

Theorem 14. Let δ be a complex number, $\operatorname{Re} \delta>0, \lambda$ a complex number, $|\lambda|<1$, and $f \in \mathcal{A}$. If

$$
\left|1+\frac{z G_{\beta, \gamma}^{\prime \prime}(z)}{G_{\beta, \gamma}^{\prime}(z)}-\frac{z G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)}\right| \leq \frac{1-\alpha}{2-\alpha} \quad(z \in \mathbb{U} ; 0 \leq \gamma \leq \beta \leq 1 ; 0 \leq \alpha<1)
$$

then for any complex number η,
the integral operator

$$
F_{\eta}(z)=\left(\eta \int_{0}^{z} t^{\eta-1} \frac{G_{\beta, \gamma}^{\prime}(t)}{G_{\beta, \gamma}(t)} d t\right)^{1 / \eta}
$$

is in the class \mathcal{S}.
Theorem 15. Let $p(z)$ be an analytic function in $\mathbb{U}, p(z) \neq 0$ in \mathbb{U} and suppose that

$$
\begin{equation*}
\left|\arg \left(p(z)+\frac{z^{2} G_{\beta, \gamma}^{\prime}(z)}{G_{\beta, \gamma}(z)} p^{\prime}(z)\right)\right|<\frac{\pi}{2} \alpha \quad(z \in \mathbb{U}) \tag{24}
\end{equation*}
$$

where $0<\alpha<p, 0 \leq \gamma \leq \beta \leq 1$ and $f(z) \in \mathcal{B}(\gamma, \beta, p, \alpha)$, then we have

$$
|\arg (p(z))|<\frac{\pi}{2} \alpha \quad(z \in \mathbb{U})
$$

Proof. Suppose there exists a point $z_{0} \in \mathbb{U}$ such that

$$
|\arg (p(z))|<\frac{\pi}{2} \alpha, \quad \text { for }|z|<\left|z_{0}\right|, \quad\left|\arg \left(p\left(z_{0}\right)\right)\right|=\frac{\pi}{2} \alpha .
$$

Then, applying Lemma 4, we have

$$
\begin{align*}
\arg \left(p\left(z_{0}\right)+\frac{z_{0}^{2} G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}{G_{\beta, \gamma}\left(z_{0}\right)} p^{\prime}\left(z_{0}\right)\right) & =\arg \left(p\left(z_{0}\right)\left(1+\frac{z_{0} G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}{G_{\beta, \gamma}\left(z_{0}\right)} \frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}\right)\right) \tag{25}\\
& =\arg \left(p\left(z_{0}\right)\right)+\arg \left(1+i \frac{z_{0} G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}{G_{\beta, \gamma}\left(z_{0}\right)} k \alpha\right)
\end{align*}
$$

When $\arg \left(p\left(z_{0}\right)\right)=\pi \alpha / 2$, since

$$
\operatorname{Re}\left(\frac{z_{0} G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}{G_{\beta, \gamma}\left(z_{0}\right)} k \alpha\right)>0 \Rightarrow \arg \left(1+i \frac{z_{0} G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}{G_{\beta, \gamma}\left(z_{0}\right)} k \alpha\right)>0
$$

Eq. (25) becomes

$$
\begin{equation*}
\arg \left(p\left(z_{0}\right)+\frac{z_{0}^{2} G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}{G_{\beta, \gamma}\left(z_{0}\right)} p^{\prime}\left(z_{0}\right)\right)>\frac{\pi}{2} \alpha \tag{26}
\end{equation*}
$$

Similarly, if $\arg \left(p\left(z_{0}\right)\right)=-\pi \alpha / 2$, since

$$
\operatorname{Re}\left(\frac{z_{0} G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}{G_{\beta, \gamma}\left(z_{0}\right)} k \alpha\right)<0 \Rightarrow \arg \left(1+i \frac{z_{0} G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}{G_{\beta, \gamma}\left(z_{0}\right)} k \alpha\right)<0
$$

we obtain that

$$
\begin{equation*}
\arg \left(p\left(z_{0}\right)+\frac{z_{0}^{2} G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}{G_{\beta, \gamma}\left(z_{0}\right)} p^{\prime}\left(z_{0}\right)\right)=\arg \left(p\left(z_{0}\right)\right)+\arg \left(1+i \frac{z_{0} G_{\beta, \gamma}^{\prime}\left(z_{0}\right)}{G_{\beta, \gamma}\left(z_{0}\right)} k \alpha\right)<-\frac{\pi}{2} \alpha \tag{27}
\end{equation*}
$$

Thus, we see that (26) and (27) contradict our assumption (24). Consequently, we conclude that

$$
|\arg (p(z))|<\frac{\pi}{2} \alpha \quad(z \in \mathbb{U})
$$

References Références Referencias

[1] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer- Verlag, New York Berlin, Heidelberg, and Tokyo, (1983).
[2] A. W. Goodman, Univalent Functions, Vols. I and II, Polygonal Publishing House, Washington, New Jersey, (1983).
[3] H. Irmak and R. K. Raina, The starlikeness and convexity of multivalent functions involving certain inequalities, Rev. Mat. Complut. (16) (2) (2003), 391-398.
[4] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. (2) (3) (1971), 469-474.
[5] S. S. Miller and P. T. Mocanu, Differential subordinations and inequalities in the complex plane, J. Differ. Equations, (6) (1987), 199-211.
[6] M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad., (69) (A) (1993), 234-237.
[7] V. Pescar, A new generalization of Ahlfor's and Becker's criterion of univalence, Bull. Malays. Math. Sci. Soc., (2) (19) (1996), 53-54.
[8] V. Pescar, Univalence criteria of certain integral operators, Acta Cienc. Indica Math., (29) (1) (2003), 135-138.
[9] J. K. Prajapat, Some Sufficient Conditions for Certain Class of Analytic and Multivalent Functions, Southeast Asian Bull. Math., (34) (2) (2010), 357-363.

This page is intentionally left blank

Global Journal of Science Frontier Research MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 3 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

A Summation Formula Clung to Contiguous Relation

By Salahuddin \& M. P. Chaudhary

P.D.M College of Engineering, India

Abstract - The main aim of the present paper is to evaluate a summation formula in the shadow of contiguous relation and recurrence relation.

Keywords : gaussian hypergeometric function, contiguous function, recurrence relation, bailey summation theorem and legendre duplication formula.

GJSFR-F Classification : MSC 2010: 33C60, 33C70, 33D15, 33D50, 33D60.

Strictly as per the compliance and regulations of:

© 2013. Salahuddin \& M. P. Chaudhary. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

A Summation Formula Clung to Contiguous Relation

Salahuddin ${ }^{\alpha}$ \& M. P. Chaudhary ${ }^{\sigma}$

Abstract - The main aim of the present paper is to evaluate a summation formula in the shadow of contiguous relation and recurrence relation.
Keywords : gaussian hypergeometric function, contiguous function, recurrence relation, bailey summation theorem and legendre duplication formula.

I. InTRODUCTION

Generalized Gaussian hypergeometric function of one variable is defined by

$$
{ }_{A} F_{B}\left[\begin{array}{cc}
a_{1}, a_{2}, \cdots, a_{A} & ; \\
b_{1}, b_{2}, \cdots, b_{B} & ;
\end{array}\right]=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{A}\right)_{k} z^{k}}{\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \cdots\left(b_{B}\right)_{k} k!}
$$

or

$$
{ }_{A} F_{B}\left[\begin{array}{ccc}
\left(a_{A}\right) & ; & \tag{1}\\
\left(b_{B}\right) & ; & z
\end{array}\right] \equiv{ }_{A} F_{B}\left[\begin{array}{ccc}
\left(a_{j}\right)_{j=1}^{A} & ; & \\
\left(b_{j}\right)_{j=1}^{B} & ; & z
\end{array}\right]=\sum_{k=0}^{\infty} \frac{\left(\left(a_{A}\right)\right)_{k} z^{k}}{\left(\left(b_{B}\right)\right)_{k} k!}
$$

where the parameters $b_{1}, b_{2}, \cdots, b_{B}$ are neither zero nor negative integers and A, B are non-negative integers.

Contiguous Relation[E. D. p.51(10), Andrews p.363(9.16)] is defined as follows

Recurrence relation of gamma function is defined as follows

$$
\begin{equation*}
\Gamma(z+1)=z \Gamma(z) \tag{3}
\end{equation*}
$$

Legendre duplication formula[Bells \& Wong p.26(2.3.1)] is defined as follows

$$
\begin{equation*}
\sqrt{\pi} \Gamma(2 z)=2^{(2 z-1)} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right) \tag{4}
\end{equation*}
$$

[^3]\[

$$
\begin{align*}
\Gamma\left(\frac{1}{2}\right) & =\sqrt{\pi}=\frac{2^{(b-1)} \Gamma\left(\frac{b}{2}\right) \Gamma\left(\frac{b+1}{2}\right)}{\Gamma(b)} \tag{5}\\
& =\frac{2^{(a-1)} \Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{a+1}{2}\right)}{\Gamma(a)} \tag{6}
\end{align*}
$$
\]

Bailey summation theorem [Prud, p.491(7.3.7.8)] is defined as follows

iI. Main Result of Summation Formula

$$
{ }_{2} F_{1}\left[\begin{array}{ccc}
a & , \quad-a-50 & ; \\
& c & \frac{1}{2}
\end{array}\right]
$$

$$
=\frac{\sqrt{\pi} \Gamma(c)}{2^{c+50}}\left[\frac{1}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+50}{2}\right)}\{-349281398856053997508091191516200960000 a\right.
$$

$$
+413576826726104639517424992011255808000 a^{2}
$$

$$
-178735941888370793121003448380707635200 a^{3}
$$

$$
+35664649904426959513195003757803991040 a^{4}
$$

$$
-3115545776664539279346856667553629184 a^{5}
$$

$+28334464656624692383714379343565056 a^{6}+11649049989491487643853939417752128 a^{7}$
$-338993837247881522237887727181888 a^{8}-23967890096677066712984409080560 a^{9}$ $+576081398341880215471369798896 a^{10}+35824355945703564893406903788 a^{11}$ $-218753960224314417939862188 a^{12}-30812261856226631564337865 a^{13}$ $-294303555355218100065024 a^{14}+9714972848474309029418 a^{15}+233658656740810973892 a^{16}$

$$
+665467940266912145 a^{17}-33785119600458864 a^{18}-450948140574712 a^{19}
$$

$$
-1349964560868 a^{20}+14581955465 a^{21}+138711936 a^{22}+384578 a^{23}+12 a^{24}-a^{25}
$$ $+349281398856054617956492924755640320000 c$

-1073012803899954203695450741216247808000ac $+826931992648450623755141519452967731200 a^{2} c$ $-268178880352284310003820868302667325440 a^{3} c$ $+40676832460641070925386987323409864704 a^{4} c$ $-2401490113928993197147231477443257856 a^{5} c$
$-51215833665294233178323301340019328 a^{6} c+9998148623417107030806824255676288 a^{7} c$ $-24413055565924722735355620028320 a^{8} c-19142256993023392376110494715296 a^{9} c$
$-23227403955715817814050749688 a^{10} c+21018465672276391690622848488 a^{11} c$ $+247179732053639731020622010 a^{12} c-10306207210896724917565776 a^{13} c$ $-254358255448153386816468 a^{14} c+323506520010497774808 a^{15} c$
$+70755135547822018150 a^{16} c+772895228685300864 a^{17} c-1182906526632688 a^{18} c$ $-80881253485032 a^{19} c-564030036570 a^{20} c-658593936 a^{21} c+7966972 a^{22} c+30888 a^{23} c$ $+26 a^{24} c+659435977173851906965242147923558400000 c^{2}$
$-1200660410145696123567172867824549888000 a c^{2}$
$+688483420259465902527955731196913909760 a^{2} c^{2}$
$-173735467587891317317886139543086333952 a^{3} c^{2}$ $+20016246143025284887466464139100315648 a^{4} c^{2}$ $-696751468206985463638520398858868736 a^{5} c^{2}$
$-47283843989501517640298377370466816 a^{6} c^{2}+3207511887731684443385472395890688 a^{7} c^{2}$ $+67829685169337783724194302802304 a^{8} c^{2}-5230950080900855416140311926528 a^{9} c^{2}$ $-107726132872849789242908871264 a^{10} c^{2}+3823211798640945200733536256 a^{11} c^{2}$ $+115921593870450901608996648 a^{12} c^{2}-554675925545626715519416 a^{13} c^{2}$ $-50977721134612592662056 a^{14} c^{2}-464805920594445852136 a^{15} c^{2}$ $+4885079291953969680 a^{16} c^{2}+115938953867639760 a^{17} c^{2}+593655039785808 a^{18} c^{2}$ $-2572329327568 a^{19} c^{2}-38319361080 a^{20} c^{2}-126806680 a^{21} c^{2}-34632 a^{22} c^{2}$ $+312 a^{23} c^{2}+552464359385620218428408074850009088000 c^{3}$

$$
\begin{gathered}
-732980072550947707131148343421393960960 a c^{3} \\
+329343958318790830714491706863016476672 a^{2} c^{3} \\
-65645600239520673784720487291349762048 a^{3} c^{3} \\
+5644781053307900532201450626000142336 a^{4} c^{3} \\
-70678523826168786085492292862787584 a^{5} c^{3}
\end{gathered}
$$

$-16394484580207417039861493274467328 a^{6} c^{3}+474897187465426039206535312836096 a^{7} c^{3}$ $+26375464951510019824020622947328 a^{8} c^{3}-596767365200367848778077051136 a^{9} c^{3}$ $-30004714594095043225617875136 a^{10} c^{3}+164545622419254515620333152 a^{11} c^{3}$ $+18369281591280933698237216 a^{12} c^{3}+145855161886046695738656 a^{13} c^{3}$ $-3766296255093150471264 a^{14} c^{3}-72480848392686127680 a^{15} c^{3}$ $-173283889878573760 a^{16} c^{3}+5741124128131392 a^{17} c^{3}+55042351331968 a^{18} c^{3}$ $+113259226080 a^{19} c^{3}-660980320 a^{20} c^{3}-3171168 a^{21} c^{3}-2912 a^{22} c^{3}$ $+277010882739343091655227615432461516800 c^{4}$
$-287376051776531294991806648413568630784 a c^{4}$
$+103667626781282561391378258991599845376 a^{2} c^{4}$
$-16376796813066824297322141954098429952 a^{3} c^{4}$
$+1010564775100741549391222089052184576 a^{4} c^{4}$
$+10445696976049947246030147415967744 a^{5} c^{4}-3158847378174624541360541509378560 a^{6} c^{4}$ $+19969403782797531251668336712960 a^{7} c^{4}+4643712142312460247187454760192 a^{8} c^{4}$ $-6398090275241574317732752128 a^{9} c^{4}-3816965015737167929525348640 a^{10} c^{4}$ $-32525341811589650618656880 a^{11} c^{4}+1330464141571452372829344 a^{12} c^{4}$ $+24834094905314699084080 a^{13} c^{4}-39601289320377195840 a^{14} c^{4}$
$-4313921375227166560 a^{15} c^{4}-33558810621336000 a^{16} c^{4}+45306739461984 a^{17} c^{4}$

$$
+1673341269600 a^{18} c^{4}+6702455760 a^{19} c^{4}+3363360 a^{20} c^{4}-16016 a^{21} c^{4}
$$

$+94206274361657927452517378398164615168 c^{5}$
$-78952141604189636705133721973661106176 a c^{5}$ $+23132785878270378681278040505927729152 a^{2} c^{5}$
$-2881672288225944887382774800732798976 a^{3} c^{5}$ $+117821071084818582520276891344961536 a^{4} c^{5}$ $+4572596760700241331468781904655360 a^{5} c^{5}-378160624145337869649591627906560 a^{6} c^{5}$ $-4479894637786265291597045371392 a^{7} c^{5}+465565949736072777197696510208 a^{8} c^{5}$ $+6264526765643689556997023040 a^{9} c^{5}-255767905687539130016433120 a^{10} c^{5}$ $-5414234177919792240759744 a^{11} c^{5}+33003552058204310783200 a^{12} c^{5}$ $+1649662067918056832640 a^{13} c^{5}+10044554844666788160 a^{14} c^{5}-101558448322531200 a^{15} c^{5}$
$-1481727457514304 a^{16} c^{5}-4456341489600 a^{17} c^{5}+15120545440 a^{18} c^{5}+95135040 a^{19} c^{5}$
$+96096 a^{20} c^{5}+23287024568676156429864582418268160000 c^{6}$
$-16035319902137515584474413002339123200 a c^{6}$
$+3832525287928302558901925506826108928 a^{2} c^{6}$
$-371552626203796768781791520257114112 a^{3} c^{6}$ $+8324288078177708437806721925873664 a^{4} c^{6}$
$+761136109547688617704800204900352 a^{5} c^{6}-28492690243695317381254383854592 a^{6} c^{6}$
$-920135451082109900741662590976 a^{7} c^{6}+26908499979682587821049610752 a^{8} c^{6}$ $+824683853854457182155862656 a^{9} c^{6}-7307957274466037614641216 a^{10} c^{6}$
$-375026208256048741968576 a^{11} c^{6}-1623725136796484257536 a^{12} c^{6}$
$+53279856667239634432 a^{13} c^{6}+638921254888844928 a^{14} c^{6}+463333171357056 a^{15} c^{6}$

$$
\begin{aligned}
& -27119794141440 a^{16} c^{6}-134770796160 a^{17} c^{6}-98978880 a^{18} c^{6}+320320 a^{19} c^{6} \\
& +4370868035509345787655109134935654400 c^{7} \\
& -2494797928342814367648605348485398528 a c^{7} \\
& +486050047323646914801852260812849152 a^{2} c^{7} \\
& -35833880314845328479511256630820864 a^{3} c^{7} \\
& +185780709999525528303843109634048 a^{4} c^{7} \\
& +78929165337723268018174680072192 a^{5} c^{7}-1177109599312891745506779234304 a^{6} c^{7} \\
& -87596450648578217108115505152 a^{7} c^{7}+654486284469833088131948544 a^{8} c^{7} \\
& +54847813511159848342665216 a^{9} c^{7}+181078561568579818530816 a^{10} c^{7} \\
& -14088489509767927947264 a^{11} c^{7}-157122172795863621632 a^{12} c^{7} \\
& +579957490858217472 a^{13} c^{7}+17165502254444544 a^{14} c^{7}+71371384381440 a^{15} c^{7} \\
& -142788771840 a^{16} c^{7}-1304709120 a^{17} c^{7}-1464320 a^{18} c^{7} \\
& +641683366569362126860981949693952000 c^{8} \\
& -304776543731945699522669706928455680 \text { ac }^{8} \\
& +48170752639870577979344445873586176 a^{2} c^{8} \\
& -2599157535264884829152703818104832 a^{3} c^{8} \\
& -31707001782166030579390274666496 a^{4} c^{8}+5641135567365041609691810865152 a^{5} c^{8} \\
& +1917026424809845954644049920 a^{6} c^{8}-5199988494853301193094901760 a^{7} c^{8} \\
& -25041475625109866389868544 a^{8} c^{8}+2178833648702438230424064 a^{9} c^{8} \\
& +25157758400344258191360 a^{10} c^{8}-260482121035239966720 a^{11} c^{8} \\
& -5551345110212149248 a^{12} c^{8}-14688941600965632 a^{13} c^{8}+211997414154240 a^{14} c^{8} \\
& +1361347553280 a^{15} c^{8}+1344245760 a^{16} c^{8}-3294720 a^{17} c^{8} \\
& +75247708189399576818185695668469760 c^{9} \\
& -29755105770247617040879480813387776 a c^{9} \\
& +3782107333389702781133446749356032 a^{2} c^{9} \\
& -139737499176730062132359594901504 a^{3} c^{9}-4544116334479423700804522033152 a^{4} c^{9} \\
& +285064157808176183575488430080 a^{5} c^{9}+3765845101952647026736783360 a^{6} c^{9} \\
& -201958446151986457777299456 a^{7} c^{9}-2986095861362649319691264 a^{8} c^{9} \\
& +49315469435371625840640 a^{9} c^{9}+1068263602418510417920 a^{10} c^{9} \\
& +228197216020021248 a^{11} c^{9}-101972512594720768 a^{12} c^{9}-584540190474240 a^{13} c^{9} \\
& +590920478720 a^{14} c^{9}+9857802240 a^{15} c^{9}+12446720 a^{16} c^{9} \\
& +7156035287485468378540906905600000 c^{10}
\end{aligned}
$$

$$
\begin{aligned}
& -2350804713832612589755749629952000 a c^{10} \\
& +237184683015181530526254731624448 a^{2} c^{10}
\end{aligned}
$$

$-5250346039608070755877670354944 a^{3} c^{10}-336443126121994073693213294592 a^{4} c^{10}$ $+9949646175177912739916283904 a^{5} c^{10}+274728736685088492054183936 a^{6} c^{10}$ $-4827762337701366865657856 a^{7} c^{10}-134628400956132807499776 a^{8} c^{10}$ $+343262300432275873792 a^{9} c^{10}+25059277268568711168 a^{10} c^{10}$ $+123068966044344320 a^{11} c^{10}-885990408855552 a^{12} c^{10}-7883115175936 a^{13} c^{10}$ $-10096779264 a^{14} c^{10}+19914752 a^{15} c^{10}+557972204701536623537152222822400 c^{11}$ $-151602820048630083385908944437248 a c^{11}$
$+11919003482083199966287446933504 a^{2} c^{11}-107585654558268871756515115008 a^{3} c^{11}$ $-17009942831127835874778415104 a^{4} c^{11}+210819549215565321684516864 a^{5} c^{11}$ $+11557454430259412045070336 a^{6} c^{11}-45205683596306495668224 a^{7} c^{11}$ $-3626422431735410491392 a^{8} c^{11}-14417100016869408768 a^{9} c^{11}$ $+333365237886320640 a^{10} c^{11}+2738236825239552 a^{11} c^{11}-471892721664 a^{12} c^{11}$ $-45166657536 a^{13} c^{11}-65175552 a^{14} c^{11}+35946039180282436468378435584000 c^{12}$ $-8024535215492293377496490967040 a c^{12}+478947283283087632443182678016 a^{2} c^{12}$ $+1391316218121396453552160768 a^{3} c^{12}-627099291149193418922655744 a^{4} c^{12}$ $+768809495148148221214720 a^{5} c^{12}+325153013937267992985600 a^{6} c^{12}$ $+1254370229847242260480 a^{7} c^{12}-61237198934106144768 a^{8} c^{12}$ $-507929569203044352 a^{9} c^{12}+1982198075719680 a^{10} c^{12}+28034883502080 a^{11} c^{12}$ $+46079115264 a^{12} c^{12}-76038144 a^{13} c^{12}+1922900866404964331693570785280 c^{13}$ $-349567381275971095112152252416 a c^{13}+15251521470928402392869240832 a^{2} c^{13}$ $+218825323379159366500614144 a^{3} c^{13}-17109765661336059685765120 a^{4} c^{13}$
$-122206099379806878105600 a^{5} c^{13}+6231006248339415531520 a^{6} c^{13}$ $+58958935093124333568 a^{7} c^{13}-595218771270402048 a^{8} c^{13}-7748163223879680 a^{9} c^{13}$ $-5155444654080 a^{10} c^{13}+132025614336 a^{11} c^{13}+222265344 a^{12} c^{13}$ $+85638216654872232843018240000 c^{14}-12533296181130077758344396800 a c^{14}$ $+377096167588144864284377088 a^{2} c^{14}+9998198767032757294465024 a^{3} c^{14}$
$-340536027759557946900480 a^{4} c^{14}-4928846014229712076800 a^{5} c^{14}$ $+77222720707279257600 a^{6} c^{14}+1166674390020980736 a^{7} c^{14}$ $-1915162037452800 a^{8} c^{14}-63202103132160 a^{9} c^{14}-134311772160 a^{10} c^{14}$ $+190513152 a^{11} c^{14}+3176451687815006006961766400 c^{15}$

$$
\begin{aligned}
& -368857412023973200357490688 a c^{15}+6921455048179816496889856 a^{2} c^{15} \\
& +293321470359596622151680 a^{3} c^{15}-4681522483934003200000 a^{4} c^{15} \\
& -107482944270591590400 a^{5} c^{15}+495297518624047104 a^{6} c^{15} \\
& +13449542683852800 a^{7} c^{15}+22267177205760 a^{8} c^{15}-251477360640 a^{9} c^{15} \\
& -508035072 a^{10} c^{15}+97935327281731828973568000 c^{16} \\
& -8859555401078193216552960 a c^{16}+83467422674593105575936 a^{2} c^{16} \\
& +6149116495967052627968 a^{3} c^{16}-37154850414966079488 a^{4} c^{16} \\
& -1515427531741003776 a^{5} c^{16}-821812773519360 a^{6} c^{16}+90493112156160 a^{7} c^{16} \\
& +255287623680 a^{8} c^{16}-317521920 a^{9} c^{16}+2498697553742732900433920 c^{17} \\
& -172030825163498125787136 a c^{17}+320334548593037279232 a^{2} c^{17} \\
& +94137024707481305088 a^{3} c^{17}-2123582349901824 a^{4} c^{17}-13982628068720640 a^{5} c^{17} \\
& -42882568028160 a^{6} c^{17}+310648504320 a^{7} c^{17}+784465920 a^{8} c^{17} \\
& +52360912587278254080000 c^{18}-2661918961599879577600 a c^{18} \\
& -10830965243255980032 a^{2} c^{18}+1040210571393236992 a^{3} c^{18}+3794724189634560 a^{4} c^{18} \\
& -79649091092480 a^{5} c^{18}-314832322560 a^{6} c^{18}+348651520 a^{7} c^{18} \\
& +891009248801482342400 c^{19}-32130182460859219968 a c^{19}-272725971767918592 a^{2} c^{19} \\
& +7979001383485440 a^{3} c^{19}+44971568660480 a^{4} c^{19}-239798845440 a^{5} c^{19} \\
& -807403520 a^{6} c^{19}+12108417434910720000 c^{20}-292984546729656320 a c^{20} \\
& -3358306288533504 a^{2} c^{20}+39263952437248 a^{3} c^{20}+242705498112 a^{4} c^{20} \\
& -242221056 a^{5} c^{20}+128210408245821440 c^{21}-1919353142378496 a c^{21} \\
& -24901685608448 a^{2} c^{21}+105054732288 a^{3} c^{21}+530579456 a^{4} c^{21}+1018712555520000 c^{22} \\
& -8291509862400 a c^{22}-106212360192 a^{2} c^{22}+96468992 a^{3} c^{22}+5710964326400 c^{23} \\
& -19931332608 a c^{23}-201326592 a^{2} c^{23}+20132659200 c^{24} \\
& \left.-16777216 a c^{24}+33554432 c 25\right\} \\
& +\frac{1}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+51}{2}\right)}\{+1960781468160819415703172080467968000000 \\
& -3661026774131950114663981678663434240000 a \\
& +2240090762233257947677314630597746688000 a^{2} \\
& -614645014419001731255993239873124556800 a^{3} \\
& +78053675774736769125112085213340887040 a^{4} \\
& -3043255274124936913351196421079574016 a^{5} \\
& -229179332123522872538863190221839744 a^{6}
\end{aligned}
$$

$+17946581082320095894737615149892672 a^{7}+410017583045588372075556169870112 a^{8}$ $-38782057769432735350702163571440 a^{9}-868552187794782944411789554504 a^{10}$ $+39788626916724352412654958412 a^{11}+1344044442163512163688040062 a^{12}$ $-9919408027950128138403935 a^{13}-906197222784984029528524 a^{14}$ $-9453757494566587215818 a^{15}+151525786827223670642 a^{16}+4294642142413240255 a^{17}$ $+27694449851967536 a^{18}-209906546918288 a^{19}-4290754509118 a^{20}-23145910865 a^{21}$
$-7772764 a^{22}+379822 a^{23}+1262 a^{24}+a^{25}+5080828409738663152845985129137438720000 c$ $-7129727012710533088531986116981686272000 a c$ $+3464350353104816822235888040121357107200 a^{2} c$ $-757467059117725237232222367270233333760 a^{3} c$ $+72332230837435045954186973364739528704 a^{4} c$ $-1032156143759539534540657430207660544 a^{5} c$ $-265931791102603725737519477701120128 a^{6} c+9020260880498864853288175289635712 a^{7} c$ $+555406513554791569412848534454880 a^{8} c-15477362687644090012057272228704 a^{9} c$ $-863375723960869274437918768088 a^{10} c+6788342816518488117032677512 a^{11} c$ $+771375013533695930736906410 a^{12} c+6748486804230986758938176 a^{13} c$ $-253139584493872712922468 a^{14} c-5830435847039153014808 a^{15} c$ $-14282363824998376250 a^{16} c+874365796971459936 a^{17} c+11353912398397712 a^{18} c$ $+32142393315032 a^{19} c-382686073770 a^{20} c-3536396864 a^{21} c-9614228 a^{22} c$ $+312 a^{23} c+26 a^{24} c+5383081985040703798697681046680371200000 c^{2}$ $-6004634872541150478657109318810730496000 a c^{2}$
$+2365807240966142348808314166846518722560 a^{2} c^{2}$
$-413201725605033928734344480100172136448 a^{3} c^{2}$ $+28528296403075225921688240987551899648 a^{4} c^{2}$ $+325810264640319656007770620385703936 a^{5} c^{2}$
$-114836678103591791155909785226927616 a^{6} c^{2}+916457021694181762918105152550912 a^{7} c^{2}$ $+224642173441603082514278622539904 a^{8} c^{2}-579498063999782707037288905472 a^{9} c^{2}$
$-259009824884245322453134892064 a^{10} c^{2}-2411857401944811597347427456 a^{11} c^{2}$ $+136560997299728486313877048 a^{12} c^{2}+3007808664730215637780216 a^{13} c^{2}$ $-8938969098168899560056 a^{14} c^{2}-909956544952680803864 a^{15} c^{2}$
$-9135116517044266320 a^{16} c^{2}+23758449324907440 a^{17} c^{2}+1053172687975408 a^{18} c^{2}$ $+6892565247568 a^{19} c^{2}+5758672920 a^{20} c^{2}-108628520 a^{21} c^{2}-393432 a^{22} c^{2}$ $-312 a^{23} c^{2}+3264505862992440279812749192190754816000 c^{3}$

$$
\begin{gathered}
-2975366113417717521963956597210575011840 a c^{3} \\
+960253992988307644756107956860095823872 a^{2} c^{3} \\
-133255175155474641178296490763252170752 a^{3} c^{3} \\
+6144682225385715574795670327252238336 a^{4} c^{3} \\
+269359725495675945790020827523549184 a^{5} c^{3}
\end{gathered}
$$

$-25859926108462945032100145526140928 a^{6} c^{3}-336666062342903638879644571664896 a^{7} c^{3}$ $+43393329898450550662950083158528 a^{8} c^{3}+653908023027115598037771083136 a^{9} c^{3}$ $-34539084614398950410012468736 a^{10} c^{3}-852175236833830038227923552 a^{11} c^{3}$ $+7410746533794561055550816 a^{12} c^{3}+423301507728557290376544 a^{13} c^{3}$ $+3143627840368997288736 a^{14} c^{3}-49196565402110160320 a^{15} c^{3}-962610078252496960 a^{16} c^{3}$ $-4153459678560192 a^{17} c^{3}+27554114555968 a^{18} c^{3}+330063653920 a^{19} c^{3}+987066080 a^{20} c^{3}$ $-32032 a^{21} c^{3}-2912 a^{22} c^{3}+1306433207857823406903619823647850496000 c^{4}$ $-987439854764203464876164384387934191616 a c^{4}$ $+262026991744079899046356618889452978176 a^{2} c^{4}$ $-28516243040689263283182208681058254848 a^{3} c^{4}$ $+727343867177341806342128138164248576 a^{4} c^{4}$
$+75832385083919368696567444484064256 a^{5} c^{4}-3331257014910043344657768801474560 a^{6} c^{4}$ $-122715076826467767063513341116160 a^{7} c^{4}+4411229615802210760721621217792 a^{8} c^{4}$ $+156480260008802530544839432128 a^{9} c^{4}-1847398821875823652282304640 a^{10} c^{4}$
$-109548933400848942799336720 a^{11} c^{4}-538305042432375985422656 a^{12} c^{4}$ $+26745702426020485827920 a^{13} c^{4}+416615264630557724160 a^{14} c^{4}+251445374283806560 a^{15} c^{4}$ $-40157967472022400 a^{16} c^{4}-326222134221984 a^{17} c^{4}-433735702400 a^{18} c^{4}+5069304240 a^{19} c^{4}$ $+20180160 a^{20} c^{4}+16016 a^{21} c^{4}+373224359796920839097320894710014803968 c^{5}$
$-235801620105961679230553598736805658624 a c^{5}$
$+51410028567187768984746849491070615552 a^{2} c^{5}$ $-4289203021048821568878100681058893824 a^{3} c^{5}$ $+25867070791504257246484884525121536 a^{4} c^{5}$
$+12497968770954442701512339177456640 a^{5} c^{5}-223571404221303187151041953359360 a^{6} c^{5}$
$-19105777348957664956581224145408 a^{7} c^{5}+184208845002067618495030142208 a^{8} c^{5}$ $+17566650236750346817251216960 a^{9} c^{5}+61627774593704540749426080 a^{10} c^{5}$ $-7253143775870502374120256 a^{11} c^{5}-101490500104084324032800 a^{12} c^{5}$ $+581540035411854879360 a^{13} c^{5}+22165800388273988160 a^{14} c^{5}+134566999655088000 a^{15} c^{5}$
$-523553280554304 a^{16} c^{5}-8911717214400 a^{17} c^{5}-29612142560 a^{18} c^{5}+960960 a^{19} c^{5}$
$+96096 a^{20} c^{5}+79968380862018644210858509090160640000 c^{6}$
$-42388286283699177781563713945862144000 a c^{6}$
$+7558870741500969281513497220058185728 a^{2} c^{6}$
$-465617071577248976652184917556953088 a^{3} c^{6}$
$-6500738419853842936536264326414336 a^{4} c^{6}+1364539285320808198723844328962048 a^{5} c^{6}$
$-14444272971978364193612372992 a^{6} c^{6}-1782652144891849022456372148224 a^{7} c^{6}$ $-9520624023364611566345384448 a^{8} c^{6}+1139273394670130660962729344 a^{9} c^{6}$ $+16060077427392777830635584 a^{10} c^{6}-234473419256610302793024 a^{11} c^{6}$
$-6447410268702585518336 a^{12} c^{6}-22141543947075384832 a^{13} c^{6}+554066927539052928 a^{14} c^{6}$ $+5807304449890944 a^{15} c^{6}+10777200994560 a^{16} c^{6}-91246995840 a^{17} c^{6}-403282880 a^{18} c^{6}$ $-320320 a^{19} c^{6}+13288192007363093791107884096736460800 c^{7}$ $-5913452039382950460508229598049206272 a c^{7}$
$+855501615332612560783574653706698752 a^{2} c^{7}$ $-36441670807692180255764937007169536 a^{3} c^{7}$
$-1375768898145317461214105154813952 a^{4} c^{7}+102732157511497907394397778116608 a^{5} c^{7}$
$+1580018917388886309521277648896 a^{6} c^{7}-106543641769594951204734517248 a^{7} c^{7}$
$-1893920393480686113030598656 a^{8} c^{7}+41752203119379070791542784 a^{9} c^{7}$
$+1139220446873246396246016 a^{10} c^{7}-148498793635900071936 a^{11} c^{7}$
$-214175604541971218432 a^{12} c^{7}-1807476981675036672 a^{13} c^{7}+3695487616364544 a^{14} c^{7}$
$+108638058946560 a^{15} c^{7}+406111580160 a^{16} c^{7}-13178880 a^{17} c^{7}-1464320 a^{18} c^{7}$ $+1753546740358191041028727217586176000 c^{8}$ $-654066933142146236887760339174686720 a c^{8}$ $+75832876793467645235516797151870976 a^{2} c^{8}$
$-1958116486126726467184257943994368 a^{3} c^{8}-147358268557274848028003918954496 a^{4} c^{8}$ $+5268731182754188755753538510848 a^{5} c^{8}+173665224982627900154389585920 a^{6} c^{8}$ $-3898701376623712750618275840 a^{7} c^{8}-134002830022645325952697344 a^{8} c^{8}$ $+507697274942649969255936 a^{9} c^{8}+44607774510506957967360 a^{10} c^{8}$ $+297916639594168657920 a^{11} c^{8}-3538803122294888448 a^{12} c^{8}-51160438027066368 a^{13} c^{8}$
$-125688322805760 a^{1} 4 c^{8}+834253854720 a^{15} c^{8}+4144757760 a^{16} c^{8}+3294720 a^{17} c^{8}$ $+186968064666071811709768865215938560 c^{9}$
$-58238303702083289136156539065729024 a c^{9}$
$-56966997018297592226661163728896 a^{3} c^{9}-10668674846383317356490133553152 a^{4} c^{9}$ $+163857762357698197610920017920 a^{5} c^{9}+10870807761611651383683112960 a^{6} c^{9}$ $-58203969874987230956806144 a^{7} c^{9}-5661742041729373171979264 a^{8} c^{9}$ $-28614661902730458480640 a^{9} c^{9}+1018013160324652011520 a^{10} c^{9}$ $+12350911591384317952 a^{11} c^{9}-6668042277664768 a^{12} c^{9}-718218162421760 a^{13} c^{9}$ $-3068415201280 a^{14} c^{9}+99573760 a^{15} c^{9}+12446720 a^{16} c^{9}$ $+16312215748755220042076200632320000 c^{10}$ $-4219587600914983878203888841523200 a c^{10}$
$+296105170324831668021774985986048 a^{2} c^{10}+992214256879125919363753836544 a^{3} c^{10}$ $+456163514323763903234113536 a^{6} c^{10}+2147706339848802744467456 a^{7} c^{10}$ $-152645729204382544306176 a^{8} c^{10}-1746865165348944289792 a^{9} c^{10}$ $+11147570672325255168 a^{10} c^{1} 0+253243063437844480 a^{11} c^{10}+808365652942848 a^{12} c^{10}$ $-4412252708864 a^{13} c^{10}-25032843264 a^{14} c^{10}-19914752 a^{15} c^{1} 0$ $+1175279551008867059362991754444800 c^{11}-250579217995211124822962551652352 a c^{11}$ $+13037753370408629166506407624704 a^{2} c^{11}+224622817781320103427750494208 a^{3} c^{11}$ $-21940040131841815801290031104 a^{4} c^{11}-192057267654730320525656064 a^{5} c^{11}$ $+13211558056628263195508736 a^{6} c^{11}+164526436430782688231424 a^{7} c^{11}$ $-2463884816386864545792 a^{8} c^{11}-47321848212168671232 a^{9} c^{11}$ $-43573855357992960 a^{10} c^{11}+2820638145282048 a^{11} c^{11}+14058996596736 a^{12} c^{11}$ $-456228864 a^{13} c^{11}-65175552 a^{14} c^{11}+70376836401015536760941182976000 c^{12}$ $-12248408498068518346114318991360 a c^{12}+447010579178322676052122402816 a^{2} c^{12}$ $+14525039436280130775548690432 a^{3} c^{12}-631968138296732602866335744 a^{4} c^{12}$
$-11687764540408755176734720 a^{5} c^{12}+254084516928548764057600 a^{6} c^{12}$ $+5318789101379491512320 a^{7} c^{12}-14752227616672186368 a^{8} c^{12}$ $-748796748713115648 a^{9} c^{12}-3115570183864320 a^{10} c^{12}+14440023736320 a^{11} c^{12}$ $+95503908864 a^{12} c^{12}+76038144 a^{13} c^{12}+3516627778658782708865517486080 c^{13}$ $-493556428042831478838089744384 a c^{13}+11474390246779070803300319232 a^{2} c^{13}$
$+608993693466435669786361856 a^{3} c^{13}-12821580693813713087365120 a^{4} c^{13}$
$-390213466991762310758400 a^{5} c^{13}+2667015553314395422720 a^{6} c^{13}$ $+105664419808686047232 a^{7} c^{13}+276072268211453952 a^{8} c^{13}-6870784114360320 a^{9} c^{13}$ $-41095750778880 a^{10} c^{13}+1333592064 a^{11} c^{13}+222265344 a^{12} c^{13}$
$+146907415191538675535052800000 c^{14}-16375766781977746571945574400 a c^{14}$
$-155800708977748487700480 a^{4} c^{14}-8741540168881599283200 a^{5} c^{14}$
$-5342112814080000000 a^{6} c^{14}+1347840118492299264 a^{7} c^{14}+7486376244019200 a^{8} c^{14}$ $-30149341347840 a^{9} c^{14}-239094005760 a^{10} c^{14}-190513152 a^{11} c^{14}$ $+5129614710826717498100940800 c^{15}-445530920856345896091123712 a c^{15}$ $+1147256477210179174137856 a^{2} c^{15}+425715323026510257848320 a^{3} c^{15}$ $-102057687020339200000 a^{4} c^{15}-136127891020146278400 a^{5} c^{15}$ $-679623761601232896 a^{6} c^{15}+10469764576051200 a^{7} c^{15}+78278043893760 a^{8} c^{15}$ $-2540175360 a^{9} c^{15}-508035072 a^{10} c^{15}+149349144943528358445056000 c^{16}$
$-9863797536220862679613440 a c^{16}-52225749950941260939264 a^{2} c^{16}$ $+7339982431006425874432 a^{3} c^{16}+39167448790108864512 a^{4} c^{16}$ $-1444942810753204224 a^{5} c^{16}-11290288210575360 a^{6} c^{16}+40198910115840 a^{7} c^{16}$ $+398172487680 a^{8} c^{16}+317521920 a^{9} c^{16}+3608154907313382851870720 c^{17}$ $-175547152523538846449664 a c^{17}-2069455529116885843968 a^{2} c^{17}$ $+93571333750154330112 a^{3} c^{17}+869553767374258176 a^{4} c^{17}-9699927376527360 a^{5} c^{17}$ $-96696930140160 a^{6} c^{17}+3137863680 a^{7} c^{17}+784465920 a^{8} c^{17}$ $+71768854246593658880000 c^{18}-2464805021517715865600 a c^{18}$ $-42183880082123128832 a^{2} c^{18}+846613217445675008 a^{3} c^{18}+10375434466754560 a^{4} c^{18}$ $-33104810475520 a^{5} c^{18}-436860354560 a^{6} c^{18}-348651520 a^{7} c^{18}$ $+1161722032816966860800 c^{19}-26519308441833439232 a c^{19}-570948172583534592 a^{2} c^{19}$ $+4991774684610560 a^{3} c^{19}+74643648020480 a^{4} c^{19}-2422210560 a^{5} c^{19}-807403520 a^{6} c^{19}$
$+15046488438603776000 c^{20}-208403568347054080 a c^{20}-5304540362440704 a^{2} c^{20}$ $+15332673585152 a^{3} c^{20}+303260762112 a^{4} c^{20}+242221056 a^{5} c^{20}+152108131407626240 c^{21}$ $-1093436182626304 a c^{21}-32701203611648 a^{2} c^{21}+1061158912 a^{3} c^{21}+530579456 a^{4} c^{21}$ $+1155698524160000 c^{22}-3053243596800 a c^{22}-120682708992 a^{2} c^{22}-96468992 a^{3} c^{22}$

$$
\begin{gather*}
+6204214476800 c^{23}-201326592 a c^{23}-201326592 a^{2} c^{23}+20971520000 c^{24} \\
\left.\left.+16777216 a c^{24}+33554432 c^{25}\right\}\right] \tag{8}
\end{gather*}
$$

Derivation of main result (8):
Substituting $b=-a-50, z=\frac{1}{2}$ in given result (2), we get

$$
\begin{gathered}
\left.(2 a+50)_{2} F_{1}\left[\begin{array}{ccc}
a,-a-50 & ; \frac{1}{2} \\
c & ; & \\
=a_{2} F_{1}\left[\begin{array}{c}
a+1 \\
c
\end{array},\right. & -a-50 & ;
\end{array}\right]+\frac{1}{2}\right]+(a+50)_{2} F_{1}\left[\begin{array}{ccc}
a, & -a-49 & ; \frac{1}{2} \\
c & & ;
\end{array}\right.
\end{gathered}
$$

Now using same parallel method which is used in $\operatorname{Ref}[6]$, we can prove the main result.

References Références Referencias

1. Andrews, L.C.(1992) ; Special Function of mathematics for Engineers,second Edition, McGraw-Hill Co Inc., New York.
2. Arora, Asish, Singh, Rahul, Salahuddin. ; Development of a family of summation formulae of half argument using Gauss and Bailey theorems Journal of Rajasthan Academy of Physical Sciences., 7(2008), 335-342.
3. Bells, Richard, Wong, Roderick ; Special Functions , A Graduate Text. Cambridge Studies in Advanced Mathematics, 2010.
4. Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O.I.; Integrals and Series Vol. 3: More Special Functions. Nauka, Moscow, 1986. Translated from the Russian by G.G. Gould, Gordon and Breach Science Publishers, New York, Philadelphia, London, Paris, Montreux, Tokyo, Melbourne, 1990.
5. Rainville, E. D.; The contiguous function relations for ${ }_{p} F_{q}$ with applications to Bateman's $J_{n}^{u, v}$ and Rice's $H_{n}(\zeta, p, \nu)$, Bull. Amer. Math. Soc., 51(1945), 714-723.
6. Salahuddin, Chaudhary, M.P ; A New Summation Formula Allied With Hypergeometric Function, Global Journal of Science Frontier Research, 11(2010),21- 37.

This page is intentionally left blank

Global Journal of Science Frontier Research MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 3 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

A Logit Regression Analysis of Homeowners in Nigeria

By O.Y. Halid \& F.I. Akinnitire

Ekiti State University, Nigeria
Abstract - This paper studied the application of logit regression analysis to homeownership in Ado-Ekiti area of Ekiti State (Nigeria). The performance of the logit model in terms of classification of homeowners with respect to the average monthly income of some individuals was examined. The data of homeownership and income was fitted to the model by the WLS techniques. Result showed that the odds ratio in favour of owning a house by an individual whose average monthly income is 0.158 (N Million) was 1.0387 . Also the probability of owning a house by the individual was 0.51 .

Keywords : logit regression, home ownership, average monthly income, odds ratio, WLSweighted least squares, OLS-ordinary least squares.

GJSFR-F Classification : MSC 2010: 62G08

Strictly as per the compliance and regulations of :

[^4]

A Logit Regression Analysis of Homeowners in Nigeria

O.Y. Halid ${ }^{a}$ \& F.I. Akinnitire ${ }^{\sigma}$

Abstract - This paper studied the application of logit regression analysis to homeownership in Ado-Ekiti area of Ekiti State (Nigeria). The performance of the logit model in terms of classification of homeowners with respect to the average monthly income of some individuals was examined. The data of homeownership and income was fitted to the model by the WLS techniques. Result showed that the odds ratio in favour of owning a house by an individual whose average monthly income is 0.158 (N Million) was 1.0387 . Also the probability of owning a house by the individual was 0.51 .
Keywords : logit regression, home ownership, average monthly income, odds ratio, WLS-weighted least squares, OLS-ordinary least squares.

I. Introduction

Feeding, clothing and shelter constitute the fundamental human needs. Among the three, shelter is the most complex, challenging and expensive. Apart from providing shelter, housing is a sure way of creating jobs, eradicating poverty, ensuring social security and propagating sustainable economic development.

In Nigeria, the housing sector is the second highest employer of labour next only to agriculture. Research has consistently shown the importance of the housing sector on the economy and the long social and financial benefits to individual homeowners.

Homeownership brings substantial social benefits for families, communities and the country as a whole. Because of these benefits, policy makers have promoted homeownership through a number of channels. Homeownership has been an essential element of the Nigerian dream for decades and continues to be even today.

Homeownership has significant impact on social outcomes, specifically educational achievement, civil participation, health benefits, public assistance, property maintenance and improvement.

In general, research supports the view that homeownership brings substantial social benefits. Because of these extensive social benefits, policies that support homeownership are well justified.

Apart from all these advantages, homeownership also provides one with pride of ownership, freedom of control, privacy, strong credit base, financial stability, appreciating asset to mention a few.

The immense economic benefits of homeownership are also well documented. For instance, United Nations Centre for Human Settlement estimate Nigeria's current housing deficit at 16 million units. Considering that an average household is between five and six persons, it is inferred by experts that $80-96$ million housing units will be achieved within

[^5]a period $30-50$ years provided construction of $200,000-250,000$ new housing units is carried out yearly. This is disheartening in the view of the fact that current national housing production figures stand at less than 10,000 per year, not to mention the estimated cost which runs into tens of trillions of Naira.

Inspite of the growing trend of homeownership in Nigeria, certain impediments such as high unemployment rate and moderate GDP growth of between 7% and 9%, inflation and high interest rate which all degenerate from unwholesome macro-economic environment and lack of financing systems are still lingering.

Land use acts, high cost of building materials, high cost of land in urban areas, poor quality of construction are also impediments to homeownership.

iI. The Logit Regression Model

The logit regression analysis is a technique which allows for estimating the probability that an event occur or not by predicting a binary dependent outcome from a set of independent variable(s). The applications of the logit model to different areas had been previously seen in sources such as Ojo (1989), Gujarati (2003), Ogunleye and Fagbohun (2009) and others too many to mention.

Let x_{i} be a random variable (say income) and $y=1$ indicating an individual owns a house $y=0$ if otherwise, then

$$
\begin{equation*}
P_{i}=E\left(Y=1 \mid X_{i}\right)=\frac{1}{1+e^{-\left(\beta_{1}+\beta_{2} X_{i}\right)}} \tag{1}
\end{equation*}
$$

for simplicity, we set $Z_{i}=\beta_{1}+\beta_{2} X_{i}$,

$$
\begin{equation*}
P_{i}=\frac{1}{1+e^{-Z_{i}}}=\frac{e^{Z_{i}}}{1+e^{Z_{i}}} \tag{2}
\end{equation*}
$$

(2) is called the cumulative logistic distribution function, where Z_{i} ranges from $-\infty$ to $+\infty, P_{i}$ ranges from 0 to 1 , called the probability of owning a house.
P_{i} is non linearity related to Z_{i} and β_{i} 's are the model coefficients.
Since P_{i} is the probability of owning a house, then

$$
\begin{equation*}
1-P_{i}=\frac{1}{1+e^{Z_{i}}} \tag{3}
\end{equation*}
$$

called the probability of not owning a house.
Then, we write

$$
\begin{equation*}
\frac{P_{i}}{1-P_{i}}=\frac{1+e^{Z i}}{1+e^{-Z i}}=e^{Z_{i}} \tag{4}
\end{equation*}
$$

called the odds ratio in favour of owning a house (the ratio of the probability that an individual will own a house to the probability of not owning a house).
Taking the natural logarithm of (4), we get

$$
\begin{equation*}
L_{i}=\ln \left(\frac{P_{i}}{1-P_{i}}\right)=Z_{i}=\beta_{1}+\beta_{2} X_{i}+\mu_{i} \tag{5}
\end{equation*}
$$

called logit model. L_{i} is called the logit and μ_{i} is the stochastic error term.

iII. Estimation

The estimate of model coefficient of logit regression models depends on the data at hand. This is categorized as follows.

Case I

Suppose the data at hand is on individuals, the OLS technique becomes infeasible since if we have $P_{i}=1$, if an individual owns a house, and $P_{i}=0$, if he does not, then the logit

$$
L_{i}=\left\{\begin{array}{l}
\ln \left(\frac{1}{0}\right), \text { if an individual owns a house } \\
\ln \left(\frac{0}{1}\right), \text { if an individual does not own a house }
\end{array}\right.
$$

Clearly, these expressions are meaningless and hence such data cannot be used in estimation of (5) by the OLS method.

As a result of this, the maximum likelihood method may be used.

Case II

For a grouped data on several individuals grouped according to income level and number of individuals owning a house at each income level X_{i}, there are N_{i} individuals, n_{i} among whom are homeowner $\left(n_{i} \leq N_{i}\right)$ so that

$$
\begin{equation*}
\hat{P}_{i}=\frac{n_{i}}{N_{i}} \tag{7}
\end{equation*}
$$

This is the relative frequency which can be used as the true P_{i} corresponding to each X_{i}.
If N_{i} is fairly large, \hat{P}_{i} will be a reasonably good estimate of P_{i} using the estimated \hat{P}_{i}, the logit estimate in (5) can be obtained by

$$
\begin{equation*}
\hat{L}_{i}=\ln \left(\frac{\hat{P}_{i}}{1-\hat{P}_{i}}\right)=Z_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} X_{i} \tag{8}
\end{equation*}
$$

which is a fairly good estimate of the true logit L_{i} assuming the N_{i} at each X_{i} is reasonably large.

Since the properties of the stochastic error term μ_{i} is unknown, and N_{i} is fairly large, X_{i} is independently distributed binomial variable so that

$$
\begin{equation*}
\mu_{i} \square N\left[0, \frac{1}{N_{i} P_{i}\left(1-P_{i}\right.}\right] \tag{9}
\end{equation*}
$$

which implies that μ_{i} follows the normal distribution with mean zero and variance $\frac{1}{N_{i} P_{i}\left(1-P_{i}\right)}$.

Consequently, the logit is estimated using the weighted least square (WLS) procedure to resolve the problem of heteroscedasticity.
This gives rise to

$$
\begin{equation*}
\sqrt{w_{i}} L_{i}=\beta_{1} \sqrt{w_{i}}+\beta_{2} \sqrt{w_{i}} X_{i}+\sqrt{w}_{i} \mu_{i} \tag{10}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
L_{i}^{*}=\beta_{1} \sqrt{w_{i}}+\beta_{2} X_{i}^{*}+v_{i} \tag{11}
\end{equation*}
$$

where weights $w_{i}=N_{i} P_{i}\left(1-P_{i}\right), L_{i}^{*}$ is the weighted L_{i}, X_{i}^{*} weighted X_{i} and v_{i} weighted μ_{i}.

The odds ratio in favour of owning a house by an individual with average income X_{i} is given by

$$
\begin{equation*}
\frac{\hat{P}_{i}}{1-\hat{P}_{i}} \tag{12}
\end{equation*}
$$

where \hat{P}_{i} is the estimated probability of owning a house, while the estimated logit is given by

$$
\begin{equation*}
\ln \left(\frac{\hat{P}_{i}}{1-\hat{P_{i}}}\right) \tag{13}
\end{equation*}
$$

The probability of an individual with average monthly income X_{i} owning a house is

$$
\begin{equation*}
\hat{P}_{i}=\frac{e^{-L_{i}^{*}}}{1+e^{-L_{i}^{*}}} \tag{14}
\end{equation*}
$$

where L_{i}^{*} is as defined in (11).

IV. Analysis

A questionnaire was administered to 100 inhabitants of different areas of AdoEkiti, Ekiti State.

These 100 respondents were classified into 5 groups of 20 individuals, each based on their average monthly income.

Out of each (N_{i}) 20 individual, 14, 7, 5, 6 and 9 were homeowners $\left(n_{i}\right)$ giving rise to respective relative frequencies $0.70,0.35,0.25,0.30$ and 0.45 .

The respective weights $\left(w_{i}\right)$ are $4.20,4.55,3.75,4.20$ and 4.95 with corresponding average monthly income $0.19,0.15,0.15,0.18$ and 0.12 (N million).

These data was fitted to the logit model in (11) by the WLS technique using SAS 9.3 so that

$$
\begin{equation*}
L_{i}^{*}=-2.4979 \sqrt{w_{i}}+4.6432 X_{i}^{*} \tag{15}
\end{equation*}
$$

is the estimated regression curve with coefficient of determination (R^{2}) value 0.9228 .

The odds ratio in favour of owning a house by an individual whose average income is $0.158(\mathrm{~N}$ million) is 1.0387 while the probability of owning a house by such individual is 0.51 . Also, an estimated logit of 0.038 was also obtained.

V. Conclusion

The coefficient of determination value 0.9228 was an indication of a goodness of fit. This also indicates a strong relationship between the income and the probability of owning a house.

The calculated t-value of 32.44 is hugely in excess of the tabulated value of 5.01 and hence this leads to the conclusion that income of individuals will influence the probability of being homeowners.

The probability 0.51 of owning a house by an individual whose average monthly income is 0.158 (N million) was obtained. This shows that an increase in monthly income may increase the probability of owning a house.

The odds ratio of 1.0387 in favour of owning a house gives a slight advantage over the chance of not owning a house in the state.

VI. Recommendation

Government should make some amendments on the land use act to make more land available for residential purposes in certain 'newly created' states such as Ekiti. This will enhance rapid development in the state.

Government through its agencies should control the activities of land owners, middlemen, estate valuers and other play makers involved in land issues.

This will control the land prices and make more land available for residential purposes. This will also reduce cases of land disputes.

Non-governmental organisations, mortgage banks and other private investors should invest more into housing schemes in the state and the country at large.

This will make more people to become homeowners and make them enjoy the full benefits of home ownership.

References Références Referencias

1. Boehm T.P. and Schlottman A.M. (1999). "Does homeownership by parents have an economic impact on their children". Journal of housing Economics. Vol 8, pp 217-232.
2. Damodar N. Gujarati (2003). "Basic Econometrics" Mc Graw Hill Pub. Co Inc New York U.S. (4 $4^{\text {th }}$ Edition) pp. $595-607$.
3. Gyourko, J. and P. Linneman (1997), "The changing influences of education income family structure and race on homeownership by age over time", Journal of Housing Research. Vol 8, pp 1-25.
4. Wojtek J. Krzanowski (1998), "An Introduction to Statistical Modelling" Oxford University Press Inc. N. Y
5. Ojo M.O. (1989), "Analysis of Some Prison Data", Journal of Applied Statistics Vol 16, (6) pp 377-383.
6. Ogunleye S.O. and Fagbohun A.B. (2009), "A Logit Regression Analysis of some Tuberculosis Data", International Journal of Numerical Mathematics Vol 4(1) pp 1- 14.

This page is intentionally left blank

Global Journal of Science Frontier Research
MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 3 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

The Development of Discrete Version of Laplace Transformation (Sigma (σ) Transformation) Obtained from the Relationship between Laplace and Fourier Transformations

By Dr. Umana Thompson Itaketo
University of Uyo, Nigeria

Abstract - The relationships between Laplace and Fourier transformations are studied very closely. It is observed that Fourier transformation can be obtained from Laplace transformation but the reverse is not true. Based on this, a generic mathematical analysis leads to an expression relating Laplace transformation to Fourier transformation. Further mathematical analysis from that expression leads to something quite new: The Discrete Version of Laplace transformation, which the author calls sigma (σ) transformation.

Keywords : laplace transformation, fourier transformation, relationships, analysis, discrete, sigma (б) transformation.

GJSFR-F Classification : MSC 2010: 44A10

Strictly as per the compliance and regulations of :

[^6]epaper

The Development of Discrete Version of Laplace Transformation (Sigma (o) Transformation) Obtained from the Relationship between Laplace and Fourier Transformations

Dr. Umana Thompson Itaketo

Abstract - The relationships between Laplace and Fourier transformations are studied very closely. It is observed that Fourier transformation can be obtained from Laplace transformation but the reverse is not true. Based on this, a generic mathematical analysis leads to an expression relating Laplace transformation to Fourier transformation. Further mathematical analysis from that expression leads to something quite new: The Discrete Version of Laplace transformation, which the author calls sigma (σ) transformation.
Keywords : laplace transformation, fourier transformation, relationships, analysis, discrete, sigma (σ) transformation.

I. Introduction

It is a common knowledge in Mathematics that Laplace transformation is about converting any time-dependent function, $f(t)$, to a complex domain function, $\mathrm{F}(\mathrm{s})$, (where $\mathrm{s}=\sigma+\mathrm{jw})($ Ogata, 2010) and vice-versa. Also, it is equally known in Mathematics that Fourier transformation is about converting a time-dependent function, $f(t)$, to a frequency-dependent function, $\mathrm{F}(\mathrm{w})$, and vice-versa. Mathematical expressions representing these two statements are given by:

$$
\begin{equation*}
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t \tag{1}
\end{equation*}
$$

(Stephenson, 2011, 2nd ed.)
(Equation for Laplace transformation).

[^7]\[

\mathrm{F}(\mathrm{t})=\mathscr{L}^{-1} \mathrm{~F}(\mathrm{~s})=\frac{1}{2 \pi \mathrm{e}^{\mathrm{st}}} \int $$
\begin{gather*}
\sigma+\mathrm{jwt} \tag{2}\\
\mathrm{~F}(\mathrm{~s}) \mathrm{ds} \\
\sigma j w
\end{gather*}
$$
\]

(Stephenson, 2011, 2nd ed.)
(Equation for inverse Laplace transformation).

$$
\begin{equation*}
F(j w)=\int_{-\infty}^{\infty} e^{-j w t} f(t) d t \tag{3}
\end{equation*}
$$

(Gabel, 2010)
(Equation for Fourier transformation).
(Gabel, 2010)
(Equation for inverse Fourier transformation).
Taking a hard look at those four (4) equations, one would have some impressions that there are some relationships between Laplace and Fourier transformations which have not yet been explored. This paper attempts to uncover, link and exploit such relationships.

iI. Establishing a Relationship Between Laplace and Fourier Transformation

Looking at equations (1) and (3), it will immediately be noticed that Fourier transformation, $F(j w)$, is a special case of Laplace transformation $F(s)$, when $S=j w$, covering the entire time spectrum $-\infty$ to $+\infty$. (Recall that in the complex plane, $S=\sigma+j w$. Hence when the real component $\sigma=0, S=0+j w$, and $F(s)=F(j w)$). This is demonstrated below:

Refer to equation (1),

$$
F(s)=\int_{-\infty}^{\infty} e^{-s t} f(t) d t \quad \text { (Eqn. (1) recalled). }
$$

But $S=\sigma+j w$

$$
\begin{equation*}
\therefore F(\sigma+j w)=\int_{0}^{\infty} e^{-(\sigma+j w)_{t}} f(t) d t \tag{5}
\end{equation*}
$$

If $\sigma=0$, equation (5) becomes:

$$
\begin{equation*}
F(j w)=\int_{0}^{\infty} e^{-j w t} f(t) d t \tag{6}
\end{equation*}
$$

Equation (6)(a) is a one-sided Fourier transformation in the right half of the time axis. Equation (3) equally expresses Fourier transformation but across the entire time axis $(-\infty$ to $+\infty)$. It can hence be confirmed that Fourier transformation is a special case of Laplace transformation when $\sigma=0$. Now, if in equation (5),

$$
\begin{equation*}
\mathrm{jw}=0, \mathrm{~F}(\sigma)=\int_{0}^{\infty} \mathrm{e}^{-(\sigma) \mathrm{t}} \mathrm{f}(\mathrm{t}) \mathrm{dt} \tag{6}
\end{equation*}
$$

It should be noted that equation (6)(b) does not represent Laplace transformation. Hence, the reverse of how equation (6)(a) was obtained is not true. This will further be explained later.
iII. The Law of Linearity Applied to Laplace and Fourier Transformations

If σ and jw are linearly-related, and the law of linearity applied to equation (5), $\mathrm{F}(\sigma+\mathrm{jw})$ in equation (5) becomes:

$$
\begin{equation*}
F(s)=F(\sigma+j w)=F(\sigma)+F(j w)(\text { Kreyszig, 2005 }) \tag{7}
\end{equation*}
$$

But from (5), $\quad F(\sigma+j w)=\int_{0}^{\infty} e^{-(\sigma+j w) t} f(t) d t \quad$ (eqn. (5) recalled).

$$
\begin{equation*}
\therefore F(\sigma)+\mathrm{F}(\mathrm{jw})=\int_{0}^{\infty} \mathrm{e}^{-(\sigma+\mathrm{jw})} \mathrm{f}(\mathrm{t}) \mathrm{dt} \tag{8}
\end{equation*}
$$

Also, from equation (3),

$$
F(j w)=\int_{-\infty}^{\infty} e^{-j w t} f(t) d t
$$

Substituting equation (3) in (8), we have:

$$
\begin{equation*}
F(\sigma)+\int_{-\infty}^{\infty} e^{-j w t} f(t) d t=\int_{0}^{\infty} e^{-(\sigma+j w) t} f(t) d t \tag{9}
\end{equation*}
$$

Equation (9) then becomes:

$$
F(\sigma)+\left(\int_{0}^{\infty} e^{-j w t} f(t) d t+\int_{\infty}^{0} e^{-j w t} f(t) d t\right)=\int_{0}^{\infty} e^{-(\sigma+j w) t} f(t) d t
$$

$$
\begin{aligned}
& \therefore F(\sigma)=\int_{0}^{\infty} e^{-(\sigma+j w) t} f(t) d t-\int_{0}^{\infty} e^{-j w t} f(t) d t-\int_{-\infty}^{0} e^{-j w} f(t) d t \\
& F(\sigma)=\int_{0}^{\infty} e^{-(\sigma+j w) t} f(t) d t-\int_{0}^{e^{-j w t} f(t) d t-\int_{-\infty}^{0} e^{-j w t} f(t) d t}
\end{aligned}
$$

$$
F(\sigma)=\int_{0}^{\infty} e^{-(\sigma+j w) t} f(t) d t-\left[\int_{0}^{\infty} e^{-j w t} f(t) d t+e^{0} e^{-j w t} f(t) d t\right)
$$

$$
F(\sigma)=\int_{0}^{\infty} e^{-(\sigma+j w) t} f(t) d t-(|1 / 2 F(j w)|+|1 / 2 F(j w)|) \quad \text { (Ejimanya, 2005). }
$$

$$
F(\sigma)=\int_{0}^{\infty} e^{-(\sigma+j w) t} f(t)-F(j w)
$$

$$
\begin{equation*}
F(\sigma)=F(S)-F(j w) \tag{10}
\end{equation*}
$$

Equation (10) goes to prove the linearity property of the complex spectrum, $s(=\sigma+j w)$ earlier postulated in equation (7), on which Laplace transformation is based.

However, it is pertinent to mention here that Laplace transformation is expressed by $\mathrm{F}(\mathrm{s})$, not $\mathrm{F}(\sigma)$. What then does $\mathrm{F}(\sigma)$ signify?

IV. The Significance of F (σ)

The expression $\mathrm{F}(\sigma)$ can be viewed as the real axis component of Laplace transformation while $\mathrm{F}(\mathrm{jw})$ (Fourier transformation), can be viewed as the imaginary component of Laplace transformation. This implies that $F(\sigma)$ and $F(j w)$ are complementary to each other to produce $\mathrm{F}(\sigma)$. Hence making use of equation (10), a table could be developed for $F(\sigma)$ from the knowledge of $F(s)$ and $F(j w)$.

Now, given a function $F(t)$, its $F(s)$ and $F(j w)$ can be determined or obtained from tables. A difference of that, that is $\mathrm{F}(\mathrm{s})-\mathrm{F}(\mathrm{jw})$ will give $\mathrm{F}(\sigma)$ which is the real axis component of Laplace transformation of the given expression. It should be noted that as at today, a table of $\mathrm{F}(\sigma)$ does not exist.

As earlier mentioned above, it would strike readers compulsively that Fourier transformation, $\mathrm{F}(\mathrm{jw})$ of any function, is the imaginary component of Laplace transformation because it can be obtained by setting $\sigma=0$ in $s=\sigma+j w$ as earlier discussed. Fortunately, this has been developed and presented in tables as Fourier transformation. However, by setting $\mathrm{jw}=0$ in $\mathrm{s}=\sigma+\mathrm{jw}$, the tables for the resulting expression, $\mathrm{F}(\mathrm{s})=\mathrm{F}(\sigma+0)=\mathrm{F}(\sigma)$, has never been developed nor interpretation given to its meaning.

A word of caution in Laplace transformation: One may argue that the claim that $\mathrm{F}(\sigma)$ has never been developed is not true. That is, the individual could express $F(\sigma)$ as:

$$
F(\sigma)=\int_{0}^{\infty} e^{-\sigma^{t}} f(t) d t
$$

(11) (Nagrath et al., 2009 2nd ed.)

It should be noted that equation (11)does not express Laplace transformation. The right hand side of equation (11) only resembles Laplace transformation. Reason: The right hand side of any Laplace transformation MUST contain $e^{-s t}$. It should be noted that $e^{-\sigma t}$ in equation (11) is not the same as $\mathrm{e}^{-\mathrm{st}}$. In every Laplace expression, the " s " component (signifying a complex spectrum: $\mathrm{s}=\sigma+\mathrm{jw}$), must be there, otherwise it is not Laplace transformation.

V. Applications of $\mathrm{F}(\sigma)$

As already mentioned above, $\mathrm{F}(\sigma)$ signifies the real axis component of Laplace expression. It has been shown in equation (10) that this component can be obtained from the expression $\mathrm{F}(\sigma)=\mathrm{F}(\mathrm{s})-\mathrm{F}(\mathrm{jw})$. It will not be mathematically true that $\mathrm{F}(\sigma)$ for any function can be obtained from a Laplace transformation of that function simply by setting $j w=0$. The reason for this claim is that Laplace transformation of a function has an " s " (a complex function given by $\mathrm{s}=\sigma+\mathrm{jw}$), embedded in it. The " s " is usually applied in all the processes of obtaining the final result of $\mathrm{F}(\mathrm{s})$. It will therefore be mathematically untrue to go to the final expression of any Laplace transformation expression and simply put $\mathrm{jw}=0$, obtain an expression, and claim that expression to represent $\mathrm{F}(\sigma)$.

The following example will justify this argument:
Let's take a function $\mathrm{f}(\mathrm{t})=\mathrm{te}^{-\mathrm{at}}$.
From Laplace tables, the Laplace transform, $\mathrm{F}(\mathrm{s})$ of that function is

$$
\begin{equation*}
\mathrm{F}(\mathrm{~s})=\left(\frac{1}{\mathrm{~s}+\mathrm{a}}\right)^{2}=\frac{1}{(\mathrm{~s}+\mathrm{a})^{2}} \quad \text { (Distefanno III, et al., 2009) } \tag{12}
\end{equation*}
$$

Also, from Fourier tables, the Fourier transform $\mathrm{F}(\mathrm{jw})$ of that function is

$$
\begin{equation*}
F(j w)=\left(\frac{1}{j w+a}\right)^{2}=\frac{1}{(a+j w)^{2}} \quad \text { (Distefanno III et al., 2009) } \tag{13}
\end{equation*}
$$

Bye-the-way, equation (13) goes to confirm the earlier postulation made in equation (6) that $\mathrm{F}(\mathrm{jw})$ is a special case of Laplace transformation when σ is set to zero, that is when $\sigma=0$.

Now, back to the argument. In equation (12), it is known that $s=\sigma+j w$. Hence

$$
\begin{align*}
F(s)=F(\sigma+j w)=\frac{1}{(s+a)^{2}} & =\frac{1}{[(\sigma+j w)+a]^{2}} \\
& =\frac{1}{[(\sigma+a)+j w]^{2}} \tag{14}
\end{align*}
$$

Machine -

If jw is set to zero in both sides of equation (14) in order to determine $\mathrm{F}(\sigma)$, we will obtain:

$$
\begin{equation*}
\mathrm{F}(\sigma)=\frac{1}{(\sigma+\mathrm{a})^{2}} \tag{15}
\end{equation*}
$$

Now, let's carry out the operation in equation (10), that is $\mathrm{F}(\sigma)=\mathrm{F}(\mathrm{s})-\mathrm{F}(\mathrm{jw})$ on the same function, $\mathrm{f}(\mathrm{t})=\mathrm{te}^{-\mathrm{at}}$.

$$
\text { From Laplace transform tables, } \mathrm{F}(\mathrm{~s}) \text { for that expression }=\frac{1}{(\mathrm{~s}+\mathrm{a})^{2}} \text {, }
$$

(already stated in equation (12)). Also, from Fourier transform tables,

$$
F(j w)=\frac{1}{(a+j w)}, \text { (equally stated in equation (13). }
$$

From equation (10),

$$
\begin{align*}
F(\sigma) & =F(s) \\
& =\frac{1}{(s+a)^{2}}-\frac{1}{(a+j w)} \tag{16}
\end{align*}
$$

Substituting for $s=\sigma$

$$
\begin{aligned}
& F(s)=\frac{1}{(\sigma+j w+a)^{2}}-\frac{1}{(a+j w)^{2}} \\
& F(s)=\frac{(a+j w)^{2}-(\sigma+j w+a)^{2}}{(\sigma+j w+a)^{2}(a+j w)^{2}} \\
& F(s)=\frac{\left(a^{2}+2 j w a-w^{2}\right)-[(\sigma+a)+j w]^{2}}{[(\sigma+a)+j w]^{2}[a+j w]} \\
& F(s)=\frac{\left[\left(a^{2}-w^{2}\right)+j(2 w a)\right]-\left[(\sigma+a)^{2}+2 j w(\sigma+a)+w^{2}\right]}{[(\sigma+a)+j w]^{2}[a+j w]} \\
& F(s)=\frac{\left(a^{2}-w^{2}+j 2 w a\right)-\left[\left(\sigma^{2}+2 \sigma a+a^{2}\right)+2 j w \sigma+2 j w a+w^{2}\right]}{[(\sigma+a)+j w]^{2}[a+j w]^{2}} \\
& F(s)=\frac{z^{2}-w^{2}+j 2 x / a-\sigma^{2}-2 \sigma a-z^{2}-2 j w \sigma-2 j y y a-w^{2}}{[(\sigma+a)+j w]^{2}(a+j w)} \\
& F(s)=\frac{-w^{2}-\sigma^{2}-2 \sigma a-2 j w \sigma-w^{2}}{[(\sigma+a)+j w]^{2}[a+j w]} \\
& F(s)=\frac{-\left[2 w^{2}+\sigma(\sigma+2 a)\right]-j 2 \sigma w}{[(\sigma+a)+j w]^{2}[a+j w]^{2}}
\end{aligned}
$$

But along the real axis, $\mathrm{w}=0$.

$$
\begin{equation*}
\therefore \mathrm{F}(\mathrm{~s})=\mathrm{F}(\sigma+\mathrm{jw})=\mathrm{F}(\sigma)=\frac{-\sigma(\sigma+2 \mathrm{a})}{(\sigma+\mathrm{a})^{2}(\mathrm{a})^{2}} \tag{17}
\end{equation*}
$$

It can be seen that the RHS of equation (17) and that of (15) are not the same. Equation (17) was obtained from first principles whereas (15) was not.

Similar procedure can be applied to develop what the author chooses to call "sigma (σ) transformation", which could otherwise be called "Real axis translation of Laplace transformation, F(s)." From such approach, a comprehensive table, like Laplace and Fourier tables, could be developed for sigma (σ) transformation, $\mathrm{F}(\sigma)$, by considering various $f(t)$'s and their respective $F(s)$ and $F(j w)$.

Sigma (σ) has values through the entire spectrum of real numbers, that is from $-\infty$ to $+\infty$. The value for "a" can be obtained from a given expression, such as $f(t)=$ $t e^{-a t}$. In the expression $f(t)=t e^{-a t}$, if $a=2$, for instance, $f(t)=t e^{-2 t}$. At a point along the real axis, say $\sigma=3$, using equation (17), we have:

$$
\begin{gathered}
\mathrm{F}(\sigma)=\mathrm{F}(3)=\frac{-3(3+2(2)}{(3+2)^{2}(2)^{2}}=\frac{-21}{100} \\
\mathrm{~F}(3)=\frac{-21,}{100}
\end{gathered}
$$

can be interpreted as the "Discrete Laplace transformation" of the expression, $\mathrm{f}(\mathrm{t})=$ $\mathrm{te}^{-2 t}$ at a point $\sigma=3$ along the real axis.

The development of Discrete Laplace transformation, as presented, may not have applications now but since Science and Technology are continuously developing, it is likely to have in the near future.
VI. Discussion

Fourier transformation, $\mathrm{F}(\mathrm{jw})$, is frequency transformation of a continuous time signal, $\mathrm{f}(\mathrm{t})$. Also, it will be recalled that z -transformation, by formulation and definition, is a discrete transformation process applied to discrete events. The \mathbf{z} transformation expression is given by:

$$
\begin{equation*}
\mathrm{F}(\mathrm{z})=\sum_{\mathrm{k}=0}^{\infty} \mathrm{f}(\mathrm{k}) \mathrm{z}^{-\mathrm{k}}(\text { Ogata, 2009 }) \tag{18}
\end{equation*}
$$

where z is defined by $z=e^{-S T}$.

A very similar analogy here is that just as the Laplace transformation is the transformation of a time-based signal to the complex (s) plane, the sigma (σ) transformation shall one day provide information about the discrete components of Laplace transformation along the real axis.

VII. Conclusion

Knowledge in all spheres of human endeavour, including Science and Technology, is evolving day by day. In this particular adventure into the intricacies and properties of Laplace and Fourier transformations, a new expression has been established through the relationship between the two; the sigma (σ) transformation. It is hoped that sooner or later, this new expression shall be put to use in Science, Engineering and Technology for the benefit of mankind.

References Références Referencias

1. Disteffano III, J. J. et al. (2009), "Feedback and Control Systems," Schaum’s Outline Series. McGraw Hill Book Company, New York, USA (pp. 361 - 362).
2. Ejimanya, J. I. (2005), "Communication Electronics," Prints Konsult, Lagos, Nigeria, (pp. 126-132).
3. Gabel, R. A. et al. (2010), "Signals \& Linear Systems," New York, USA (pp. 296 326).
4. Kreyszig, E. (2005), "Advanced Engineering Mathematics," John Wiley \& Sons, Toronto, Canada, (pp. 65-66).
5. Nagrath, I. J. et al. (2009, 2nd ed.), "Control Systems Engineering," Wiley Eastern Ltd., New Delhi, India, (pp. 677 - 678).
6. Ogata, K. (2009), "Discrete-Time Control systems," Prentice Hall, Englewoods Cliffs, New Jersey, 07632, USA, (pp. 24 - 39).
7. Ogata, K. (2010), "Modern Control Engineering, 2nd ed.", Prentice Hall, Simon \& Schuster Ltd., Alexandra, Block A, PasirPangjang Road, Singapore, (p. 13).
8. Stephen, G. (2011, 2nd ed.), "Mathematical Methods for Science Students," English Language Book Society, Longman, England, (pp. 449 - 450).

This page is intentionally left blank

Global Journal of Science Frontier Research MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 3 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Analytic and Numeric Solution of Linear Partial Differential Equation of Fractional Order

By M. A. Abdou, M. M. El-Kojok \& S. A. Raad

Alexandria University, Egypt
Abstract - The existence and uniqueness solution of the Cauchy problem are discussed and proved in a Banach space E due to Bielecki method and Picard method depending on the properties we expect a solution to possess. Moreover, some properties concerning the stability of solution are obtained. The product Nyström method is used as a numerical method to obtain a linear system of algebraic equations. Also, many important theorems related to the existence and uniqueness solution of the algebraic system are derived. Finally, an application is given and numerical results are obtained.

Keywords : linear partial differential equation of fractional order, semigroup, linear algebraic system, product nyström method.

GJSFR-F Classification : MSC 2010: 32W50

Strictly as per the compliance and regulations of :

Analytic and Numeric Solution of Linear Partial Differential Equation of Fractional Order

M. A. Abdou ${ }^{\text {a }}, \mathrm{M} . \mathrm{M} . \mathrm{El}-$ Kojok $^{\sigma}$ \& S. A. Raad ${ }^{\text {P }}$

Abstract

The existence and uniqueness solution of the Cauchy problem are discussed and proved in a Banach space E due to Bielecki method and Picard method depending on the properties we expect a solution to possess. Moreover, some properties concerning the stability of solution are obtained. The product Nyström method is used as a numerical method to obtain a linear system of algebraic equations. Also, many important theorems related to the existence and uniqueness solution of the algebraic system are derived. Finally, an application is given and numerical results are obtained. Keywords : linear partial differential equation of fractional order, semigroup, linear algebraic system, product nyström method.

I. Introduction

The use of semigroups methods for partial differential equations has had a long history starting with the works of Feller [1], Hille [2], and Yosida [3]. The basic results of the semigroup theory may be considered as a natural generalization of theorem of M. Stone on one-parameter group of unitary operators in a Hilbert space (see Yosida [4]). Also, the semigroups play a special role in applications, for example they describe how densities of initial states evolve in time. Moreover, there are equations which generate semigroups. These equations appear in such diverse areas as astrophysics-fluctuations in the brightness of the Milky Way [5], population dynamics [6,7], and in the theory of jump processes.

In [8], Mijatovie and Pilipovie introduced and analyzed α-times integrated semigroups for $\alpha \in\left(\frac{1}{2}, 1\right)$. In [9], El-Borai studied the Cauchy problem in a Banach space E for a linear fractional evolution equation. In his paper, the existence and uniqueness of the solution of the Cauchy problem were discussed and proved. Also, the solution was obtained in terms of some probability densities. In [10], El-Borai discussed the existence and uniqueness solution of the nonlinear Cauchy problem.

In this work, we treat the following Cauchy problem of the fractional evolution equation

[^8]$$
\frac{\partial^{\alpha} u(x, t)}{\partial t^{\alpha}}=A u(x, t)+B(t) u(x, t)
$$
with the initial condition: $u(x, 0)=u_{0}(x)$,
In a Banach space E. Here $u(x, t)$ is an E-valued function on $E \times[0, T], T<\infty, A$ is a linear closed operator defined on a dense set S_{1} in E into $E,\{B(t), t \in[0, T]\}$ is a family of linear closed operators defined on a dense set $S_{2} \supset S_{1}$ in E into $E, u_{0}(x) \in E$ and $0<\alpha \leq 1$.

iI. Linear Fractional Evolution Equation

with the initial condition :

$$
\begin{equation*}
u(x, 0)=u_{0}(x), \tag{2.2}
\end{equation*}
$$

in a Banach space E, where $u(x, t)$ is an E-valued function on $E \times[0, T], T<\infty, A$ is a linear closed operator defined on a dense set S_{1} in E into E, $\{B(t), 0 \leq t \leq T\}$ is a family of linear closed operators defined on a dense set $S_{2} \supset S_{1}$ in E into E, and $u_{0}(x) \in E$.

It is assumed that A generates an analytic semigroup $Q(t)$. This condition implies:

$$
\begin{equation*}
\|Q(t)\| \leq k \quad \text { for } t \geq 0, \text { and }\|A Q(t)\| \leq \frac{k}{t} \text { for } t>0 \tag{2.3}
\end{equation*}
$$

where $\|\cdot\|$ is the norm in E and k is a positive constant (Zaidman [11]).
Let us suppose that $B(t) g$ is uniformly Hölder continuous in $t \in[0, T]$, for every $g \in S_{1}$; that is

$$
\begin{equation*}
\left\|B\left(t_{2}\right) g-B\left(t_{1}\right) g\right\| \leq k_{1}\left(t_{2}-t_{1}\right)^{\beta}, \tag{2.4}
\end{equation*}
$$

for all $t_{2}>t_{1}, t_{1}, t_{2} \in[0, T]$, where k_{1} and β are positive constants, $\beta \leq 1$.
We suppose also that there exists a number $\gamma \in(0,1)$, such that

$$
\begin{equation*}
\left\|B\left(t_{2}\right) Q\left(t_{1}\right) h\right\| \leq \frac{k_{2}}{t_{1}^{\gamma}}\|h\|, \tag{2.5}
\end{equation*}
$$

where $t_{1}>0, t_{2} \in[0, T], h \in E$ and k_{2} is a positive constant (El-Borai $[9,12,13]$). (Notice that $Q(t) h \in S_{1}$ for each $h \in E$ and each $t>0$).

Following Gelfand and Shilov ([14],[15]), we can define the integral of order $\alpha>0$ by

$$
I^{\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\theta)^{\alpha-1} f(\theta) d \theta
$$

If $0<\alpha<1$, we can define the derivative of order α by

$$
\frac{d^{\alpha} f(t)}{d t^{\alpha}}=\frac{1}{\Gamma(1-\alpha)} \int_{0}^{t} \frac{f^{\prime}(\theta)}{(t-\theta)^{\alpha}} d \theta \quad, \quad\left(f^{\prime}(\theta)=\frac{d f(\theta)}{d \theta}\right)
$$

where f is an abstract function with values in E .

Let $C_{E}(E \times[0, T])$ be the set of all continuous functions $u(x, t) \in E$.We define on $C_{E}(E \times[0, T]) \quad$ a norm by $\|u(x, t)\|_{C_{E}(E \times[0, T])}=\max _{x, t}\|u(x, t)\|_{E}, \forall t \in[0, T], x \in E$. By a solution of the Cauchy problem (2.1), (2.2), we mean an abstract function $u(x, t)$ such that the following conditions are satisfied:
(a) $u(x, t) \in C_{E}(E \times[0, T])$ and $u(x, t) \in S_{1}$ for all $t \in[0, T], x \in E$.
(b) $\frac{\partial^{\alpha} u(x, t)}{\partial t^{\alpha}}$ exists and is continuous on $E \times[0, T]$, where $0<\alpha<1$.
(c) $u(x, t)$ satisfies (2.1) with the initial condition (2.2) on $E \times[0, T]$.

Now, it is suitable to rewrite the Cauchy problem (2.1), (2.2), in the form

$$
\begin{align*}
u(x, t) & =u_{0}(x)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\theta)^{\alpha-1} A u(x, \theta) d \theta \tag{2.6}\\
& +\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\theta)^{\alpha-1} B(\theta) u(x, \theta) d \theta
\end{align*}
$$

where the solution of (2.6) is equivalent to the solution of Cauchy problem (2.1), (2.2)

iII. The Existence and Uniqueness Solution of Linear Fractional Evolution Equation

In this section, the existence and uniqueness solution of (2.6) and consequently its equivalent Cauchy problem (2.1), (2.2), will be discussed and proved in a Banach E by two different ways. The first way is due to "Bielecki method", and the second is "Picard method" depending on the properties we expect a solution to possess.

a) Modified Bielecki Method

Here, we will generalized the technique of Bielecki method to obtain the existence and uniqueness solution of (2.6) in E, for $0<\alpha \leq 1$.
It's suitable to consider the following lemma.
Lemma 1:
If $\lambda>1$ and $0<\delta<1$, then

$$
\begin{equation*}
\int_{0}^{t}(t-\eta)^{\delta-1} d \eta \leq\left(\frac{1}{\lambda}\right)^{\delta-1} t \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{t} e^{\lambda \eta}(t-\eta)^{\delta-1} d \eta \leq\left(\frac{1}{\lambda}\right)^{\delta}\left[1+\frac{1}{\delta}\right] e^{\lambda t} . \tag{3.2}
\end{equation*}
$$

Theorem 1:
If A and B are linear bounded operators in a Banach space E, and $0<\alpha \leq 1$, then (2.6) has a unique solution in E.

Proof:
Let K be an operator defined by

$$
\begin{align*}
K u(x, t)= & u_{0}(x)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\theta)^{\alpha-1} A u(x, \theta) d \theta+ \tag{3.3}\\
& \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\theta)^{\alpha-1} B(\theta) u(x, \theta) d \theta
\end{align*}
$$

Hence, we have

$$
\begin{gather*}
\|K u(x, t)\| \leq\left\|u_{0}(x)\right\|+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\theta)^{\alpha-1}\|A u(x, \theta)\| d \theta \tag{3.4}\\
\quad+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-\theta)^{\alpha-1}\|B(\theta) u(x, \theta)\| d \theta
\end{gather*}
$$

Since A and B are bounded operators, there exists positive constants L and M such

In the light of (3.5), (3.4) takes the form

$$
\begin{equation*}
\|K u(x, t)\| \leq\left\|u_{0}(x)\right\|+\frac{(L+M)}{\Gamma(\alpha)} \int_{0}^{t}(t-\theta)^{\alpha-1}\|u(x, \theta)\| d \theta . \tag{3.6}
\end{equation*}
$$

Using (3.1) in (3.6), we get

$$
\begin{equation*}
\|K u(x, t)\| \leq\left\|u_{0}(x)\right\|+\frac{(L+M)}{\Gamma(\alpha)}\left(\frac{1}{\lambda}\right)^{\alpha-1} T\|u(x, t)\|,\left(T=\max _{0 \leq t \leq T} t\right) . \tag{3.7}
\end{equation*}
$$

Inequality (3.7) shows that, the operator K maps the ball $B_{r} \subset E$ into itself, where

$$
r=\frac{\sigma}{1-\delta}, \quad\left(\sigma=\left\|u_{0}(x)\right\|, \delta=\frac{(L+M)}{\Gamma(\alpha)}\left(\frac{1}{\lambda}\right)^{\alpha-1} T\right)
$$

Since $r>0, \sigma>0$, therefore $\delta<1$. Also, the inequality (3.7) involves the boundedness of the operator K.
For the two functions $u(x, t)$ and $v(x, t)$ in E , the formula (3.3) leads to

$$
\begin{align*}
& \|K u(x, t)-K v(x, t)\| \leq \frac{1}{\Gamma(\alpha)} \\
& \quad\left\{\int_{0}^{t}(t-\theta)^{\alpha-1}\|A(u(x, \theta)-v(x, \theta))\| d \theta+\right. \tag{3.8}\\
& \left.\quad \int_{0}^{t}(t-\theta)^{\alpha-1}\|B(\theta)(u(x, \theta)-v(x, \theta))\| d \theta\right\} .
\end{align*}
$$

Using (3.5) in (3.8), we have for $\boldsymbol{\lambda}>1$

$$
\begin{aligned}
& \|K u(x, t)-K v(x, t)\| \leq \frac{(L+M)}{\Gamma(\alpha)} \\
& \max _{x, t}\left\{e^{-\lambda(t+x)}\|u(x, t)-v(x, t)\| \int_{0}^{t}(t-\theta)^{\alpha-1} e^{\lambda(\theta+x)} d \theta\right.
\end{aligned}
$$

Using (3.2), the above inequality becomes

$$
\begin{align*}
& \max _{x, t}\left\{e^{-\lambda(t+x)} \|\right.K u(x, t)-K v(x, t) \|\} \leq \tag{3.9}\\
& \sigma \max _{x, t}\left\{e^{-\lambda(t+x)}\|u(x, t)-v(x, t)\|\right\},
\end{align*}
$$

where

$$
\sigma=\frac{(L+M)}{\Gamma(\alpha)}\left(\frac{1}{\lambda}\right)^{\alpha}\left[1+\frac{1}{\alpha}\right] .
$$

Inequality (3.9) can be adapted in the form

$$
d(K u(x, t), K v(x, t)) \leq \sigma d(u(x, t), v(x, t))
$$

If we choose λ sufficiently large, then $\sigma<1$, and d is a contraction mapping. By Banach fixed point theorem, K has a unique fixed point which is the unique solution of (2.6).

b) Semigroup Method

To obtain the solution of the Cauchy problem (2.1), (2.2) in the dense set S_{1} in E, we can follow the work of El-Borai [9]. Hence, the Cauchy problem (2.1), (2.2), and (2.6) are equivalent to the following integral equation

$$
\begin{align*}
u(x, t)= & \alpha \tag{3.10}\\
\int_{0}^{t} & \int_{0}^{\infty} \theta(t-\eta)^{\alpha-1} \zeta_{\alpha}(\theta) Q\left((t-\eta)^{\alpha} \theta\right) w(x, \eta) d \theta d \eta+ \\
& \int_{0}^{\infty} \zeta_{\alpha}(\theta) Q\left(t^{\alpha} \theta\right) u_{0}(x) d \theta,
\end{align*}
$$

where $\zeta_{\alpha}(\theta)$ is a probability density function defined on $(0, \infty)$, and $w(x, t)=B(t) u(x, t), \quad(x, t) \in(E \times[0, T])$.

The integral equation (3.10) represents a Volterra equation of the second kind with Abel kernel, where the first term of the R.H.S is known and continuous. The integral equation will be solved numerically in the next section.

Now, we will prove that (3.10) has a unique solution which represents the required solution of the Cauchy problem (2.1), (2.2).

Theorem 2:
The Cauchy problem (2.1), (2.2) has a unique solution in $C_{E}(E \times[0, T])$. The proof of this theorem depends on the following lemmas.
Lemma 2:
Under the condition (2.5), (3.10) has a solution in the space $C_{E}(E \times[0, T])$.
Proof:
Consider the following integral equation

$$
\begin{align*}
w(x, t)= & \alpha \int_{0}^{t} \int_{0}^{\infty} \theta(t-\eta)^{\alpha-1} \zeta_{\alpha}(\theta) B(t) Q\left((t-\eta)^{\alpha} \theta\right) w(x, \eta) d \theta d \eta \tag{3.11}\\
& +\int_{0}^{\infty} \zeta_{\alpha}(\theta) B(t) Q\left(t^{\alpha} \theta\right) u_{0}(x) d \theta
\end{align*}
$$

Using the method of successive approximations, we set

$$
\begin{gathered}
w_{n+1}(x, t)=\int_{0}^{\infty} \zeta_{\alpha}(\theta) B(t) Q\left(t^{\alpha} \theta\right) u_{0}(x) d \theta+ \\
\alpha \int_{0}^{t \infty} \int_{0}^{\infty} \theta(t-\eta)^{\alpha-1} \zeta_{\alpha}(\theta) B(t) Q\left((t-\eta)^{\alpha} \theta\right) w_{n}(x, \eta) d \theta d \eta .
\end{gathered}
$$

Thus, we have

$$
\begin{aligned}
& \left\|w_{2}(x, t)-w_{1}(x, t)\right\| \leq \\
& \alpha \int_{0}^{t \infty} \int_{0}^{t} \theta(t-\eta)^{\alpha-1} \zeta_{\alpha}(\theta)\left\|B(t) Q\left((t-\eta)^{\alpha} \theta\right)\left[w_{1}(x, \eta)-w_{0}(x, \eta)\right]\right\| d \theta d \eta,
\end{aligned}
$$

where $w_{0}(x, t)$ is the zero element in E.
In view of the condition (2.5), we get

$$
\begin{aligned}
& \left\|w_{2}(x, t)-w_{1}(x, t)\right\| \leq \\
& \alpha \int_{0}^{t \infty} \theta(t-\eta)^{\alpha-1} \zeta_{\alpha}(\theta) \frac{k_{2}}{\left((t-\eta)^{\alpha} \theta\right)^{\gamma}}\left\|w_{1}(x, \eta)-w_{0}(x, \eta)\right\| d \theta d \eta .
\end{aligned}
$$

The above inequality for $u_{0}(x) \in S_{1}$ can be adapted in the form

$$
\begin{equation*}
\left\|w_{2}(x, t)-w_{1}(x, t)\right\| \leq \frac{\mu t^{v}}{v}, \tag{3.12}
\end{equation*}
$$

where,

$$
\begin{align*}
& \mu=\alpha k_{2} \int_{0}^{\infty} \theta^{1-\gamma} \zeta_{\alpha}(\theta) \sup _{t, \theta}\left\|\int_{0}^{\infty} \zeta_{\alpha}(\theta) B(\eta) Q\left(\eta^{\alpha} \theta\right) u_{0}(x) d \theta\right\| d \theta, \tag{3.13}\\
& v=\alpha(1-\gamma) .
\end{align*}
$$

By induction, we obtain

$$
\left\|w_{n+1}(x, t)-w_{n}(x, t)\right\| \leq \frac{\mu^{n} t^{n v}(\Gamma(v))^{n}}{\Gamma(n v+1)} .
$$

Thus, the series $\sum_{i=0}^{\infty}\left\|w_{i+1}(x, t)-w_{i}(x, t)\right\|$ converges uniformly on $E \times[0, T]$, under the condition, $\mu t^{\nu} \Gamma(v)<1$.

Since $w_{n+1}(x, t)=\sum_{i=0}^{n}\left[w_{i+1}(x, t)-w_{i}(x, t)\right]$, it follows that the sequence $\left\{w_{n}(x, t)\right\}$ converges uniformly in the space $C_{E}(E \times[0, T])$ to a continuous function $w(x, t)$ which satisfies (3.11), consequently $u(x, t) \in C_{E}(E \times[0, T])$.
Lemma 3:
Under the condition (2.5), (3.10) has a unique solution in the space $C_{E}(E \times[0, T])$.

Proof:

For the two functions $w_{1}(x, t)$ and $w_{2}(x, t)$ in the space $C_{E}(E \times[0, T])$, the formula (3.11) with the aid of condition (2.5), leads to

$$
\left\|w_{2}(x, t)-w_{1}(x, t)\right\| \leq \mu \int_{0}^{t}(t-\eta)^{v-1}\left\|w_{2}(x, t)-w_{1}(x, t)\right\| d \eta .
$$

Consequently,

$$
\begin{equation*}
\left\|w_{2}(x, t)-w_{1}(x, t)\right\| \leq \mu \rho \int_{0}^{t} e^{\lambda(\eta+x)}(t-\eta)^{\nu-1} d \eta, \tag{3.14}
\end{equation*}
$$

where, $\quad \rho=\max _{x, t}\left[e^{-\lambda(t+x)}\left\|w_{2}(x, t)-w_{1}(x, t)\right\|\right]$, and $\lambda>1$.
Using (3.2) in (3.14), we get

$$
\left\|w_{2}(x, t)-w_{1}(x, t)\right\| \leq \mu \rho\left(\frac{1}{\lambda}\right)^{v}\left[1+\frac{1}{v}\right] e^{\lambda(t+x)} .
$$

Thus, we have

$$
\max _{x, t}\left[e^{-\lambda(t+x)}\left\|w_{2}(x, t)-w_{1}(x, t)\right\|\right] \leq \mu \rho\left(\frac{1}{\lambda}\right)^{v}\left[1+\frac{1}{v}\right] .
$$

This completes the proof of the lemma.

Lemma 4:

Under the conditions (2.4) and (2.5), the solution $w(x, t)$ of (3.11) satisfies a uniform Hölder condition. (El-Borai [9])
Proof of Theorem 2:
By virtue of lemmas (3) and (4), we deduce that, the function $u(x, t) \in S_{1}$ and represents the unique solution of Cauchy problem (2.1), (2.2) in the space $C_{E}(E \times[0, T])$.

Corollary 1 :
The integral equation (3.10) has a unique solution in the Banach space $C_{\mathfrak{R}}(\Re \times[0, T])$. Now, we will prove the stability of the solutions of the Cauchy problem (2.1), (2.2). In other words, we will show that the Cauchy problem (2.1), (2.2) is correctly formulated.
Theorem 3:
Let $\left\{u_{n}(x, t)\right\}$ be a sequence of functions, each of which is a solution of (2.1) with the initial condition $u_{n}(x, 0)=g_{n}(x)$, where $g_{n}(x) \in S_{1}(n=1,2, \ldots)$. If the sequence $\left\{g_{n}(x)\right\}$ converges to an element $u_{0}(x) \in S_{1}$, the sequence $\left\{A g_{n}(x)\right\}$ converges and the sequence $\left\{B(t) g_{n}(x)\right\}$ converges uniformly on $E \times[0, T]$. Then, the sequence of solutions $\left\{u_{n}(x, t)\right\}$ converges uniformly on $E \times[0, T]$ to a limit function $u(x, t)$, which is the solution of the Cauchy problem (2.1), (2.2).
Proof:
Consider the sequences $\left\{z_{n}(x, t)\right\}$ and $\left\{u_{n}^{*}(x, t)\right\}$, where

$$
\frac{\partial^{\alpha} u_{n}^{*}(x, t)}{\partial t^{\alpha}}-A u_{n}^{*}(x, t)=z_{n}(x, t),
$$

$$
\begin{gathered}
u_{n}^{*}(x, t)=u_{n}(x, t)-g_{n}(x), \quad u_{n}(x, 0)=g_{n}(x), \\
u_{n}^{*}(x, t)=\alpha \int_{0}^{t \infty} \int_{0}^{\infty} \theta(t-\eta)^{\alpha-1} \zeta_{\alpha}(\theta) Q\left((t-\eta)^{\alpha} \theta\right) z_{n}(x, \eta) d \theta d \eta,
\end{gathered}
$$

and

$$
z_{n}(x, t)=B(t) u_{n}^{*}(x, t)+B(t) g_{n}(x)+A g_{n}(x) .
$$

In view of the conditions (2.5) and (3.13), we get

$$
\begin{gathered}
\left\|z_{n}(x, t)-z_{m}(x, t)\right\| \leq \mu \int_{0}^{t}(t-\eta)^{v-1}\left\|z_{n}(x, \eta)-z_{m}(x, \eta)\right\| d \eta \\
+\left\|B(t) g_{n}(x)-B(t) g_{m}(x)\right\|+\left\|A g_{n}(x)-A g_{m}(x)\right\|
\end{gathered}
$$

Given $\varepsilon>0$, we can find a positive integer $N=N(\varepsilon)$, such that

$$
\begin{aligned}
& \left\|z_{n}(x, t)-z_{m}(x, t)\right\| \leq \\
& \quad \mu \int_{0}^{t}(t-\eta)^{v-1}\left\|z_{n}(x, \eta)-z_{m}(x, \eta)\right\| d \eta+\left(1-\mu_{1}\right) \varepsilon
\end{aligned}
$$

for all $n \geq N, m \geq N$ and $(x, t) \in E \times[0, T]$.
Using (3.2), the above inequality takes the form

$$
\left(1-\mu_{1}\right) e^{-\lambda(t+x)}\left\|z_{n}(x, t)-z_{m}(x, t)\right\| \leq\left(1-\mu_{1}\right) e^{-\lambda(t+x)} \varepsilon .
$$

Thus, for sufficiently large λ, we get

$$
\max _{x, t}\left[e^{-\lambda(t+x)}\left\|z_{n}(x, t)-z_{m}(x, t)\right\|\right] \leq \varepsilon .
$$

Since E is a complete space, it follows that the sequence $\left\{z_{n}(x, t)\right\}$ converges uniformly on $E \times[0, T]$ to a continuous function $z(x, t)$, so the sequence $\left\{u_{n}^{*}(x, t)\right\}$ converges uniformly on $E \times[0, T]$ to a continuous function $u^{*}(x, t)$. It can be proved that $z(x, t)$ satisfies a uniform Hölder condition on $[0, T]$, thus $u^{*}(x, t) \in S_{1}$.

iV. The Numerical Solution of Linear Fractional Evolution Equation

In this section, we will use the product Nyström method (Linz [17], and Dzhuraev [18]), to obtain numerically, the solution of the Cauchy problem (2.1), (2.2), in the Banach space $C_{\mathfrak{R}}(\mathfrak{R} \times[0, T])$, where $\|u(x, t)\|_{C_{\mathfrak{R}}(\Re \times[0, T])}=\max _{x, t}|u(x, t)|, \forall t \in[0, T],-\infty<x<\infty$. For this, the integral equation (3.10) can be written in the form

$$
\begin{equation*}
u(x, t)=f^{*}(x, t)+\alpha \int_{0}^{t} p(t, \eta) Q^{*}(t, \eta) B(\eta) u(x, \eta) d \eta, \tag{4.1}
\end{equation*}
$$

where,

$$
\begin{gather*}
f^{*}(x, t)=\int_{0}^{\infty} \zeta_{\alpha}(\theta) Q\left(t^{\alpha} \theta\right) u_{0}(x) d \theta \tag{4.2}\\
Q^{*}(t, \eta)=\int_{0}^{\infty} \theta \zeta_{\alpha}(\theta) Q\left((t-\eta)^{\alpha} \theta\right) d \theta \tag{4.3}
\end{gather*}
$$

and the bad kernel

$$
\begin{equation*}
p(t, \eta)=(t-\eta)^{\alpha-1} \quad,(0<\alpha<1,0 \leq \eta \leq t \leq T ; T<\infty) . \tag{4.4}
\end{equation*}
$$

Here, the unknown function $u(x, t) \in C_{\mathfrak{R}}(\Re \times[0, T])$, while $f^{*}(x, t), Q^{*}(t, \eta)$ and $p(t, \eta)$ are known functions and satisfy the following conditions:
(1) $f^{*}(x, t)$ is a continuous function in $(\mathfrak{R} \times[0, T])$.
(2) $Q^{*}(t, \eta)$ with its partial derivatives are continuous functions in $[0, T]$.
(3) $p(t, \eta)$ is a badly behaved function of its arguments such that:
(a) for each continuous function $u(x, t)$ and $0 \leq t_{1} \leq t_{2} \leq t$, the integrals

$$
\int_{t_{1}}^{t_{2}} p(t, \eta) Q^{*}(t, \eta) B(\eta) u(x, \eta) d \eta
$$

and

$$
\int_{0}^{t} p(t, \eta) Q^{*}(t, \eta) B(\eta) u(x, \eta) d \eta
$$

are continuous functions in $(\mathfrak{R} \times[0, T])$.
(b) $p(t, \eta)$ is absolutely integrable with respect to η for all $0 \leq t \leq T$.

Remark 1:

By virtue of corollary (1), the integral equation (4.1) has a unique solution in the Banach space $C_{\mathfrak{R}}(\Re \times[0, T])$.

Now, we will apply the product Nyström method, to obtain numerically, the solution of (4.1). Therefore, putting $t=t_{i}=\eta_{i}=x_{i}=x, t_{i}=i h, h=t_{i+1}-t_{i} \quad(i=0,1, \ldots, N$ and N is even $)$, and using the following notations

$$
\begin{aligned}
u_{i, i} & =u\left(t_{i}, x_{i}\right), \quad Q_{i, j}^{*}=Q^{*}\left(t_{i}, \eta_{j}\right), \quad f_{i, i}^{*}=f^{*}\left(t_{i}, x_{i}\right), \\
B_{i} & =B\left(\eta_{i}\right),
\end{aligned}
$$

we get the following linear algebraic system

$$
\begin{equation*}
u_{i, i}=f_{i, i}^{*}+\alpha \sum_{j=0}^{N} w_{i, j} Q_{i, j}^{*} B_{j} u_{j, j}, \quad(i=0,1,2, \ldots, N) \tag{4.6}
\end{equation*}
$$

where,

$$
\begin{align*}
& w_{i, 0}=\beta_{1}\left(t_{i}\right), \quad w_{i, 2 j+1}=2 \gamma_{j+1}\left(t_{i}\right) \tag{4.7}\\
& w_{i, 2 j}=\alpha_{j}^{*}\left(t_{i}\right)+\beta_{j+1}\left(t_{i}\right), \quad w_{i, N}=\alpha_{\frac{N}{2}}^{*}\left(t_{i}\right) .
\end{align*}
$$

And,

$$
\begin{gather*}
\alpha_{j}^{*}\left(t_{i}\right)=\frac{1}{2 h^{2}} \int_{t_{2 j-2}}^{t_{2 j}} p\left(t_{i}, \eta\right)\left(\eta-\eta_{2 j-2}\right)\left(\eta-\eta_{2 j-1}\right) d \eta, \\
\beta_{j}\left(t_{i}\right)=\frac{1}{2 h^{2}} \int_{t_{2 j-2}}^{t_{2 j}} p\left(t_{i}, \eta\right)\left(\eta_{2 j-1}-\eta\right)\left(\eta_{2 j}-\eta\right) d \eta, \\
\gamma_{j}\left(t_{i}\right)=\frac{1}{2 h^{2}} \int_{t_{2 j-2}}^{t_{2 j}} p\left(t_{i}, \eta\right)\left(\eta-\eta_{2 j-2}\right)\left(\eta_{2 j}-\eta\right) d \eta . \tag{4.8}
\end{gather*}
$$

Evaluating the integrals of (4.8), where $p(t, \eta)=(t-\eta)^{\alpha-1}$, and introducing the results in the values of $w^{\prime} s$, we get

$$
\begin{aligned}
& w_{i, 0}=\frac{-h^{\alpha}}{2 \alpha(\alpha+1)(\alpha+2)}\left\{[2|i-2|+\alpha+2]|i-2|^{\alpha+1}-\right. \\
& \quad\left.\quad\left[2|i|^{2}-3(2+\alpha)|i|+2(\alpha+1)(\alpha+2)\right]|i|^{\alpha}\right\}, \\
& w_{i, 2 j+1}= \frac{2 h^{\alpha}}{\alpha(\alpha+1)(\alpha+2)}\left\{(\alpha + 2) \left[|i-2 j-2|^{\alpha+1}\right.\right. \\
&\left.\left.\quad+|i-2 j|^{\alpha+1}\right]+|i-2 j-2|^{\alpha+2}-|i-2 j|^{\alpha+2}\right\}, \\
& w_{i, 2 j}=\frac{-h^{\alpha}}{2 \alpha(\alpha+1)(\alpha+2)}\left\{(\alpha+2)|i-2 j+2|^{\alpha+1}\right. \\
& \quad+(\alpha+2)|i-2 j-2|^{\alpha+1}+6(\alpha+2)|i-2 j|^{\alpha+1} \\
&\left.+2|i-2 j-2|^{\alpha+2}-2|i-2 j+2|^{\alpha+2}\right\},
\end{aligned}
$$

and

$$
\begin{align*}
& w_{i, N}=\frac{-h^{\alpha}}{2 \alpha(\alpha+1)(\alpha+2)} \\
& \left\{2(\alpha+1)(\alpha+2)|i-N|^{\alpha}+3(\alpha+2)|i-N|^{\alpha+1}+\right. \tag{4.9}\\
& \left.(\alpha+2)|i-N+2|^{\alpha+1}+2|i-N|^{\alpha+2}-2|i-n+2|^{\alpha+2}\right\} .
\end{align*}
$$

The linear algebraic system (4.6) represents $(N+1)$ equations in $u_{i, i}$. Therefore, the approximate solution of $u(x, t)$ can be written in the vector form

$$
\begin{equation*}
(I-\alpha W) U=F^{*} \tag{4.10}
\end{equation*}
$$

where,

$$
W=\left[\begin{array}{cccc}
1-\alpha w_{0,0} Q_{0,0}^{*} B_{0} & -\alpha w_{0,1} Q_{0,1}^{*} B_{1} & \ldots & -\alpha w_{0, N} Q_{0, N}^{*} B_{N} \\
-\alpha w_{1,0} Q_{1,0}^{*} B_{0} & 1-\alpha w_{1,1} Q_{1,1}^{*} B_{1} & \ldots & -\alpha w_{1, N} Q_{1, N}^{*} B_{N} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
-\alpha w_{N, 0} Q_{N, 0}^{*} B_{0} & -\alpha w_{N, 1} Q_{N, 1}^{*} B_{1} & \ldots & 1-\alpha w_{N, N} Q_{N, N}^{*} B_{N}
\end{array}\right] \text {, }
$$

$$
U=\left[\begin{array}{c}
u_{0,0} \\
u_{1,1} \\
\cdot \\
\cdot \\
\cdot \\
u_{N, N}
\end{array}\right] \text {, and } F^{*}=\left[\begin{array}{c}
f_{0,0}^{*} \\
f_{1,1}^{*} \\
\cdot \\
\cdot \\
\cdot \\
f_{N, N}^{*}
\end{array}\right]
$$

When $\operatorname{det}(W) \neq 0$, the algebraic system (4.6) has a unique solution in the form

$$
\begin{equation*}
U=[I-\alpha W]^{-1} F^{*} \tag{4.11}
\end{equation*}
$$

where I is the identity matrix.
Theorem 4:
The algebraic system (4.6) has a unique solution in the Banach space ℓ^{∞}, under the following conditions

$$
\begin{gather*}
\sup _{i} \sum_{j=0}^{N}\left|w_{i, j} Q_{i, j}^{*}\right| \leq q^{*}, \quad\left(q^{*} \text { is a constan} t\right) . \tag{4.13}\\
\sup _{i}\left|B_{i} u_{i, i}\right| \leq M \sup _{i}\left|u_{i, i}\right|, \quad(M \text { is a cons } \tan t) .
\end{gather*}
$$

Proof :
Let Y be the set of all functions $U=\left\{u_{i, i}\right\}$ in ℓ^{∞} such that $\|U\|_{\ell^{\infty}} \leq \rho^{*}, \rho^{*}$ is a constant. Define the operator \widetilde{T} by

$$
\begin{equation*}
\tilde{T} U=F^{*}+\alpha W U, \tag{4.15}
\end{equation*}
$$

where $,\|\tilde{T} U\|_{\ell^{\infty}}=\sup _{i}\left|\tilde{T} u_{i, i}\right|, \quad \forall i=0,1,2, \ldots$.
The formulas (4.6) and (4.15) lead to

$$
\left|\tilde{T} u_{i, i}\right| \leq \sup _{i}\left|f_{i, i}^{*}\right|+\alpha \sup _{i} \sum_{j=0}^{N}\left|w_{i, j} Q_{i, j}^{*}\right| \sup _{j}\left|B_{j} u_{j, j}\right|, \forall i=0,1,2, \ldots .
$$

In view of the conditions (4.12) and (4.14), the above inequality takes the form

$$
\begin{equation*}
\|\tilde{T} U\|_{\ell^{\infty}} \leq q+\lambda^{*}\|U\|_{\ell^{\infty}},\left(\lambda^{*}=\alpha q^{*} M\right) . \tag{4.16}
\end{equation*}
$$

Inequality (4.16) shows that, the operator \tilde{T} maps the set Y into itself, where

$$
\rho^{*}=\frac{q}{1-\lambda^{*}} .
$$

Since $\rho^{*}>0, q>0$, therefore $\lambda^{*}<1$. Also, the inequality (4.16) involves the boundedness of operator \tilde{T}.

For the two functions U and V in ℓ^{∞}, the formulas (4.6) and (4.15) lead to

$$
\left|\tilde{T} u_{i, i}-\tilde{T} v_{i, i}\right| \leq \alpha \sup _{i} \sum_{j=0}^{N}\left|w_{i, j} Q_{i, j}^{*}\right| \cdot \sup _{j}\left|B_{j}\left(u_{j, j}-v_{j, j}\right)\right| .
$$

The above inequality, with the aid of conditions (4.13) and (4.14), can be adapted in the form

$$
\|\tilde{T} U-\tilde{T} V\|_{\ell^{\infty}} \leq \lambda^{*}\|U-V\|_{\ell^{\infty}} .
$$

,
Since $\left\|F^{*}-F_{m}^{*}\right\|_{\ell^{\infty}} \rightarrow 0$ as $m \rightarrow \infty$, so that $\left\|U-U_{m}\right\|_{\ell^{\infty}} \rightarrow 0$.
This complete the prove of the theorem.
When $N \rightarrow \infty$, it is natural to expect that the $\operatorname{sum} \sum_{j=0}^{N} w_{i, j} Q_{i, j}^{*} B_{j} u_{j, j} ; 0 \leq i, j \leq N$, becomes $\int_{0}^{t} p(t, \eta) Q^{*}(t, \eta) B(\eta) u(x, \eta) d \eta$. Consequently, the solution of the algebraic system (4.6) is the same solution of the integral equation (4.1).

Theorem 6:

If the sequence of continuous functions $\left\{f_{n}^{*}(x, t)\right\}$ converges uniformly to the function $f^{*}(x, t)$, and the functions $Q^{*}(t, \eta), p(t, \eta)$ satisfy, respectively, the conditions (2) and (3-b). Then, the sequence of approximate solutions $\left\{u_{n}(x, t)\right\}$ converges uniformly to the exact solution of (4.1) in the Banach space $C_{\mathfrak{R}}(\mathfrak{R} \times[0, T])$.

Proof:
The formula (4.1) with its approximate solution give

$$
\begin{gather*}
\max _{x, t}\left|u(x, t)-u_{n}(x, t)\right| \leq \max _{x, t}\left|f^{*}(x, t)-f_{n}^{*}(x, t)\right| \\
+\alpha \int_{0}^{t}|p(t, \eta)|\left|Q^{*}(t, \eta)\right| \cdot \max _{x, \eta}\left|B(\eta)\left(u(x, \eta)-u_{n}(x, \eta)\right)\right| d \eta, \tag{4.17}\\
\forall 0 \leq \eta \leq t \leq T, \quad-\infty<x<\infty .
\end{gather*}
$$

$$
\begin{equation*}
\left|Q^{*}(t, \eta)\right| \leq c_{1} \text {, and } \int_{0}^{t}|p(t, \eta)| d \eta \leq c_{2} . \tag{4.18}
\end{equation*}
$$

Hence, the inequality (4.17) with the aid of (4.18) and (3.5), takes the form

$$
\begin{array}{r}
\left\|u(x, t)-u_{n}(x, t)\right\|_{c_{n}(\operatorname{yx}(0, T)} \leq \frac{1}{\left(1-c^{*}\right)}\left\|f^{*}(x, t)-f_{n}^{*}(x, t)\right\|_{c_{n}\left(\operatorname{sex}_{4}, T, T\right)}, \\
\left(c^{*}=\alpha c_{1} c_{2} M\right) .
\end{array}
$$

Since

$$
\begin{aligned}
& \left\|f^{*}(x, t)-f_{n}^{*}(x, t)\right\|_{C_{\Re}(9 \times[0, T])} \rightarrow 0 \text { as } n \rightarrow \infty, \\
& \text { hence }\left\|u(x, t)-u_{n}(x, t)\right\|_{C_{\mathfrak{Y}}(9 \times[0, T])} \rightarrow 0 .
\end{aligned}
$$

Definition 1:
The product Nyström method is said to convergent of order r in [a,b] if and only if for sufficiently large N, there exists a constant $c>0$ independent of N, such that

$$
\left\|\phi(x)-\phi_{N}(x)\right\|_{\infty} \leq c N^{-r} .
$$

Definition 2:
The consistency error R_{N} of the product Nyström method is determined by the following equation

$$
\begin{equation*}
R_{N}=\left|\int_{0}^{t_{N}} p(t, \eta) Q^{*}(t, \eta) B(\eta) u(x, \eta) d \eta-\sum_{j=0}^{N} w_{i, j} Q_{i, j}^{*} B_{j} u_{j, j}\right| . \tag{4.19}
\end{equation*}
$$

Also , (4.19) gives

$$
\begin{equation*}
u(x, t)-u_{N}(x, t)=\sum_{j=0}^{N} w_{i, j} Q^{*}\left(t_{i}, \eta_{j}\right)\left[B_{j}\left(u\left(x_{j}, \eta_{j}\right)-u_{N}\left(x_{j}, \eta_{j}\right)\right)\right]+R_{N}, \tag{4.20}
\end{equation*}
$$

where $u_{N}(x, t)$ is the approximate solution of (4.1).
Theorem 7:
Assume that, the hypothesis of Theorem (5) are verified, then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} R_{N}=0 . \tag{4.21}
\end{equation*}
$$

Proof:
The formula (4.20) leads to

$$
\begin{aligned}
& \left|R_{N}\right| \leq \sup _{i}\left|u_{i, i}-\left(u_{i, i}\right)_{N}\right| \\
& \quad+\sup _{i} \sum_{j=0}^{N}\left|w_{i, j} Q_{i, j}^{*}\right| \sup _{j}\left|B_{j}\left(u_{j, j}-\left(u_{j, j}\right)_{N}\right)\right| .
\end{aligned}
$$

In view of the conditions (4.13) and (4.14), the above inequality takes the form

Since $\left\|U-U_{N}\right\|_{\ell^{\infty}} \rightarrow 0$ as $N \rightarrow \infty$ (see Theorem (5), it follows that $\left\|R_{N}\right\|_{\ell^{\infty}} \rightarrow 0$.

Application I:

In (4.1), let $0<\alpha<1, Q^{*}(t, \eta)=1, B(\eta)=I$, where I is the identity operator. Hence, we get a linear Volterra integral equation of the second kind with Abel kernel

$$
\begin{equation*}
u(x, t)=x\left(1-t^{\alpha}\right)+t\left(1-\frac{t^{\alpha}}{\alpha+1}\right)+\alpha \int_{0}^{t}(t-\eta)^{\alpha-1} u(x, \eta) d \eta \tag{4.22}
\end{equation*}
$$

where the exact solution $u(x, t)=x+t$.
The results are obtained numerically in the flowing Table which lists various values of $x, t \in[0,0.8]$ together with the values of the exact and approximate solutions and the error of (4.22). Also, we can see from this table that:

1. The exact and approximate solutions are coincident for $x=t=0$.
2. As x and t are increasing through [0,0.8], the error is also increasing for $\alpha=0.98$, $\alpha=0.8$ and $\alpha=0.4$.
3. The maximum value of the error is 0.421056 which occurs at $x=t=0.8$ for $\alpha=0.8$.

		$\alpha=0.4$		$\alpha=0.8$				$\alpha=0.98$	
$x=t$	Exact	Appr. Sol.	Error	Appr. Sol.	Error	$x=t$	Exact	Appr. Sol.	Error
0	0	0	0	0	0	0	0	0	0
0.08	0.16	0.154992	0.005008	0.155284	0.004716	0.08	0.16	0.156646	0.003354
0.16	0.32	0.306929	0.013071	0.302817	0.017183	0.16	0.32	0.306367	0.013633
0.24	0.48	0.456241	0.023759	0.442848	0.037152	0.24	0.48	0.448667	0.031333
0.32	0.64	0.602977	0.037023	0.575147	0.064853	0.32	0.64	0.582967	0.057033
0.4	0.8	0.747068	0.052932	0.699325	0.100675	0.4	0.8	0.708623	0.091377
0.48	0.96	0.88839	0.07161	0.814898	0.145102	0.48	0.96	0.824933	0.135067
0.56	1.12	1.02678	0.09322	0.921307	0.198693	0.56	1.12	0.93113	0.18887
0.64	1.28	1.162041	0.117959	1.017924	0.262076	0.64	1.28	1.02638	0.25362
0.72	1.44	1.293951	0.146049	1.104056	0.335944	0.72	1.44	1.10978	0.33022
0.8	1.6	1.422257	0.177743	1.178944	0.421056	0.8	1.6	1.180347	0.419653

References Références Referencias

1. W. Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math. 55 (1952), 468-519.
2. E. Hille, On the Integration Problem for Fokker-Planck's equation, in "10th Congress of Scandinavian Mathematics," Trondheim, 1950.
3. K. Yosida, An operator - theoretical treatment of temporally, homogeneous Markoff process, J. Math. Soc. Japan 1 (1949), 244-253.
4. K. Yosida, "Functional Analysis" Springer-Verlag Berlin Heidelberg, New York, (1974).
5. S. Chandrasekhar and G.Münch, The theory of fluctuations in brightness of the Milky - Way, Astrophys. J. 125, 94-123.
6. M.C.Mackey and Rudnicki, Global stability in a delayed partial differential equation describing cellular replication, J.Math. Biol. 33 (1994), 89-109.
7. J.A.J.Metz and O.Diekmann, "The Dynamics of Physiologically Structured Populations" Springer lecture Notes in Biomathematics, Vol.68, Springer-Verlag, New York, 1986.
8. M.Mijatovie, S.Pilipovie and F.Vujzovie, α-Times Integrand semi-groups ($\alpha \in \mathfrak{R}^{+}$), J.Math. Anal. Appl. 210 (1997), 790-803.
9. M.M.EL-Borai, Some probability densities and fundamental solutions of fractional evolution equation, Chaos, Solitons \& Fractals 14(2002), 433-440.
10. M.M.El-Borai, Semigroups and some nonlinear fractional differential equations, J.Appl.Math. Comput. 149 (2004), 823-831.
11. S.D. Zaidman, Abstract Differential Equations, Research Notes in Mathematics, Pitman Advanced Publishing Program, San Francisco, London Melbourne, 1979.
12. M.M.El-Borai, Semigroups and incorrect problems for evolution equations, 16th IMACS WORLD CONGRESS LAUSANNE, August 2000.
13. M.M.El-Borai, O.L. Moustafa and F.H.Micheal, On the correct formulation of a nonlinear differential equations in Banach space, Int.J.Math. 22 (1) (1999).
14. I.M. Gelfand and G.E.Shilov, Generalized Functions, Vol.1, Nauka, Moscow, 1959.
15. W.R.Schneider and W.Wayes, Fractional diffusion and wave equation, J.Math. Phys. 30 (1989).
16. Peter Linz, Analytic and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985.
17. A. Dzhuraev, Methods of Singular Integral Equations, London, New York, 1992.

This page is intentionally left blank

Global Journal of Science Frontier Research MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 3 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Multipliers of Distributions Spaces

By V. S. K. Assiamoua, Y. Mensah \& Y. M. Awussi
University of Lomé, Togo

Abstract - In this paper we consider multipliers of distributions spaces. We obtain some characterizations of various multipliers spaces similar to those of multipliers of Banach algebras.

Keywords : distribution, multiplier, convolution.
GJSFR-F Classification : MSC 2010: 45A45, 46F05

Strictly as per the compliance and regulations of :

© 2013. V. S. K. Assiamoua, Y. Mensah \& Y. M. Awussi. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Multipliers of Distributions Spaces

V. S. K. Assiamoua ${ }^{a}$, Y. Mensah ${ }^{\circ}$ \& Y. M. Awussi ${ }^{\rho}$

$\overline{\text { Abstract - In this paper we consider multipliers of distributions spaces. We obtain some characterizations of various }}$
multipliers spaces similar to those of multipliers of Banach algebras.
Kevwords : distribution, multiplier, convolution.

I. Preliminaries

Let G be a locally compact group and let $L_{1}(G)$ denote the Lebesgue space with respect to the Haar measure on G. An $L_{1}(G)$-multiplier is any continuous linear transformation from $L_{1}(G)$ into itself which commutes with translations. Many investigations have been carried out to characterize the $L_{1}(G)$-multipliers. The theory has been extended to other group algebras, general Banach algebras, some locally convex linear spaces and \mathcal{C}^{*}-algebras. See [8], [1] and references therein. For further informations on the theory of multipliers we refer to [8]. In this paper we study multipliers of distributions. Some results in this area involving temperate distributions can be found in [5] and [7]
a) Definition and notations of distributions spaces

In this section we recall some facts about distributions. For more details we refer to [2], [3] and [4]. As usual \mathcal{D} denotes the set of infinitely differentiable complex valued functions on \mathbb{R}^{n} having compact support. The set \mathcal{D} is topologized in the following way. The subset \mathcal{D}_{K} of \mathcal{D} whose elements have their supports in the compact subset K of \mathbb{R}^{n} is a locally convex vector space with the semi-norms $P_{m, K}$ defined by

$$
\begin{equation*}
P_{m, K}(\phi)=\sup _{x \in K,|q| \leq m}\left|D^{q}(\phi)\right| \tag{1}
\end{equation*}
$$

where $m \in \mathbb{N}, q=\left(q_{1}, \ldots, q_{n}\right) \in \mathbb{N}^{n},|q|=\sum_{i=1}^{n} q_{i}, x=\left(x_{1}, \ldots, x_{n}\right)$ and $D^{q}=$ $\frac{\partial^{|q|}}{\partial x_{1}^{q_{1}} \ldots \partial x_{n}^{q_{n}}}$. Then \mathcal{D} is the strict inductive limit of the \mathcal{D}_{K} 's, when K runs over an increasing sequence of compact sets whose union is \mathbb{R}^{n}. Thus a net

[^9]$\left\{\phi_{\alpha}\right\}$ converges to 0 in \mathcal{D} means that all the ϕ_{α} 's have their supports in a fixed K and for any $q \in \mathbb{N}^{n}$ the net $\left\{D^{q} \phi_{\alpha}\right\}$ converges to 0 uniformly in K.
A distribution on \mathbb{R}^{n} is a continuous linear functional on \mathcal{D}. The vector space of distributions is naturally denoted by \mathcal{D}^{\prime}. Let U be a distribution. We say that U vanishes on a subset Ω of \mathbb{R}^{n} if $U(\phi)=0$ whenever supp $\phi \subset \Omega$. The support of U is by definition the smallest closed subset of Ω of \mathbb{R}^{n} such that U vanishes off Ω.
Let \mathcal{E} denotes the set of infinitely differentiable complex functions on \mathbb{R}^{n}. It is endowed with the locally convex topology with semi-norms $P_{K, m}$ defined as in (1) where K now is no longer fixed. It was shown that the topological dual \mathcal{E}^{\prime} is identical with the space of distributions with compact support [2, page 38]. Let \mathcal{S} be the subset of \mathcal{E} which contains the functions ϕ such that
\[

$$
\begin{equation*}
\lim _{\|x\| \rightarrow \infty}\left|x^{k} D^{q} \phi(x)\right|=0, \forall k \in \mathbb{N} \tag{2}
\end{equation*}
$$

\]

with $x^{k}=x_{1}^{k} x_{2}^{k} \ldots x_{n}^{k}$. \mathcal{S} is called the space of rapidly decreasing infinitely differentiable functions whereas its topological dual \mathcal{S}^{\prime} is called the space of slowly increasing distributions or temperate distributions.
Finally denote by \mathcal{O}_{M} the subset of \mathcal{E} such that

$$
\begin{equation*}
\phi \in \mathcal{O}_{M} \text { if and only if } \lim _{\|x\| \rightarrow \infty}\left|\varphi(x) D^{q} \phi(x)\right|=0, \forall \varphi \in \mathcal{S} \tag{3}
\end{equation*}
$$

and by \mathcal{O}_{C}^{\prime} the subset of \mathcal{D}^{\prime} such that

$$
\begin{equation*}
U \in \mathcal{O}_{C}^{\prime} \text { if and only if }\left(1+\|x\|^{2}\right)^{\frac{k}{2}} U \text { is bounded in } \mathbb{R}^{n}, k \in \mathbb{N}, \tag{4}
\end{equation*}
$$

which means $\left(1+\|x\|^{2}\right) U^{\frac{k}{2}}\left(\phi_{\alpha}\right)$ converges to 0 whenever ϕ_{α} and all its derivatives belong to $L_{\infty}\left(\mathbb{R}^{n}\right)$ and $\left(\phi_{\alpha}\right)$ such as its derivatives converges to 0 in $L_{\infty}\left(\mathbb{R}^{n}\right)$. For the various topologies see [4].

In the sequel \mathcal{D}^{\prime} and \mathcal{S}^{\prime} will be endowed with their strong dual topologies and \mathcal{O}_{C}^{\prime} (which is not the dual of \mathcal{O}_{M}) will carry its usual topology except otherwise stated.

b) Operations on Distributions

The translation $\tau_{h} U$ is defined by

$$
\begin{equation*}
\tau_{h} U(\phi)=U\left(\tau_{-h} \phi\right), U \in \mathcal{D}^{\prime}, \phi \in \mathcal{D} . \tag{5}
\end{equation*}
$$

The partial derivative $\frac{\partial U}{\partial x_{k}}$ is defined by

$$
\begin{equation*}
\frac{\partial U}{\partial x_{k}}(\phi)=-U\left(\frac{\partial \phi}{\partial x_{k}}\right), U \in \mathcal{D}^{\prime}, \phi \in \mathcal{D} . \tag{6}
\end{equation*}
$$

It is shown in [4, pages 77 and 88] that

$$
\begin{equation*}
\frac{\partial U}{\partial x_{k}}=\lim _{h_{k} \rightarrow 0} \frac{\tau_{-h} U-U}{h_{k}} \tag{7}
\end{equation*}
$$

where $h=\left(0, \ldots, 0, h_{k}, 0, \ldots, 0\right) \in \mathbb{R}^{n}$ and also that

$$
\begin{equation*}
\frac{\partial \tau_{h} U}{\partial h_{k}}=-\frac{\partial \tau_{h} U}{\partial x_{k}} . \tag{8}
\end{equation*}
$$

The multiplication αU is defined by

$$
\begin{equation*}
\alpha U(\phi)=U(\alpha \phi), U \in \mathcal{D}^{\prime}, \alpha \in \mathcal{E}, \phi \in \mathcal{D} . \tag{9}
\end{equation*}
$$

The Fourier transform $\mathcal{F} U$ is defined by

$$
\begin{equation*}
\mathcal{F} U(\phi)=U(\mathcal{F} \phi), U \in \mathcal{S}^{\prime}, \phi \in \mathcal{S} . \tag{10}
\end{equation*}
$$

The convolution $U * V$ is defined by

$$
\begin{equation*}
U * V(\phi)=U\left(V\left(\tau_{-y} \phi\right)\right) \tag{11}
\end{equation*}
$$

where V acts on ϕ as a function of x and U on the result as a function of y.
Convolution is not always meaningful, but it makes sense for instance if one the distributions at least has compact support. When it is defined, convolution is bilinear, commutative and the mapping $(U, V) \mapsto U * V$ is hypocontinuous in the sense that if one of U or V varies in a bounded set of \mathcal{D}^{\prime} or \mathcal{E}^{\prime} and the other converges to 0 , then $U * V$ converges to 0 . Moreover

$$
\begin{gather*}
\tau_{h}(U * V)=\tau_{h} U * V=U * \tau_{h} V \tag{12}\\
\text { and } \quad \frac{\partial(U * V)}{\partial x_{k}}=\frac{\partial U}{\partial x_{k}} * V=U * \frac{\partial V}{\partial x_{k}} . \tag{13}
\end{gather*}
$$

We recall the following well-known lemma from [4, page 268].
Lemma 1.1 The Fourier transform is an isomorphism between \mathcal{O}_{C}^{\prime} and \mathcal{O}_{M}, and changes convolution into multiplication in \mathcal{S}^{\prime} i.e. if $U \in \mathcal{S}^{\prime}, W \in \mathcal{O}_{C}^{\prime}$ then $\mathcal{F} U \in \mathcal{S}^{\prime}, \mathcal{F} W \in \mathcal{O}_{M}$ and

$$
\begin{equation*}
\mathcal{F}(W * U)=\mathcal{F} W \mathcal{F} U \tag{14}
\end{equation*}
$$

iI. Main Results

Definition 2.1 Let \mathcal{V} or \mathcal{W} be any one of \mathcal{D}^{\prime}, \mathcal{S}^{\prime}, \mathcal{O}_{C}^{\prime} or \mathcal{E}^{\prime}. We call $(\mathcal{V}, \mathcal{W})$-multiplier any continuous linear transformation $T: \mathcal{V} \rightarrow \mathcal{W}$ that commutes with translations.

We denote by $\mathcal{L}(\mathcal{V}, \mathcal{W})$ the space of continuous linear transformation from \mathcal{V} to \mathcal{W} and by $\mathcal{M}(\mathcal{V}, \mathcal{W})$ the subset of $\mathcal{L}(\mathcal{V}, \mathcal{W})$ consisting of the $(\mathcal{V}, \mathcal{W})$-multipliers. We write $\mathcal{L}(\mathcal{V})$ and $\mathcal{M}(\mathcal{V})$ for $\mathcal{L}(\mathcal{V}, \mathcal{W})$ and $\mathcal{M}(\mathcal{V}, \mathcal{W})$ when $\mathcal{V}=\mathcal{W}$ respectively.

Theorem 2.2 Let T be a linear continuous operator in \mathcal{D}^{\prime}. Then the following statements are equivalent:
i) $T \in \mathcal{M}\left(\mathcal{D}^{\prime}\right)$.
ii) T commutes with partial derivatives.
iii) There exists a unique W in \mathcal{E}^{\prime} such that

Hence T commutes with partial derivatives.
2. ii) $\Rightarrow \mathrm{i}$). This implication can be found in [4, page 163]. For the convenience of the reader, we reproduce it here.
Assume that ii) holds and consider the function ψ define by

$$
\begin{equation*}
\psi(h)=\left[T\left(\tau_{h} U\right)\right]\left(\tau_{h} \phi\right) . \tag{16}
\end{equation*}
$$

We are going to prove that for $U \in \mathcal{D}^{\prime}$ and $\phi \in \mathcal{D}$ fixed, the function ψ is independent of $h=\left(h_{1}, h_{2}, \ldots, h_{n}\right)$ in \mathbb{R}^{n}. For $k=1,2, \ldots, n$, we have

$$
\begin{aligned}
\frac{\partial \psi}{\partial h_{k}}(h) & =\frac{\partial}{\partial h_{k}}\left\{\left[T\left(\tau_{h} U\right)\right]\left(\tau_{h} \phi\right)\right\} \\
& =\left[\frac{\partial}{\partial h_{k}} T\left(\tau_{h} U\right)\right]\left(\tau_{h} \phi\right)+\left[T\left(\tau_{h} U\right)\right]\left(\frac{\partial}{\partial h_{k}}\left(\tau_{h} \phi\right)\right) \\
& =T\left[\frac{\partial}{\partial h_{k}}\left(\tau_{h} U\right)\right]\left(\tau_{h} \phi\right)+\left[T\left(\tau_{h} U\right)\right]\left(\frac{\partial}{\partial h_{k}}\left(\tau_{h} \phi\right)\right) \\
& =T\left[-\frac{\partial}{\partial x_{k}}\left(\tau_{h} U\right)\right]\left(\tau_{h} \phi\right)-\left[T\left(\tau_{h} U\right)\right]\left(\frac{\partial}{\partial x_{k}}\left(\tau_{h} \phi\right)\right)
\end{aligned}
$$

Proof.

1. i) \Rightarrow ii)

Suppose $T \in \mathcal{M}\left(\mathcal{D}^{\prime}\right)$. Then $T\left(\tau_{h} U\right)=\tau_{h}(T U), \forall U \in \mathcal{D}^{\prime}, \forall h \in \mathbb{R}^{n}$.
We have

$$
\begin{aligned}
T\left(\frac{\partial U}{\partial x_{k}}\right) & =T\left(\lim _{h_{k} \rightarrow 0} \frac{\tau_{-h} U-U}{h_{k}}\right) \\
& =\lim _{h_{k} \rightarrow 0} T\left(\frac{\tau_{-h} U-U}{h_{k}}\right) \\
& =\lim _{h_{k} \rightarrow 0} \frac{\tau_{-h} T U-T U}{h_{k}}=\frac{\partial T U}{\partial x_{k}} .
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{\partial}{\partial x_{k}}\left[T\left(\tau_{h} U\right)\right]\left(\tau_{h} \phi\right)-\left[T\left(\tau_{h} U\right)\right]\left(\frac{\partial}{\partial x_{k}}\left(\tau_{h} \phi\right)\right) \\
& =\left[T\left(\tau_{h} U\right)\right]\left(\frac{\partial}{\partial x_{k}}\left(\tau_{h} \phi\right)\right)-\left[T\left(\tau_{h} U\right)\right]\left(\frac{\partial}{\partial x_{k}}\left(\tau_{h} \phi\right)\right)=0
\end{aligned}
$$

using successively the fact that T commutes with partial derivatives and is linear, and formulas (8) and (6). We conclude from $\frac{\partial \psi}{\partial h_{k}}(h)=0$ for $k=1,2, \ldots, n$ that ψ is a constant equal to $\psi(0)$. That means that $\left[T\left(\tau_{h} U\right)\right]\left(\tau_{h} \phi\right)=T U(\phi)$. Now, $T\left(\tau_{h} U\right)\left(\tau_{h} \phi\right)=\tau_{-h} T\left(\tau_{h} U\right)(\phi)$ by definition. Thus $\tau_{-h} T\left(\tau_{h} U\right)=T U$ and $T\left(\tau_{h} U\right)=\tau_{h}(T U)$. Hence i) holds.
3. iii) \Rightarrow i).

For any $W \in \mathcal{E}^{\prime}$, the mapping $U \mapsto T_{W}(U)=W * U$ defines a continuous operator in \mathcal{D}^{\prime} which commutes with translations according to (12) and because $(U, W) \mapsto W * U$ is hypocontinuous.
4. i) \Rightarrow iii).

Let T be an element of $\mathcal{M}\left(\mathcal{D}^{\prime}\right)$. We shall show first that if $T(U * V)$ and $T U * V$ are defined then they are equal. In fact, for $\phi \in \mathcal{D}$, we have ($T U$ $* V)(\phi)=(V * T U)(\phi)=V\left(T U\left(\tau_{-y} \phi\right)\right)=V\left(\tau_{y} T U(\phi)\right)=V\left(T \tau_{y} U(\phi)\right)=$ $V * U\left(T^{*} \phi\right)=T(U * V(\phi))$ where T^{*} is the adjoint of T. Consequently $T U * V=T(U * V)$. Applying this equality to $U=\delta * U$ where δ is the Dirac distribution at the origin, we obtain $T U=T \delta * U$. Put $T \delta=W$ to have $T U=W * U$. Indeed W belongs to \mathcal{E}^{\prime}. (See the remark in [4, page 163]).

Examples.

1. The identity operator T is a multiplier; the element W of \mathcal{E}^{\prime} associated with it is δ since $U=\delta * U$.
2. Translations τ_{h} are multipliers; the W of \mathcal{E}^{\prime} corresponding is δ_{h}, the point mass at $h \in \mathbb{R}^{n}$, since $\tau_{h} U=\delta_{h} * U$.
3. Distributional derivatives are continuous. They are multipliers because they commute with one another. Then we have $\frac{\partial U}{\partial x_{k}}=\frac{\partial \delta}{\partial x_{k}} * U$.

Theorem 2.3 Let the set $\mathcal{L}\left(\mathcal{D}^{\prime}\right)$ be endowed with its strong topology i.e. the topology of convergence on bounded sets of \mathcal{D}. Then

1. The mapping $T \mapsto W=T \delta$ from $\mathcal{M}\left(\mathcal{D}^{\prime}\right)$ into \mathcal{E}^{\prime} equipped with its strong topology is a bicontinuous isomorphism in the topology induced by $\mathcal{L}\left(\mathcal{D}^{\prime}\right)$ on $\mathcal{M}\left(\mathcal{D}^{\prime}\right)$ i.e. $\mathcal{M}\left(\mathcal{D}^{\prime}\right)$ is isomorphic to \mathcal{E}^{\prime}.
2. $\mathcal{M}\left(\mathcal{E}^{\prime}, \mathcal{D}^{\prime}\right)$ is isomorphic to \mathcal{D}^{\prime}.
3. $\mathcal{M}\left(\mathcal{O}_{C}^{\prime}, \mathcal{S}^{\prime}\right)$ is isomorphic to \mathcal{S}^{\prime}.
4. $\mathcal{M}\left(\mathcal{S}^{\prime}\right)$ is isomorphic to \mathcal{O}_{C}^{\prime}.

Proof.

Let us prove the assertion 1.
The mapping $\mathcal{M}\left(\mathcal{D}^{\prime}\right) \rightarrow \mathcal{E}^{\prime}, T \mapsto T \delta$ is obviously linear. It is surjective because each $W \in \mathcal{E}^{\prime}$ defines a multiplier T_{W} such that $T_{W} \delta=W * \delta=W$. It is injective, for if $T \delta=S \delta, T, S \in \mathcal{M}\left(\mathcal{D}^{\prime}\right)$, then for any U in \mathcal{D}^{\prime}, we have $T U=T \delta * U=S \delta * U=S U$, so $T=U$.
Let us show now that it is continuous. Suppose $\left(T_{\alpha}\right)$ tends to 0 in $\mathcal{M}\left(\mathcal{D}^{\prime}\right)$. Then $\left(T_{\alpha} \delta * U\right)$ tends to 0 in \mathcal{D}^{\prime} uniformly on $U \in B^{\prime}$ where B^{\prime} is a bounded set in \mathcal{D}^{\prime}. Put $T_{\alpha} \delta=W_{\alpha}$. Then for every bounded set B in $\mathcal{D}, \sup _{\phi \in B, U \in B^{\prime}}\left|W_{\alpha} * U(\phi)\right|$ tends to 0 in \mathbb{R}. Now $W_{\alpha} * U(\phi)=W_{\alpha}\left(U\left(\tau_{-y} \phi\right)\right)$ and $U\left(\tau_{-y} \phi\right)$ belongs to \mathcal{E}. Moreover $\left(U\left(\tau_{-y} \phi\right)\right)_{\phi \in B, U \in B^{\prime}}$ is bounded in \mathcal{E} i.e. is bounded on every compact subset K of \mathbb{R}^{n}. Hence for every bounded set B_{0} in \mathcal{E} of the form $B_{0}=\left(U\left(\tau_{-y} \phi\right)\right), \sup _{B_{0} \ni \psi}\left|W_{\alpha}(\psi)\right|$ tends to 0 , with respect to α. Now let B_{1} be an arbitrary bounded set in \mathcal{E}. We are going to prove that $\sup _{\psi \in B_{1}}\left|W_{\alpha}(\psi)\right|$ tends to 0 . For any compact $K \subset \mathbb{R}^{n}$, put $B_{K}=\phi_{K} B_{1}=\left\{\phi_{K} \psi: \psi \in B_{1}\right\}$ where $\phi_{K} \in \mathcal{D}$ with $\operatorname{supp} \phi_{K} \supset K$ and $\phi_{K} \equiv 1$ on K. The set B_{K} is bounded in \mathcal{D}. Then $\sup _{\psi_{K} \in B_{K}}\left|W_{\alpha}\left(\psi_{K}\right)\right|=\sup _{\psi_{K} \in B_{K}}\left|W_{\alpha} * \delta\left(\psi_{K}\right)\right|=\sup _{\psi_{K} \in B_{K}}\left|W_{\alpha}\left(\delta\left(\tau_{-y} \psi_{K}\right)\right)\right|$ which tends to 0 according to what is pointed out above.
If $\sup _{\psi \in B_{1}}\left|W_{\alpha}(\psi)\right|$ does not converge to 0 , then there would exist $\varepsilon>0$ such that for every α there would exist $\beta>\alpha$ such that $\left|W_{\beta}(\psi)\right|>\varepsilon$ for every $\psi \in B_{1}$. But for every $\varepsilon>0$ there exists α_{0} such that $\alpha>\alpha_{0}$ implies $\left|W_{\alpha}\left(\psi_{K}\right)\right|<\varepsilon$ for every compact $K \subset \mathbb{R}^{n}$ and every $\psi_{K} \in B_{K}$. Now $W_{\beta}(\psi)=W_{\beta}\left(\psi_{K_{\beta}}\right)$ where $K_{\beta}=\operatorname{supp} W_{\beta}$ is compact. Let β be such that $\beta>\alpha>\alpha_{0}$, so that $\left|W_{\beta}\left(\psi_{K_{\beta}}\right)\right|>\varepsilon$. This is a contradictory. We conclude that $\left(W_{\alpha}\right)$ tends to 0 in \mathcal{E}^{\prime}. Then $T \mapsto T \delta$ is continuous.

The inverse mapping is also continuous. In fact, let $\left(W_{\alpha}\right)$ be a net in \mathcal{E}^{\prime} which converges to 0 . Then for U in a bounded set of $\mathcal{D}^{\prime},\left(\left(W_{\alpha} * U\right)\right.$ converges to 0 in \mathcal{D}^{\prime} (hypocontinuity of the convolution). That is the mapping $W \mapsto T_{W}$ from \mathcal{E}^{\prime} into $\mathcal{M}\left(\mathcal{D}^{\prime}\right)$ is continuous.
The assertion 1 is completely proved.
The assertions 2., 3. and 4. are proved similarly.
Corollary 2.4 $T \in \mathcal{M}\left(\mathcal{S}^{\prime}\right)$ if and only if there exists a unique $\phi \in \mathcal{O}_{M}$ such that $\mathcal{F}(T U)=\phi \mathcal{F}(U)$. Moreover the mapping $T \mapsto \phi$ is a topological isomorphism between $\mathcal{M}\left(\mathcal{S}^{\prime}\right)$ and \mathcal{O}_{M}.

Proof. The corollary follows from Theorem 2.3, assertion 4. and Lemma 1.1 with $\mathcal{F} W=\phi$.

Remark.

Some writers define a $(\mathcal{V}, \mathcal{W})$-multiplier as a function ϕ such that $\phi V \in \mathcal{W}$ for every $V \in \mathcal{V}$. Let us denote in this case the multipliers spaces by $M(\mathcal{V}, \mathcal{W})$. It was pointed out in [4, page 246] that $M\left(\mathcal{S}^{\prime}\right)=M\left(\mathcal{S}^{\prime}, \mathcal{S}^{\prime}\right)$ is precisely \mathcal{O}_{M}. Then according to Corollary 2.4, we can say that $M\left(\mathcal{S}^{\prime}\right)$ is topologically isomorphic to $\mathcal{M}\left(\mathcal{S}^{\prime}\right)$. See [6] for some extension results.

Theorem 2.5 1. $T \in \mathcal{M}\left(\mathcal{D}^{\prime}\right)$ and $U \in \mathcal{E}^{\prime}$ imply $T U \in \mathcal{E}^{\prime}$. Moreover, every $T \in \mathcal{M}\left(\mathcal{E}^{\prime}\right)$ has a unique extension to an element of $\mathcal{M}\left(\mathcal{D}^{\prime}\right)$.
2. $T \in \mathcal{L}\left(\mathcal{E}^{\prime}\right)$ belongs to $\mathcal{M}\left(\mathcal{E}^{\prime}\right)$ if and only if $T U * V=T(U * V), U, V \in \mathcal{E}^{\prime}$.

Proof.

1. If $T \in \mathcal{M}\left(\mathcal{D}^{\prime}\right)$ then by Theorem $2.2, T U=W * U$ for some $W \in \mathcal{E}^{\prime}$. Hence $T U \in \mathcal{E}^{\prime}$ whenever $U \in \mathcal{E}^{\prime}$ because $\operatorname{supp}(W * U)$ is closed and included in supp $W+$ supp U which is compact.
Since \mathcal{E}^{\prime} is a dense subspace of \mathcal{D}^{\prime} then $T \in \mathcal{M}\left(\mathcal{E}^{\prime}\right)$ has a unique continuous extension \hat{T} to \mathcal{D}^{\prime} and $\hat{T} \in \mathcal{M}\left(\mathcal{D}^{\prime}\right)$.
2. $T \tau_{h}=\tau_{h} T$ implies $T(U * V)=T U * V, U, V \in \mathcal{E}^{\prime}$; this is contained in the proof of Theorem 2.2 above.
Conversely, suppose $T(U * V)=T U * V, U, V \in \mathcal{E}^{\prime}$. Then $T\left(\tau_{h} U\right)=$ $T\left(\delta * \tau_{h} U\right)=T \delta * \tau_{h} U=\tau_{h}(T \delta * U)=\tau_{h}(T U)$ i.e. $T \in \mathcal{M}\left(\mathcal{E}^{\prime}\right)$.
One has the following immediate consequence.
Corollary 2.6 A continuous linear operator belongs to $\mathcal{M}\left(\mathcal{D}^{\prime}\right)$ if and only if its restriction to \mathcal{E}^{\prime} commutes with convolution, i.e.

$$
T \in \mathcal{M}\left(\mathcal{D}^{\prime}\right) \Leftrightarrow T_{\mid \mathcal{E}^{\prime}}(U * V)=T_{\mid \mathcal{E}^{\prime}} U * V .
$$

References Références Referencias

[1] Akemann, C. A., Pedersen, G. K. and Tomiyama, J., Multipliers of \mathcal{C}^{*}-algebras. J. Funct. Anal. 13 (1973), 277-301.
[2] Grubb, G. Distributions and operators. Springer, New York, (2009).
[3] Khoan, V.-K. Distributions, Analyse de Fourier et Opérateurs aux dérivées partielles. Tome 1 and Tome 2, Vuibert, Paris, (1972).
[4] Schwartz, L. , Théorie des distributions. Hermann, Paris, (1966).
[5] Kučera, J., On multipliers of temperate distributions. Czechoslovak Math. J. 21 (1971), 610-618.
[6] Kučera, J., Extension of the L. Schwartz space O_{M} of multipliers of temperate distributions. J. Math. Anal. Appl. 56 (1976), 368-372.
[7] Kučera, J., Bosch, C., Multipliers of temperate distributions. Mathematica Bohemica 130, No 3, (2005), 225-229.
[8] Larsen, R. , An Introduction to the Theory of Multipliers. SpringerVerlag,Berlin, (1971).

Global Journals Inc. (US) Guidelines Handbook 2013

WWW.GLOBALJOURNALS.ORG

FELLOWS

FELLOW OF ASSOCIATION OF RESEARCH SOCIETY IN SCIENCE (FARSS)

- 'FARSS' title will be awarded to the person after approval of Editor-in-Chief and Editorial Board. The title 'FARSS" can be added to name in the following manner. eg. Dr. John E. Hall, Ph.D., FARSS or William Walldroff Ph. D., M.S., FARSS
- Being FARSS is a respectful honor. It authenticates your research activities. After becoming FARSS, you can use 'FARSS' title as you use your degree in suffix of your name. This will definitely will enhance and add up your name. You can use it on your Career Counseling Materials/CV/Resume/Visiting Card/Name Plate etc.
- 60% Discount will be provided to FARSS members for publishing research papers in Global Journals Inc., if our Editorial Board and Peer Reviewers accept the paper. For the life time, if you are author/co-author of any paper bill sent to you will automatically be discounted one by 60%
- FARSS will be given a renowned, secure, free professional email address with 100 GB of space eg.johnhall@globaljournals.org. You will be facilitated with Webmail, SpamAssassin, Email Forwarders, Auto-Responders, Email Delivery Route tracing, etc.
- FARSS member is eligible to become paid peer reviewer at Global Journals Inc. to earn up to 15% of realized author charges taken from author of respective paper. After reviewing 5 or more papers you can request to transfer the amount to your bank account or to your PayPal account.
- Eg. If we had taken 420 USD from author, we can send 63 USD to your account.
- FARSS member can apply for free approval, grading and certification of some of their Educational and Institutional Degrees from Global Journals Inc. (US) and Open Association of Research,Society U.S.A.
- After you are FARSS. You can send us scanned copy of all of your documents. We will verify, grade and certify them within a month. It will be based on your academic records, quality of research papers published by you, and 50 more criteria. This is beneficial for your job interviews as recruiting organization need not just rely on you for authenticity and your unknown qualities, you would have authentic ranks of all of your documents. Our scale is unique worldwide.
- FARSS member can proceed to get benefits of free research podcasting in Global Research Radio with their research documents, slides and online movies.
- After your publication anywhere in the world, you can upload you research paper with your recorded voice or you can use our professional RJs to record your paper their voice. We can also stream your conference videos and display your slides online.
- FARSS will be eligible for free application of Standardization of their Researches by Open Scientific Standards. Standardization is next step and level after publishing in a journal. A team of research and professional will work with you to take your research to its next level, which is worldwide open standardization.
- FARSS is eligible to earn from their researches: While publishing his paper with Global Journals Inc. (US), FARSS can decide whether he/she would like to publish his/her research in closed manner. When readers will buy that individual research paper for reading, 80% of its earning by Global Journals Inc. (US) will be transferred to FARSS member's bank account after certain threshold balance. There is no time limit for collection. FARSS member can decide its price and we can help in decision.

MEMBER OF ASSOCIATION OF RESEARCH SOCIETY IN SCIENCE (MARSS)

- 'MARSS' title will be awarded to the person after approval of Editor-in-Chief and Editorial Board. The title 'MARSS" can be added to name in the following manner. eg. Dr. John E. Hall, Ph.D., MARSS or William Walldroff Ph. D., M.S., MARSS
- Being MARSS is a respectful honor. It authenticates your research activities. After becoming MARSS, you can use 'MARSS' title as you use your degree in suffix of your name. This will definitely will enhance and add up your name. You can use it on your Career Counseling Materials/CV/Resume/Visiting Card/Name Plate etc.
- 40% Discount will be provided to MARSS members for publishing research papers in Global Journals Inc., if our Editorial Board and Peer Reviewers accept the paper. For the life time, if you are author/co-author of any paper bill sent to you will automatically be discounted one by 60\%
- MARSS will be given a renowned, secure, free professional email address with 30 GB of space eg.johnhall@globaljournals.org. You will be facilitated with Webmail, SpamAssassin, Email Forwarders, Auto-Responders, Email Delivery Route tracing, etc.
- MARSS member is eligible to become paid peer reviewer at Global Journals Inc. to earn up to 10% of realized author charges taken from author of respective paper. After reviewing 5 or more papers you can request to transfer the amount to your bank account or to your PayPal account.
- MARSS member can apply for free approval, grading and certification of some of their Educational and Institutional Degrees from Global Journals Inc. (US) and Open Association of Research,Society U.S.A.
- MARSS is eligible to earn from their researches: While publishing his paper with Global Journals Inc. (US), MARSS can decide whether he/she would like to publish his/her research in closed manner. When readers will buy that individual research paper for reading, 40% of its earning by Global Journals Inc. (US) will be transferred to MARSS member's bank account after certain threshold balance. There is no time limit for collection. MARSS member can decide its price and we can help in decision.

AUXILIARY MEMbERSHIPS

ANNUAL MEMBER

- Annual Member will be authorized to receive e-Journal GJSFR for one year (subscription for one year).
- The member will be allotted free 1 GB Web-space along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted free 500 MB email space.

PAPER PUBLICATION

- The members can publish paper once. The paper will be sent to two-peer reviewer. The paper will be published after the acceptance of peer reviewers and Editorial Board.

Process of submission of Research Paper

The Area or field of specialization may or may not be of any category as mentioned in 'Scope of Journal' menu of the GlobalJournals.org website. There are 37 Research Journal categorized with Six parental Journals GJCST, GJMR, GJRE, GJMBR, GJSFR, GJHSS. For Authors should prefer the mentioned categories. There are three widely used systems UDC, DDC and LCC. The details are available as 'Knowledge Abstract' at Home page. The major advantage of this coding is that, the research work will be exposed to and shared with all over the world as we are being abstracted and indexed worldwide.

The paper should be in proper format. The format can be downloaded from first page of 'Author Guideline' Menu. The Author is expected to follow the general rules as mentioned in this menu. The paper should be written in MS-Word Format (*.DOC,*.DOCX).

The Author can submit the paper either online or offline. The authors should prefer online submission. Online Submission: There are three ways to submit your paper:
(A) (I) First, register yourself using top right corner of Home page then Login. If you are already registered, then login using your username and password.
(II) Choose corresponding Journal.
(III) Click 'Submit Manuscript’. Fill required information and Upload the paper.
(B) If you are using Internet Explorer, then Direct Submission through Homepage is also available.
(C) If these two are not conveninet, and then email the paper directly to dean@globaljournals.org.

Offline Submission: Author can send the typed form of paper by Post. However, online submission should be preferred.

Preferred Author Guidelines

MANUSCRIPT STYLE INSTRUCTION (Must be strictly followed)

Page Size: $8.27^{\prime \prime} \times 11^{\prime \prime}$

- Left Margin: 0.65
- Right Margin: 0.65
- Top Margin: 0.75
- Bottom Margin: 0.75
- Font type of all text should be Swis 721 Lt BT.
- Paper Title should be of Font Size 24 with one Column section.
- Author Name in Font Size of 11 with one column as of Title.
- Abstract Font size of 9 Bold, "Abstract" word in Italic Bold.
- Main Text: Font size 10 with justified two columns section
- Two Column with Equal Column with of 3.38 and Gaping of . 2
- First Character must be three lines Drop capped.
- Paragraph before Spacing of 1 pt and After of 0 pt .
- Line Spacing of 1 pt
- Large Images must be in One Column
- Numbering of First Main Headings (Heading 1) must be in Roman Letters, Capital Letter, and Font Size of 10.
- Numbering of Second Main Headings (Heading 2) must be in Alphabets, Italic, and Font Size of 10.

You can use your own standard format also.

Author Guidelines:

1. General,
2. Ethical Guidelines,
3. Submission of Manuscripts,
4. Manuscript's Category,
5. Structure and Format of Manuscript,
6. After Acceptance.

1. GENERAL

Before submitting your research paper, one is advised to go through the details as mentioned in following heads. It will be beneficial, while peer reviewer justify your paper for publication.

Scope

The Global Journals Inc. (US) welcome the submission of original paper, review paper, survey article relevant to the all the streams of Philosophy and knowledge. The Global Journals Inc. (US) is parental platform for Global Journal of Computer Science and Technology, Researches in Engineering, Medical Research, Science Frontier Research, Human Social Science, Management, and Business organization. The choice of specific field can be done otherwise as following in Abstracting and Indexing Page on this Website. As the all Global
© Copyright by Global Journals Inc.(US) | Guidelines Handbook

Journals Inc. (US) are being abstracted and indexed (in process) by most of the reputed organizations. Topics of only narrow interest will not be accepted unless they have wider potential or consequences.

2. ETHICAL GUIDELINES

Authors should follow the ethical guidelines as mentioned below for publication of research paper and research activities.
Papers are accepted on strict understanding that the material in whole or in part has not been, nor is being, considered for publication elsewhere. If the paper once accepted by Global Journals Inc. (US) and Editorial Board, will become the copyright of the Global Journals Inc. (US).

Authorship: The authors and coauthors should have active contribution to conception design, analysis and interpretation of findings. They should critically review the contents and drafting of the paper. All should approve the final version of the paper before submission

The Global Journals Inc. (US) follows the definition of authorship set up by the Global Academy of Research and Development. According to the Global Academy of R\&D authorship, criteria must be based on:

1) Substantial contributions to conception and acquisition of data, analysis and interpretation of the findings.
2) Drafting the paper and revising it critically regarding important academic content.
3) Final approval of the version of the paper to be published.

All authors should have been credited according to their appropriate contribution in research activity and preparing paper. Contributors who do not match the criteria as authors may be mentioned under Acknowledgement.

Acknowledgements: Contributors to the research other than authors credited should be mentioned under acknowledgement. The specifications of the source of funding for the research if appropriate can be included. Suppliers of resources may be mentioned along with address.

Appeal of Decision: The Editorial Board's decision on publication of the paper is final and cannot be appealed elsewhere.
Permissions: It is the author's responsibility to have prior permission if all or parts of earlier published illustrations are used in this paper.

Please mention proper reference and appropriate acknowledgements wherever expected.
If all or parts of previously published illustrations are used, permission must be taken from the copyright holder concerned. It is the author's responsibility to take these in writing.

Approval for reproduction/modification of any information (including figures and tables) published elsewhere must be obtained by the authors/copyright holders before submission of the manuscript. Contributors (Authors) are responsible for any copyright fee involved.

3. SUBMISSION OF MANUSCRIPTS

Manuscripts should be uploaded via this online submission page. The online submission is most efficient method for submission of papers, as it enables rapid distribution of manuscripts and consequently speeds up the review procedure. It also enables authors to know the status of their own manuscripts by emailing us. Complete instructions for submitting a paper is available below.

Manuscript submission is a systematic procedure and little preparation is required beyond having all parts of your manuscript in a given format and a computer with an Internet connection and a Web browser. Full help and instructions are provided on-screen. As an author, you will be prompted for login and manuscript details as Field of Paper and then to upload your manuscript file(s) according to the instructions.

To avoid postal delays, all transaction is preferred by e-mail. A finished manuscript submission is confirmed by e-mail immediately and your paper enters the editorial process with no postal delays. When a conclusion is made about the publication of your paper by our Editorial Board, revisions can be submitted online with the same procedure, with an occasion to view and respond to all comments.

Complete support for both authors and co-author is provided.

4. MANUSCRIPT'S CATEGORY

Based on potential and nature, the manuscript can be categorized under the following heads:
Original research paper: Such papers are reports of high-level significant original research work.
Review papers: These are concise, significant but helpful and decisive topics for young researchers.
Research articles: These are handled with small investigation and applications
Research letters: The letters are small and concise comments on previously published matters.

5.STRUCTURE AND FORMAT OF MANUSCRIPT

The recommended size of original research paper is less than seven thousand words, review papers fewer than seven thousands words also. Preparation of research paper or how to write research paper, are major hurdle, while writing manuscript. The research articles and research letters should be fewer than three thousand words, the structure original research paper; sometime review paper should be as follows:

Papers: These are reports of significant research (typically less than 7000 words equivalent, including tables, figures, references), and comprise:
(a)Title should be relevant and commensurate with the theme of the paper.
(b) A brief Summary, "Abstract" (less than 150 words) containing the major results and conclusions.
(c) Up to ten keywords, that precisely identifies the paper's subject, purpose, and focus.
(d) An Introduction, giving necessary background excluding subheadings; objectives must be clearly declared.
(e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition; sources of information must be given and numerical methods must be specified by reference, unless non-standard.
(f) Results should be presented concisely, by well-designed tables and/or figures; the same data may not be used in both; suitable statistical data should be given. All data must be obtained with attention to numerical detail in the planning stage. As reproduced design has been recognized to be important to experiments for a considerable time, the Editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned un-refereed;
(g) Discussion should cover the implications and consequences, not just recapitulating the results; conclusions should be summarizing.
(h) Brief Acknowledgements.
(i) References in the proper form.

Authors should very cautiously consider the preparation of papers to ensure that they communicate efficiently. Papers are much more likely to be accepted, if they are cautiously designed and laid out, contain few or no errors, are summarizing, and be conventional to the approach and instructions. They will in addition, be published with much less delays than those that require much technical and editorial correction.

The Editorial Board reserves the right to make literary corrections and to make suggestions to improve briefness.

It is vital, that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

Format

Language: The language of publication is UK English. Authors, for whom English is a second language, must have their manuscript efficiently edited by an English-speaking person before submission to make sure that, the English is of high excellence. It is preferable, that manuscripts should be professionally edited.

Standard Usage, Abbreviations, and Units: Spelling and hyphenation should be conventional to The Concise Oxford English Dictionary. Statistics and measurements should at all times be given in figures, e.g. 16 min , except for when the number begins a sentence. When the number does not refer to a unit of measurement it should be spelt in full unless, it is 160 or greater.

Abbreviations supposed to be used carefully. The abbreviated name or expression is supposed to be cited in full at first usage, followed by the conventional abbreviation in parentheses.

Metric SI units are supposed to generally be used excluding where they conflict with current practice or are confusing. For illustration, 1.4 I rather than $1.4 \times 10-3 \mathrm{~m} 3$, or 4 mm somewhat than $4 \times 10-3 \mathrm{~m}$. Chemical formula and solutions must identify the form used, e.g. anhydrous or hydrated, and the concentration must be in clearly defined units. Common species names should be followed by underlines at the first mention. For following use the generic name should be constricted to a single letter, if it is clear.

Structure

All manuscripts submitted to Global Journals Inc. (US), ought to include:

Title: The title page must carry an instructive title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) wherever the work was carried out. The full postal address in addition with the email address of related author must be given. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining and indexing.

Abstract, used in Original Papers and Reviews:

Optimizing Abstract for Search Engines

Many researchers searching for information online will use search engines such as Google, Yahoo or similar. By optimizing your paper for search engines, you will amplify the chance of someone finding it. This in turn will make it more likely to be viewed and/or cited in a further work. Global Journals Inc. (US) have compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.

Key Words

A major linchpin in research work for the writing research paper is the keyword search, which one will employ to find both library and Internet resources.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy and planning a list of possible keywords and phrases to try.

Search engines for most searches, use Boolean searching, which is somewhat different from Internet searches. The Boolean search uses "operators," words (and, or, not, and near) that enable you to expand or narrow your affords. Tips for research paper while preparing research paper are very helpful guideline of research paper.

Choice of key words is first tool of tips to write research paper. Research paper writing is an art.A few tips for deciding as strategically as possible about keyword search:

- One should start brainstorming lists of possible keywords before even begin searching. Think about the most important concepts related to research work. Ask, "What words would a source have to include to be truly valuable in research paper?" Then consider synonyms for the important words.
- It may take the discovery of only one relevant paper to let steer in the right keyword direction because in most databases, the keywords under which a research paper is abstracted are listed with the paper.
- One should avoid outdated words.

Keywords are the key that opens a door to research work sources. Keyword searching is an art in which researcher's skills are bound to improve with experience and time.

Numerical Methods: Numerical methods used should be clear and, where appropriate, supported by references.

Acknowledgements: Please make these as concise as possible.

References

References follow the Harvard scheme of referencing. References in the text should cite the authors' names followed by the time of their publication, unless there are three or more authors when simply the first author's name is quoted followed by et al. unpublished work has to only be cited where necessary, and only in the text. Copies of references in press in other journals have to be supplied with submitted typescripts. It is necessary that all citations and references be carefully checked before submission, as mistakes or omissions will cause delays.

References to information on the World Wide Web can be given, but only if the information is available without charge to readers on an official site. Wikipedia and Similar websites are not allowed where anyone can change the information. Authors will be asked to make available electronic copies of the cited information for inclusion on the Global Journals Inc. (US) homepage at the judgment of the Editorial Board.

The Editorial Board and Global Journals Inc. (US) recommend that, citation of online-published papers and other material should be done via a DOI (digital object identifier). If an author cites anything, which does not have a DOI, they run the risk of the cited material not being noticeable.

The Editorial Board and Global Journals Inc. (US) recommend the use of a tool such as Reference Manager for reference management and formatting.

Tables, Figures and Figure Legends

Tables: Tables should be few in number, cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g. Table 4, a self-explanatory caption and be on a separate sheet. Vertical lines should not be used.

Figures: Figures are supposed to be submitted as separate files. Always take in a citation in the text for each figure using Arabic numbers, e.g. Fig. 4. Artwork must be submitted online in electronic form by e-mailing them.

Preparation of Electronic Figures for Publication
Even though low quality images are sufficient for review purposes, print publication requires high quality images to prevent the final product being blurred or fuzzy. Submit (or e-mail) EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Do not use pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings) in relation to the imitation size. Please give the data for figures in black and white or submit a Color Work Agreement Form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution (at final image size) ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs) : >350 dpi; figures containing both halftone and line images: $>650 \mathrm{dpi}$.

Color Charges: It is the rule of the Global Journals Inc. (US) for authors to pay the full cost for the reproduction of their color artwork. Hence, please note that, if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a color work agreement form before your paper can be published.

Figure Legends: Self-explanatory legends of all figures should be incorporated separately under the heading 'Legends to Figures'. In the full-text online edition of the journal, figure legends may possibly be truncated in abbreviated links to the full screen version. Therefore, the first 100 characters of any legend should notify the reader, about the key aspects of the figure.

6. AFTER ACCEPTANCE

Upon approval of a paper for publication, the manuscript will be forwarded to the dean, who is responsible for the publication of the Global Journals Inc. (US).

6.1 Proof Corrections

The corresponding author will receive an e-mail alert containing a link to a website or will be attached. A working e-mail address must therefore be provided for the related author.

Acrobat Reader will be required in order to read this file. This software can be downloaded
(Free of charge) from the following website:
www.adobe.com/products/acrobat/readstep2.html. This will facilitate the file to be opened, read on screen, and printed out in order for any corrections to be added. Further instructions will be sent with the proof.

Proofs must be returned to the dean at dean@globaljournals.org within three days of receipt.
As changes to proofs are costly, we inquire that you only correct typesetting errors. All illustrations are retained by the publisher. Please note that the authors are responsible for all statements made in their work, including changes made by the copy editor.

6.2 Early View of Global Journals Inc. (US) (Publication Prior to Print)

The Global Journals Inc. (US) are enclosed by our publishing's Early View service. Early View articles are complete full-text articles sent in advance of their publication. Early View articles are absolute and final. They have been completely reviewed, revised and edited for publication, and the authors' final corrections have been incorporated. Because they are in final form, no changes can be made after sending them. The nature of Early View articles means that they do not yet have volume, issue or page numbers, so Early View articles cannot be cited in the conventional way.

6.3 Author Services

Online production tracking is available for your article through Author Services. Author Services enables authors to track their article once it has been accepted - through the production process to publication online and in print. Authors can check the status of their articles online and choose to receive automated e-mails at key stages of production. The authors will receive an e-mail with a unique link that enables them to register and have their article automatically added to the system. Please ensure that a complete e-mail address is provided when submitting the manuscript.

6.4 Author Material Archive Policy

Please note that if not specifically requested, publisher will dispose off hardcopy \& electronic information submitted, after the two months of publication. If you require the return of any information submitted, please inform the Editorial Board or dean as soon as possible.

6.5 Offprint and Extra Copies

A PDF offprint of the online-published article will be provided free of charge to the related author, and may be distributed according to the Publisher's terms and conditions. Additional paper offprint may be ordered by emailing us at: editor@globaljournals.org .

Before start writing a good quality Computer Science Research Paper, let us first understand what is Computer Science Research Paper? So, Computer Science Research Paper is the paper which is written by professionals or scientists who are associated to Computer Science and Information Technology, or doing research study in these areas. If you are novel to this field then you can consult about this field from your supervisor or guide.

TECHNIQUES FOR WRITING A GOOD QUALITY RESEARCH PAPER:

1. Choosing the topic: In most cases, the topic is searched by the interest of author but it can be also suggested by the guides. You can have several topics and then you can judge that in which topic or subject you are finding yourself most comfortable. This can be done by asking several questions to yourself, like Will I be able to carry our search in this area? Will I find all necessary recourses to accomplish the search? Will I be able to find all information in this field area? If the answer of these types of questions will be "Yes" then you can choose that topic. In most of the cases, you may have to conduct the surveys and have to visit several places because this field is related to Computer Science and Information Technology. Also, you may have to do a lot of work to find all rise and falls regarding the various data of that subject. Sometimes, detailed information plays a vital role, instead of short information.
2. Evaluators are human: First thing to remember that evaluators are also human being. They are not only meant for rejecting a paper. They are here to evaluate your paper. So, present your Best.
3. Think Like Evaluators: If you are in a confusion or getting demotivated that your paper will be accepted by evaluators or not, then think and try to evaluate your paper like an Evaluator. Try to understand that what an evaluator wants in your research paper and automatically you will have your answer.
4. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.
5. Ask your Guides: If you are having any difficulty in your research, then do not hesitate to share your difficulty to your guide (if you have any). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work then ask the supervisor to help you with the alternative. He might also provide you the list of essential readings.
6. Use of computer is recommended: As you are doing research in the field of Computer Science, then this point is quite obvious.
7. Use right software: Always use good quality software packages. If you are not capable to judge good software then you can lose quality of your paper unknowingly. There are various software programs available to help you, which you can get through Internet.
8. Use the Internet for help: An excellent start for your paper can be by using the Google. It is an excellent search engine, where you can have your doubts resolved. You may also read some answers for the frequent question how to write my research paper or find model research paper. From the internet library you can download books. If you have all required books make important reading selecting and analyzing the specified information. Then put together research paper sketch out.
9. Use and get big pictures: Always use encyclopedias, Wikipedia to get pictures so that you can go into the depth.
10. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right! It is a good habit, which helps to not to lose your continuity. You should always use bookmarks while searching on Internet also, which will make your search easier.
11. Revise what you wrote: When you write anything, always read it, summarize it and then finalize it.
12. Make all efforts: Make all efforts to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in introduction, that what is the need of a particular research paper. Polish your work by good skill of writing and always give an evaluator, what he wants.
13. Have backups: When you are going to do any important thing like making research paper, you should always have backup copies of it either in your computer or in paper. This will help you to not to lose any of your important.
14. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. Using several and unnecessary diagrams will degrade the quality of your paper by creating "hotchpotch." So always, try to make and include those diagrams, which are made by your own to improve readability and understandability of your paper.
15. Use of direct quotes: When you do research relevant to literature, history or current affairs then use of quotes become essential but if study is relevant to science then use of quotes is not preferable.
16. Use proper verb tense: Use proper verb tenses in your paper. Use past tense, to present those events that happened. Use present tense to indicate events that are going on. Use future tense to indicate future happening events. Use of improper and wrong tenses will confuse the evaluator. Avoid the sentences that are incomplete.
17. Never use online paper: If you are getting any paper on Internet, then never use it as your research paper because it might be possible that evaluator has already seen it or maybe it is outdated version.
18. Pick a good study spot: To do your research studies always try to pick a spot, which is quiet. Every spot is not for studies. Spot that suits you choose it and proceed further.
19. Know what you know: Always try to know, what you know by making objectives. Else, you will be confused and cannot achieve your target.
20. Use good quality grammar: Always use a good quality grammar and use words that will throw positive impact on evaluator. Use of good quality grammar does not mean to use tough words, that for each word the evaluator has to go through dictionary. Do not start sentence with a conjunction. Do not fragment sentences. Eliminate one-word sentences. Ignore passive voice. Do not ever use a big word when a diminutive one would suffice. Verbs have to be in agreement with their subjects. Prepositions are not expressions to finish sentences with. It is incorrect to ever divide an infinitive. Avoid clichés like the disease. Also, always shun irritating alliteration. Use language that is simple and straight forward. put together a neat summary.
21. Arrangement of information: Each section of the main body should start with an opening sentence and there should be a changeover at the end of the section. Give only valid and powerful arguments to your topic. You may also maintain your arguments with records.
22. Never start in last minute: Always start at right time and give enough time to research work. Leaving everything to the last minute will degrade your paper and spoil your work.
23. Multitasking in research is not good: Doing several things at the same time proves bad habit in case of research activity. Research is an area, where everything has a particular time slot. Divide your research work in parts and do particular part in particular time slot.
24. Never copy others' work: Never copy others' work and give it your name because if evaluator has seen it anywhere you will be in trouble.
25. Take proper rest and food: No matter how many hours you spend for your research activity, if you are not taking care of your health then all your efforts will be in vain. For a quality research, study is must, and this can be done by taking proper rest and food.
26. Go for seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources.
27. Refresh your mind after intervals: Try to give rest to your mind by listening to soft music or by sleeping in intervals. This will also improve your memory.
28. Make colleagues: Always try to make colleagues. No matter how sharper or intelligent you are, if you make colleagues you can have several ideas, which will be helpful for your research.
29. Think technically: Always think technically. If anything happens, then search its reasons, its benefits, and demerits.
30. Think and then print: When you will go to print your paper, notice that tables are not be split, headings are not detached from their descriptions, and page sequence is maintained.
31. Adding unnecessary information: Do not add unnecessary information, like, I have used MS Excel to draw graph. Do not add irrelevant and inappropriate material. These all will create superfluous. Foreign terminology and phrases are not apropos. One should NEVER take a broad view. Analogy in script is like feathers on a snake. Not at all use a large word when a very small one would be sufficient. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grunt readers. Amplification is a billion times of inferior quality than sarcasm.
32. Never oversimplify everything: To add material in your research paper, never go for oversimplification. This will definitely irritate the evaluator. Be more or less specific. Also too, by no means, ever use rhythmic redundancies. Contractions aren't essential and shouldn't be there used. Comparisons are as terrible as clichés. Give up ampersands and abbreviations, and so on. Remove commas, that are, not necessary. Parenthetical words however should be together with this in commas. Understatement is all the time the complete best way to put onward earth-shaking thoughts. Give a detailed literary review.
33. Report concluded results: Use concluded results. From raw data, filter the results and then conclude your studies based on measurements and observations taken. Significant figures and appropriate number of decimal places should be used. Parenthetical remarks are prohibitive. Proofread carefully at final stage. In the end give outline to your arguments. Spot out perspectives of further study of this subject. Justify your conclusion by at the bottom of them with sufficient justifications and examples.
34. After conclusion: Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium though which your research is going to be in print to the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects in your research.

Informal Guidelines of Research Paper Writing

Key points to remember:

- Submit all work in its final form.
- Write your paper in the form, which is presented in the guidelines using the template.
- Please note the criterion for grading the final paper by peer-reviewers.

Final Points:

A purpose of organizing a research paper is to let people to interpret your effort selectively. The journal requires the following sections, submitted in the order listed, each section to start on a new page.

The introduction will be compiled from reference matter and will reflect the design processes or outline of basis that direct you to make study. As you will carry out the process of study, the method and process section will be constructed as like that. The result segment will show related statistics in nearly sequential order and will direct the reviewers next to the similar intellectual paths throughout the data that you took to carry out your study. The discussion section will provide understanding of the data and projections as to the implication of the results. The use of good quality references all through the paper will give the effort trustworthiness by representing an alertness of prior workings.

Writing a research paper is not an easy job no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record keeping are the only means to make straightforward the progression.

General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear

- Adhere to recommended page limits

Mistakes to evade

- Insertion a title at the foot of a page with the subsequent text on the next page
- Separating a table/chart or figure - impound each figure/table to a single page
- Submitting a manuscript with pages out of sequence

In every sections of your document

- Use standard writing style including articles ("a", "the," etc.)
- Keep on paying attention on the research topic of the paper
- Use paragraphs to split each significant point (excluding for the abstract)
- Align the primary line of each section
- Present your points in sound order
- Use present tense to report well accepted
- Use past tense to describe specific results
- Shun familiar wording, don't address the reviewer directly, and don't use slang, slang language, or superlatives
- Shun use of extra pictures - include only those figures essential to presenting results

Title Page:

Choose a revealing title. It should be short. It should not have non-standard acronyms or abbreviations. It should not exceed two printed lines. It should include the name(s) and address (es) of all authors.

Abstract

:

The summary should be two hundred words or less. It should briefly and clearly explain the key findings reported in the manuscript-must have precise statistics. It should not have abnormal acronyms or abbreviations. It should be logical in itself. Shun citing references at this point.

An abstract is a brief distinct paragraph summary of finished work or work in development. In a minute or less a reviewer can be taught the foundation behind the study, common approach to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Yet, use comprehensive sentences and do not let go readability for briefness. You can maintain it succinct by phrasing sentences so that they provide more than lone rationale. The author can at this moment go straight to shortening the outcome. Sum up the study, with the subsequent elements in any summary. Try to maintain the initial two items to no more than one ruling each.

- Reason of the study - theory, overall issue, purpose
- Fundamental goal
- To the point depiction of the research
- Consequences, including definite statistics - if the consequences are quantitative in nature, account quantitative data; results of any numerical analysis should be reported
- Significant conclusions or questions that track from the research(es)

Approach:

- Single section, and succinct
- As a outline of job done, it is always written in past tense
- A conceptual should situate on its own, and not submit to any other part of the paper such as a form or table
- Center on shortening results - bound background information to a verdict or two, if completely necessary
- What you account in an conceptual must be regular with what you reported in the manuscript
- Exact spelling, clearness of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else

Introduction:

The Introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable to comprehend and calculate the purpose of your study without having to submit to other works. The basis for the study should be offered. Give most important references but shun difficult to make a comprehensive appraisal of the topic. In the introduction, describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will have no attention in your result. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here. Following approach can create a valuable beginning:

- Explain the value (significance) of the study
- Shield the model - why did you employ this particular system or method? What is its compensation? You strength remark on its appropriateness from a abstract point of vision as well as point out sensible reasons for using it.
- Present a justification. Status your particular theory (es) or aim(s), and describe the logic that led you to choose them.
- Very for a short time explain the tentative propose and how it skilled the declared objectives.

Approach:

- Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done.
- Sort out your thoughts; manufacture one key point with every section. If you make the four points listed above, you will need a least of four paragraphs.
- Present surroundings information only as desirable in order hold up a situation. The reviewer does not desire to read the whole thing you know about a topic.
- Shape the theory/purpose specifically - do not take a broad view.
- As always, give awareness to spelling, simplicity and correctness of sentences and phrases.

Procedures (Methods and Materials):

This part is supposed to be the easiest to carve if you have good skills. A sound written Procedures segment allows a capable scientist to replacement your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt for the least amount of information that would permit another capable scientist to spare your outcome but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section. When a technique is used that has been well described in another object, mention the specific item describing a way but draw the basic principle while stating the situation. The purpose is to text all particular resources and broad procedures, so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step by step report of the whole thing you did, nor is a methods section a set of orders.

Materials:

- Explain materials individually only if the study is so complex that it saves liberty this way.
- Embrace particular materials, and any tools or provisions that are not frequently found in laboratories.
- Do not take in frequently found.
- If use of a definite type of tools.
- Materials may be reported in a part section or else they may be recognized along with your measures.

Methods:

- Report the method (not particulars of each process that engaged the same methodology)
- Describe the method entirely
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures
- Simplify - details how procedures were completed not how they were exclusively performed on a particular day.
- If well known procedures were used, account the procedure by name, possibly with reference, and that's all.

Approach:

- It is embarrassed or not possible to use vigorous voice when documenting methods with no using first person, which would focus the reviewer's interest on the researcher rather than the job. As a result when script up the methods most authors use third person passive voice.
- Use standard style in this and in every other part of the paper - avoid familiar lists, and use full sentences.

What to keep away from

- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings - save it for the argument.
- Leave out information that is immaterial to a third party.

Results:

The principle of a results segment is to present and demonstrate your conclusion. Create this part a entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Carry on to be to the point, by means of statistics and tables, if suitable, to present consequences most efficiently.You must obviously differentiate material that would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matter should not be submitted at all except requested by the instructor.

- Sum up your conclusion in text and demonstrate them, if suitable, with figures and tables.
- In manuscript, explain each of your consequences, point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation an exacting study.
- Explain results of control experiments and comprise remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or in manuscript form. What to stay away from
- Do not discuss or infer your outcome, report surroundings information, or try to explain anything.
- Not at all, take in raw data or intermediate calculations in a research manuscript.
- Do not present the similar data more than once.
- Manuscript should complement any figures or tables, not duplicate the identical information.
- Never confuse figures with tables - there is a difference.

Approach

- As forever, use past tense when you submit to your results, and put the whole thing in a reasonable order.
- Put figures and tables, appropriately numbered, in order at the end of the report
- If you desire, you may place your figures and tables properly within the text of your results part.

Figures and tables

- If you put figures and tables at the end of the details, make certain that they are visibly distinguished from any attach appendix materials, such as raw facts
- Despite of position, each figure must be numbered one after the other and complete with subtitle
- In spite of position, each table must be titled, numbered one after the other and complete with heading
- All figure and table must be adequately complete that it could situate on its own, divide from text

Discussion:
The Discussion is expected the trickiest segment to write and describe. A lot of papers submitted for journal are discarded based on problems with the Discussion. There is no head of state for how long a argument should be. Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implication of the study. The purpose here is to offer an understanding of your results and hold up for all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of result should be visibly described. Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved with prospect, and let it drop at that.

- Make a decision if each premise is supported, discarded, or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."
- Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work
- You may propose future guidelines, such as how the experiment might be personalized to accomplish a new idea.
- Give details all of your remarks as much as possible, focus on mechanisms.
- Make a decision if the tentative design sufficiently addressed the theory, and whether or not it was correctly restricted.
- Try to present substitute explanations if sensible alternatives be present.
- One research will not counter an overall question, so maintain the large picture in mind, where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

Approach:

- When you refer to information, differentiate data generated by your own studies from available information
- Submit to work done by specific persons (including you) in past tense.
- Submit to generally acknowledged facts and main beliefs in present tense.

Administration Rules Listed Before Submitting Your Research Paper to Global Journals Inc. (US)

Please carefully note down following rules and regulation before submitting your Research Paper to Global Journals Inc. (US):

Segment Draft and Final Research Paper: You have to strictly follow the template of research paper. If it is not done your paper may get rejected.

- The major constraint is that you must independently make all content, tables, graphs, and facts that are offered in the paper. You must write each part of the paper wholly on your own. The Peer-reviewers need to identify your own perceptive of the concepts in your own terms. NEVER extract straight from any foundation, and never rephrase someone else's analysis.
- Do not give permission to anyone else to "PROOFREAD" your manuscript.
- Methods to avoid Plagiarism is applied by us on every paper, if found guilty, you will be blacklisted by all of our collaborated research groups, your institution will be informed for this and strict legal actions will be taken immediately.)
- To guard yourself and others from possible illegal use please do not permit anyone right to use to your paper and files.

Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals Inc. (US).

Topics	Grades		
	A-B	C-D	E-F
Abstract	Clear and concise with appropriate content, Correct format. 200 words or below	Unclear summary and no specific data, Incorrect form	No specific data with ambiguous information
		Above 200 words	Above 250 words
Introduction	Containing all background details with clear goal and appropriate details, flow specification, no grammar and spelling mistake, well organized sentence and paragraph, reference cited	Unclear and confusing data, appropriate format, grammar and spelling errors with unorganized matter	Out of place depth and content, hazy format
Methods and Procedures	Clear and to the point with well arranged paragraph, precision and accuracy of facts and figures, well organized subheads	Difficult to comprehend with embarrassed text, too much explanation but completed	Incorrect and unorganized structure with hazy meaning
Result	Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake	Complete and embarrassed text, difficult to comprehend	Irregular format with wrong facts and figures
Discussion	Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph reference cited	Wordy, unclear conclusion, spurious	Conclusion is not cited, unorganized, difficult to comprehend
References	Complete and correct format, well organized	Beside the point, Incomplete	Wrong format and structuring

A

Aforementioned - 33
Approximate • 96, 99, 101, 103

B

Bielecki • 79, 82
Boundedness • 84, 98

C

Characterizations • 108
Chaurasia • 16
Coefficients • 1, 7, 8, 63
Corresponding • 15, 64, 66, 114
\bar{F}

Flourishing • 18
Fluctuations • 79, 105
Functionspace • 18

Generalized • 1, 3, 16, 18, 26, 82

H

Heteroscedasticity • 66
Historically • 18
Homeowners • 62, 63, 64, 66, 67, 68
Hypergeometric • 47

I

Isomorphic - 115, 116, I

L

Likelihood • 64
Liouville • 1

Maximum • 33, 64, 103
Modulation 24
Multipliers • 108, 110, 111, 112, 114, 116, I, II
N

Numeric • 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 101, 103, 105, 107

P

Pathway • 1, 3, 4, 5, 7, 9, 16
Polynomials - 1, 3, 5, 7, 9, 16

S

Semigroups • 79
Starlikeness - 33, 45
Stochastic • 64

T

Terminology • 18
Topological • 110, 116

U

Uniqueness • 18, 79, 82
Unwholesome • 63
Z

Zemanian • 18

Global Journal of Science Frontier Research

Visit us on the Web at www.GlobalJournals.org | www.JournalofScience.org or email us at helpdesk@globaljournals.org

[^0]: Authors a o: K.J. Somaiya Institute of Management Studies \& Research Mumbai, India.
 E-mails : jainrinku5@gmail.com, deshmukh_k123@yahoo.com

[^1]: Author : Department of Mathematics \& Statistics, YeshwantMahavidyalaya, Nanded-431602 (India). E-mail : chavhan_satish49@yahoo.in

[^2]: Author a : Department of Mathematics, L. N. Government College, Ponneri, Chennai - 601 204, Tamilnadu, India.
 E-mail : jeyaramanmp@yahoo.co.in
 Author σ : Department of Mathematics, Easwari Engineering College, Chennai - 600 089, Tamilnadu, India.
 E-mail : tksuresh73@yahoo.com
 Author ρ : Department of Mathematics, Jawaharlal Nehru Technological University, Anantapur - 515 002, Andhra Pradesh, India.
 E-mail : keshava e@rediffmail.com

[^3]: Author a : P.D.M College of Engineering, Bahadurgarh, Haryana, India. E-mails : sludn@yahoo.com, vs/udn@gmail.com Author σ : International Scientific Research and Welfare Organization, New Delhi, India. E-mail : mpchaudhary 2000@yahoo.com

[^4]: © 2013. O.Y. Halid \& F.I. Akinnitire. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^5]: Author a : Department of Mathematical Sciences, Ekiti State University Ado-Ekiti, Ekiti State, Nigeria. E-mail : blitonine@yahoo.com Author σ : Resourcery Plc, Victoria Island, Lagos, Nigeria. E-mail : fola.akinnitire@gmail.com

[^6]: © 2013. Dr. Umana Thompson Itaketo. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^7]: Author : Department of Electrical/Electronic \& Computer Engineering Faculty of Engineering University of Uyo, Uyo Nigeria. E-mail : engr1easy@yahoo.com

[^8]: Author a : M. A. ABDOU, Mathematics Department, Faculty of Education, Alexandria University, Egypt.
 E-mail : abdella_777@yahoo.com
 Author $:$ M. M. EL-KOJOK, Mathematics Department, College of Sciences and Arts, Qassim University, Saudi Arabia. E-mail : maha_mko@hotmail.com
 Author p: S. A. RAAD, Mathematics Department, College of Applied Sciences, Umm Al-Qura University, Saudi Arabia.
 E-mail : saraad @uqu.edu.sa

[^9]: Author a : Department of Mathematics, University of Lomé, BP 1515 Lomé, Togo. E-mail : kofassiam@yahoo.fr
 Author σ : Department of Mathematics, University of Lomé, Togo and International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair), University of Abomey-Calavi, 072 BP 50 Cotonou, Rep. of Benin. E-mail : mensahyaogan2@yahoo.fr Author p : Department of Mathematics, University of Lomé, Togo. E-mail : jawussi@yahoo.fr

