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I.

 

Introduction

 

In the last three decades several authors have made significant contribution in the 
field of fractional calculus. Fractional calculus has been applied to almost every field of 
science, engineering, and Mathematics. The most popular one, we are based on here, is 
the Riemann-Liouville

 

fractional integral operator [7]. The Pathway fractional integral 
operator, as an extension of Riemann-Liouville fractional integral operator, introduced by 
Nair

 

[8] is defined in the following manner

 

(1.1))(
)1(

0
)1()1(1))(),(

0( dttf
a

x

x
taxxfP ∫









−

−




 −

−=+

α
α

η
αηαη

 

Where f(x) ∈

 

L

 

(a,b), η

 

∈

 

ℂ, Re(η)

 

0, a   0 and ‘pathway parameter

   

The Pathway model is introduced by Mathai [1] and studied further by Mathai 

and Haubold[2], [3]. For real scalar α, the Pathway model for scalar random variables is 
represented by the following probability density function
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 0, where c is the normalizing constant 

and α is called the pathway parameter. For real α, the normalizing constant is as follows: 

’ α < 1. >  >
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(1.3)

             

(1.4) 

           

(1.5) 

For α

 

 1, it is a finite range density with 



 −− δα xa )1(1

 

0 and (1.2) remains in 

the extended generalized type-1 beta family. The Pathway density in (1.2), for α

 

  1, 
includes the extended type-1 beta density, the triangular density, the uniform density and 
many other p.d.f.

 

For α

 

 1, we have
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 −− δα xa )1(1   0, γ   0, which is extended generalized type-2 

beta model for real x. t includes the type-2

 

beta density, the F density, the Student-t 
density, and Cauchy density and many more.

 

Here, we consider only the case of Pathway parameter α

 

  1. For 1→α

 

both (1.2) 

and (1.6) take the exponential form, since 
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This includes the generalized Gamma-, the Weibull-, the Chi-Square the Laplace 
and other related densities. For more details on the Pathway model, the reader is referred 
to the recent papers of [2], [3].
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II. Pathway Integral Operator of An א - Function

The Aleph ℵ-function introduced by Sudland et al. [6] which is defined as a 
contour integral of Mellin Barnes Type:
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The integration path ∈= ∞ γγ ,i R extends from γ -i∞

 

to

 

γ +i∞, and is such that 

the poles, assumed to be simple, of njsAa jj ,1),1( =−−Γ
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The empty product in (1.3) is interpreted as unity. The existence conditions for the 
defining integral (1.1) are given below:
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The general polynomials of R variables given by Srivastava [5] defined and represented as: 
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Where mi

 

is an arbitrary positive integer and coefficients [ ]RsRnsnA ;...;1,1

 

are arbitrary 

constants, real or complex.                                                                                    
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 >

Proof: The Theorem 1 can be evaluated by using the definitions (1.1), (2.1) and (2.7) then 
by interchange the order of integrations and summations (which is permissible under the 
conditions stated above), evaluate the inner integral by making use of beta function 
formula, we arrive at the desired result.

Theorem2. Let (η, u, u1,…,uR, β ∈ ℂ), Re(,1,0
1

1Re <>







−
+ α

α
η η, u, u1,…,uR, β  0 and 

m is an arbitrary positive integer and coefficients [ ]RsRnsnA ;...;1,1 are arbitrary constants, 

real or complex, then 

) ̄ >

Notes
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qpH ,1)],[(,...,,1),(,]);...1(1[

]);...1([,,1)],[(,...,,1),()1(
1,

,1,1
β

ββα

β

 

,

 

Where   



xnm

qpH ,
,, is  the Fox’s H-

 

Function [4].                                                (2.9)

 

Proof:    The result in (2.2) can be derived from Theorem 1 by taking τ1= …

 

= τr

 

=1 and

 

r = 1. We have the required result.         

 

                                                                                                                          

 

Theorem3.  Suppose that the conditions corresponding to Theorem 2 are satisfied. Then
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Ref.

[ ] 
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+
++ℵ pinjAjajnjAjasiuu

siuuqimjBjbjmjBjba

xnm
riiqip ,1)],([,...,,1),(,]);11[

];1[,,1)],([,...,,1),()1(

1,
;,1,1

τβ
βτβα

β

τ

,   

where Hn(x)  is the Hermite polynomials.                                                         (2.10)



 

  

 

III.

 

Special

 

Cases

 

1.

 

Letting R =1 in the result (2.9), we get the result recently obtained by Chaurasia 

and Ghiya [9] for ρ, ρ1,

 

and ρ2 →

 

0.

 

2.

 

Letting ni’→

 

0, i’

 

= 1,…, R, in the result (2.9), we get the result obtained by Nair 
in [8].
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 I.

 

Introduction

 Integral transforms have been successfully used for almost two

 

centuries is solving 
many problems in mathematical physical, applied mathematics and engineering science.

 
Historically origin of the integral transform is P.S. Laplace and J.Fourier. Laplace 
transform is useful, for evaluating certain definite integral [2].

 
The definition of canonical sine-sine transform as follows [1].

 

 In the present paper, 2D sine-sine transform is extended in the distribution sense. 
The plan of the paper is as follows. The definitions are given in section 2. In section 3, 
testing functionspace is defined by Galfand-shilovtechnique [3],[4].Section 4 some result on 
countable union space are proved. In section5, inversion and uniqueness theorem are 
stated. In section 6, modulations theorems are given. The notations and terminology as 
per zemanian

 

[5],[6].

 II.

 

Definition Two Dimensional Canonical

 

Sine-Sine Transform

 Let ( )'E R R×

 

denote the dual of ( )E R R× . Therefore the generalized canonical sine 

transform of ( ) ( )',f t x E R R∈ ×

 

is defined as

 
( ){ }( )

( ) ( )
2 2 2

2 2 2 2

2 , ,

1 1      1 sin sin ,
2 2

i d i d i a i as w t x
b b b b

DCST f t x s w

s we e t x e e f t x dxdt
b bib ibπ π

2       ∞ ∞       
       

−∞ −∞

   = − ∫ ∫    
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1 2

2 , , , , , ,s sDCSST f t x s w f t x K t x K x w



Where ( ) ( ){ } ( ) ( )
1 2 1 2,

sup
, , , ,k l

E k s s t x s sK t s K x w t D D K t s K x w
x

γ = −∞ < < ∞ < ∞
−∞ < < ∞

 

III. Different S-Type Testing Function Spaces 

In this section we have defined s-type testing function spaces by imposing 
conditions not only on the decreases of the fundamental functions at infinity, but also on 

the growth of their derivatives as the order of derivative increases. Clearly, ,a bSS  space will 
be extension of testing function space D, so that these spaces have been successfully, used 
in pseudo differential operator theory. 

a) The space , :a bSSγ
 

It is given by 

( ) ( ),
, ,

1

sup ,
: / , .

l k p
t xa b l l

l k p kp

t D D t x
SS E t x C A l

I
γ

γ

φ
φ φ σ φ+

  = ∈ = ≤ 
  

(3.1)
 

The constant Ck,p

 
and A depend on φ . 

b)
 
The space , :abSS β  

, ,a bSS β this space is given by
 

 
( ) ( ){ }, ,

, , ,. / , sup ,a b l k p k k
l k p t x l pE t x t D D t x C B kβ βφ φ ρ φ φ+= ∈ = ≤ (3.2)

 

The constants ,l pC
 
and B depend on φ . 

c)
 

The space , ,a bSS β
γ   

This space is formed by combining the condition (3.1) and (3.2)

 

( ) ( ){ }1

, , sup ,
, ,: / , ,a b l k p l l k k

l k p I t xE t x t D D t x C A l B kβ γ β
γ φ φ ξ φ φ+= ∈ = ≤ (3.3)

 

, , 0,1, 2............l k p =

 

Where A,B,C depend on φ . 

d)

 
The space

 
, ,
,

a b
mSS β

γ

 

It is defined as,

 

 

( ) ( ) ( ){ }1

, sup
, , , , ,: / , , la b l k p l
m l k p I t x k pE t x t D D t x C m l γ

γ µφ φ σ φ φ µ+= ∈ = ≤ + (3.4)

 

For any 0>µ

 

where m is the constant, depending on the functionφ . 

e)

 

The space , , ,a b nSS β

 

This space is given by

 

( ) ( ) ( ){ }1

, , , sup
, , , ,: / , , ka b n l k p k

l k p I t x l pE t x t D D t x C n kβ β
δφ φ ρ φ φ δ+= ∈ = ≤ + (3.5)

 

For any 0δ >  where n the constant is depends on the functionφ .  
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SS

SS

SS

SS

Notes



 

This

 

space is defined by combining the conditions in (3.4) and (3.5).

 

( ) ( ){
( ) ( ) }

1

, , , sup
, , ,: / , ,

                                   .     

a b n l k p
m l k p I t x

l k l k

E t x t D D t x

C m n l k

β
γ

γ β
µδ

φ φ ξ φ φ

µ δ

+= ∈ =

≤ + +
(3.6)

 

IV.

 

Results on Countable Unions-Type
 
Space

 

Proposition 4.1:

 

If 1 2m m< then

 

1 2

, ,
, , .a b a b
m mSS SSγ γ⊂

 

The topology of  
1

,
,

a b
mSSγ

 

is equivalent to the 

topology induced on 
1

,
,

a b
mSSγ

 

by 
2

,
,

a b
mSSγ

 

1 2 1

, , ,
, , ,.   ~ /a b a b a b
m m mi e T T SSγ γ γ

 

Proof: For 
1

,
,

a b
mSSγφ ∈

 

and  ( ) ( ), , , 1
l l

l k p kC m l γ
µδ φ µ≤ +

 

 

( ), , 2
l l

k pC m l γ
µ µ≤ +

 

Thus,

 

, 1 , 2

, ,a b a b
m mSS ssγ γ⊂

 

The

 

space  ,
,

a bSSγ

 

can be expressed as union of countable normed spaces. 

 

Proposition 4.2: 
1

, ,
,1

a b a b
mi

SS U SSγ γ

∞

=
=

 

and if the space ,a bSSγ

 

is equipped with strict inductive 

limit topology , ,a b mS defined by injective map from 
1

,
,

a b
mSSγ

 

to

 

,a bSSγ

 

then the sequence { }nφ

 

in

 

,a bSSγ

 

converges to zero.

 

Proof:  we show that    
1

, ,
.1

a b a b
mi

SS U SSγ γ

∞

=
=

 

Clearly 
1

, ,
.1

a b a b
kmi

U SS SSγ

∞

=
⊂

 

for proving the other inclusion, let ,a bSSγφ ∈

 

then 

( )( ) ( )
1

sup
, , , ,l k p

l k p t x nIt x t D D t xδ φ φ=

 

, ,l l
k pC A l γ≤

 

                                       

 

(4.1)

 

where A is some positive constant, choose an integer Am m= and 0µ =

 

such that 

( ), , .ll
k p k pC A C m µ≤ +

  
Then (4.1) we get 

, 1

,a b
mSSγφ ∈

 

implying that 
1

, ,
,1

a b a b
mi

SS U SSγ γ

∞

=
=

 

Proposition 4.3:

 

If 1 2γ γ<

 

and 1 2β β<
 
then 1

1

, ,a bSS β
γ

2

2

, ,a bSS β
γ⊂

 

and the topology of  , , i

i

a bSS β
γ

 

is
 

equivalent to the topology induced on 1

1

, ,a bSS β
γ by , 2

2

,a bSS β
γ .

 

Proof: Let , 1

1

,a bSS β
γφ ∈
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f) The space , , ,
,

a b n
m

β
γ

  

SS

SS

-( ) ( )
1

sup
, , ,l k p

l k p t xI t D D t xξ φ φ=

© 2013   Global Journals Inc.  (US)

Notes



Is equivalent to the topology 2 2

2 2

, , , ,/a b a bT SSβ β
γ γ

 

It is clear from the definition of topologies of these spaces.

 

Proposition 4.4: , ,,

1
i

i
i i

a ba bSS U SS β
γγ β

∞

=
=

 

and if the space ,a bSS

 

is equipped with the strict ,a bSS

inductive limit topology defined by the injective maps from , , i

i

a bSS β
γ

 

to

 

,a bSS

 

then the 

sequence { }nφ

 

in

 

,a bSS

 

converges to zero iff

 

{ }nφ

 

is contained in some , , i

i

a bSS β
γ

 

and converges 

to zero. 

 

Proof: ,, ,,

1
i

i
i i

a ba bSS U SS β
γγ β

∞

=
=

 

Clearly                           , ,

1
i

i
i i

a b aU SS SSβ
γγ β

∞

=
⊂

 

For proving other inclusion, let ( ) ,, a bt x SSφ ∈

 

then  

( ) ( )
1

sup
, , , ,l k p

l k p t xI t D D t xη φ φ=

 

is bounded by some number. We can choose integers  andm mγ β

 

such that 

 

( ) , , , ,
, , ,l l k m k m

l k p C A l B kγ βη φ ≤

 

, , i

i

a bSS β
γφ∴ ∈ for some integer

 

 andi iγ β

 

Hence  , ,,

1
i

i
i i

a ba bSS U SS β
γγ β

∞

=
⊂     Thus

 

, ,,

1
i

i
i i

a ba bSS U SS β
γγ β

∞

=
=

 

V.   Inversion and Uniqueness Theorems

 
 

Theorem 5.1: (Inversion) If ( ){ }( )2 , ,DCSST f t x s w

 

is canonical sine-sine transform of ( ),f t x

 

then inverse of transform is given by

 

( )

( ){ }( )
2 2 2 2

2 2 2 2

,

2 2 sin sin 2 , ,
i a i a i d i dt x s w

b b b b

f t x

i i s we e t x e e DCSST f t x s w dsdw
b b b b
π π − − − −       ∞ ∞       

       

−∞ −∞

   = − ∫ ∫    
   

 

Theorem 5.2: (Uniqueness) If{ }2 ( , ) ( , )DCSST f t x s w

 

and { }2 ( , ) ( , )DCSST g t x s w

 

are 2D canonical 

sine-sine transform and

 

sup   and a bpf s s⊂ also sup a bp g s and s⊂
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1 1

2 2,.        where , , 0,1, 2,3

kll k

pll p

CA l B k

CA l B k l k p

βγ

βγ

≤

≤ =

Hence  2

2

, , .a bSS β
γφ ∈

   
Consequently, 1 2

1 2

, , , , .a b a bSS SSβ β
γ γ⊂ The topology of 1

1

, ,a bSS β
γ

Where { }: , , 0n
as t t R t a a= ∈ ≤ > and  { }: , , 0n

bs x x R x b b= ∈ ≤ >

If  { } { }2 ( , ) ( , ) 2 ( , ) ( , )DCSST f t x s w DCSST g t x s w=

then, f = g in the sense of equality in '( )D I

Notes



{ }
2 2 2 2

2 2 2 22 2 sin sin 2 ( , ) ( , ) ,
i a i a i d i dt x s w

b b b b

f g

i i s we e e e t x DCSST f t x s w dsdw
b b b b
π π− − − −       ∞ ∞

       
       

−∞ −∞

− =

    −          
∫ ∫

{ }
2 2

2 22 2 sin sin 2 ( , ) ( , ) ,
i d i ds w

b bi i s we e t x DCSST g t x s w dsdw
b b b b
π π − −   ∞ ∞

   
   

−∞ −∞

     −          
∫ ∫

 

( ){ } ( ){ }

2 2 2 2

2 2 2 22 2 sin sin

2 , 2 ,

i a i a i d i dt x s s
b b b bi i s wf g e e e e x x

b b b b

DCSST f t x DCSSTg t x dsdw

π π        ∞− − − −       
       

−∞

   ∴ − = −    
   

 − 

∫
 

Thus

 

f = g

 

in

 

'( )D I

 

VI.    Modulation Theorems for Canonical Sine-Sine Transform

 

Theorem 6.1:  If ( ){ }( )2 , ,DCSST f t x s w

 

is canonical sine-sine transform of  ( ),f t x

 

then 

( ){ }( )2 cos , ,DCSST t f t x s wµ

( )
( ) ( ){ }( ) ( ) ( ){ }( )

2

2
2 , , 2 , ,

2

i bd
i s d i sde e DCSST f t x s b w e DCSST f t x s b w

µ
µ µµ µ

−

− = + + − 

 

Proof:

 

Definition of two dimensional canonical sine-sine transform ( ),f t x

 

is

 

( ){ }( )

( )
2 2 2 2

2 2 2 2

2 , ,

1 1      sin sin ,
2 2

i d i d i a i as w t x
b b b b

DCSST f t x s w

s we e t x e e f t x dxdt
b bib ibπ π

       
∞ ∞       

       

−∞ −∞
∫ ∫

   = −    
   

 

( ){ }( )

( )
2 2 2 2

2 2 2 2

2 cos , ,

1 1    sin sin cos ,
2 2

i d i d i a i as w t x
b b b b

DCSST t f t x s w

s we e t x t e e f t x dxdt
b bib ib

µ

µ
π π

       
∞ ∞       

       

−∞ −∞
∫ ∫

   = −    
   

 

( )
2 2 2 2

2 2 2 21 1 1 sin sin ,
2 2 2

i d i d i a i as w t x
b b b bs b we e t x e e f t x dxdt

b bib ib
µ

π π

       
∞ ∞       

       

−∞ −∞
∫ ∫

 +   = −     
   

 

( )
2 2 2 2

2 2 2 21 1 sin sin ,
2 2

i d i d i a i as w t x
b b b bs b we e t x e e f t x dxdt

b bib ib
µ

π π

       
∞ ∞       

       

−∞ −∞
∫ ∫

−   +    
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Proof: By inversion theorem

( ){ }( )2 cos , ,DCSST t f t x s wµ

( )
( ) ( ){ }( ) ( ) ( ){ }( )

2

2
2 , , 2 , ,

2

i bd
i s d i sde e DCSST f t x s b w e DCSST f t x s b w

µ
µ µµ µ

−

− = + + − 

( ) ( ) ( ){ }( ) ( ) ( ) ( ){ }( )
2 2

2 21 2 , , 2 , ,
2

i iu bd bdi s d i s de e DCSST f t x s ub w e e DCSST f t x s ub w
µµ µ

− −
− 

= + + − 
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Theorem 6.2 If ( ){ }( )2 , ,DCSST f t x s w  is canonical sine-sine transform of  ( ),f t x

 

then 

( ){ }( )2 sin , ,DCSST t f t x s wµ =

( )
( ) ( ){ }( ) ( ) ( ){ }( )

2

2
2 , , 2 , ,

2

i bd
i s d i sdie e DCCST f t x s b w e DCCST f t x s b w

µ
µ µµ µ

−

− + − −   

Theorem 6.3 If ( ){ }( )2 , ,DCSST f t x s w is canonical sine-sine transform of  ( ),f t x

 

then 

( ){ }( )2 , ,i tDCSSTe f t x s wµ

 
( )

( ) ( ){ }( ) ( ){ }( )( )
( ) ( ){ }( ) ( ){ }( )( )

2

2
2 , , 2 , ,

2

               2 , , 2 , ,

i bd
i s d

i s d

e e DCSST f t x s b w DCCST f t x s b w

e DCSST f t x s b w DCCST f t x s b w

µ
µ

µ

µ µ

µ µ

−

−= + − +

+ − + − 

 

Proof:  Since ( ){ }( ) ( ) ( ){ }( )2 , , 2 cos sin , ,i tDCSST e f t x s w DCSST t i t f t x s wµ µ µ= +  

( ){ }( ) ( ){ }( ) ( ){ }( )2 , , 2 cos , , 2 sin , ,i tDCSST e f t x s w DCSST t f t x s w i DCSST t f t x s wµ µ µ= +
 

( )
( ) ( ){ }( ) ( ) ( ){ }( )

2

2
2 , , 2 , ,

2

i bd
i s d i s de e DCCST f t x s b w e DCCST f t x s b w

µ
µ µµ µ

−

− − + − −   

( )
( ) ( ){ }( ) ( ) ( ){ }( )

( ) ( ){ }( ) ( ) ( ){ }( )

2

2
2 , , 2 , ,

2
                

2 , , 2 , ,

i bd
i s d i s d

i s d i s d

e e DCSST f t x s b w e DCSST f t x s b w

e DCCST f t x s b w e DCSCT f t x s b w

µ
µ µ

µ µ

µ µ

µ µ

−

−

−

 + + −

− + + − 

 

( ){ }( )2 , ,i tDCSSTe f t x s wµ

( )
( ) ( ){ }( ) ( ){ }( )( )

( ) ( ){ }( ) ( ){ }( )( )

2

2
2 , , 2 , ,

2

               
    2 , , 2 , ,

i bd
i s d

i s d

e e DCSST f t x s b w DCCST f t x s b w

e DCSST f t x s b w DCCST f t x s b w

µ
µ

µ

µ µ

µ µ

−

−= + − +

+ − + − 

 

VII.   Conclusion
 

In this paper 2D canonical sine–sine transform is generalized in the distributional 
sense.

 
Uniqueness theorem is proved and various testing functions specs defined by using

 

Gelfand-shilov technique, topology properties are discussed.
 

And lastly modulation 
theorems are proved.  
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Let A(p) denote the class of functions of the form

f(z) = zp +
∞
∑

n=1

ap+nzp+n (p ∈ N = {1, 2, . . . }),

which are analytic and p-valent in the open unit disk U := {z : |z| < 1}. Let S be
the class of analytic and univalent functions in U. We note that A(1) ≡ S.

A function f ∈ A(p) is said to be in the class S∗(p, α) of p-valently starlike of
order α in U if and only if it satisfies the inequality

Re

{

zf ′(z)

f(z)

}

> α (z ∈ U; 0 ≤ α < p).

On the other hand, a function f ∈ A(p) is said to be in the class K(p, α) of
p-valently convex of order α in U if and only if it satisfies the inequality

Re

{

1 +
zf ′′(z)

f ′(z)

}

> α (z ∈ U; 0 ≤ α < p).

In particular, we write S∗(1, 0) := S∗, K(1, 0) := K, where S∗ and K are the usual
subclass of A, consisting of functions which are starlike and convex, respectively
(see [1, 2]).

© 2013   Global Journals Inc.  (US)
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The object of the present paper is to investigate various properties of the following
classes of analytic and p-valent function defined as follows.

A function f ∈ A(p) is said to be a member of the class B(γ, β, p, α) if and only
if it satisfies the inequality

∣

∣

∣

∣

(

βγz3f ′′′(z) + (2βγ + β − γ)z2f ′′(z) + zf ′(z)

βγz2f ′′(z) + (β − γ)zf ′(z) + (1 − β + γ)f(z)

)

− p

∣

∣

∣

∣

< p − α (1)

(0 ≤ γ ≤ β ≤ 1; 0 ≤ α < p; p ∈ N),

for some α, for all z ∈ U.

Note that the condition (1) implies that

Re

{

βγz3f ′′′(z) + (2βγ + β − γ)z2f ′′(z) + zf ′(z)

βγz2f ′′(z) + (β − γ)zf ′(z) + (1 − β + γ)f(z)

}

> α,

(0 ≤ γ ≤ β ≤ 1; 0 ≤ α < p; p ∈ N).

We note that B(0, β, p, α) ≡ Tβ(p; α) is the class studied by Irmak and Raina in
[3]. The important subclasses such as S∗(p, α), K(p, α), S∗ and K are seen to be
easily identifiable with the aforesaid class.

In recent times, Irmak et al. [3] and Prajapat [9] investigated certain subclasses
of multivalent analytic functions and obtained some sufficient conditions for these
classes. In this paper, motivated by the aforementioned works, we obtained suf-
ficient conditions for functions to be a member of the class B(γ, β, p, α). We also
indicate some special cases and consequences of the main result. The other results
investigated include certain inequalities for p-valent functions which characterize
the properties of starlikeness and convexity in the open unit disk. Furthermore our
result unifies the result for a functions belonging to the class of p-valently starlike
function of order α and p-valently convex function of order α.

In order to derive our main results, we need the following Lemmas.

Lemma 1. [4] Let w(z) be the non-constant and analytic function in U with w(0) =
0. If |w(z)| attains its maximum value on the circle |z| = r < 1 at a point z0, then

z0w
′(z0) = kw(z0) (2)

where k ≥ 1 is a real number.

Lemma 2. [5] Let Ω be a set in the complex plane C and suppose that Φ(z) is a

mapping from C
2 × U to C which satisfies Φ(ix, y; z) /∈ Ω for z ∈ U, and for all real

x, y such that y ≤ −n(1 + x2)/2. If the function q(z) = 1 + qnz
n + qn+1z

n+1 + · · · is

analytic in U such that Φ(q(z), zq′(z); z) ∈ Ω for all z ∈ U, then Re q(z) > 0.

Lemma 3. [7] Let δ be the complex number, Re δ > 0, and λ be a complex number,

|λ| ≤ 1, λ 6= −1 and let h(z) = z + a2z
2 + · · · be a regular function on U. If

∣

∣

∣

∣

λ |z|2δ +
(

1 − |z|2δ
) zh′′(z)

δh′(z)

∣

∣

∣

∣

≤ 1

Ref.

[3]
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for all z ∈ U, then the function

Fδ(z) =

(

δ

∫ z

0

tδ−1h′(t)dt

)1/δ

= z +
2a2

δ + 1
z2 +

(

3a3

δ + 2
+

2δ(1 − δ)a2
2

(δ + 1)2

)

z3 + · · ·

is regular and univalent in U.

Lemma 4. [8] Let δ be a complex number, Re δ > 0, and λ a complex number,

|λ| < 1, and h ∈ A. If

1 − |z|2Re δ

Re δ

∣

∣

∣

∣

zh′′(z)

h′(z)

∣

∣

∣

∣

≤ 1 − |λ|

for all z ∈ U, then for any complex number η, Re η ≥ Re δ, the function

Fη(z) =

(

η

∫ z

0

tη−1h′(t)dt

)1/η

is in the class S.

Lemma 5. [6] Let p(z) be analytic in U, p(0) = 1, p(z) 6= 0 in U and suppose that

there exists a point z0 ∈ U such that

|arg(p(z))| <
π

2
α, for |z| < |z0|, |arg(p(z0))| =

π

2
α,

where 0 < α ≤ 1, then we have

z0p
′(z0)

p(z0)
= ikα,

where

k ≥
1

2

(

a +
1

a

)

≥ 1 when arg(p(z0)) =
π

2
α,

k ≤ −
1

2

(

a +
1

a

)

≤ −1 when arg(p(z0)) = −
π

2
α,

p(z0)
1/α = ±ai, (a > 0).

By using Lemma 2, we first prove the following theorem.

Theorem 6. Let f ∈ A(p). Define a function Gβ,γ by

Gβ,γ(z) := βγz2f ′′(z) + (β − γ)zf ′(z) + (1 − β + γ)f(z), (0 ≤ γ ≤ β ≤ 1; z ∈ U),

and if Gβ,γ(z) satisfies

Re

{

zG′
β,γ(z)

Gβ,γ(z)
2 +

zG′′
β,γ(z)

G′
β,γ(z)

−
zG′

β,γ(z)

Gβ,γ(z)

)}

> p
(

1 −
n

2

)

+
n

2
α

)

II. Main Results
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Proof. Let f ∈ A(p). Define a function w(z) in U by

zG′
β,γ(z)

Gβ,γ(z)
= p + (p − α)w(z), (0 ≤ γ ≤ β ≤ 1; 0 ≤ α < p; p ∈ N), (3)

then the function w(z) is analytic in U, and w(0) = 0.
A computation using (3) shows that

zG′
β,γ(z)

Gβ,γ(z)
2 +

zG′′
β,γ(z)

G′
β,γ(z)

−
zG′

β,γ(z)

Gβ,γ(z)

)

= (p − α)[zw′(z) + w(z)] + p

= Φ(w(z), zw′(z); z),

where Φ(r, s; z) = (p − α)[s + r] + p.

For all real x, y satisfying y ≤ −n(1 + x2)/2, we have

Re Φ(ix, y; z) = Re {(p − α)[y + ix] + p}

≤ −
n

2
(p − α)(1 + x2) + p

≤ −
n

2
(p − α) + p

= p
(

1 −
n

2

)

+
n

2
α.

Let Ω =
{

w : Re w > p(1 − n
2
) + n

2
α
}

. Then Φ(w(z), zw′(z); z) ∈ Ω and

Φ(ix, y; z) /∈ Ω for all real x and y ≤ −n(1 + x2)/2, z ∈ U.

By using Lemma 2, we have Re w(z) > 0, which implies that

Re

{

zG′
β,γ(z)

Gβ,γ(z)

}

> α, (0 ≤ γ ≤ β ≤ 1; 0 ≤ α < p; p ∈ N),

and hence f(z) ∈ B(γ, β, p, α).

By setting γ = β = 0 in Theorem 6, we have following corollary.

Corollary 7. If f ∈ A(p) satisfies

Re

{

zf ′(z)

f(z)

(

2 +
zf ′′(z)

f ′(z)
−

zf ′(z)

f(z)

)}

> p
(

1 −
n

2

)

+
n

2
α

(0 ≤ α < p; p, n ∈ N),

then f(z) ∈ S∗(p, α).

Its further case when α = 0 and p = 1, Corollary 7 reduces to Corollary 8.

(0 ≤ γ ≤ β ≤ 1; 0 ≤ α < p; p, n ∈ N),

then f(z) ∈ B(γ, β, p, α).

)

Notes
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By taking γ = 0, β = 1 in Theorem 6, we have the following corollary.

Corollary 9. If f ∈ A(p) satisfies

Re

{

(zf ′(z))′

f ′(z)

(

1 +
z2f ′′′(z) + 2zf ′′(z)

zf ′′(z) + f ′(z)
−

zf ′′(z)

f ′(z)

)}

> p
(

1 −
n

2

)

+
n

2
α

(0 ≤ α < p; p, n ∈ N),

then f(z) ∈ K(p, α).

A further case of Corollary 9, when α = 0, p = 1 gives the following corollary.

Corollary 10. If f ∈ A satisfies

Re

{

(zf ′(z))′

f ′(z)

(

1 +
z2f ′′′(z) + 2zf ′′(z)

zf ′′(z) + f ′(z)
−

zf ′′(z)

f ′(z)

)}

> 1 −
n

2

(n ∈ N),

then f(z) ∈ K.

Theorem 11. Let −1 < b < a ≤ 1, 0 ≤ α < p, p ∈ N such that

p(1 + α) + a ≤ 2p(p − b) + b. If Gβ,γ(z) satisfies the inequality

∣

∣

∣

∣

∣

1 +
zG′′

β,γ(z)

G′
β,γ(z)

−
zG′

β,γ(z)

Gβ,γ(z)

∣

∣

∣

∣

∣

<
p(a + b)

(p + a)(p − b)
(z ∈ U), (4)

then f(z) ∈ B(γ, β, p, α).

Proof. Define a function w(z) by

zG′
β,γ(z)

Gβ,γ(z)
=

p + aw(z)

p − bw(z)
(z ∈ U). (5)

Then w(z) is analytic in U and w(0) = 0. By the logarithmic differentiation of (5),
we get

1 +
zG′′

β,γ(z)

G′
β,γ(z)

−
zG′

β,γ(z)

Gβ,γ(z)
=

p(a + b)zw′(z)

(p + aw(z))(p − bw(z))
. (6)

Now suppose that there exists z0 ∈ U such that

max
|z|<|z0|

|w(z)| = |w(z0)| = 1,

Corollary 8. If f ∈ A satisfies

Re

{

zf ′(z)

f(z)

(

2 +
zf ′′(z)

f ′(z)
−

zf ′(z)

f(z)

)}

> 1 −
n

2

(n ∈ N),

then f(z) ∈ S∗.

© 2013   Global Journals Inc.  (US)
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Theorem 12. Let f ∈ A(p). If Gβ,γ(z) satisfies anyone of the following conditions:

∣

∣

∣

∣

∣

1 +
zG′′

β,γ(z)

G′
β,γ(z)

−
zG′

β,γ(z)

Gβ,γ(z)

∣

∣

∣

∣

∣

<
p − α

2p − α
, (7)

∣

∣

∣

∣

∣

zG′
β,γ(z)

Gβ,γ(z)
1 +

zG′′
β,γ(z)

G′
β,γ(z)

−
zG′

β,γ(z)

Gβ,γ(z)

)∣

∣

∣

∣

∣

< p − α, (8)

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 +
zG′′

β,γ(z)

G′
β,γ(z)

zG′
β,γ(z)

Gβ,γ(z)

− 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

<
p − α

(2p − α)2
, (9)

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 +
zG′′

β,γ(z)

G′
β,γ(z)

− p

zG′
β,γ(z)

Gβ,γ(z)
− p

− 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

<
1

(2p − α)
, (10)

Re



















zG′
β,γ(z)

Gβ,γ(z)











1 +
zG′′

β,γ(z)

G′
β,γ(z)

− p

zG′
β,γ(z)

Gβ,γ(z)
− p

− 1





























< 1, (11)

(0 ≤ γ ≤ β ≤ 1; 0 ≤ α < p; p ∈ N),

then f(z) ∈ B(γ, β, p, α).

∣

∣

∣

∣

zG′
β,γ(z)

Gβ,γ(z)
− p

∣

∣

∣

∣

=

∣

∣

∣

∣

p + aw(z)

p − bw(z)
− p

∣

∣

∣

∣

<
p + a − p(p − b)

p − b

≤ p − α (z ∈ U),

which implies that f(z) ∈ B(γ, β, p, α).

)

then from Lemma 1, we have (2). Letting w(z0) = eiθ, from (6), we have

∣

∣

∣

∣

∣

1 +
z0G

′′
β,γ(z0)

G′
β,γ(z0)

−
z0G

′
β,γ(z0)

Gβ,γ(z0)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

p(a + b)keiθ

(p + aeiθ)(p − beiθ)

∣

∣

∣

∣

≥
p(a + b)

(p + a)(p − b)
.

This contradicts our assumption (4). Therefore |w(z)| < 1 holds true for all z ∈ U.
Thus we conclude from (5) that Notes
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1 +
zG′′

β,γ(z)

G′
β,γ(z)

− p

zG′
β,γ(z)

Gβ,γ(z)
− p

− 1 =
zw′(z)

w(z)

1

p + (p − α)w(z)
, (16)

and

zG′
β,γ(z)

Gβ,γ(z)











1 +
zG′′

β,γ(z)

G′
β,γ(z)

− p

zG′
β,γ(z)

Gβ,γ(z)
− p

− 1











=
zw′(z)

w(z)
. (17)

Now, suppose there exists z0 ∈ U such that

max
|z|<|z0|

|w(z)| = |w(z0)| = 1,

then from Lemma 1, we have (2). Therefore, letting w(z0) = eiθ in each of (13)-(17),
we obtain that

∣

∣

∣

∣

∣

1 +
z0G

′′
β,γ(z0)

G′
β,γ(z0)

−
z0G

′
β,γ(z0)

Gβ,γ(z0)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

(p − α)keiθ

p + (p − α)eiθ

∣

∣

∣

∣

≥
p − α

2p − α
,

∣

∣

∣

∣

∣

z0G
′
β,γ(z0)

Gβ,γ(z0)
1 +

z0G
′′
β,γ(z0)

G′
β,γ(z0)

−
z0G

′
β,γ(z0)

Gβ,γ(z0)

)∣

∣

∣

∣

∣

=
∣

∣(p − α)keiθ
∣

∣ ≥ (p − α),

1 +
zG′′

β,γ(z)

G′
β,γ(z)

zG′
β,γ(z)

Gβ,γ(z)

− 1 =
(p − α)zw′(z)

[p + (p − α)w(z)]2
, (15)

)

1 +
zG′′

β,γ(z)

G′
β,γ(z)

−
zG′

β,γ(z)

Gβ,γ(z)
=

(p − α)zw′(z)

p + (p − α)w(z)
. (13)

Hence, from (12) and (13), we have

zG′
β,γ(z)

Gβ,γ(z)
1 +

zG′′
β,γ(z)

G′
β,γ(z)

−
zG′

β,γ(z)

Gβ,γ(z)

)

= (p − α)zw′(z), (14)

)

Proof. Let f ∈ A(p). Define a function w(z) in U by

zG′
β,γ(z)

Gβ,γ(z)
= p + (p − α)w(z), (0 ≤ γ ≤ β ≤ 1; 0 ≤ α < p; p ∈ N), (12)

then the function w(z) is analytic in U, and w(0) = 0.
It follows from (12) that

© 2013   Global Journals Inc.  (US)
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which contradict our assumption (7)-(11), respectively. Therefore |w(z)| < 1 holds
true for all z ∈ U. From (12), we have

∣

∣

∣

∣

zG′
β,γ(z)

Gβ,γ(z)
− p

∣

∣

∣

∣

= |(p − α)w(z)| < (p − α), (0 ≤ γ ≤ β ≤ 1; 0 ≤ α < p; p ∈ N),

which implies that

Re

{

zG′
β,γ(z)

Gβ,γ(z)

}

= Re

{

βγz3f ′′′(z) + (2βγ + β − γ)z2f ′′(z) + zf ′(z)

βγz2f ′′(z) + (β − γ)zf ′(z) + (1 − β + γ)f(z)

}

> α,

(0 ≤ γ ≤ β ≤ 1; 0 ≤ α < p; p ∈ N),

and hence f(z) ∈ B(γ, β, p, α).

Remark 1. By taking γ = 0; γ = β = 0; γ = 0 and β = 1; γ = β = α = 0 and

p = 1; γ = α = 0 and β = p = 1 in Theorem 12, we get the results of Irmak and

Raina [3, Theorem 1, Corollary 1-4].

Theorem 13. Let 0 ≤ γ ≤ β ≤ 1; 0 ≤ α < 1, δ be a complex number,

Re δ ≥
3 − 2α
2 − α

and λ be a complex number which satisfies the inequality

|λ| ≤ 1 −
3 − 2α

Re δ(2 − α)
. (18)

If Fβ,γ(z) :=
zG′

β,γ
(z)

Gβ,γ(z)
is regular in U and

Re



















z0G
′
β,γ(z0)

Gβ,γ(z0)











1 +
z0G

′′
β,γ(z0)

G′
β,γ(z0)

− p

z0G
′
β,γ(z0)

Gβ,γ(z0)
− p

− 1





























= k ≥ 1,

(0 ≤ γ ≤ β ≤ 1; 0 ≤ α < p; p ∈ N),

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 +
z0G

′′
β,γ(z0)

G′
β,γ(z0)

z0G
′
β,γ(z0)

Gβ,γ(z0)

− 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

(p − α)keiθ

(p + (p − α)eiθ)2

∣

∣

∣

∣

≥
p − α

(2p − α)2
,

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 +
z0G

′′
β,γ(z0)

G′
β,γ(z0)

− p

z0G
′
β,γ(z0)

Gβ,γ(z0)
− p

− 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

k

p + (p − α)eiθ

∣

∣

∣

∣

≥
1

(2p − α)
,
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Hence, from (19) and (22), we have

∣

∣

∣

∣

zh′′(z)

h′(z)

∣

∣

∣

∣

≤
3 − 2α

2 − α
. (23)

Using (23), we have

∣

∣

∣

∣

λ |z|2δ +
(

1 − |z|2δ
) zh′′(z)

δh′(z)

∣

∣

∣

∣

≤ |λ| +

∣

∣

∣

∣

zh′′(z)

δh′(z)

∣

∣

∣

∣

≤ |λ| +
1

Reδ

3 − 2α

2 − α
.

Again using (18), we have

∣

∣

∣

∣

λ |z|2δ +
(

1 − |z|2δ
) zh′′(z)

δh′(z)

∣

∣

∣

∣

≤ 1.

From (21), we have
∣

∣

∣

∣

zh′′(z)

h′(z)

∣

∣

∣

∣

≤

∣

∣

∣

∣

zF ′
β,γ(z)

Fβ,γ(z)

∣

∣

∣

∣

+ 1

=

∣

∣

∣

∣

∣

1 +
zG′′

β,γ(z)

G′
β,γ(z)

−
zG′

β,γ(z)

Gβ,γ(z)

∣

∣

∣

∣

∣

+ 1.

(22)

Proof. Define a function

h(z) =

∫ z

0

Fβ,γ(t)

t
dt,

then we have h(0) = h′(0)−1 = 0. Also a simple computation yields h′(z) =
Fβ,γ(z)

z
and

zh′′(z)

h′(z)
=

zF ′
β,γ(z)

Fβ,γ(z)
− 1. (21)

∣

∣

∣

∣

∣

1 +
zG′′

β,γ(z)

G′
β,γ(z)

−
zG′

β,γ(z)

Gβ,γ(z)

∣

∣

∣

∣

∣

≤
1 − α

2 − α
(z ∈ U), (19)

then the function

F (z) =

(

δ

∫ z

0

tδ−1
G′

β,γ(t)

Gβ,γ(t)
dt

)1/δ

(20)

is univalent in U.

Applying Lemma 3, we obtain that the function F (z) defined by (20) is univalent
in U.

We obtain Theorem 14 below, by using Lemma 4 and the same techniques as in
the proof of Theorem 13.

© 2013   Global Journals Inc.  (US)
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where 0 < α < p, 0 ≤ γ ≤ β ≤ 1 and f(z) ∈ B(γ, β, p, α), then we have

|arg(p(z))| <
π

2
α (z ∈ U).

Proof. Suppose there exists a point z0 ∈ U such that

|arg(p(z))| <
π

2
α, for |z| < |z0|, |arg(p(z0))| =

π

2
α.

Then, applying Lemma 4, we have

arg

(

p(z0) +
z2
0G

′
β,γ(z0)

Gβ,γ(z0)
p′(z0)

)

= arg

(

p(z0)

(

1 +
z0G

′
β,γ(z0)

Gβ,γ(z0)

z0p
′(z0)

p(z0)

))

= arg(p(z0)) + arg

(

1 + i
z0G

′
β,γ(z0)

Gβ,γ(z0)
kα

)

.

(25)

When arg(p(z0)) = πα/2, since

Re

(

z0G
′
β,γ(z0)

Gβ,γ(z0)
kα

)

> 0 ⇒ arg

(

1 + i
z0G

′
β,γ(z0)

Gβ,γ(z0)
kα

)

> 0,

Eq. (25) becomes

arg

(

p(z0) +
z2
0G

′
β,γ(z0)

Gβ,γ(z0)
p′(z0)

)

>
π

2
α. (26)

Theorem 14. Let δ be a complex number, Re δ > 0, λ a complex number, |λ| < 1,
and f ∈ A. If

∣

∣

∣

∣

∣

1 +
zG′′

β,γ(z)

G′
β,γ(z)

−
zG′

β,γ(z)

Gβ,γ(z)

∣

∣

∣

∣

∣

≤
1 − α

2 − α
(z ∈ U; 0 ≤ γ ≤ β ≤ 1; 0 ≤ α < 1),

then for any complex number η,

Re η ≥ Re δ ≥
3 − 2α

(1 − |λ|)(2 − α)
,

the integral operator

Fη(z) =

(

η

∫ z

0

tη−1
G′

β,γ(t)

Gβ,γ(t)
dt

)1/η

is in the class S.

Theorem 15. Let p(z) be an analytic function in U, p(z) 6= 0 in U and suppose that

∣

∣

∣

∣

arg

(

p(z) +
z2G′

β,γ(z)

Gβ,γ(z)
p′(z)

)∣

∣

∣

∣

<
π

2
α (z ∈ U), (24)

Notes
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[5] S. S. Miller and P. T. Mocanu, Differential subordinations and inequalities in the complex
plane, J. Differ. Equations, (6) (1987), 199–211.

[6] M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan

Acad., (69) (A) (1993), 234–237.
[7] V. Pescar, A new generalization of Ahlfor’s and Becker’s criterion of univalence, Bull. Malays.

Math. Sci. Soc., (2) (19) (1996), 53–54.
[8] V. Pescar, Univalence criteria of certain integral operators, Acta Cienc. Indica Math., (29)

(1) (2003), 135–138.
[9] J. K. Prajapat, Some Sufficient Conditions for Certain Class of Analytic and Multivalent

Functions, Southeast Asian Bull. Math., (34) (2) (2010), 357–363.

Similarly, if arg(p(z0)) = −πα/2, since

Re

(

z0G
′
β,γ(z0)

Gβ,γ(z0)
kα

)

< 0 ⇒ arg

(

1 + i
z0G

′
β,γ(z0)

Gβ,γ(z0)
kα

)

< 0,

we obtain that

arg

(

p(z0) +
z2
0G

′
β,γ(z0)

Gβ,γ(z0)
p′(z0)

)

= arg(p(z0)) + arg

(

1 + i
z0G

′
β,γ(z0)

Gβ,γ(z0)
kα

)

< −
π

2
α.

(27)

Thus, we see that (26) and (27) contradict our assumption (24). Consequently, we
conclude that

|arg(p(z))| <
π

2
α (z ∈ U).
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Generalized Gaussian hypergeometric function of one variable is defined by

AFB





a1, a2, · · · , aA ;
z

b1, b2, · · · , bB ;



 =
∞

∑

k=0

(a1)k(a2)k · · · (aA)kz
k

(b1)k(b2)k · · · (bB)kk!

or

AFB





(aA) ;
z

(bB) ;



 ≡ AFB





(aj)
A
j=1 ;

z

(bj)
B
j=1 ;



 =
∞

∑

k=0

((aA))kz
k

((bB))kk!
(1)

where the parameters b1, b2, · · · , bB are neither zero nor negative integers and A, B are
non-negative integers.

Contiguous Relation[E. D. p.51(10), Andrews p.363(9.16)] is defined as follows

(a − b) 2F1

[

a, b ;
c ;

z

]

= a 2F1

[

a + 1, b ;
c ;

z

]

− b 2F1

[

a, b + 1 ;
c ;

z

]

(2)

Recurrence relation of gamma function is defined as follows

Γ(z + 1) = z Γ(z) (3)

Legendre duplication formula[Bells & Wong p.26(2.3.1)] is defined as follows

√
π Γ(2z) = 2(2z−1) Γ(z) Γ

(

z +
1

2

)

(4)

© 2013   Global Journals Inc.  (US)

Notes



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2013   Global Journals Inc.  (US)

28

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
III

X
II

 I
ss
ue

  
  
  
 e

rs
io
n 

I
V

III
Y
ea

r
  

20
13

  
  

 
F

)

)

A Summation Formula Clung to Contiguous Relation

Γ

(

1

2

)

=
√

π =
2(b−1) Γ( b

2
) Γ( b+1

2
)

Γ(b)
(5)

=
2(a−1) Γ(a

2
) Γ(a+1

2
)

Γ(a)
(6)

Bailey summation theorem [Prud, p.491(7.3.7.8)]is defined as follows

2F1

[

a, 1 − a ;
c ;

1

2

]

=
Γ( c

2
) Γ( c+1

2
)

Γ( c+a
2

) Γ( c+1−a
2

)
=

√
π Γ(c)

2c−1 Γ( c+a
2

) Γ( c+1−a
2

)
(7)

2F1

[

a , − a − 50 ;
c ;

1

2

]

=

√
π Γ(c)

2c+50

[ 1

Γ( c−a+1
2

) Γ( c+a+50
2

)

{

−349281398856053997508091191516200960000a

+413576826726104639517424992011255808000a2

−178735941888370793121003448380707635200a3

+35664649904426959513195003757803991040a4

−3115545776664539279346856667553629184a5

+28334464656624692383714379343565056a6 +11649049989491487643853939417752128a7

−338993837247881522237887727181888a8 − 23967890096677066712984409080560a9

+576081398341880215471369798896a10 + 35824355945703564893406903788a11

−218753960224314417939862188a12 − 30812261856226631564337865a13

−294303555355218100065024a14+9714972848474309029418a15+233658656740810973892a16

+665467940266912145a17 − 33785119600458864a18 − 450948140574712a19

−1349964560868a20 + 14581955465a21 + 138711936a22 + 384578a23 + 12a24 − a25

+349281398856054617956492924755640320000c

−1073012803899954203695450741216247808000ac

+826931992648450623755141519452967731200a2c

−268178880352284310003820868302667325440a3c

+40676832460641070925386987323409864704a4c

−2401490113928993197147231477443257856a5c

II. Main Result of Summation Formula

−51215833665294233178323301340019328a6c+9998148623417107030806824255676288a7c

−24413055565924722735355620028320a8c − 19142256993023392376110494715296a9c

Notes
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A Summation Formula Clung to Contiguous Relation

−23227403955715817814050749688a10c + 21018465672276391690622848488a11c

+247179732053639731020622010a12c − 10306207210896724917565776a13c

−254358255448153386816468a14c + 323506520010497774808a15c

+70755135547822018150a16c + 772895228685300864a17c − 1182906526632688a18c

−80881253485032a19c − 564030036570a20c − 658593936a21c + 7966972a22c + 30888a23c

+26a24c + 659435977173851906965242147923558400000c2

−1200660410145696123567172867824549888000ac2

+688483420259465902527955731196913909760a2c2

−173735467587891317317886139543086333952a3c2

+20016246143025284887466464139100315648a4c2

−696751468206985463638520398858868736a5c2

−47283843989501517640298377370466816a6c2+3207511887731684443385472395890688a7c2

+67829685169337783724194302802304a8c2 − 5230950080900855416140311926528a9c2

−107726132872849789242908871264a10c2 + 3823211798640945200733536256a11c2

+115921593870450901608996648a12c2 − 554675925545626715519416a13c2

−50977721134612592662056a14c2 − 464805920594445852136a15c2

+4885079291953969680a16c2 + 115938953867639760a17c2 + 593655039785808a18c2

−2572329327568a19c2 − 38319361080a20c2 − 126806680a21c2 − 34632a22c2

+312a23c2 + 552464359385620218428408074850009088000c3

−732980072550947707131148343421393960960ac3

+329343958318790830714491706863016476672a2c3

−65645600239520673784720487291349762048a3c3

+5644781053307900532201450626000142336a4c3

−70678523826168786085492292862787584a5c3

−16394484580207417039861493274467328a6c3+474897187465426039206535312836096a7c3

+26375464951510019824020622947328a8c3 − 596767365200367848778077051136a9c3

−30004714594095043225617875136a10c3 + 164545622419254515620333152a11c3

+18369281591280933698237216a12c3 + 145855161886046695738656a13c3

−3766296255093150471264a14c3 − 72480848392686127680a15c3

−173283889878573760a16c3 + 5741124128131392a17c3 + 55042351331968a18c3

+113259226080a19c3 − 660980320a20c3 − 3171168a21c3 − 2912a22c3

+277010882739343091655227615432461516800c4

© 2013   Global Journals Inc.  (US)
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A Summation Formula Clung to Contiguous Relation

−287376051776531294991806648413568630784ac4

+103667626781282561391378258991599845376a2c4

−16376796813066824297322141954098429952a3c4

+1010564775100741549391222089052184576a4c4

+10445696976049947246030147415967744a5c4−3158847378174624541360541509378560a6c4

+19969403782797531251668336712960a7c4 + 4643712142312460247187454760192a8c4

−6398090275241574317732752128a9c4 − 3816965015737167929525348640a10c4

−32525341811589650618656880a11c4 + 1330464141571452372829344a12c4

+24834094905314699084080a13c4 − 39601289320377195840a14c4

−4313921375227166560a15c4 − 33558810621336000a16c4 + 45306739461984a17c4

+1673341269600a18c4 + 6702455760a19c4 + 3363360a20c4 − 16016a21c4

+94206274361657927452517378398164615168c5

−78952141604189636705133721973661106176ac5

+23132785878270378681278040505927729152a2c5

−2881672288225944887382774800732798976a3c5

+117821071084818582520276891344961536a4c5

+4572596760700241331468781904655360a5c5−378160624145337869649591627906560a6c5

−4479894637786265291597045371392a7c5 + 465565949736072777197696510208a8c5

+6264526765643689556997023040a9c5 − 255767905687539130016433120a10c5

−5414234177919792240759744a11c5 + 33003552058204310783200a12c5

+1649662067918056832640a13c5+10044554844666788160a14c5−101558448322531200a15c5

−1481727457514304a16c5 − 4456341489600a17c5 + 15120545440a18c5 + 95135040a19c5

+96096a20c5 + 23287024568676156429864582418268160000c6

−16035319902137515584474413002339123200ac6

+3832525287928302558901925506826108928a2c6

−371552626203796768781791520257114112a3c6

+8324288078177708437806721925873664a4c6

+761136109547688617704800204900352a5c6 − 28492690243695317381254383854592a6c6

−920135451082109900741662590976a7c6 + 26908499979682587821049610752a8c6

+824683853854457182155862656a9c6 − 7307957274466037614641216a10c6

−375026208256048741968576a11c6 − 1623725136796484257536a12c6

+53279856667239634432a13c6 + 638921254888844928a14c6 + 463333171357056a15c6

Notes
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A Summation Formula Clung to Contiguous Relation

+4370868035509345787655109134935654400c7

−2494797928342814367648605348485398528ac7

+486050047323646914801852260812849152a2c7

−35833880314845328479511256630820864a3c7

+185780709999525528303843109634048a4c7

+78929165337723268018174680072192a5c7 − 1177109599312891745506779234304a6c7

−87596450648578217108115505152a7c7 + 654486284469833088131948544a8c7

+54847813511159848342665216a9c7 + 181078561568579818530816a10c7

−14088489509767927947264a11c7 − 157122172795863621632a12c7

+579957490858217472a13c7 + 17165502254444544a14c7 + 71371384381440a15c7

−142788771840a16c7 − 1304709120a17c7 − 1464320a18c7

+641683366569362126860981949693952000c8

−304776543731945699522669706928455680ac8

+48170752639870577979344445873586176a2c8

−2599157535264884829152703818104832a3c8

−31707001782166030579390274666496a4c8 + 5641135567365041609691810865152a5c8

+1917026424809845954644049920a6c8 − 5199988494853301193094901760a7c8

−25041475625109866389868544a8c8 + 2178833648702438230424064a9c8

+25157758400344258191360a10c8 − 260482121035239966720a11c8

−5551345110212149248a12c8 − 14688941600965632a13c8 + 211997414154240a14c8

+1361347553280a15c8 + 1344245760a16c8 − 3294720a17c8

+75247708189399576818185695668469760c9

−29755105770247617040879480813387776ac9

−27119794141440a16c6 − 134770796160a17c6 − 98978880a18c6 + 320320a19c6

+3782107333389702781133446749356032a2c9

−139737499176730062132359594901504a3c9 − 4544116334479423700804522033152a4c9

+285064157808176183575488430080a5c9 + 3765845101952647026736783360a6c9

−201958446151986457777299456a7c9 − 2986095861362649319691264a8c9

+49315469435371625840640a9c9 + 1068263602418510417920a10c9

+228197216020021248a11c9 − 101972512594720768a12c9 − 584540190474240a13c9

+590920478720a14c9 + 9857802240a15c9 + 12446720a16c9

+7156035287485468378540906905600000c10

© 2013   Global Journals Inc.  (US)
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A Summation Formula Clung to Contiguous Relation

+237184683015181530526254731624448a2c10

−5250346039608070755877670354944a3c10 − 336443126121994073693213294592a4c10

+9949646175177912739916283904a5c10 + 274728736685088492054183936a6c10

−4827762337701366865657856a7c10 − 134628400956132807499776a8c10

+343262300432275873792a9c10 + 25059277268568711168a10c10

+123068966044344320a11c10 − 885990408855552a12c10 − 7883115175936a13c10

−10096779264a14c10 + 19914752a15c10 + 557972204701536623537152222822400c11

−151602820048630083385908944437248ac11

+11919003482083199966287446933504a2c11 − 107585654558268871756515115008a3c11

−17009942831127835874778415104a4c11 + 210819549215565321684516864a5c11

+11557454430259412045070336a6c11 − 45205683596306495668224a7c11

−3626422431735410491392a8c11 − 14417100016869408768a9c11

+333365237886320640a10c11 + 2738236825239552a11c11 − 471892721664a12c11

−45166657536a13c11 − 65175552a14c11 + 35946039180282436468378435584000c12

−8024535215492293377496490967040ac12 + 478947283283087632443182678016a2c12

+1391316218121396453552160768a3c12 − 627099291149193418922655744a4c12

+768809495148148221214720a5c12 + 325153013937267992985600a6c12

+1254370229847242260480a7c12 − 61237198934106144768a8c12

−507929569203044352a9c12 + 1982198075719680a10c12 + 28034883502080a11c12

+46079115264a12c12 − 76038144a13c12 + 1922900866404964331693570785280c13

−349567381275971095112152252416ac13 + 15251521470928402392869240832a2c13

−2350804713832612589755749629952000ac10

+218825323379159366500614144a3c13 − 17109765661336059685765120a4c13

−122206099379806878105600a5c13 + 6231006248339415531520a6c13

+58958935093124333568a7c13 − 595218771270402048a8c13 − 7748163223879680a9c13

−5155444654080a10c13 + 132025614336a11c13 + 222265344a12c13

+85638216654872232843018240000c14 − 12533296181130077758344396800ac14

+377096167588144864284377088a2c14 + 9998198767032757294465024a3c14

−340536027759557946900480a4c14 − 4928846014229712076800a5c14

+77222720707279257600a6c14 + 1166674390020980736a7c14

−1915162037452800a8c14 − 63202103132160a9c14 − 134311772160a10c14

+190513152a11c14 + 3176451687815006006961766400c15

Notes
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+293321470359596622151680a3c15 − 4681522483934003200000a4c15

−107482944270591590400a5c15 + 495297518624047104a6c15

+13449542683852800a7c15 + 22267177205760a8c15 − 251477360640a9c15

−508035072a10c15 + 97935327281731828973568000c16

−8859555401078193216552960ac16 + 83467422674593105575936a2c16

+6149116495967052627968a3c16 − 37154850414966079488a4c16

−1515427531741003776a5c16 − 821812773519360a6c16 + 90493112156160a7c16

+255287623680a8c16 − 317521920a9c16 + 2498697553742732900433920c17

−172030825163498125787136ac17 + 320334548593037279232a2c17

+94137024707481305088a3c17 − 2123582349901824a4c17 − 13982628068720640a5c17

−42882568028160a6c17 + 310648504320a7c17 + 784465920a8c17

+52360912587278254080000c18 − 2661918961599879577600ac18

−10830965243255980032a2c18 + 1040210571393236992a3c18 + 3794724189634560a4c18

−79649091092480a5c18 − 314832322560a6c18 + 348651520a7c18

+891009248801482342400c19 − 32130182460859219968ac19 − 272725971767918592a2c19

+7979001383485440a3c19 + 44971568660480a4c19 − 239798845440a5c19

−807403520a6c19 + 12108417434910720000c20 − 292984546729656320ac20

−3358306288533504a2c20 + 39263952437248a3c20 + 242705498112a4c20

−242221056a5c20 + 128210408245821440c21 − 1919353142378496ac21

−368857412023973200357490688ac15 + 6921455048179816496889856a2c15

−24901685608448a2c21 + 105054732288a3c21 + 530579456a4c21 + 1018712555520000c22

−8291509862400ac22 − 106212360192a2c22 + 96468992a3c22 + 5710964326400c23

−19931332608ac23 − 201326592a2c23 + 20132659200c24

−16777216ac24 + 33554432c25
}

+
1

Γ( c−a
2

) Γ( c+a+51
2

)

{

+1960781468160819415703172080467968000000

−3661026774131950114663981678663434240000a

+2240090762233257947677314630597746688000a2

−614645014419001731255993239873124556800a3

+78053675774736769125112085213340887040a4

−3043255274124936913351196421079574016a5

−229179332123522872538863190221839744a6

© 2013   Global Journals Inc.  (US)
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+17946581082320095894737615149892672a7 + 410017583045588372075556169870112a8

−38782057769432735350702163571440a9 − 868552187794782944411789554504a10

+39788626916724352412654958412a11 + 1344044442163512163688040062a12

−9919408027950128138403935a13 − 906197222784984029528524a14

−9453757494566587215818a15 + 151525786827223670642a16 + 4294642142413240255a17

+27694449851967536a18 − 209906546918288a19 − 4290754509118a20 − 23145910865a21

−7772764a22 +379822a23 +1262a24+a25+5080828409738663152845985129137438720000c

−7129727012710533088531986116981686272000ac

+3464350353104816822235888040121357107200a2c

−757467059117725237232222367270233333760a3c

+72332230837435045954186973364739528704a4c

−1032156143759539534540657430207660544a5c

−265931791102603725737519477701120128a6c+9020260880498864853288175289635712a7c

+555406513554791569412848534454880a8c − 15477362687644090012057272228704a9c

−863375723960869274437918768088a10c + 6788342816518488117032677512a11c

+771375013533695930736906410a12c + 6748486804230986758938176a13c

−253139584493872712922468a14c − 5830435847039153014808a15c

−14282363824998376250a16c + 874365796971459936a17c + 11353912398397712a18c

+32142393315032a19c − 382686073770a20c − 3536396864a21c − 9614228a22c

+312a23c + 26a24c + 5383081985040703798697681046680371200000c2

−6004634872541150478657109318810730496000ac2

+2365807240966142348808314166846518722560a2c2

−413201725605033928734344480100172136448a3c2

+28528296403075225921688240987551899648a4c2

+325810264640319656007770620385703936a5c2

−114836678103591791155909785226927616a6c2+916457021694181762918105152550912a7c2

+224642173441603082514278622539904a8c2 − 579498063999782707037288905472a9c2

−259009824884245322453134892064a10c2 − 2411857401944811597347427456a11c2

+136560997299728486313877048a12c2 + 3007808664730215637780216a13c2

−8938969098168899560056a14c2 − 909956544952680803864a15c2

−9135116517044266320a16c2 + 23758449324907440a17c2 + 1053172687975408a18c2

+6892565247568a19c2 + 5758672920a20c2 − 108628520a21c2 − 393432a22c2

−312a23c2 + 3264505862992440279812749192190754816000c3

Notes
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−2975366113417717521963956597210575011840ac3

+960253992988307644756107956860095823872a2c3

−133255175155474641178296490763252170752a3c3

+6144682225385715574795670327252238336a4c3

+269359725495675945790020827523549184a5c3

−25859926108462945032100145526140928a6c3−336666062342903638879644571664896a7c3

+43393329898450550662950083158528a8c3 + 653908023027115598037771083136a9c3

−34539084614398950410012468736a10c3 − 852175236833830038227923552a11c3

+7410746533794561055550816a12c3 + 423301507728557290376544a13c3

+3143627840368997288736a14c3−49196565402110160320a15c3−962610078252496960a16c3

−4153459678560192a17c3 + 27554114555968a18c3 + 330063653920a19c3 + 987066080a20c3

−32032a21c3 − 2912a22c3 + 1306433207857823406903619823647850496000c4

−987439854764203464876164384387934191616ac4

+262026991744079899046356618889452978176a2c4

−28516243040689263283182208681058254848a3c4

+727343867177341806342128138164248576a4c4

+75832385083919368696567444484064256a5c4−3331257014910043344657768801474560a6c4

−122715076826467767063513341116160a7c4 + 4411229615802210760721621217792a8c4

+156480260008802530544839432128a9c4 − 1847398821875823652282304640a10c4

−109548933400848942799336720a11c4 − 538305042432375985422656a12c4

+26745702426020485827920a13c4+416615264630557724160a14c4+251445374283806560a15c4

−40157967472022400a16c4−326222134221984a17c4−433735702400a18c4+5069304240a19c4

+20180160a20c4 + 16016a21c4 + 373224359796920839097320894710014803968c5

−235801620105961679230553598736805658624ac5

+51410028567187768984746849491070615552a2c5

−4289203021048821568878100681058893824a3c5

+25867070791504257246484884525121536a4c5

+12497968770954442701512339177456640a5c5−223571404221303187151041953359360a6c5

−19105777348957664956581224145408a7c5 + 184208845002067618495030142208a8c5

+17566650236750346817251216960a9c5 + 61627774593704540749426080a10c5

−7253143775870502374120256a11c5 − 101490500104084324032800a12c5

+581540035411854879360a13c5 +22165800388273988160a14c5 +134566999655088000a15c5

© 2013   Global Journals Inc.  (US)
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−523553280554304a16c5 − 8911717214400a17c5 − 29612142560a18c5 + 960960a19c5

+96096a20c5 + 79968380862018644210858509090160640000c6

−42388286283699177781563713945862144000ac6

+7558870741500969281513497220058185728a2c6

−465617071577248976652184917556953088a3c6

−6500738419853842936536264326414336a4c6+1364539285320808198723844328962048a5c6

−14444272971978364193612372992a6c6 − 1782652144891849022456372148224a7c6

−9520624023364611566345384448a8c6 + 1139273394670130660962729344a9c6

+16060077427392777830635584a10c6 − 234473419256610302793024a11c6

−6447410268702585518336a12c6−22141543947075384832a13c6+554066927539052928a14c6

+5807304449890944a15c6 + 10777200994560a16c6 − 91246995840a17c6 − 403282880a18c6

−320320a19c6 + 13288192007363093791107884096736460800c7

−5913452039382950460508229598049206272ac7

+855501615332612560783574653706698752a2c7

−36441670807692180255764937007169536a3c7

−1375768898145317461214105154813952a4c7+102732157511497907394397778116608a5c7

+1580018917388886309521277648896a6c7 − 106543641769594951204734517248a7c7

−1893920393480686113030598656a8c7 + 41752203119379070791542784a9c7

+1139220446873246396246016a10c7 − 148498793635900071936a11c7

−214175604541971218432a12c7 − 1807476981675036672a13c7 + 3695487616364544a14c7

+108638058946560a15c7 + 406111580160a16c7 − 13178880a17c7 − 1464320a18c7

+1753546740358191041028727217586176000c8

−654066933142146236887760339174686720ac8

+75832876793467645235516797151870976a2c8

−1958116486126726467184257943994368a3c8−147358268557274848028003918954496a4c8

+5268731182754188755753538510848a5c8 + 173665224982627900154389585920a6c8

−3898701376623712750618275840a7c8 − 134002830022645325952697344a8c8

+507697274942649969255936a9c8 + 44607774510506957967360a10c8

+297916639594168657920a11c8 − 3538803122294888448a12c8 − 51160438027066368a13c8

−125688322805760a14c8 + 834253854720a15c8 + 4144757760a16c8 + 3294720a17c8

+186968064666071811709768865215938560c9

−58238303702083289136156539065729024ac9

Notes
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−56966997018297592226661163728896a3c9 − 10668674846383317356490133553152a4c9

+163857762357698197610920017920a5c9 + 10870807761611651383683112960a6c9

−58203969874987230956806144a7c9 − 5661742041729373171979264a8c9

−28614661902730458480640a9c9 + 1018013160324652011520a10c9

+12350911591384317952a11c9 − 6668042277664768a12c9 − 718218162421760a13c9

−3068415201280a14c9 + 99573760a15c9 + 12446720a16c9

+16312215748755220042076200632320000c10

−4219587600914983878203888841523200ac10

+296105170324831668021774985986048a2c10 + 992214256879125919363753836544a3c10

+456163514323763903234113536a6c10 + 2147706339848802744467456a7c10

−152645729204382544306176a8c10 − 1746865165348944289792a9c10

+5318058976849284906732137887301632a2c9

+11147570672325255168a10c10 + 253243063437844480a11c10 + 808365652942848a12c10

−4412252708864a13c10 − 25032843264a14c10 − 19914752a15c10

+1175279551008867059362991754444800c11 − 250579217995211124822962551652352ac11

+13037753370408629166506407624704a2c11 + 224622817781320103427750494208a3c11

−21940040131841815801290031104a4c11 − 192057267654730320525656064a5c11

+13211558056628263195508736a6c11 + 164526436430782688231424a7c11

−2463884816386864545792a8c11 − 47321848212168671232a9c11

−43573855357992960a10c11 + 2820638145282048a11c11 + 14058996596736a12c11

−456228864a13c11 − 65175552a14c11 + 70376836401015536760941182976000c12

−12248408498068518346114318991360ac12 + 447010579178322676052122402816a2c12

+14525039436280130775548690432a3c12 − 631968138296732602866335744a4c12

−11687764540408755176734720a5c12 + 254084516928548764057600a6c12

+5318789101379491512320a7c12 − 14752227616672186368a8c12

−748796748713115648a9c12 − 3115570183864320a10c12 + 14440023736320a11c12

+95503908864a12c12 + 76038144a13c12 + 3516627778658782708865517486080c13

−493556428042831478838089744384ac13 + 11474390246779070803300319232a2c13

+608993693466435669786361856a3c13 − 12821580693813713087365120a4c13

−390213466991762310758400a5c13 + 2667015553314395422720a6c13

+105664419808686047232a7c13 + 276072268211453952a8c13 − 6870784114360320a9c13

−41095750778880a10c13 + 1333592064a11c13 + 222265344a12c13

© 2013   Global Journals Inc.  (US)
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+146907415191538675535052800000c14 − 16375766781977746571945574400ac14

−155800708977748487700480a4c14 − 8741540168881599283200a5c14

−5342112814080000000a6c14 + 1347840118492299264a7c14 + 7486376244019200a8c14

−30149341347840a9c14 − 239094005760a10c14 − 190513152a11c14

+5129614710826717498100940800c15 − 445530920856345896091123712ac15

+1147256477210179174137856a2c15 + 425715323026510257848320a3c15

−102057687020339200000a4c15 − 136127891020146278400a5c15

−679623761601232896a6c15 + 10469764576051200a7c15 + 78278043893760a8c15

−2540175360a9c15 − 508035072a10c15 + 149349144943528358445056000c16

−9863797536220862679613440ac16 − 52225749950941260939264a2c16

+7339982431006425874432a3c16 + 39167448790108864512a4c16

−1444942810753204224a5c16 − 11290288210575360a6c16 + 40198910115840a7c16

+398172487680a8c16 + 317521920a9c16 + 3608154907313382851870720c17

−175547152523538846449664ac17 − 2069455529116885843968a2c17

+93571333750154330112a3c17 + 869553767374258176a4c17 − 9699927376527360a5c17

−96696930140160a6c17 + 3137863680a7c17 + 784465920a8c17

+71768854246593658880000c18 − 2464805021517715865600ac18

−42183880082123128832a2c18 + 846613217445675008a3c18 + 10375434466754560a4c18

−33104810475520a5c18 − 436860354560a6c18 − 348651520a7c18

+1161722032816966860800c19 − 26519308441833439232ac19 − 570948172583534592a2c19

+4991774684610560a3c19 + 74643648020480a4c19 − 2422210560a5c19 − 807403520a6c19

+15046488438603776000c20 − 208403568347054080ac20 − 5304540362440704a2c20

+15332673585152a3c20 + 303260762112a4c20 + 242221056a5c20 + 152108131407626240c21

−1093436182626304ac21 − 32701203611648a2c21 + 1061158912a3c21 + 530579456a4c21

+1155698524160000c22 − 3053243596800ac22 − 120682708992a2c22 − 96468992a3c22

+6204214476800c23 − 201326592ac23 − 201326592a2c23 + 20971520000c24

+16777216ac24 + 33554432c25
}]

(8)

Derivation of main result (8):

Substituting b = −a − 50, z = 1
2

in given result (2),we get

(2a + 50) 2F1

[

a , − a − 50 ;
c ;

1

2

]

Notes

= a 2F1

[

a + 1 , − a − 50 ;
c ;

1

2

]

+ (a + 50) 2F1

[

a , − a − 49 ;
c ;

1

2

]
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Now using same parallel method which is used in Ref[6], we can prove the main result.

1. Andrews, L.C.(1992) ; Special Function of mathematics for Engineers,second Edi-

tion, McGraw-Hill Co Inc., New York.

2. Arora, Asish, Singh, Rahul , Salahuddin. ; Development of a family of summation
formulae of half argument using Gauss and Bailey theorems Journal of Rajasthan

Academy of Physical Sciences., 7(2008), 335-342.

References

 

Références

 

Referencias

3. Bells, Richard, Wong, Roderick ; Special Functions , A Graduate Text. Cambridge
Studies in Advanced Mathematics, 2010.

4. Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O.I.; Integrals and Series Vol.

3: More Special Functions. Nauka, Moscow, 1986. Translated from the Russian
by G.G. Gould, Gordon and Breach Science Publishers, New York, Philadelphia,
London, Paris, Montreux, Tokyo, Melbourne, 1990.

5. Rainville, E. D.; The contiguous function relations for pFq with applications to
Bateman’s Ju,v

n and Rice’s Hn (ζ, p, ν), Bull. Amer. Math. Soc., 51(1945),
714-723.

6. Salahuddin, Chaudhary, M.P ; A New Summation Formula Allied With Hypergeo-
metric Function, Global Journal of Science Frontier Research, 11(2010),21- 37.

© 2013   Global Journals Inc.  (US)

Notes



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2013   Global Journals Inc.  (US)

40

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
III

X
II

 I
ss
ue

  
  
  
 e

rs
io
n 

I
V

III
Y
ea

r
  

20
13

  
  

 
F

)

)

A Summation Formula Clung to Contiguous Relation

Notes

This page is intentionally left blank 



© 2013. O.Y. Halid & F.I. Akinnitire. This is a research/review paper, distributed under the terms of the Creative Commons 
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial 
use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

Global Journal of Science Frontier Research 
Mathematics and Decision Sciences  
Volume 13  Issue 3 Version 1.0  Year  2013 
Type : Double Blind Peer Reviewed International Research Journal 
Publisher: Global Journals Inc. (USA) 
Online ISSN: 2249-4626 & Print ISSN: 0975-5896 

 
 

A Logit Regression Analysis of Homeowners in Nigeria 
By O.Y. Halid & F.I. Akinnitire 

Ekiti State University , Nigeria  

Abstract - This paper studied the application of logit regression analysis to homeownership in 
Ado-Ekiti area of Ekiti State (Nigeria). The performance of the logit model in terms of 
classification of homeowners with respect to the average monthly income of some individuals 
was examined. The data of homeownership and income was fitted to the model by the WLS 
techniques. Result showed that the odds ratio in favour of owning a house by an individual 
whose average monthly income is 0.158 (N Million) was 1.0387. Also the probability of owning a 
house by the individual was 0.51.  

Keywords : logit regression, home ownership, average monthly income, odds ratio, WLS-
weighted least squares, OLS-ordinary least squares.  

GJSFR-F Classification : MSC 2010: 62G08 

 

A Logit Regression Analysis of Homeowners in Nigeria 
 

 
 
 

Strictly as per the compliance and regulations of : 
 

 
 



 

 
 
 

A Logit Regression Analysis of Homeowners 
in Nigeria 

O.Y. Halid α & F.I. Akinnitire σ 

   

  
Abstract -

 

This paper studied the application of logit regression analysis to homeownership in Ado-Ekiti area of Ekiti 
State (Nigeria).

 

The performance of the logit model in terms of classification of homeowners with respect to the average 
monthly income of some individuals was examined. The data of homeownership and income was fitted to the model by 
the WLS techniques.

 

Result showed that the odds ratio in favour of owning a house by an individual whose average 
monthly income is 0.158 (N Million) was 1.0387. Also the probability of owning a house by the individual was 0.51.

 
Keywords :

 

logit regression, home ownership, average monthly income, odds ratio, WLS-weighted least 
squares, OLS-ordinary least squares.

 I.

 

Introduction

 Feeding, clothing and shelter constitute the fundamental human needs. Among the 
three, shelter is the most complex, challenging and expensive. Apart from providing 
shelter, housing is a sure way of creating jobs, eradicating poverty, ensuring social 
security and propagating sustainable economic development.

 
In Nigeria, the housing sector is the second highest employer of labour next only to 

agriculture. Research has consistently shown the importance of the housing sector on the 
economy and the long social and financial benefits to individual homeowners.

 
Homeownership brings substantial social benefits for families, communities and the 

country as a whole. Because of these benefits, policy makers have promoted 
homeownership through a number of channels. Homeownership has been an essential 
element of the Nigerian dream for decades and continues to be even today.

 
Homeownership has significant impact on social outcomes, specifically educational 

achievement, civil participation, health benefits, public assistance, property maintenance 
and improvement.

 
In general, research supports the view that homeownership brings substantial 

social benefits. Because of these extensive social benefits, policies that support 
homeownership are well justified.

 
Apart from all these advantages, homeownership also provides one with pride of 

ownership, freedom of control, privacy, strong credit base, financial stability, appreciating 
asset to mention a few.     

 
The immense economic benefits of homeownership are also well documented. For 

instance, United Nations Centre for Human Settlement estimate Nigeria’s current housing 
deficit at 16 million units. Considering that an average household is between five and six 
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persons, it is inferred by experts that 80 - 96 million housing units will be achieved within 

Author α : Department of Mathematical Sciences, Ekiti State University Ado-Ekiti, Ekiti State, Nigeria. 
Author σ : Resourcery Plc, Victoria Island, Lagos, Nigeria. 

E-mail : bljtonine@yahoo.com
E-mail : fola.akinnitire@gmail.com



 

carried out yearly. This is disheartening in the view of the fact that current national 
housing production figures stand at less than 10,000 per year, not to mention the 
estimated cost which runs into tens of trillions of Naira.

 

Inspite of the growing trend of homeownership in Nigeria, certain impediments 
such as high unemployment rate and moderate GDP growth of between 7% and 9%, 
inflation and high interest rate which all degenerate from unwholesome macro-economic 
environment and lack of financing systems are still lingering.

 

Land use acts, high cost of building materials, high cost of land in urban areas, 
poor quality of construction are also impediments to homeownership.

 

II.

 

The

 

Logit

 

Regression Model
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Notes

a period 30 - 50 years provided construction of 200,000 - 250,000 new housing units is 

Let ix be a random variable (say income) and 1y = indicating an individual owns 

a house 0y = if otherwise, then 

1 2( )

1( 1| )
1 ii i XP E Y X

e β β− += = =
+

     (1) 

for simplicity, we set 1 2i iZ Xβ β= + ,  

1
1 1

i

i i

Z

i Z Z
eP

e e−= =
+ +

  

  (2) 

(2)  is called the cumulative logistic distribution function,                                               

where iZ ranges from −∞  to +∞ ,  iP ranges from 0 to 1, called the probability of owning 

a house.

iP is non linearity related to iZ and 'i sβ are the model coefficients. 

Since iP is the probability of owning a house, then

11
1 ii ZP

e
− =

+
      (3) 

called the probability of not owning a house.
Then, we write 

1
1 1

i

Zi
Zi

Zi
i

P e e
P e−

+
= =

− +
        (4) 

called the odds ratio in favour of owning a house (the ratio of the probability that an 
individual will own a house to the probability of not owning a house).
Taking the natural logarithm of (4), we get

1 21
i

i i i i
i

PL ln Z X
P

β β µ
 

= = = + + −         

 (5) 

The logit regression analysis is a technique which allows for estimating the 
probability that an event occur or not by predicting a binary dependent outcome from a 
set of independent variable(s). The applications of the logit model to different areas had 

been previously seen in sources such as Ojo (1989), Gujarati (2003), Ogunleye and 

Fagbohun (2009) and others too many to mention.



 

III.

 

Estimation 

The estimate of model coefficient of logit regression models depends on the data at 
hand. This is categorized as follows.

 

Case I

 

Suppose the data at hand is on individuals, the OLS technique becomes infeasible 
since if we have Pi=1,

 

if an individual owns a house, and Pi=0, if he does not, then the 
logit

 

1 ,
0
0 ,
1

ln if an individual owns a house

i
ln if an individual does not own a house

L
 
 
 
 
 
 

= 


    (6) 

Clearly, these expressions are meaningless and hence such data cannot be used in 
estimation of (5) by the OLS method. 

 

As a

 

result of this, the maximum likelihood method may be used.

 

Case II

 

For a grouped data on several individuals grouped according to income level and 

number of individuals owning a house at each income level iX , there are iN

 

individuals, 

in

 

among whom are homeowner ( )i in N≤

 

so that

 

^
i

i

i

nP
N

=                         (7) 

This is the relative frequency which can be used as the true iP

 

corresponding to each iX . 

If iN

 

is fairly large, 
^

iP

 

will be a reasonably good estimate of iP

 

using the  

estimated 
^

iP , the logit estimate in (5) can be obtained by 

 

^ ^ ^

1 2

ˆ
ˆ1

i
i i i

i

PL ln Z X
P

β β
 

= = = + 
− 

    (8) 

which is a fairly good estimate of the true logit iL

 

assuming the iN

 

at each

 

iX

 

is 

reasonably large.

 

Since the properties

 

of the stochastic error term iµ

 

is unknown, and iN

 

is fairly 

large, iX

 

is independently distributed binomial variable so that

 

10,
(1i

i i i

N
N P P

µ
 
 − 

                       (9) 

which

 

implies that iµ

 

follows the normal distribution with mean zero and variance 

1
(1 )i i iN P P−

. 
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called logit model. iL is called the logit and iµ is the stochastic error term.



 

This gives rise to 

 

1 2 ii i i i i iw L w w X wβ β µ= + +
                   

  
(10)

 

which can be written as 

 

* *
1 2i i i iL w Xβ β υ= + +

  

    

 

(11)

 

where weights (1 ) ,i i i iw N P P= − *
iL

 

is the weighted iL , *
iX
 

weighted iX

 

and iυ
 

weighted 

iµ .

 

The odds ratio in favour of owning a house by an individual with average income 

iX

 

is given by 

 

^

^
1

i

i

P

P−

 

                     (12)

 

where 
^

iP

 

is the estimated probability of owning a house, while the estimated logit 

is given by

 

^

^
1

i

i

Pln
P

 
 
 − 

  
             

 

(13)

 

The probability of an individual with average monthly income iX
 
owning a house 

is
 

*

*

^

1

i

i

L

i L

eP
e

−

−
=

+
  (14) 

where *
iL  is as defined in (11). 

IV. Analysis 

 A questionnaire was administered to 100 inhabitants of different areas of Ado-
Ekiti, Ekiti State. 

These 100 respondents were classified into 5 groups of 20 individuals, each based 
on their average monthly income. 

Out of each ( iN ) 20 individual, 14, 7, 5, 6 and 9 were homeowners ( in ) giving rise 

to respective relative frequencies 0.70, 0.35, 0.25, 0.30 and 0.45. 

The respective weights ( iw ) are 4.20, 4.55, 3.75, 4.20 and 4.95 with corresponding 

average monthly income 0.19, 0.15, 0.15, 0.18 and 0.12 (N million). 
These data was fitted to the logit model in (11) by the WLS technique using SAS 

9.3 so that 

* *2.4979 4.6432i i iL w X= − +     (15) 

is the estimated regression curve with coefficient of determination ( 2R ) value 0.9228. 
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Consequently, the logit is estimated using the weighted least square (WLS) 
procedure to resolve the problem of heteroscedasticity.



 

The odds ratio in favour of owning a house by an individual whose average income 
is 0.158(N million) is 1.0387 while the probability of owning a house by such individual is 
0.51. Also, an estimated logit of 0.038 was also obtained.  

V.  Conclusion  

The coefficient of determination value 0.9228 was an indication of a goodness of fit.  

This also indicates a strong relationship between the income and the probability of 
owning a house.  

The calculated t-value of 32.44 is hugely in excess of the tabulated value of 5.01 
and hence this leads to the conclusion that income of individuals will influence the 
probability of being homeowners.  

The probability 0.51 of owning a house by an individual whose average monthly 
income is 0.158 (N million) was obtained. This shows that an increase in monthly income 
may increase the probability of owning a house.  

The odds ratio of 1.0387 in favour of owning a house gives a slight advantage over 
the chance of not owning a house in the state.  

VI.  Recommendation  

Government should make some amendments on the land use act to make more 

land available for residential purposes in certain ‘newly created’  states such as Ekiti. This 
will enhance rapid development in the state.  

Government through its agencies should control the activities of land owners, 
middlemen, estate valuers and other play makers involved in land issues.  

This will control the land prices and make more land available for residential 
purposes. This will also reduce cases of land disputes.  

Non-governmental organisations, mortgage banks and other private investors 
should invest more into housing schemes in the state and the country at large.  

This will make more people to become homeowners and make them enjoy the full 
benefits of home ownership.  
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It is a common knowledge in Mathematics that Laplace transformation is 

about converting any time-dependent function, f(t), to a complex domain function, 

F(s), (where s = σ + jw) (Ogata, 2010) and vice-versa.  Also, it is equally known in 

Mathematics that Fourier transformation is about converting a time-dependent 

function, f(t), to a frequency-dependent function, F(w), and vice-versa.  Mathematical 

expressions representing these two statements are given by: 

         ∞   
         

-stF(s) =          e     f(t)  dt  (1) 

(Stephenson, 2011, 2nd ed.) 
o    (Equation for Laplace transformation). 
∫
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1
              σ+  jwt  

F(t) = ℒ-1  F(s) = 2πest      F(s)  ds    (2)

              σ  jw                                  (Stephenson, 2011, 2nd ed.) ∫
         ∞  
            

-jwtF(jw) =     e         f(t) dt     (3) 

(Gabel, 2010) 

         -∞    (Equation for Fourier transformation). 

             1     ∞          
jwtF(t) =  ℒ-1 F(jw) =  2π        F(jw)e       dw   (4)

              -∞     (Gabel, 2010) 

 (Equation for inverse Fourier transformation). 

 Taking a hard look at those four (4) equations, one would have some 

impressions that there are some relationships between Laplace and Fourier 

transformations which have not yet been explored.  This paper attempts to uncover, 

link and exploit such relationships. 

Looking at equations (1) and (3), it will immediately be noticed that Fourier 

transformation, F(jw), is a special case of Laplace transformation F(s), when S = jw, 

covering the entire time spectrum -∞ to +∞.  (Recall that in the complex plane,         

S = σ + jw.  Hence when the real component σ = 0, S = 0 + jw, and F(s) = F(jw)).  

This is demonstrated below: 

Refer to equation (1), 

         ∞  
            

-stF(s) =     e         f(t)  dt       (Eqn. (1) recalled).

        -∞    

∫

∫
∫

II. Establishing a Relationship Between Laplace and Fourier

Transformation
       

          0  

But S = σ + jw 

           ∞   
      

: . F(σ + jw) =          e          f(t)  dt     
 (5)∫ �(σ+ jw)t

 (Equation for inverse Laplace transformation). 

Notes
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 If σ = 0, equation (5) becomes: 

  ∞   
    

-jwtF(jw) =        e            f(t)  dt      (6)(a)

                     0

Equation (6)(a) is a one-sided Fourier transformation in the right half of the time axis.  

Equation (3) equally expresses Fourier transformation but across the entire time axis 

(-∞ to +∞).  It can hence be confirmed that Fourier transformation is a special case 

of Laplace transformation when σ = 0.  Now, if in equation (5),  

      ∞
jw = 0, F(σ) =     e �(σ)t  f(t) dt      (6)(b). 

    0

It should be noted that equation (6)(b) does not represent Laplace transformation.  

Hence, the reverse of how equation (6)(a) was obtained is not true.  This will further 

be explained later. 

 If σ and jw are linearly-related, and the law of linearity applied to equation 

(5), F(σ+ jw) in equation (5) becomes: 

F(s) = F(σ + jw) = F(σ) + F(jw) (Kreyszig, 2005)   (7)

∫

∫

III. The Law of Linearity Applied to Laplace and Fourier 

Transformations

∞
But from (5),                  F(σ + jw)  =       e� (σ+ jw)t  f(t)  dt     (eqn. (5) recalled). 

            0
     

           ∞  

:. F(σ) + F(jw)  =       e  
-(σ + jw)

 f(t)  dt      (8)

          0

Also, from equation (3),  

       
∞

  
F(jw)  =     e -jwt  f(t) dt     (eqn. (3) recalled)

     -∞   

∫
∫

∫
© 2013   Global Journals Inc.  (US)
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Substituting equation (3) in (8), we have: 

    ∞        ∞   

F(σ) +  e -jwt f(t) dt=         e  -(σ  +  jw)t  f(t)  dt  (9) 

-∞                     0

Equation (9) then becomes: 

      ∞             0              ∞

F(σ) +      e -jwt f(t) dt  +    e - jwt f(t)dt   =      e
-(σ + jw)t

 f(t) dt 

0                   ∞                       0

       ∞                   ∞           0  

: . F(σ) =     e  -(σ +  jw)t  f(t)  dt    -     e-  jwt  f(t)  dt-     e-jw f(t)  dt  

       0                               0                     -∞

       ∞                          ∞         0  

F(σ) =         e  -(σ +  jw)t  f(t) dt   -    e- jwt f(t) dt -     e -jwt  f(t)  dt  

       0                              0                        -∞

       ∞                          ∞   0  

F(σ)     =     e -(σ +  jw)t  f(t) dt  -      e- jwt f(t) dt +     e-jwt f(t) dt  

       

0                              0                     -∞
   

∫∫

∫ ∫ ∫
∫ ∫ ∫
∫ ∫ ∫
∫ ∫ ∫

        ∞   

F(σ)   =     e 
-(σ + jw)t

 f(t) dt  -   | ½F(jw)| + | ½F(jw) |  (Ejimanya, 2005). 

       0   

        ∞   

F(σ)    =     e 
-(σ + jw)t

 f(t) �F(jw)  

       0

F(σ )  =   F(S) �  F(jw)  

Equation (10) goes to prove the linearity property of the complex spectrum, 

s(=σ+ jw) earlier postulated in equation (7), on which Laplace transformation is 

based. 

However, it is pertinent to mention here that Laplace transformation is 

expressed by F(s), not F(σ).  What then does F(σ) signify? 

∫
∫

Notes

 (10) 
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 The expression F(σ) can be viewed as the real axis component of Laplace 

transformation while F(jw) (Fourier transformation), can be viewed as the imaginary 

component of Laplace transformation.  This implies that F(σ) and F(jw) are 

complementary to each other to produce F(σ).  Hence making use of equation (10), a 

table could be developed for F(σ) from the knowledge of F(s) and F(jw). 

 Now, given a function F(t), its F(s) and F(jw) can be determined or obtained 

from tables.  A difference of that, that is F(s) � F(jw) will give F(σ) which is the real 

axis component of Laplace transformation of the given expression.  It should be noted 

that as at today, a table of F(σ) does not exist. 

IV. The Significance of F(σ) 

 As earlier mentioned above, it would strike readers compulsively that Fourier 

transformation, F(jw) of any function, is the imaginary component of Laplace 

transformation because it can be obtained by setting σ = 0 in s = σ + jw as earlier 

discussed.  Fortunately, this has been developed and presented in tables as Fourier 

transformation.  However, by setting jw = 0 in s = σ + jw, the tables for the resulting 

expression, F(s) = F(σ + 0) = F(σ), has never been developed nor interpretation given 

to its meaning. 

 A word of caution in Laplace transformation: One may argue that the claim 

that F(σ) has never been developed is not true.  That is, the individual could express 

F(σ) as: 

        ∞   

F(σ)    =     e �σt  f(t) dt    (11) (Nagrath et al., 2009 2nd ed.) 

       0
∫

It should be noted that equation (11)does not express Laplace transformation.  The right 

hand side of equation (11) only resembles Laplace transformation.  Reason: The right 

hand side of any Laplace transformation MUST contain e-st.  It should be noted that e-σt

in equation (11) is not the same as e-st.  In every Laplace expression, the �s� component 

(signifying a complex spectrum: s = σ + jw), must be there, otherwise it is not Laplace 

transformation. 

© 2013   Global Journals Inc.  (US)
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 As already mentioned above, F(σ) signifies the real axis component of Laplace 

expression.  It has been shown in equation (10) that this component can be obtained from 

V. Applications of F(σ) 

the expression F(σ) = F(s) � F(jw).  It will not be mathematically true that F(σ) for any 

function can be obtained from a Laplace transformation of that function simply by setting 

jw = 0.  The reason for this claim is that Laplace transformation of a function has an �s� 

(a complex function given by s = σ + jw), embedded in it.  The �s� is usually applied in 

all the processes of obtaining the final result of F(s).  It will therefore be mathematically 

untrue to go to the final expression of any Laplace transformation expression and simply 

put jw = 0, obtain an expression, and claim that expression to represent F(σ). 

The following example will justify this argument: 

Let�s take a function f(t) = te
-at. 

From Laplace tables, the Laplace transform, F(s) of that function is  

F(s) =       1    
2

=      1        (Distefanno III, et al (12)

  s  +  a         (s + a)2

Also, from Fourier tables, the Fourier transform F(jw) of that function is  

F(jw) =       1      
2
         =   1      

   jw + a        (a + jw)2   (Distefanno III et al., 2009)  (13)

Bye-the-way, equation (13) goes to confirm the earlier postulation made in equation 

(6) that F(jw) is a special case of Laplace transformation when σ is set to zero, that is 

when σ = 0. 

Now, back to the argument.  In equation (12), it is known that s = σ + jw.  

Hence 

F(s) = F (σ + jw) =
    1 

=
     1    

           (s + a)2       [(σ + jw) + a]2

=
               1   (14)

      [(σ + a) + jw]2

Machine -

If jw is set to zero in both sides of equation (14) in order to determine F(σ), we will 

obtain: 

F(σ )   =   
 (15)  (σ + a)2

Notes

., 2009) 

  1      
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Now, let�s carry out the operation in equation (10), that is F (σ) = F(s) � F(jw) on the 

same function, f(t) = te-at. 

 From Laplace transform tables, F(s) for that expression  =   1      , 
              (s + a)2 

(already stated in equation (12)).  Also, from Fourier transform tables,  

F(jw) =      1       , (equally stated in equation (13). 
   (a + jw) 

From equation (10), 

F(σ)  =     F(s) 

 =         1   -         1    (16)

  (s + a)2      (a + jw) 

Substituting for s = σ

 
1             -        1           

(σ + jw + a)2
   (a + jw)2

(a + jw)2
� (σ + jw + a)2

  (σ + jw + a)2 (a + jw)2

(a2 + 2jwa � w2) � [(σ + a) + jw]2

         [(σ + a) + jw]2 [a + jw]

 [(a2
� w2) + j (2wa)] � [(σ + a)2 + 2jw(σ + a) + w2]

   [(σ + a) + jw]2 [a + jw]

  (a2
� w2 + j2wa) � [(σ 2 + 2σa + a2) + 2jwσ + 2jwa + w2]

   [(σ + a) + jw]2 [a + jw]2

 a2
� w2 + j 2wa - σ 2

� 2σa � a2
� 2jwσ � 2jwa � w2

  [(σ + a) + jw]2 (a + jw)

  -w2 - σ2
� 2σa � 2jwσ � w2

        [(σ + a) + jw]2 [a + jw]

  -[2w2 + σ (σ + 2a)] � j2σw

        [(σ + a) + jw]2 [a + jw]2

© 2013   Global Journals Inc.  (US)
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F(s)   =

F(s)   =

F(s)   =

F(s)   =

F(s)   =

F(s)   =

F(s)   =

F(s)   =
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But along the real axis, w = 0. 

:. F(s) = F(σ + jw) = F(σ) =   -σ(σ + 2a)  (17)

              (σ + a)2 (a)2

 It can be seen that the RHS of equation (17) and that of (15) are not the same.  

Equation (17) was obtained from first principles whereas (15) was not. 

 Similar procedure can be applied to develop what the author chooses to call 

�sigma (σ) transformation�, which could otherwise be called �Real axis translation of 

Laplace transformation, F(s).�  From such approach, a comprehensive table, like 

Laplace and Fourier tables, could be developed for sigma (σ) transformation, F(σ), 

by considering various f(t)�s and their respective F(s) and F(jw). 

 Sigma (σ) has values through the entire spectrum of real numbers, that is from 

�∞ to +∞.  The value for �a� can be obtained from a given expression, such as f(t) = 

te-at.  In the expression f(t) = te-at, if a = 2, for instance, f(t) = te-2t.  At a point along 

the real axis, say σ= 3, using equation (17), we have: 

F(σ) = F(3) = -3(3 + 2(2) =   -21
  (3 + 2)2 (2)2    100  

F(3)    =  -21  ,   
     100  

can be interpreted as the �Discrete Laplace transformation� of the expression, f(t) = 

te-2t at a point σ = 3 along the real axis. 

 The development of Discrete Laplace transformation, as presented, may not 

have applications now but since Science and Technology are continuously 

developing, it is likely to have in the near future. 

 Fourier transformation, F(jw), is frequency transformation of a continuous �

time signal, f(t).  Also, it will be recalled that ƶ-transformation, by formulation and 

definition, is a discrete transformation process applied to discrete events.  The ƶ-

transformation expression is given by: 

VI. Discussion

Notes
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   ∞
 F(z) =  Σ  f(k)  ƶ-k  (Ogata,  2009)   (18)

   k=0  

 where ƶ is defined by ƶ = e-ST. 

 A very similar analogy here is that just as the Laplace transformation is the 

transformation of a time-based signal to the complex (s) plane, the sigma (σ) 

transformation shall one day provide information about the discrete components of 

Laplace transformation along the real axis. 

 Knowledge in all spheres of human endeavour, including Science and 

Technology, is evolving day by day.  In this particular adventure into the intricacies 

and properties of Laplace and Fourier transformations, a new expression has been 

VII. Conclusion

established through the relationship between the two; the sigma (σ) transformation.  

It is hoped that sooner or later, this new expression shall be put to use in Science, 

Engineering  and Technology for the benefit of mankind. 
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Abstract - The existence and uniqueness solution of the Cauchy problem are discussed and proved in a Banach space 
E due to Bielecki method and Picard method depending on the properties we expect a solution to possess. Moreover, 
some properties concerning the stability of solution are obtained. The product Nyström method is used as a numerical 
method to obtain a linear system of algebraic equations. Also, many important theorems related to the existence and 
uniqueness solution of the algebraic system are derived. Finally, an application is given and numerical results are 
obtained.
Keywords : linear partial differential equation of fractional order, semigroup, linear algebraic system, product 
nyström method. 

history starting with the works of Feller [1], Hille [2], and Yosida [3]. The basic results of 
the semigroup theory may be considered as a natural generalization of theorem of M. 
Stone on one-parameter group of unitary operators in a Hilbert space (see Yosida [4]). 
Also, the semigroups play a special role in applications, for example they describe how 
densities of initial states evolve in time. Moreover, there are equations which generate 
semigroups. These equations appear in such diverse areas as astrophysics-fluctuations in 
the brightness of the Milky Way [5], population dynamics [6,7], and in the theory of jump 
processes. 

In [8], Mijatovie and Pilipovie introduced and analyzed α -times integrated 

semigroups for )1,( 2
1∈α . In [9], El-Borai studied the Cauchy problem in a Banach space E 

for a linear fractional evolution equation. In his paper, the existence and uniqueness of 
the solution of the Cauchy problem were discussed and proved. Also, the solution was 
obtained in terms of some probability densities. In [10], El-Borai discussed the existence 
and uniqueness solution of the nonlinear Cauchy problem. 

In this work, we treat the following Cauchy problem of the fractional evolution 
equation 

Arabia.

The use of semigroups methods for partial differential equations has had a long 
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with the initial condition: ,)()0,( 0 xuxu =                    

 

In a Banach space E. Here ),( txu

 

is an E-valued function on [ ] ATTE ,,,0 ∞<× is a 

linear closed operator defined on a dense set 1S

 

in

 

E

 

into E, }],0[,)({ TttB ∈ is a family of  

linear closed operators defined on a dense set 12 SS ⊃

 

in

 

E

 

into E,  Exu ∈)(0

 

and 10 ≤< α . 

 

II.

 

Linear Fractional

 

Evolution

 

Equation 

 

Consider the Cauchy problem of the fractional evolution equation 

 

10;),()(),(),(
≤<+=

∂

∂ αα

α
txutBtxuA

t
txu

,                             (2.1)

 

with the initial condition :                     )()0,( 0 xuxu = ,                                              (2.2)

 

 

  

 

  

 

It is assumed that A

 

generates an analytic semigroup

 

)(tQ .  This condition implies:

 

,0)(,0)( >≤≥≤ tfor
t
ktQAandtforktQ                     

 

(2.3)

 

where ⋅ is the norm in E

 

and k

 

is a positive constant (Zaidman [11]).

 

Let us suppose that gtB )(

 

is uniformly Hölder continuous in ],,0[ Tt ∈

 

for every 

1Sg ∈

 

; that is 

 

β)()()( 12112 ttkgtBgtB −≤− ,    

 

                             (2.4)

 

for all ],0[,, 2112 Ttttt ∈> , where 1k

 

and β

 

are positive constants, 1.≤β

 

We suppose also that there exists a number )1,0(∈γ , such that 

 

,)()(
1

2
12 h

t
khtQtB γ≤                    

  

               (2.5)

 

where 01 >t , ],0[2 Tt ∈ , Eh ∈ and 2k is a positive constant (El-Borai [9,12,13]).             

 

(Notice that 1)( ShtQ ∈ for each Eh ∈

 

and each 0>t ) . 

 

Following Gelfand and Shilov ([14],[15]) , we can define the integral of order 0>α

 

by 

 

.)()(
)(

1)( 1

0
θθθ

α
αα dfttfI

t
−∫ −

Γ
=

 

If  10 << α , we can define the derivative of order α
 
by 

 







 =′

−

′
−Γ

= ∫ θ
θθθ

θ
θ

α αα

α

d
fdfd

t
f

td
tfd t )()(,

)(
)(

)1(
1)(

0

 

where f is an abstract function with values in E.
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txu
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∂

∂
α

α

in a Banach space E, where ),( txu is an E-valued function on ∞<× TTE ,],0[ , A is a linear

closed operator defined on a dense set 1S in E into E, { }TttB ≤≤0),( is  a family of  linear

closed operators defined on a dense set 12 SS ⊃ in E into E, and Exu ∈)(0 .



 

 

Let )],0[( TECE ×  be the set of all continuous functions Etxu ∈),( .We define on 

)],0[( TECE ×  a norm by .,],0[,),(max),(
,]),0[(

ExTttxutxu
EtxTECE

∈∈∀=
×  

By a 

solution of the Cauchy problem (2.1), (2.2), we mean an abstract function ),( txu  such 

that the following conditions are satisfied: 

(a)    ]),0[(),( TECtxu E ×∈
 
and 1),( Stxu ∈

 
for all .,],0[ ExTt ∈∈

 

(b)   
 

α

α

t
txu

∂

∂ ),(  
exists and is continuous on ],0[ TE × , where .10 << α

 

(c)   
 

),( txu satisfies (2.1) with the initial condition (2.2) on ],0[ TE × .
 

Now, it is suitable to rewrite the Cauchy problem (2.1), (2.2),
 

in the form 

 

,),()()(
)(
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1)(),(

0

1

0

1
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dxuBt
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∫

−

−

−
Γ

+

−
Γ

+=

                        (2.6)

 

where the solution of (2.6) is equivalent to the solution of Cauchy problem (2.1), (2.2)  

III.

 

The

 

Existence and Uniqueness Solution of Linear Fractional        

            

Evolution Equation

 

In this section , the existence and uniqueness solution of (2.6) and consequently its 
equivalent Cauchy problem (2.1), (2.2), will be discussed and proved in a Banach E by 
two different ways. The first way is due to "Bielecki method", and the second is "Picard 
method" depending on the properties we expect a solution to possess.

 

a)

 

Modified Bielecki Method 

 

Here, we will generalized the technique of Bielecki method to obtain the existence 
and uniqueness solution of (2.6) in E, for  10 ≤< α

 

. 

 

It's suitable to consider the following lemma.

 

Lemma 1:

 

If  1>λ

 

and  10 << δ

 

, then

 

tdt
t

1

0

1 )1()( −− ≤−∫ δδ
λ

ηη

 

,                                       (3.1)

 

and

 

.]11[)1()(
0

1 t
t

edte λδδηλ
δλ

ηη +≤−∫ −                                  (3.2)

 

Theorem 1

 

:

 

If A

 

and B

 

are linear bounded operators in a Banach space E, and 10 ≤< α , then 
(2.6) has a unique solution in E

 

. 

Proof:

 

Let K be an operator defined by 
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Hence, we have
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Since A

 

and B

 

are bounded operators, there exists positive constants L and M such 
that  

.),(),()(,),(),( txuMtxutBandtxuLtxuA ≤≤

 

                      (3.5)

 In the light of (3.5), (3.4) takes the form 
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t
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                     (3.6)

 Using (3.1) in (3.6), we get 
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Inequality (3.7) shows that, the operator K

 

maps the ball EBr ⊂ into itself, where 
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δσ

δ
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Since 0,0 >> σr , therefore 1<δ . Also, the inequality (3.7) involves the boundedness of the 
operator K .

 For the two functions ),( txu and ),( txv in

 

E, the formula (3.3) leads to 
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Using (3.5) in (3.8), we have for λ   1
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Using (3.2), the above inequality becomes 
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Inequality (3.9) can be adapted in the form 

 

.)),(,),(()),(,),(( txvtxudtxvKtxuKd σ≤

 

If we choose λ

 

sufficiently large, then 1<σ , and d

 

is a contraction mapping. By 
Banach

 

fixed point theorem, K

 

has a unique fixed point which is the unique solution of

          

(2.6). 

 

b)

 

Semigroup Method 

 

To obtain the solution of the Cauchy problem (2.1), (2.2) in the dense set 1S

 

in

 

E, 
we can follow the work of El-Borai [9]. Hence, the Cauchy problem (2.1), (2.2), and (2.6) 
are equivalent to the following integral equation 

 

,)()()(

),())(()()(),(

0
0

0 0

1

∫
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∞

∞
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θθθζ

ηθηθηθζηθα

α
α
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α

α

dxutQ

ddxwtQttxu
t

                  (3.10)

 
where )(θζα

 

is a probability density function defined on ),0( ∞ , and

]),0[(),(,),()(),( TEtxtxutBtxw ×∈= .

 

The integral equation (3.10) represents a Volterra equation of the second kind 
with Abel kernel, where the first term of the R.H.S is known and continuous. The 
integral equation will be solved numerically in the next section.

 

Now, we will prove that (3.10) has a unique solution which represents the required 
solution of the Cauchy problem (2.1), (2.2). 

Theorem 2:

 

The Cauchy problem (2.1), (2.2) has a unique solution in .]),0[( TECE ×

  

The proof of this theorem depends on the following lemmas.

 

Lemma 2:

 

Under the condition (2.5), (3.10) has a solution in the space .]),0[( TECE ×

 

Proof:

 

Consider the following integral equation 
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.)()()()(

),())(()()()(),(

0
0

0 0

1

∫

∫ ∫

∞

∞
−

+

−−=

θθθζ

ηθηθηθζηθα

α
α

α
α

α

dxutQtB

ddxwtQtBttxw
t

                      (3.11)
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Using the method of successive approximations, we set 

 .),())(()()()(

)()()()(),(

0 0

1

0
01

ηθηθηθζηθα

θθθζ

α
α

α

α
α

ddxwtQtBt

dxutQtBtxw

n
t

n

−−

+=

∫ ∫

∫

∞
−

∞

+

 

Thus, we have 

 

,)],(),([))(()()()(

),(),(

01
0 0

1

12

ηθηηθηθζηθα α
α

α ddxwxwtQtBt

txwtxw

t

−−−

≤−

∫ ∫
∞

−

 

where ),(0 txw

 

is the zero element in E

 

. 

In view of the condition (2.5), we get 

 

.),(),(
))((

)()(

),(),(

01
2

0 0

1

12

ηθηη
θη

θζηθα γαα
α ddxwxw

t
kt

txwtxw
t

−
−

−

≤−

∫ ∫
∞

−

 

The above inequality for 10 )( Sxu ∈ can be adapted in the form 

 

,),(),( 12 ν
µ νttxwtxw ≤−                                    (3.12)

 

where,  

( )

.)1(

,)()()(sup)( 0
0,0

1
2

γαν

θθθηηθζθζθαµ α
α

θ
α

γ

−=

= ∫∫
∞∞

− ddxuQBk
t                   (3.13)

 

By induction, we obtain 

 

.
)1(
))((),(),(1 +Γ

Γ
≤−+ ν

νµ ν

n
ttxwtxw

nnn

nn

 

Thus, the series ∑
∞

=
+ −

0
1 ),(),(

i
ii txwtxw

 

converges uniformly on

 

],0[ TE × , under the 

condition,  1)( <Γ νµ νt

 

. 

Since

 

∑
=

++ −=
n

i
iin txwtxwtxw

0
11 ]),(),([),( , it follows that the sequence { }),( txwn

 

converges 

uniformly in the space )],0[( TECE × to a continuous function ),( txw which satisfies (3.11), 

consequently ∈),( txu )],0[( TECE × .

 

Lemma 3:

 

Under the condition (2.5), (3.10) has a unique solution in the space )],0[( TECE × .
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Proof:
For the two functions ),(1 txw and ),(2 txw in the space )],0[( TECE × , the formula 

(3.11) with the aid of condition (2.5), leads to 

Notes



 

 

 
                

 

 

Consequently,

 

,)(),(),(
0

1)(
12 ηηρµ νηλ dtetxwtxw

t
x∫ −+ −≤−                            (3.14)

 

where,  ]),(),([max 12
)(

,
txwtxwe xt

tx
−= +−λρ ,

 

and 1>λ .

 

Using (3.2) in (3.14), we get 

 

.]11[)1(),(),( )(
12

xtetxwtxw ++≤− λν
νλ

ρµ

 

Thus, we have 

 

.]11[)1(]),(),([max 12
)(

, νλ
ρµ νλ +≤−+− txwtxwe xt

tx

 

We can choose λ

 

sufficiently large such that 

 

.1]11[)1( 1 <=+ µ
νλ

µ ν

 

Thus,

 

.0]),(),([max 12
)(

,
=−= +− txwtxwe xt

tx
λρ

 

This completes the proof of the lemma.

 

Lemma

 

4:

 

Under the conditions (2.4) and (2.5), the solution ),( txw

 

of (3.11) satisfies a 

uniform Hölder condition. (El-Borai [9])

 

Proof of Theorem 2:

 

By virtue of lemmas (3) and (4), we deduce that, the function 1),( Stxu ∈

 

and 

represents the unique solution of Cauchy problem (2.1), (2.2) in the space ]),0[( TECE × .

 

Corollary 1:

 

The integral equation (3.10) has a unique solution in the Banach space ]),0[( TC ×ℜℜ

 

.

 

Now, we will prove the stability of the solutions of the Cauchy problem (2.1), (2.2). In 
other words, we will show that the Cauchy problem (2.1), (2.2) is correctly formulated.

 

Theorem 3:

 

Let { }),( txun

 

be a sequence of functions, each of which is a solution of (2.1) with 

the initial condition

 

)()0,( xgxu nn = , where 1)( Sxgn ∈ .,...)2,1( =n

 

If the sequence { })(xgn

 

converges to an element 10 )( Sxu ∈ , the sequence { })(xgA n

 

converges and the sequence

{ })()( xgtB n converges uniformly on ],0[ TE × . Then, the sequence of solutions { }),( txun

 

converges uniformly on ],0[ TE × to a limit function ,),( txu

 

which is the solution of the 
Cauchy problem (2.1), (2.2).
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.),(),()(),(),( 12
0

1
12 ηηµ ν dtxwtxwttxwtxw

t
−−≤− ∫ −

Proof:

Consider the sequences { }),( txzn and { }),( txun
∗ , where 

,),(),(),( txztxuA
t

txu
nn

n =−
∂

∂ ∗
∗

α

α
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,)()0,(,)(),(),( xgxuxgtxutxu nnnnn =−=∗

 

,),())(()()(),(
0 0

1 ηθηθηθζηθα α
α

α ddxztQttxu n
t

n −−= ∫ ∫
∞

−∗

 

and 

 

).()()(),()(),( xgAxgtBtxutBtxz nnnn ++= ∗

 

In view of the conditions (2.5) and (3.13), we get

 

.)()()()()()(

),(),()(),(),(
0

1

xgAxgAxgtBxgtB

dxzxzttxztxz

mnmn

mn
t

mn

−+−+

−−≤− ∫ − ηηηηµ ν

 

Given ,0>ε

 

we can find a positive integer )(εNN = , such that 

 

,)1(),(),()(

),(),(

1
0

1 εµηηηηµ ν −+−−

≤−

∫ − dxzxzt

txztxz

mn
t

mn

 

for all NmNn ≥≥ ,

 

and ],0[),( TEtx ×∈ .

 

Using (3.2), the above inequality takes the form 

 

.)1(),(),()1( )(
1

)(
1 εµµ λλ xt

mn
xt etxztxze +−+− −≤−−

 

Thus, for sufficiently large λ , we get 

 

ελ ≤−+− ]),(),([max )(
,

txztxze mn
xt

tx
.

 

Since E is a complete space, it follows that the sequence { }),( txzn

 

converges 

uniformly on [ ]TE ,0×

 

to a continuous function ),( txz , so the sequence { }),( txun
∗

 

converges 

uniformly on [ ]TE ,0×

 

to a continuous function ),( txu∗ . It can be proved that ),( txz satisfies 

a uniform Hölder condition on [ ]T,0

 

, thus 1),( Stxu ∈∗ . 

 

IV.

 

The

 

Numerical Solution of Linear Fractional Evolution Equation  

 

In this section, we will use the product Nyström method (Linz [17], and Dzhuraev 

[18]), to obtain numerically, the solution of the Cauchy problem (2.1), (2.2),

 

in the 
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Banach space ]),0[( TC ×ℜℜ , where .,],0[,),(max),(
,]),0[( ∞<<∞−∈∀=×ℜℜ

xTttxutxu
txTC For

this, the integral equation (3.10) can be written in the form 

∫ ∗∗ +=
t

dxuBtQtptxftxu
0

,),()(),(),(),(),( ηηηηηα                        (4.1)

Ref.

17.
A

. 
D
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u
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eth

od
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in
gu

lar I n
tegral E

qu
ation

s,
L
on

d
on

, 
N

ew
 
Y

ork
, 

1992.



 

 

  

 

  

where,  

∫
∞

∗ =
0

0 ,)()()(),( θθθζ α
α dxutQtxf             

 

                      (4.2)

 

∫
∞

∗ −=
0

,))(()(),( θθηθζθη α
α dtQtQ                                (4.3)

 

and the bad kernel

 

.);0,10(,)(),( 1 ∞<≤≤≤<<−= − TTtttp ηαηη α                          (4.4)

 

Here, the unknown function ,]),0[(),( TCtxu ×ℜ∈ ℜ

 

while ),( txf ∗ , ),( ηtQ∗

 

and ),( ηtp
are known functions and satisfy the following conditions:

 

(1)  

 

),( txf ∗

 

is a continuous function in .]),0[( T×ℜ

 

(2)   ),( ηtQ∗

 

with its partial derivatives are continuous functions in [ ]T,0

 

. 

(3)   ),( ηtp is a badly behaved function of its arguments such that:

 

(a)  

 

for each continuous function ),( txu and ttt ≤≤≤ 210 , the integrals 

 

,),()(),(),(
2

1

∫ ∗
t

t

dxuBtQtp ηηηηη

 

and

 

,),()(),(),(
0
∫ ∗
t

dxuBtQtp ηηηηη

 

are continuous functions in ]).,0[( T×ℜ

 

(b) ),( ηtp is absolutely integrable with respect to η

 

for all T.t ≤≤0

 

Remark 1:

 

By virtue of corollary (1), the integral equation (4.1) has a unique solution in the 
Banach space ]),0[( TC ×ℜℜ . 

 

Now, we will apply the product Nyström method, to obtain numerically, the 
solution of (4.1). Therefore, putting iiiiii tthhitxxtt −====== +1,,η

 

),...,1,0( evenisNandNi = ,  

and using the following notations 

 

),(

,),(,),(,),( ,,,

ii

iiiijijiiiii

BB
xtfftQQxtuu

η

η

=

=== ∗∗∗∗

 

we get the following linear algebraic system 
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),...,2,1,0(,,
0

,,,, NiuBQwfu jjj

N

j
jijiiiii =+= ∑

=

∗∗ α                              (4.6)

where, 

.)(,)()(

)(2,)(

2,12,

112,10,

iNiijijji

ijjiii

twttw

twtw

N
∗

+
∗

++

=+=

==

αβα

γβ
                        (4.7)
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And, 

∫

∫

−

−

−−=

−−=

−

−−
∗

j

j

j

j

t

t
jjiij

t

t
jjiij

dtp
h

t

dtp
h

t

2

22

2

22

,)()(),(
2

1)(

,)()(),(
2

1)(

2122

12222

ηηηηηηβ

ηηηηηηα

 

∫
−

−−= −

j

j

t

t
jjiij dtp

h
t

2

22

.)()(),(
2

1)( 2222 ηηηηηηγ                          (4.8)

 

Evaluating the integrals of (4.8), where

 

1)(),( −−= αηη ttp , and introducing the 
results in the values of sw' , we get

 

{
},])2()1(2)2(32[

2]222[
)2)(1(2

2

1
0,

α

α
α

ααα

α
ααα

iii

iihwi

++++−−

−−++−
++

−
= +

 

{
},222]2

22[)2(
)2)(1(

2

221

1
12,

+++

+
+

−−−−+−+

−−+
++

=

ααα

α
α

α
ααα

jijiji

jihw ji

 

{

},222222

2)2(622)2(

22)2(
)2)(1(2

22

11

1
2,

++

++

+

+−−−−+

−++−−++

+−+
++

−
=

αα

αα

α
α

αα

α
ααα

jiji

jiji

jihw ji

 

and

 

{
} .2222)2(

)2(3)2()1(2

)2()1(2

221

1

,

+++

+

+−−−++−+

+−++−++

++
−

=

ααα

αα

α

α

ααα

ααα

niNiNi

NiNi

hw Ni

                         (4.9)

 

The linear algebraic system (4.6) represents )1( +N equations in iiu , . Therefore, the 

approximate solution of ),( txu

 

can be written in the vector form 

 

,)( ∗=− FUWI α                                      (4.10)
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where, 

,

1...
.
.

.

.
.
.

.

.
....

...1

...1

,,11,1,00,0,

,1,111,11,100,10,1

,0,011,01,000,00,0



























−−−

−−−

−−−

=

∗∗∗

∗∗∗

∗∗∗

NNNNNNNNN

NNN

NNN

BQwBQwBQw

BQwBQwBQw

BQwBQwBQw

W

ααα

ααα

ααα

Notes



 

 

.

.

.,

.

.

.

,

1,1

0,0

,

1,1

0,0



























=



























=

∗

∗

∗

∗

NNNN f

f
f

Fand

u

u
u

U

 
When det 0)( ≠W , the algebraic system (4.6) has a unique solution in the form 

 

,][ 1 ∗−−= FWIU α                                        (4.11)

 

where I is the identity matrix.

 

Theorem 4:

 

The algebraic system (4.6) has a unique solution in the Banach space ∞ , under 
the following conditions 

 

)tan(,sup , tconsaisqqf ii
i

≤∗

 

.  

 

                          (4.12)

 

)tan(,sup
0

,, tconsaisqqQw
N

j
jiji

i

∗∗

=

∗ ≤∑

 

.  

 

                       (4.13)

 

)tan(,supsup ,, tconsaisMuMuB ii
i

iii
i

≤

 

.                       (4.14)

 

Proof :

 

Let Y be the set of all functions { } ∞= inuU ii, such that ∗≤∞ ρ


U , ∗ρ

 

is a 

constant. Define the operator T~

 

by 

 

,~ UWFUT α+= ∗                                          (4.15)

 

where , .,...2,1,0,~sup~
, =∀=

∞
iuTUT ii

i

 

The formulas (4.6) and (4.15) lead to 

 

.,...2,1,0,supsupsup~
,

0
,,,, =∀+≤ ∑

=

∗∗ iuBQwfuT jjj
j

N

j
jiji

i
ii

i
ii α

 

In view of the conditions (4.12) and (4.14), the above inequality takes the form 

 

∞∞
∗+≤


UqUT λ~   (, Mq∗∗ = αλ .                            (4.16)

 

Inequality (4.16) shows that, the operator T~

 

maps the set Y

 

into itself, where 
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.
1 ∗

∗

−
=

λ
ρ q

Since 0,0 >>∗ qρ , therefore 1<∗λ . Also, the inequality (4.16) involves the boundedness of 

operator T~. 
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For the two functions U

 

and V

 

in

 

∞ , the formulas (4.6) and (4.15) lead to 

 

)(sup.sup~~
,,

0
,,,, jjjjj

j

N

j
jiji

i
iiii vuBQwvTuT −≤− ∑

=

∗α   .

 

The above inequality, with the aid of conditions (4.13) and (4.14), can be adapted 
in the form 

 

.~~
∞∞ −≤− ∗


VUVTUT λ

 

Therefore, T~

 

is a continuous operator in ∞ , then under the condition 1<∗λ , T~

 

is

 

contractive. Hence, by Banach fixed point theorem, T~

 

has a unique fixed point which is 

the unique solution of the linear algebraic system in the Banach space ∞ .

 

Theorem 5:

 

If the conditions (4.13) and (4.14) of Theorem (4) are verified, and the sequence of 

functions { } { }miim fF )( ,
∗∗ =

 

converges uniformly to the function { }∗∗ = iifF ,

 

in the Banach space 

∞ . Then, the sequence of approximate solutions { } { }miim uU )( ,=

 

converges uniformly to the 

exact solution { }iiuU ,=

 

of the linear algebraic system (4.6) in ∞ .

 

Proof:

 

In the light of (4.6), we get 

 
.,...2,1,0,)(sup

))((supsup)(

,,

,,
0

,,,,

=∀−+

−≤− ∑
=

∗

iff

uuBQwuu

miiii
i

mjjjjj
j

N

j
jiji

i
miiii α

 
Using the conditions (4.13) and (4.14), we have 

 

).1(;
1

1
<−

−
≤− ∗∗∗

∗
∞∞

λ
λ 

mm FFUU

 

Since 0→−
∞

∗∗



mFF as ∞→m ,

 

so that 0→−
∞

mUU .

 

This complete the prove of the theorem. 

When

 

∞→N ,

 

it is natural to expect that the sum jjjji
N

j
ji uBQw ,,

0
,

∗

=
;

 

,,0 Nji ≤≤

 

becomes

 

ηηηηη dxuBtQtp
t

),()(),(),(
0
∫ ∗ .

 

Consequently, the solution of the algebraic system (4.6) 

is the same solution of the integral equation (4.1). 

 

Theorem 6:
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If the sequence of continuous functions { }),( txfn
∗ converges uniformly to the 

function ),( txf ∗ , and the functions ),( ηtQ∗ , ),( ηtp satisfy, respectively, the conditions (2) 

and (3-b). Then, the sequence of approximate solutions { }),( txun converges uniformly to 

the exact solution of (4.1) in the Banach space ]),0[( TC ×ℜℜ .

Notes

∑



 

 

 

 

 

Proof:

 

The formula (4.1) with its approximate solution give 

 

.,0

,)),(),(()(max.),(),(

),(),(max),(),(max

0
,

,,

∞<<∞−≤≤≤∀

−+

−≤−

∫ ∗

∗∗

xTt

dxuxuBtQtp

txftxftxutxu

n

t

x

ntxntx

η

ηηηηηηα
η

                  (4.17)

 
In view of the conditions (2) and (3-b), there exist two constants 1c

 

and 2c , such that 

 

.),(,),( 2
0

1 cdtpandctQ
t

≤≤ ∫∗ ηηη                               (4.18)

 

Hence, the inequality (4.17)  with the aid of (4.18) and (3.5), takes the form 

 
( ) .

,),(),(
)1(

1),(),(

21

]),0[(]),0[(

Mccc

txftxf
c

txutxu
TCTC

nn

α=

−
−

≤−

∗

∗∗
∗

×ℜℜ×ℜℜ

  

Since

 

0.),(),(hence

,0),(),(

)],0[(

)],0[(

→−

∞→→−

×ℜ

×ℜ

∗∗

ℜ

ℜ

Tn

Tn

C

C

txutxu

nastxftxf

 

Definition 1:

 

The product Nyström method is said to convergent of order r

 

in [a,b] if and only 
if for sufficiently large N, there exists a constant 0>c

 

independent of N, such that 

 

.)()( r
N Ncxx −

∞ ≤−φφ

 

Definition 2:

 

The consistency error NR

 

of the product Nyström method is determined by the 
following equation 

 

.),()(),(),(
0 0

,,,∫ ∑
=

∗∗ −=
Nt N

j
jjjjijiN uBQwdxuBtQtpR ηηηηη                 (4.19) 

Also , (4.19 )  gives

 

,])),(),(([),(),(),(
0

, NjjNjjjji
N

j
jiN RxuxuBtQwtxutxu +−=− ∗

=
∑ ηηη                 (4.20)

 

where ),( txuN

 

is the approximate solution of (4.1).
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Theorem 7:
Assume that, the hypothesis of Theorem (5) are verified, then 

.0lim =
∞→

N
N

R                                                  (4.21)
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Proof:

 

The formula (4.20) leads to 

 
.))((supsup

)(sup

,,
0

,,

,,

Njjjjj
j

N

j
jiji

i

Niiii
i

N

uuBQw

uuR

−+

−≤

∑
=

∗

 

In view of the conditions (4.13) and (4.14), the above inequality takes the form 

 

.,...2,1, =∀−+−≤
∞∞∞

∗ NUUMqUUR NNN


 

Since ∞→→−
∞

NasUU N 0


 

(see Theorem (5), it follows that 0.→
∞

NR

 

Application I:

 

In (4.1), let ,)(,1),(,10 IBtQ ==<< ∗ ηηα

 

where I

 

is the identity operator. Hence, 
we get a linear Volterra integral equation of the second kind with Abel kernel 

 

,),()()
1

1()1(),(
0

1 ηηηα
α

α
α

α dxuttttxtxu
t
∫ −−+

+
−+−=                              (4.22)

 

where the exact solution .),( txtxu +=

 

The results are obtained numerically in the flowing Table which lists various values 
of ]8.0,0[, ∈tx together with the values of the exact and approximate solutions and the error 
of (4.22). Also, we can see from this table that:

 

1.

 

The exact and approximate solutions are coincident for 0== tx .

 

2.

 

As x

 

and t

 

are increasing through [0,0.8], the error is also increasing for 98.0=α , 
8.0=α

 

and 4.0=α . 

 

3.

 

The maximum value of the error is 0.421056 which occurs at x = t

 

= 0.8 for 8.0=α .

 

 
x=t

 

Exact

 

4.0=α

 

8.0=α

 

Appr. 
Sol.

 

Error

 

Appr. 
Sol.

 

Error

 
0 0 0 0 0 0 

0.08 0.16 0.154992

 

0.005008 0.155284 0.004716 
0.16 0.32 0.306929 0.013071 0.302817 0.017183 
0.24 0.48 0.456241 0.023759 0.442848 0.037152 
0.32 0.64 0.602977 0.037023 0.575147 0.064853 
0.4 0.8 0.747068 0.052932 0.699325 0.100675 
0.48 0.96 0.88839 0.07161 0.814898 0.145102 
0.56 1.12 1.02678 0.09322 0.921307 0.198693 
0.64 1.28 1.162041 0.117959 1.017924 0.262076 
0.72 1.44 1.293951 0.146049 1.104056 0.335944 
0.8 1.6 1.422257 0.177743 1.178944 0.421056 
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x=t        Exact

98.0=α

Appr. 
Sol.

Error

0 0 0 0 
0.08 0.16 0.156646 0.003354 
0.16 0.32 0.306367 0.013633 
0.24 0.48 0.448667 0.031333 
0.32 0.64 0.582967 0.057033 
0.4 0.8 0.708623 0.091377 
0.48 0.96 0.824933 0.135067 
0.56 1.12 0.93113 0.18887 
0.64 1.28 1.02638 0.25362 
0.72 1.44 1.10978 0.33022 
0.8 1.6 1.180347 0.419653 

Notes
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Let G be a locally compact group and let L1(G) denote the Lebesgue space
with respect to the Haar measure on G. An L1(G)−multiplier is any con-
tinuous linear transformation from L1(G) into itself which commutes with
translations. Many investigations have been carried out to characterize the
L1(G)−multipliers. The theory has been extended to other group algebras,
general Banach algebras, some locally convex linear spaces and C∗−algebras.
See [8], [1] and references therein. For further informations on the theory of
multipliers we refer to [8]. In this paper we study multipliers of distributions.
Some results in this area involving temperate distributions can be found in [5]
and [7]

a) Definition and notations of distributions spaces

In this section we recall some facts about distributions. For more details we
refer to [2], [3] and [4]. As usual D denotes the set of infinitely differentiable
complex valued functions on Rn having compact support. The set D is topol-
ogized in the following way. The subset DK of D whose elements have their
supports in the compact subset K of Rn is a locally convex vector space with
the semi-norms Pm,K defined by

Pm,K(φ) = sup
x∈K,|q|≤m

|Dq(φ)| (1)

where m ∈ N, q = (q1, . . . , qn) ∈ Nn, |q| =
n∑
i=1

qi, x = (x1, . . . , xn) and Dq =

∂|q|

∂xq11 . . . ∂x
qn
n

. Then D is the strict inductive limit of the DK ’s, when K runs

over an increasing sequence of compact sets whose union is Rn. Thus a net

[1
]

A
k e
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n
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C
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ed
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n
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G
.
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an
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li
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−

al
ge
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.
J
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F
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ct

.
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.
1
3

(1
97

3)
,

27
7-

30
1.
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{φα} converges to 0 in D means that all the φα’s have their supports in a fixed
K and for any q ∈ Nn the net {Dqφα} converges to 0 uniformly in K.
A distribution on Rn is a continuous linear functional on D. The vector space
of distributions is naturally denoted by D′. Let U be a distribution. We say
that U vanishes on a subset Ω of Rn if U(φ) = 0 whenever suppφ ⊂ Ω. The
support of U is by definition the smallest closed subset of Ω of Rn such that
U vanishes off Ω.
Let E denotes the set of infinitely differentiable complex functions on Rn. It is
endowed with the locally convex topology with semi-norms PK,m defined as in
(1) where K now is no longer fixed. It was shown that the topological dual E ′
is identical with the space of distributions with compact support [2, page 38].
Let S be the subset of E which contains the functions φ such that

lim
‖x‖→∞

|xkDqφ(x)| = 0,∀k ∈ N (2)

with xk = xk1x
k
2 . . . x

k
n. S is called the space of rapidly decreasing infinitely

differentiable functions whereas its topological dual S ′ is called the space of
slowly increasing distributions or temperate distributions.
Finally denote by OM the subset of E such that

φ ∈ OM if and only if lim
‖x‖→∞

|ϕ(x)Dqφ(x)| = 0, ∀ϕ ∈ S (3)

and by O′C the subset of D′ such that

U ∈ O′C if and only if (1 + ‖x‖2)
k
2U is bounded in Rn, k ∈ N, (4)

which means (1 + ‖x‖2)U k
2 (φα) converges to 0 whenever φα and all its deriva-

tives belong to L∞(Rn) and (φα) such as its derivatives converges to 0 in
L∞(Rn). For the various topologies see [4].

In the sequel D′ and S ′ will be endowed with their strong dual topologies
and O′C (which is not the dual of OM) will carry its usual topology except
otherwise stated.

The translation τhU is defined by

τhU(φ) = U(τ−hφ), U ∈ D′, φ ∈ D. (5)

b) Operations on Distributions

Multipliers of Distributions Spaces

The partial derivative
∂U

∂xk
is defined by

∂U

∂xk
(φ) = −U(

∂φ

∂xk
), U ∈ D′, φ ∈ D. (6)

It is shown in [4, pages 77 and 88] that

∂U

∂xk
= lim

hk→0

τ−hU − U
hk

(7)

Ref.
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where h = (0, . . . , 0, hk, 0, . . . , 0) ∈ Rn and also that

∂τhU

∂hk
= −∂τhU

∂xk
. (8)

The multiplication αU is defined by

αU(φ) = U(αφ), U ∈ D′, α ∈ E , φ ∈ D. (9)

The Fourier transform FU is defined by

FU(φ) = U(Fφ), U ∈ S ′, φ ∈ S. (10)

The convolution U ∗ V is defined by

U ∗ V (φ) = U(V (τ−yφ)) (11)

where V acts on φ as a function of x and U on the result as a function of y.

Convolution is not always meaningful, but it makes sense for instance if one
the distributions at least has compact support. When it is defined, convolution
is bilinear, commutative and the mapping (U, V ) 7→ U ∗ V is hypocontinuous
in the sense that if one of U or V varies in a bounded set of D′ or E ′ and the
other converges to 0, then U ∗ V converges to 0. Moreover

τh(U ∗ V ) = τhU ∗ V = U ∗ τhV (12)

and
∂(U ∗ V )

∂xk
=
∂U

∂xk
∗ V = U ∗ ∂V

∂xk
. (13)

We recall the following well-known lemma from [4, page 268].

Lemma 1.1 The Fourier transform is an isomorphism between O′C and
OM , and changes convolution into multiplication in S ′ i.e. if U ∈ S ′, W ∈ O′C
then FU ∈ S ′, FW ∈ OM and

F(W ∗ U) = FWFU. (14)

Multipliers of Distributions Spaces

Definition 2.1 Let V or W be any one of D′, S ′, O′C or E ′. We call
(V ,W)−multiplier any continuous linear transformation T : V → W that
commutes with translations.

We denote by L(V ,W) the space of continuous linear transformation from V
toW and byM(V ,W) the subset of L(V ,W) consisting of the (V ,W)−multipliers.
We write L(V) and M(V) for L(V ,W) and M(V ,W) when V = W respec-
tively.

II. Main Results

Ref.
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Theorem 2.2 Let T be a linear continuous operator in D ′. Then the fol-
lowing statements are equivalent:

i) T ∈M(D′).

ii) T commutes with partial derivatives.

iii) There exists a unique W in E ′ such that

TU = W ∗ U for all U in D′. (15)

Proof.

1. i)⇒ ii)

Suppose T ∈M(D′). Then T (τhU) = τh(TU), ∀U ∈ D′, ∀h ∈ Rn.

We have

T (
∂U

∂xk
) = T ( lim

hk→0

τ−hU − U
hk

)

= lim
hk→0

T (
τ−hU − U

hk
)

= lim
hk→0

τ−hTU − TU
hk

=
∂TU

∂xk
.

Hence T commutes with partial derivatives.

2. ii) ⇒ i). This implication can be found in [4, page 163]. For the conve-
nience of the reader, we reproduce it here.
Assume that ii) holds and consider the function define by

(h) = [T (τhU)](τhφ). (16)

We are going to prove that for U ∈ D′ and φ ∈ D fixed, the function
is independent of h = (h1, h2, . . . , hn) in Rn. For k = 1, 2, . . . , n, we have

Ã

Ã

Ã

Multipliers of Distributions Spaces

∂

∂hk
(h) =

∂

∂hk
{[T (τhU)](τhφ)}

= [
∂

∂hk
T (τhU)](τhφ) + [T (τhU)](

∂

∂hk
(τhφ))

= T [
∂

∂hk
(τhU)](τhφ) + [T (τhU)](

∂

∂hk
(τhφ))

= T [− ∂

∂xk
(τhU)](τhφ)− [T (τhU)](

∂

∂xk
(τhφ))

Ã
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using successively the fact that T commutes with partial derivatives and

is linear, and formulas (8) and (6). We conclude from
∂ψ

∂hk
(h) = 0

for k = 1, 2, . . . , n that is a constant equal to (0). That means

that [T (τhU)](τhφ) = TU(φ). Now, T (τhU)(τhφ) = τ−hT (τhU)(φ) by

definition. Thus τ−hT (τhU) = TU and T (τhU) = τh(TU). Hence i)
holds.

3. iii) ⇒ i).
For any W ∈ E ′, the mapping U 7→ TW (U) = W ∗U defines a continuous
operator in D′ which commutes with translations according to (12) and
because (U,W ) 7→ W ∗ U is hypocontinuous.

4. i) ⇒ iii).
Let T be an element ofM(D′). We shall show first that if T (U ∗V ) and
TU ∗ V are defined then they are equal. In fact, for φ ∈ D, we have (TU

∗V )(φ) = (V ∗TU)(φ) = V (TU(τ−yφ)) = V (τyTU(φ)) = V (TτyU(φ)) =
V ∗ U(T ∗φ) = T (U ∗ V (φ)) where T ∗ is the adjoint of T . Consequently
TU ∗ V = T (U ∗ V ). Applying this equality to U = δ ∗ U where δ is the
Dirac distribution at the origin, we obtain TU = Tδ ∗ U . Put Tδ = W
to have TU = W ∗ U . Indeed W belongs to E ′. (See the remark in [4,
page 163]).

Examples.

1. The identity operator T is a multiplier; the element W of E ′ associated
with it is δ since U = δ ∗ U .

2. Translations τh are multipliers; the W of E ′ corresponding is δh, the point
mass at h ∈ Rn, since τhU = δh ∗ U .

ÃÃ

Multipliers of Distributions Spaces

= − ∂

∂xk
[T (τhU)](τhφ)− [T (τhU)](

∂

∂xk
(τhφ))

= [T (τhU)](
∂

∂xk
(τhφ))− [T (τhU)](

∂

∂xk
(τhφ)) = 0,

3. Distributional derivatives are continuous. They are multipliers because

they commute with one another. Then we have
∂U

∂xk
=

∂δ

∂xk
∗ U .

Theorem 2.3 Let the set L(D′) be endowed with its strong topology i.e. the
topology of convergence on bounded sets of D. Then

1. The mapping T 7→ W = Tδ from M(D′) into E ′ equipped with its strong
topology is a bicontinuous isomorphism in the topology induced by L(D′)
on M(D′) i.e. M(D′) is isomorphic to E ′.

Notes
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2. M(E ′,D′) is isomorphic to D′.

3. M(O′C ,S ′) is isomorphic to S ′.

4. M(S ′) is isomorphic to O′C.

Proof.
Let us prove the assertion 1.

The mapping M(D′) → E ′, T 7→ Tδ is obviously linear. It is surjective
because each W ∈ E ′ defines a multiplier TW such that TW δ = W ∗ δ = W .
It is injective, for if Tδ = Sδ, T, S ∈ M(D′), then for any U in D′, we have
TU = Tδ ∗ U = Sδ ∗ U = SU , so T = U .
Let us show now that it is continuous. Suppose (Tα) tends to 0 inM(D′). Then
(Tαδ ∗ U) tends to 0 in D′ uniformly on U ∈ B′ where B′ is a bounded set in
D′. Put Tαδ = Wα. Then for every bounded set B in D, sup

φ∈B,U∈B′
|Wα ∗ U(φ)|

tends to 0 in R. Now Wα ∗ U(φ) = Wα(U(τ−yφ)) and U(τ−yφ) belongs to
E . Moreover (U(τ−yφ))φ∈B,U∈B′ is bounded in E i.e. is bounded on every

compact subset K of Rn. Hence for every bounded set B0 in E of the form
B0 = (U(τ−yφ)), sup

B03
|Wα( )| tends to 0, with respect to α. Now let B1 be

an arbitrary bounded set in E . We are going to prove that sup
∈B1

|Wα( )| tends

to 0. For any compact K ⊂ Rn, put BK = φKB1 = {φK : ∈ B1} where
φK ∈ D with suppφK ⊃ K and φK ≡ 1 on K. The set BK is bounded in D.
Then sup

K∈BK
|Wα( K)| = sup

K∈BK
|Wα ∗ δ( K)| = sup

K∈BK
|Wα(δ(τ−y K))| which

tends to 0 according to what is pointed out above.
If sup

∈B1

|Wα( )| does not converge to 0, then there would exist ε > 0 such that

for every α there would exist β > α such that |Wβ( )| > ε for every ∈ B1.
But for every ε > 0 there exists α0 such that α > α0 implies |Wα( K)| < ε
for every compact K ⊂ Rn and every K ∈ BK . Now Wβ( ) = Wβ( Kβ)
where Kβ = suppWβ is compact. Let β be such that β > α > α0, so that
|Wβ( Kβ)| > ε. This is a contradictory. We conclude that (Wα) tends to 0 in
E ′. Then T 7→ Tδ is continuous.
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Multipliers of Distributions Spaces

The inverse mapping is also continuous. In fact, let (Wα) be a net in E ′ which
converges to 0. Then for U in a bounded set of D′, ((Wα ∗U) converges to 0 in
D′ (hypocontinuity of the convolution). That is the mapping W 7→ TW from
E ′ into M(D′) is continuous.
The assertion 1 is completely proved.
The assertions 2., 3. and 4. are proved similarly.

Corollary 2.4 T ∈ M(S ′) if and only if there exists a unique φ ∈ OM
such that F(TU) = φF(U). Moreover the mapping T 7→ φ is a topological
isomorphism between M(S ′) and OM .

Proof. The corollary follows from Theorem 2.3, assertion 4. and Lemma 1.1
with FW = φ.

Notes
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Remark.

Some writers define a (V ,W)−multiplier as a function φ such that φV ∈ W for
every V ∈ V . Let us denote in this case the multipliers spaces by M(V ,W). It
was pointed out in [4, page 246] that M(S ′) = M(S ′,S ′) is precisely OM . Then
according to Corollary 2.4, we can say that M(S ′) is topologically isomorphic
to M(S ′). See [6] for some extension results.

Theorem 2.5 1. T ∈ M(D′) and U ∈ E ′ imply TU ∈ E ′. Moreover,
every T ∈M(E ′) has a unique extension to an element of M(D′).

2. T ∈ L(E ′) belongs toM(E ′) if and only if TU ∗V = T (U ∗V ), U, V ∈ E ′.

Proof.

1. If T ∈ M(D′) then by Theorem 2.2, TU = W ∗ U for some W ∈ E ′.
Hence TU ∈ E ′ whenever U ∈ E ′ because supp(W ∗ U) is closed and
included in suppW + suppU which is compact.
Since E ′ is a dense subspace of D′ then T ∈M(E ′) has a unique contin-
uous extension T̂ to D′ and T̂ ∈M(D′).

2. Tτh = τhT implies T (U ∗ V ) = TU ∗ V, U, V ∈ E ′; this is contained in
the proof of Theorem 2.2 above.
Conversely, suppose T (U ∗ V ) = TU ∗ V, U, V ∈ E ′. Then T (τhU) =
T (δ ∗ τhU) = Tδ ∗ τhU = τh(Tδ ∗ U) = τh(TU) i.e. T ∈M(E ′).

One has the following immediate consequence.

Corollary 2.6 A continuous linear operator belongs to M(D′) if and only
if its restriction to E ′ commutes with convolution, i.e.

T ∈M(D′)⇔ T|E ′(U ∗ V ) = T|E ′U ∗ V.

Multipliers of Distributions Spaces
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Hence, please note that, if there is color artwork in your manuscript when it is accepted for publication, we would require you to 
complete and return a color work agreement form before your paper can be published. 

Figure Legends: Self-explanatory legends of all figures should be incorporated separately under the heading 'Legends to Figures'. In the 
full-text online edition of the journal, figure legends may possibly be truncated in abbreviated links to the full screen version. Therefore, 
the first 100 characters of any legend should notify the reader, about the key aspects of the figure. 
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2. Evaluators are human: First thing to remember that evaluators are also human being. They are not only meant for rejecting a paper. 
They are here to evaluate your paper. So, present your Best. 

3. Think Like Evaluators: If you are in a confusion or getting demotivated that your paper will be accepted by evaluators or not, then 
think and try to evaluate your paper like an Evaluator. Try to understand that what an evaluator wants in your research paper and 
automatically you will have your answer. 

4. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper 
logical. But remember that all points of your outline must be related to the topic you have chosen.  

5. Ask your Guides: If you are having any difficulty in your research, then do not hesitate to share your difficulty to your guide (if you 
have any). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work then ask the 
supervisor to help you with the alternative. He might also provide you the list of essential readings. 

6. Use of computer is recommended: As you are doing research in the field of Computer Science, then this point is quite obvious. 

 

7. Use right software: Always use good quality software packages. If you are not capable to judge good software then you can lose 
quality of your paper unknowingly. There are various software programs available to help you, which you can get through Internet. 

 

8. Use the Internet for help: An excellent start for your paper can be by using the Google. It is an excellent search engine, where you can 
have your doubts resolved. You may also read some answers for the frequent question how to write my research paper or find model 
research paper. From the internet library you can download books. If you have all required books make important reading selecting and 
analyzing the specified information. Then put together research paper sketch out. 

9. Use and get big pictures: Always use encyclopedias, Wikipedia to get pictures so that you can go into the depth. 

 

10. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right! It is a good habit, which helps to 
not to lose your continuity. You should always use bookmarks while searching on Internet also, which will make your search easier. 
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Before start writing a good quality Computer Science Research Paper, let us first understand what is Computer Science Research Paper? 
So, Computer Science Research Paper is the paper which is written by professionals or scientists who are associated to Computer Science 
and Information Technology, or doing research study in these areas. If you are novel to this field then you can consult about

 
this field 

from your supervisor or guide.
 

TECHNIQUES FOR WRITING A GOOD QUALITY RESEARCH PAPER:
 

1. Choosing the topic:
 
In most cases, the topic is searched by the interest of author but it can be also suggested by the guides. You can 

have several topics and then you can judge that in which topic or subject you are finding yourself most comfortable. This can
 
be done by 

asking several questions to yourself, like Will I be able to carry our search in this area? Will I find all necessary recourses to accomplish 
the search? Will I be able to find all information in this field area? If the answer of these types of questions will be "Yes" then you can 
choose that topic. In most of the cases, you may have to conduct the surveys and have to visit several places because this field is related 
to Computer Science and Information Technology. Also, you may have to do a lot of work to find all rise and falls regarding the various 
data of that subject. Sometimes, detailed information plays a vital role, instead of short information.

 

 

11. Revise what you wrote: When you write anything, always read it, summarize it and then finalize it. 



 

  

 
 

16. Use proper verb tense: Use proper verb tenses in your paper. Use past tense, to present those events that happened. Use present 
tense to indicate events that are going on. Use future tense to indicate future happening events. Use of improper and wrong tenses will 
confuse the evaluator. Avoid the sentences that are incomplete. 

17. Never use online paper: If you are getting any paper on Internet, then never use it as your research paper because it might be 
possible that evaluator has already seen it or maybe it is outdated version.  

18. Pick a good study spot: To do your research studies always try to pick a spot, which is quiet. Every spot is not for studies. Spot that 
suits you choose it and proceed further. 

19. Know what you know: Always try to know, what you know by making objectives. Else, you will be confused and cannot achieve your 
target. 

 

20. Use good quality grammar: Always use a good quality grammar and use words that will throw positive impact on evaluator. Use of 
good quality grammar does not mean to use tough words, that for each word the evaluator has to go through dictionary. Do not start 
sentence with a conjunction. Do not fragment sentences. Eliminate one-word sentences. Ignore passive voice. Do not ever use a big 
word when a diminutive one would suffice. Verbs have to be in agreement with their subjects. Prepositions are not expressions to finish 
sentences with. It is incorrect to ever divide an infinitive. Avoid clichés like the disease. Also, always shun irritating alliteration. Use 
language that is simple and straight forward. put together a neat summary. 

21. Arrangement of information: Each section of the main body should start with an opening sentence and there should be a 
changeover at the end of the section. Give only valid and powerful arguments to your topic. You may also maintain your arguments with 
records. 

 

22. Never start in last minute: Always start at right time and give enough time to research work. Leaving everything to the last minute 
will degrade your paper and spoil your work. 

23. Multitasking in research is not good: Doing several things at the same time proves bad habit in case of research activity. Research is 
an area, where everything has a particular time slot. Divide your research work in parts and do particular part in particular time slot. 

 

24. Never copy others' work: Never copy others' work and give it your name because if evaluator has seen it anywhere you will be in 
trouble. 

 

25. Take proper rest and food: No matter how many hours you spend for your research activity, if you are not taking care of your health 
then all your efforts will be in vain. For a quality research, study is must, and this can be done by taking proper rest and food.  

 

26. Go for seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources. 
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12. Make all efforts: Make all efforts to mention what you are going to write in your paper. That means always have a good start. Try to 
mention everything in introduction, that what is the need of a particular research paper. Polish your work by good skill of writing and 
always give an evaluator, what he wants. 

13. Have backups: When you are going to do any important thing like making research paper, you should always have backup copies of it 
either in your computer or in paper. This will help you to not to lose any of your important. 

14. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. Using several 
and unnecessary diagrams will degrade the quality of your paper by creating "hotchpotch." So always, try to make and include those 
diagrams, which are made by your own to improve readability and understandability of your paper. 

15. Use of direct quotes: When you do research relevant to literature, history or current affairs then use of quotes become essential but 
if study is relevant to science then use of quotes is not preferable.  



 

 

   

 

sufficient. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grunt readers. 
Amplification is a billion times of inferior quality than sarcasm. 

32. Never oversimplify everything: To add material in your research paper, never go for oversimplification. This will definitely irritate the 
evaluator. Be more or less specific. Also too, by no means, ever use rhythmic redundancies. Contractions aren't essential and shouldn't 
be there used. Comparisons are as terrible as clichés. Give up ampersands and abbreviations, and so on. Remove commas, that are, not 
necessary. Parenthetical words however should be together with this in commas. Understatement is all the time the complete best way 
to put onward earth-shaking thoughts. Give a detailed literary review. 

33. Report concluded results: Use concluded results. From raw data, filter the results and then conclude your studies based on 
measurements and observations taken. Significant figures and appropriate number of decimal places should be used. Parenthetical

 

remarks are prohibitive. Proofread carefully at final stage. In the end give outline to your arguments. Spot out perspectives of further 
study of this subject. Justify your conclusion by at the bottom of them with sufficient justifications and examples. 

 

34. After conclusion: Once you have concluded your research, the next most important step is to present your findings. Presentation is 
extremely important as it is the definite medium though which your research is going to be in print to the rest of the crowd. Care should 
be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is 
essential because it serves to highlight your research paper and bring to light all necessary aspects in your research.

 

Key points to remember:  

Submit all work in its final form. 
Write your paper in the form, which is presented in the guidelines using the template. 
Please note the criterion for grading the final paper by peer-reviewers. 

Final Points:  

A purpose of organizing a research paper is to let people to interpret your effort selectively. The journal requires the following sections, 
submitted in the order listed, each section to start on a new page.  

The introduction will be compiled from reference matter and will reflect the design processes or outline of basis that direct you to make 
study. As you will carry out the process of study, the method and process section will be constructed as like that. The result segment will 
show related statistics in nearly sequential order and will direct the reviewers next to the similar intellectual paths throughout the data 
that you took to carry out your study. The discussion section will provide understanding of the data and projections as to the implication 
of the results. The use of good quality references all through the paper will give the effort trustworthiness by representing an alertness 
of prior workings. 
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27. Refresh your mind after intervals: Try to give rest to your mind by listening to soft music or by sleeping in intervals. This will also 
improve your memory. 

28. Make colleagues: Always try to make colleagues. No matter how sharper or intelligent you are, if you make colleagues you can have 
several ideas, which will be helpful for your research. 

Think technically: Always think technically. If anything happens, then search its reasons, its benefits, and demerits. 

30. Think and then print: When you will go to print your paper, notice that tables are not be split, headings are not detached from their 
descriptions, and page sequence is maintained.  

31. Adding unnecessary information: Do not add unnecessary information, like, I have used MS Excel to draw graph. Do not add 
irrelevant and inappropriate material. These all will create superfluous. Foreign terminology and phrases are not apropos. One should 
NEVER take a broad view. Analogy in script is like feathers on a snake. Not at all use a large word when a very small one would be                    

29.



 

  

 
 

Separating a table/chart or figure - impound each figure/table to a single page 
Submitting a manuscript with pages out of sequence 

In every sections of your document 

· Use standard writing style including articles ("a", "the," etc.) 

· Keep on paying attention on the research topic of the paper 

 

· Use paragraphs to split each significant point (excluding for the abstract) 

 

· Align the primary line of each section 

 

· Present your points in sound order 

 

· Use present tense to report well accepted  

 

· Use past tense to describe specific results  

 

· Shun familiar wording, don't address the reviewer directly, and don't use slang, slang language, or superlatives  

 

· Shun use of extra pictures - include only those figures essential to presenting results 

 

Title Page: 

 

Choose a revealing title. It should be short. It should not have non-standard acronyms or abbreviations. It should not exceed two printed 
lines. It should include the name(s) and address (es) of all authors. 
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Writing a research paper is not an easy job no matter how trouble-free the actual research or concept. Practice, excellent preparation, 
and controlled record keeping are the only means to make straightforward the progression.  

General style: 

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines. 

To make a paper clear 

· Adhere to recommended page limits 

Mistakes to evade 

Insertion a title at the foot of a page with the subsequent text on the next page 



 

 

   

 

shortening the outcome. Sum up the study, with the subsequent elements in any summary. Try to maintain the initial two items to no 
more than one ruling each.  

Reason of the study - theory, overall issue, purpose 
Fundamental goal 
To the point depiction of the research 
Consequences, including definite statistics - if the consequences are quantitative in nature, account quantitative data; results 
of any numerical analysis should be reported 
Significant conclusions or questions that track from the research(es) 

Approach: 

Single section, and succinct 
As a outline of job done, it is always written in past tense 
A conceptual should situate on its own, and not submit to any other part of the paper such as a form or table 
Center on shortening results - bound background information to a verdict or two, if completely necessary 
What you account in an conceptual must be regular with what you reported in the manuscript 
Exact spelling, clearness of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) 
are just as significant in an abstract as they are anywhere else 

Introduction:  

 

The Introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be 
capable to comprehend and calculate the purpose of your study without having to submit to other works. The basis for the study should 
be offered. Give most important references but shun difficult to make a comprehensive appraisal of the topic. In the introduction, 
describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will have no attention in your 
result. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the 
protocols here. Following approach can create a valuable beginning: 

Explain the value (significance) of the study  
Shield the model - why did you employ this particular system or method? What is its compensation? You strength remark on its 
appropriateness from a abstract point of vision as well as point out sensible reasons for using it. 
Present a justification. Status your particular theory (es) or aim(s), and describe the logic that led you to choose them. 
Very for a short time explain the tentative propose and how it skilled the declared objectives. 

Approach: 

Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is 
done.  
Sort out your thoughts; manufacture one key point with every section. If you make the four points listed above, you will need a

 

least of four paragraphs. 
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Abstract: 

The summary should be two hundred words or less. It should briefly and clearly explain the key findings reported in the manuscript--
must have precise statistics. It should not have abnormal acronyms or abbreviations. It should be logical in itself. Shun citing references 
at this point. 

An abstract is a brief distinct paragraph summary of finished work or work in development. In a minute or less a reviewer can be taught 
the foundation behind the study, common approach to the problem, relevant results, and significant conclusions or new questions.  

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? 
Wealth of terminology is very essential in abstract. Yet, use comprehensive sentences and do not let go readability for briefness. You can 
maintain it succinct by phrasing sentences so that they provide more than lone rationale. The author can at this moment go straight to 

                   



 

  

 
 

principle while stating the situation. The purpose is to text all particular resources and broad procedures, so that another person may 
use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step by step report of the 
whole thing you did, nor is a methods section a set of orders. 

 

Materials: 

Explain materials individually only if the study is so complex that it saves liberty this way. 
Embrace particular materials, and any tools or provisions that are not frequently found in laboratories.  
Do not take in frequently found. 
If use of a definite type of tools. 
Materials may be reported in a part section or else they may be recognized along with your measures. 

Methods:  

Report the method (not particulars of each process that engaged the same methodology) 
Describe the method entirely 
To be succinct, present methods under headings dedicated to specific dealings or groups of measures 
Simplify - details how procedures were completed not how they were exclusively performed on a particular day.  
If well known procedures were used, account the procedure by name, possibly with reference, and that's all.  

Approach:  

It is embarrassed or not possible to use vigorous voice when documenting methods with no using first person, which would 
focus the reviewer's interest on the researcher rather than the job. As a result when script up the methods most authors use 
third person passive voice. 
Use standard style in this and in every other part of the paper - avoid familiar lists, and use full sentences. 

What to keep away from 

Resources and methods are not a set of information. 
Skip all descriptive information and surroundings - save it for the argument. 
Leave out information that is immaterial to a third party. 

Results: 

 
 

The principle of a results segment is to present and demonstrate your conclusion. Create this part a entirely objective details of the 
outcome, and save all understanding for the discussion. 

 

The page length of this segment is set by the sum and types of data to be reported. Carry on to be to the point, by means of statistics and 
tables, if suitable, to present consequences most efficiently.You must obviously differentiate material that would usually be incorporated 
in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matter should not 
be submitted at all except requested by the instructor. 
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Present surroundings information only as desirable in order hold up a situation. The reviewer does not desire to read the 
whole thing you know about a topic. 
Shape the theory/purpose specifically - do not take a broad view. 
As always, give awareness to spelling, simplicity and correctness of sentences and phrases. 

Procedures (Methods and Materials): 

This part is supposed to be the easiest to carve if you have good skills. A sound written Procedures segment allows a capable scientist to 
replacement your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of 
information. Present methods in sequential order but linked methodologies can be grouped as a segment. Be concise when relating the 
protocols. Attempt for the least amount of information that would permit another capable scientist to spare your outcome but be
cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section. 
When a technique is used that has been well described in another object, mention the specific item describing a way but draw the basic 



 

 

Do not present the similar data more than once. 
Manuscript should complement any figures or tables, not duplicate the identical information. 
Never confuse figures with tables - there is a difference. 

Approach 
As forever, use past tense when you submit to your results, and put the whole thing in a reasonable order.
Put figures and tables, appropriately numbered, in order at the end of the report  
If you desire, you may place your figures and tables properly within the text of your results part. 

Figures and tables 
If you put figures and tables at the end of the details, make certain that they are visibly distinguished from any attach appendix 
materials, such as raw facts 
Despite of position, each figure must be numbered one after the other and complete with subtitle  
In spite of position, each table must be titled, numbered one after the other and complete with heading 
All figure and table must be adequately complete that it could situate on its own, divide from text 

Discussion: 

 

The Discussion is expected the trickiest segment to write and describe. A lot of papers submitted for journal are discarded based on
problems with the Discussion. There is no head of state for how long a argument should be. Position your understanding of the outcome
visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implication of the study. The
purpose here is to offer an understanding of your results and hold up for all of your conclusions, using facts from your research and
generally accepted information, if suitable. The implication of result should be visibly described. 
Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact you must explain mechanisms
that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results
agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved with prospect, and let it
drop at that. 

Make a decision if each premise is supported, discarded, or if you cannot make a conclusion with assurance. Do not just dismiss
a study or part of a study as "uncertain." 
Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that
you have, and take care of the study as a finished work  
You may propose future guidelines, such as how the experiment might be personalized to accomplish a new idea. 
Give details all of your remarks as much as possible, focus on mechanisms. 
Make a decision if the tentative design sufficiently addressed the theory, and whether or not it was correctly restricted. 
Try to present substitute explanations if sensible alternatives be present. 
One research will not counter an overall question, so maintain the large picture in mind, where do you go next? The best
studies unlock new avenues of study. What questions remain? 
Recommendations for detailed papers will offer supplementary suggestions.

Approach:  

When you refer to information, differentiate data generated by your own studies from available information 
Submit to work done by specific persons (including you) in past tense.  
Submit to generally acknowledged facts and main beliefs in present tense.  
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Content 

Sum up your conclusion in text and demonstrate them, if suitable, with figures and tables.  
In manuscript, explain each of your consequences, point the reader to remarks that are most appropriate. 
Present a background, such as by describing the question that was addressed by creation an exacting study. 
Explain results of control experiments and comprise remarks that are not accessible in a prescribed figure or table, if 
appropriate. 
Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or in manuscript form. 

What to stay away from 
Do not discuss or infer your outcome, report surroundings information, or try to explain anything. 
Not at all, take in raw data or intermediate calculations in a research manuscript.                    



 

Do not give permission to anyone else to "PROOFREAD" your manuscript. 

Methods to avoid Plagiarism is applied by us on every paper, if found guilty, you will be blacklisted by all of our collaborated
research groups, your institution will be informed for this and strict legal actions will be taken immediately.) 
To guard yourself and others from possible illegal use please do not permit anyone right to use to your paper and files. 

The major constraint is that you must independently make all content, tables, graphs, and facts that are offered in the paper.
You must write each part of the paper wholly on your own. The Peer-reviewers need to identify your own perceptive of the
concepts in your own terms. NEVER extract straight from any foundation, and never rephrase someone else's analysis. 
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Please carefully note down following rules and regulation before submitting your Research Paper to Global Journals Inc. (US):  

Segment Draft and Final Research Paper: You have to strictly follow the template of research paper. If it is not done your paper may get
rejected.  



 

 

CRITERION FOR GRADING A RESEARCH PAPER (COMPILATION)
BY GLOBAL JOURNALS INC. (US)

Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading 

solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after 

decision of Paper. This report will be the property of Global Journals Inc. (US).

Topics Grades

A-B C-D E-F

Abstract

Clear and concise with 

appropriate content, Correct 

format. 200 words or below 

Unclear summary and no 

specific data, Incorrect form

Above 200 words 

No specific data with ambiguous 

information

Above 250 words

Introduction

Containing all background 

details with clear goal and 

appropriate details, flow 

specification, no grammar 

and spelling mistake, well 

organized sentence and 

paragraph, reference cited

Unclear and confusing data, 

appropriate format, grammar 

and spelling errors with 

unorganized matter

Out of place depth and content, 

hazy format

Methods and 

Procedures

Clear and to the point with 

well arranged paragraph, 

precision and accuracy of 

facts and figures, well 

organized subheads

Difficult to comprehend with 

embarrassed text, too much 

explanation but completed 

Incorrect and unorganized 

structure with hazy meaning

Result

Well organized, Clear and 

specific, Correct units with 

precision, correct data, well 

structuring of paragraph, no 

grammar and spelling 

mistake

Complete and embarrassed 

text, difficult to comprehend

Irregular format with wrong facts 

and figures

Discussion

Well organized, meaningful 

specification, sound 

conclusion, logical and 

concise explanation, highly 

structured paragraph 

reference cited 

Wordy, unclear conclusion, 

spurious

Conclusion is not cited, 

unorganized, difficult to 

comprehend 

References

Complete and correct 

format, well organized

Beside the point, Incomplete Wrong format and structuring
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