GLOBAL JOURNAL

OF SCIENCE FRONTIER RESEARCH: F

Mathematics and Decision Sciences

Perturbed LamĖ System
Light of Recurrence Relation

Sobolev Function Spaces
Nonlocal Boundary Conditions

Discovering Thoughts, Inventing Future

VOLUME 13 ISSUE 5 VERSION 1.0

Global Journal of Science Frontier Research: F mathematics \& Decision Sciences

Global Journal of Science Frontier Research: F Mathematics \& Decision Sciences
Volume 13 Issue 5 (Ver. 1.0)
© Global Journal of Science Frontier Research . 2013.

All rights reserved.
This is a special issue published in version 1.0 of "Global Journal of Science Frontier Research." By Global Journals Inc.

All articles are open access articles distributed under "Global Journal of Science Frontier Research"

Reading License, which permits restricted use. Entire contents are copyright by of "Global Journal of Science Frontier Research" unless otherwise noted on specific articles.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without written permission.

The opinions and statements made in this book are those of the authors concerned. Ultraculture has not verified and neither confirms nor denies any of the foregoing and no warranty or fitness is implied.

Engage with the contents herein at your own risk.

The use of this journal, and the terms and conditions for our providing information, is governed by our Disclaimer, Terms and Conditions and Privacy Policy given on our website http://globaljournals.us/terms-and-condition/ menu-id-1463/

By referring / using / reading / any type of association / referencing this journal, this signifies and you acknowledge that you have read them and that you accept and will be bound by the terms thereof.

All information, journals, this journal, activities undertaken, materials, services and our website, terms and conditions, privacy policy, and this journal is subject to change anytime without any prior notice.

Incorporation No.: 0423089
License No.: 42125/022010/1186
Registration No.: 430374 Import-Export Code: 1109007027 Employer Identification Number (EIN): USA Tax ID: 98-0673427

Global Journals Inc.

(A Delaware USA Incorporation with "Good Standing"; Reg. Number: 0423089)
Sponsors: Open Association of Research Society
Open Scientific Standards

Publisher's Headquarters office

Global Journals Inc., Headquarters Corporate Office, Cambridge Office Center, II Canal Park, Floor No. 5th, Cambridge (Massachusetts), Pin: MA 02141 United States
USA Toll Free: +001-888-839-7392
USA Toll Free Fax: +001-888-839-7392

Offset Typesetting

Open Association of Research Society, Marsh Road, Rainham, Essex, London RM13 8EU United Kingdom.

Packaging \& Continental Dispatching

Global Journals, India

Find a correspondence nodal officer near you
To find nodal officer of your country, please email us at local@globaljournals.org
eContacts

Press Inquiries: press@globaljournals.org Investor Inquiries: investers@globaljournals.org Technical Support: technology@globaljournals.org Media \& Releases: media@globaljournals.org

Pricing (Including by Air Parcel Charges):
For Authors:
22 USD (B/W) \& 50 USD (Color)
Yearly Subscription (Personal \& Institutional):
200 USD (B/W) \& 250 USD (Color)

Editorial Board Members (HON.)

John A. Hamilton,"Drew" Jr.,
Ph.D., Professor, Management
Computer Science and Software Engineering
Director, Information Assurance Laboratory
Auburn University

Dr. Henry Hexmoor

IEEE senior member since 2004
Ph.D. Computer Science, University at
Buffalo
Department of Computer Science
Southern Illinois University at Carbondale

Dr. Osman Balci, Professor

Department of Computer Science Virginia Tech, Virginia University Ph.D.and M.S.Syracuse University, Syracuse, New York
M.S. and B.S. Bogazici University, Istanbul, Turkey

Yogita Bajpai
M.Sc. (Computer Science), FICCT
U.S.A.Email:
yogita@computerresearch.org

Dr. T. David A. Forbes

Associate Professor and Range
Nutritionist
Ph.D. Edinburgh University - Animal
Nutrition
M.S. Aberdeen University - Animal Nutrition
B.A. University of Dublin- Zoology

Dr. Wenying Feng

Professor, Department of Computing \&
Information Systems
Department of Mathematics
Trent University, Peterborough,
ON Canada K9J 7B8

Dr. Thomas Wischgoll

Computer Science and Engineering, Wright State University, Dayton, Ohio
B.S., M.S., Ph.D.
(University of Kaiserslautern)

Dr. Abdurrahman Arslanyilmaz

Computer Science \& Information Systems
Department
Youngstown State University
Ph.D., Texas A\&M University
University of Missouri, Columbia
Gazi University, Turkey

Dr. Xiaohong He

Professor of International Business
University of Quinnipiac
BS, Jilin Institute of Technology; MA, MS, PhD,. (University of Texas-Dallas)

Burcin Becerik-Gerber

University of Southern California
Ph.D. in Civil Engineering
DDes from Harvard University
M.S. from University of California, Berkeley \& Istanbul University

Dr. Bart Lambrecht

Director of Research in Accounting and FinanceProfessor of Finance Lancaster University Management School BA (Antwerp); MPhil, MA, PhD (Cambridge)

Dr. Carlos García Pont

Associate Professor of Marketing
IESE Business School, University of
Navarra
Doctor of Philosophy (Management),
Massachusetts Institute of Technology
(MIT)
Master in Business Administration, IESE, University of Navarra
Degree in Industrial Engineering, Universitat Politècnica de Catalunya

Dr. Fotini Labropulu

Mathematics - Luther College
University of ReginaPh.D., M.Sc. in
Mathematics
B.A. (Honors) in Mathematics University of Windso

Dr. Lynn Lim

Reader in Business and Marketing Roehampton University, London BCom, PGDip, MBA (Distinction), PhD, FHEA

Dr. Mihaly Mezei

ASSOCIATE PROFESSOR
Department of Structural and Chemical
Biology, Mount Sinai School of Medical Center
Ph.D., Etvs Lornd University
Postdoctoral Training, New York University

Dr. Söhnke M. Bartram

Department of Accounting and
FinanceLancaster University Management
SchoolPh.D. (WHU Koblenz)
MBA/BBA (University of Saarbrücken)

Dr. Miguel Angel Ariño

Professor of Decision Sciences
IESE Business School
Barcelona, Spain (Universidad de Navarra)
CEIBS (China Europe International Business School).
Beijing, Shanghai and Shenzhen
Ph.D. in Mathematics
University of Barcelona
BA in Mathematics (Licenciatura)
University of Barcelona

Philip G. Moscoso

Technology and Operations Management IESE Business School, University of Navarra
Ph.D in Industrial Engineering and
Management, ETH Zurich
M.Sc. in Chemical Engineering, ETH Zurich

Dr. Sanjay Dixit, M.D.
Director, EP Laboratories, Philadelphia VA
Medical Center
Cardiovascular Medicine - Cardiac
Arrhythmia
Univ of Penn School of Medicine

Dr. Han-Xiang Deng

MD., Ph.D

Associate Professor and Research
Department Division of Neuromuscular

Medicine

Davee Department of Neurology and Clinical
NeuroscienceNorthwestern University
Feinberg School of Medicine

Dr. Pina C. Sanelli
Associate Professor of Public Health
Weill Cornell Medical College
Associate Attending Radiologist
NewYork-Presbyterian Hospital
MRI, MRA, CT, and CTA
Neuroradiology and Diagnostic Radiology
M.D., State University of New York at

Buffalo,School of Medicine and Biomedical Sciences

Dr. Roberto Sanchez

Associate Professor
Department of Structural and Chemical
Biology
Mount Sinai School of Medicine
Ph.D., The Rockefeller University

Dr. Wen-Yih Sun

Professor of Earth and Atmospheric
SciencesPurdue University Director
National Center for Typhoon and
Flooding Research, Taiwan
University Chair Professor
Department of Atmospheric Sciences, National Central University, Chung-Li, TaiwanUniversity Chair Professor Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan.Ph.D., MS The University of Chicago, Geophysical Sciences
BS National Taiwan University, Atmospheric Sciences
Associate Professor of Radiology

Dr. Michael R. Rudnick
M.D., FACP

Associate Professor of Medicine
Chief, Renal Electrolyte and
Hypertension Division (PMC)
Penn Medicine, University of
Pennsylvania
Presbyterian Medical Center, Philadelphia
Nephrology and Internal Medicine Certified by the American Board of Internal Medicine

Dr. Bassey Benjamin Esu

B.Sc. Marketing; MBA Marketing; Ph.D Marketing
Lecturer, Department of Marketing, University of Calabar Tourism Consultant, Cross River State Tourism Development Department Co-ordinator, Sustainable Tourism Initiative, Calabar, Nigeria

Dr. Aziz M. Barbar, Ph.D.

IEEE Senior Member
Chairperson, Department of Computer Science
AUST - American University of Science \& Technology
Alfred Naccash Avenue - Ashrafieh

President Editor (HON.)

Dr. George Perry, (Neuroscientist)

Dean and Professor, College of Sciences
Denham Harman Research Award (American Aging Association)
ISI Highly Cited Researcher, Iberoamerican Molecular Biology Organization
AAAS Fellow, Correspondent Member of Spanish Royal Academy of Sciences
University of Texas at San Antonio
Postdoctoral Fellow (Department of Cell Biology)
Baylor College of Medicine
Houston, Texas, United States

Chief Author (HON.)

Dr. R.K. Dixit
M.Sc., Ph.D., FICCT

Chief Author, India
Email: authorind@computerresearch.org

DEAN \& EDITOR-IN-Chief (HON.)

Vivek Dubey(HON.)

MS (Industrial Engineering),
MS (Mechanical Engineering)
University of Wisconsin, FICCT
Editor-in-Chief, USA
editorusa@computerresearch.org

Sangita Dixit

M.Sc., FICCT

Dean \& Chancellor (Asia Pacific)
deanind@computerresearch.org

Suyash Dixit

(B.E., Computer Science Engineering), FICCTT President, Web Administration and Development, CEO at IOSRD
COO at GAOR \& OSS

Er. Suyog Dixit

(M. Tech), BE (HONS. in CSE), FICCT

SAP Certified Consultant
CEO at IOSRD, GAOR \& OSS
Technical Dean, Global Journals Inc. (US)
Website: www.suyogdixit.com
Email:suyog@suyogdixit.com

Pritesh Rajvaidya

(MS) Computer Science Department
California State University
BE (Computer Science), FICCT
Technical Dean, USA
Email: pritesh@computerresearch.org
Luis Galárraga
J!Research Project Leader
Saarbrücken, Germany

Contents of the Volume

i. Copyright Notice
ii. Editorial Board Members
iii. Chief Author and Dean
iv. Table of Contents
v. From the Chief Editor's Desk
vi. Research and Review Papers

1. Propagation of Stoneley Waves in Couple Stress Generalized Thermoelastic Media. 1-13
2. Unsteady Couette Flow with Transpiration in a Rotating System. 15-26
3. A Priori Estimate and Fourier's Method for Nonlocal Boundary Conditions of Mixed Problem for Singular Parabolic Equations in Sobolev Function Spaces. 27-36
4. Generalized and Perturbed Lamé System. 37-40
5. Mathematical Modeling of Gonorrheal Disease a Case Study with Reference to Anantapur District-Andhrapradesh-India. 41-57
6. Formation of a Summation Formula in Connection with Hypergeometric and Gamma Function. 59-90
7. New Results and Applications on Robust Stability and Tracking of PseudoQuadratic Uncertain MIMO Discrete-Time Systems. 91-109
8. A Summation Formula in the Light of Recurrence Relation. 111-126
vii. Auxiliary Memberships
viii. Process of Submission of Research Paper
ix. Preferred Author Guidelines
x. Index

Global Journal of Science Frontier Research
MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 5 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Propagation of Stoneley Waves in Couple Stress Generalized Thermoelastic Media

By Rajneesh Kumar, Krishan Kumar \& Ravindra C. Nautiyal

Kurukshetra University, India
Abstract - The present paper is concerned with the propagation of Stoneley waves at the interface of two couple stress thermoelastic medium in context with Lord and Shulman (LS) and Green and Lindsay (GL) theories of thermoelasticity. It is observed that shear wave get decoupled from rest of the motion. After developing the formal solution, the secular equation for surface wave propagation is derived. The dispersion curve giving the phase velocity and attenuation coefficient related to wave number are plotted graphically to depict the effect of thermal relaxation times. The amplitude ratios of displacement components and temperature distribution are also computed numerically and shown graphically to depict the effect of thermal relaxation times. Some special cases are also deduced from the present investigation.

Keywords : stoneley waves, couple stress, thermoelasticity, amplitude ratio, secular equation. GJSFR-F Classification : MSC 2010: 74J05, 74J99

Strictly as per the compliance and regulations of :
© 2013. Rajneesh Kumar, Krishan Kumar \& Ravindra C. Nautiyal. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

$3 d$ virtual journal

Propagation of Stoneley Waves in Couple Stress Generalized Thermoelastic Media

Rajneesh Kumar ${ }^{\alpha}$, Krishan Kumar $^{\sigma \rho}$ \& Ravindra C. Nautiyal ${ }^{\sigma}$

Abstract

The present paper is concerned with the propagation of Stoneley waves at the interface of two couple stress thermoelastic medium in context with Lord and Shulman (LS) and Green and Lindsay (GL) theories of thermoelasticity. It is observed that shear wave get decoupled from rest of the motion. After developing the formal solution, the secular equation for surface wave propagation is derived. The dispersion curve giving the phase velocity and attenuation coefficient related to wave number are plotted graphically to depict the effect of thermal relaxation times. The amplitude ratios of displacement components and temperature distribution are also computed numerically and shown graphically to depict the effect of thermal relaxation times. Some special cases are also deduced from the present investigation. Keywords : stoneley waves, couple stress, thermoelasticity, amplitude ratio, secular equation.

I. Introduction

The study of surface wave propagation along the free boundary of an elastic halfspace or along the interface between two dissimilar elastic half-spaces has been a subject of continued interest for many years. These waves are well known in the study of seismic waves, geophysics and non- destructive evaluation, and there is a rich literature available in surface waves in terms of classical elasticity (see, e.g., Achenbach (1973); Brekhoviskikh (1960); Bullen and Bolt (1985); Ewing et al. (1957); Love (1911); Udias (1999)). Surface waves propagating along the free boundary of an elastic half-space, nonattenuated in their direction of propagation and damped normal to the boundary are known as Rayleigh waves in the literature, after their discoverer (Rayleigh (1885)). The phase velocity of Rayleigh wave is a single valued function of the parameters of an elastic half-space. These waves are nondispersive and their velocity is somewhat less than the velocity of shear waves in unbounded media.

Stoneley (1924) investigated the possible existence of waves similar to surface waves and propagating along the plane interface between two distinct uniform elastic solid half-spaces in perfect contact, and these are now universally known by his name. Stoneley waves can propagate at interfaces between either two elastic solid media or an elastic solid medium and a liquid medium. These waves are harmonic waves propagating along the interface between two elastic half-spaces, produce continuous traction and displacement across the interface and attenuate exponentially with distance normal to the

[^0]interface in both the half-spaces, provided the range of the elastic constants of the two solids lie within some suitable limits (Scholte, (1947)). Stoneley (1924) obtained the frequency equation for propagation of Stoneley waves and showed that such interfacial waves can exist only if the velocity of distortional waves in the two half-spaces is approximately same.

Nayfeh and Abdelrahman (2000) found an approximate model for wave propagation in rectangular rods and their geometric limits. Tomar (2005) studied the wave propagation in elastic plates with voids. Some problems of wave propagation in micropolar elasticity medium voids were discussed by Kumar and Deswal (2006). Tomar and Singh (2006) discussed the propagation of Stoneley waves at an interface between two microstretch elastic half-spaces. Kumar et al. (2012) discussed the wave propagation in micropolar thermoelastic layer with two temperatures.

The ideas underlying the couple stress linear theory of elasticity were advanced by Voigt (1887) and the Cosserats (1909), but the subject was generalized and reached maturity only with the works of Toupin (1962), Green and Rivlin (1964) in addition, Kröner (1963) gave a physical aspects pertinent to crystal lattices and non local interpretation of the theory. It is noticed that the earlier application of couple stress elasticity theory, manly on quasi-static problems of stress concentration, met with success providing solution more adequate physically than classic solutions (Mindlin and Tiersten (1962), Weitsman $(1965,1967)$ Bogy and Sternberg (1967), Lakes (1982)).

Aggarwal and Alverson (1969) studied the effects of couple stresses on the diffraction of plane elastic waves by cylindrical discontinuities. Stefeniak (1969) presented the reflection of plane wave from a free surface in Cosserat medium. Sengupta and Ghosh (1974a, 1974b]) studied the effect of couple stress on surface waves in elastic media and propagation of waves in an elastic layer. Sengupta and Benergi (1978) investigated the effects of couple stresses on propagation of waves in an elastic layer immersed in an infinite liquid.

Anthonie (2000) studied the effects of couple stresses on the elastic bending of beams. Lubarda and Markenscoff (2000) investigated the conservation integrals in couple stress elasticity. Chen and Wang (2001) presented strain gradient theory with couple stress for crystalline solids. Circular inclusions in anti-plane strain couple stress elasticity have been investigated by Lubarda (2003). Selim (2006) studied the orthotropic elastic medium under the effect of initial and couple stresses. Shodja and Ghazisaeidi (2007) studied the effects of couple stresses in anti-plane problems of piezoelectric media with inhomogeneties. Radi (2007) find the effects of characteristic material lengths on mode III crack propagation in couple stress elasticity-plasticity materials by adopting an incremental version of the indeterminate theory couple stress plasticity displaying linear and isotropic strain hardening.

Gourgiotis and Gorgiadis (2008) investigated an approach based on distributed dislocations and dislocations for crack problems in couple stress theory of elasticity. Recently, the inplane orthotropic couple stress elasticity constant of elliptical call honey comb have been studied by Chung and Waas (2010). Kumar et al. (2012a, 2012b) studied the wave propagation in couple stress thermoelastic half space underlying an inviscid liquid layer and the propagation of SH-waves in couple stress elastic half space underlying an elastic layer.

The present study is concerned with the propagation of Stoneley waves in couple stress generalized thermoelastic medium in the context of Lord and Shulman (LS), Green and Lindsay (GL) theories of thermoelasticity. The dispersion curves giving the phase
velocity and amplitude ratios of displacement components and temperature distribution are obtained and depicted graphically. Some special cases of interest are also studied.

II. Basic Equations

Following Mindlin and Tiersten (1962), Lord and Shulman (1967), Green and Lindsay (1972) the equations governing the couple stress generalized thermoelastic medium in absence of body forces, the constitutive relations are

$$
\begin{gather*}
t_{j i, j}=\rho \ddot{u}_{i} \tag{1}\\
m_{j i, j}+e_{i j k} t_{j k}=0, \tag{2}\\
K * \nabla^{2} T-\rho c_{e}\left(\frac{\partial T}{\partial t}+\tau_{0} \frac{\partial^{2} T}{\partial t^{2}}\right)=T_{o} \beta\left(\frac{\partial u_{i, i}}{\partial t}+\tau_{0} n_{o} \frac{\partial^{2} u_{i, i}}{\partial t^{2}}\right), \tag{3}\\
t_{i j}=\lambda \varepsilon_{k k} \delta_{i j}+2 \mu \varepsilon_{i j}-\frac{1}{2} e_{i j k} m_{l k, l}-\beta\left(1+\tau_{1} \frac{\partial}{\partial t}\right) T \delta_{i j}, \tag{4}\\
m_{i j}=4 \alpha k_{j i}+4 \beta_{1} k_{i j} \tag{5}\\
k_{i j}=\phi_{j, i} \tag{6}\\
\phi_{i}=\frac{1}{2} e_{i p q} u_{q, p}, \tag{7}
\end{gather*}
$$

where
u_{i} are the displacement components, ϕ_{i} is rotational vector, ρ is density, $t_{i j}$ are stress components, $m_{i j}$ are couple stress components, $\varepsilon_{i j}$ are strain components, $e_{i j k}$ is alternate tensor, $k_{i j}$ is curvature tensor, $\delta_{i j}$ is Kronecker's delta, ∇^{2} is Laplacian operator, τ_{0}, τ_{1} are thermal relaxation times with $\tau_{1} \geq \tau_{0} \geq 0$. Here $n_{o}=1, \tau_{1}=0$, for LS theory and $n_{o}=0, \tau_{1}>0$, for GL theory.

With the help of equations (2), (4)-(7) and without loss of generality assuming that $\beta^{\prime} e_{l p q} e_{i j k} u_{q, p k l}=0$, equation (1) takes the form

$$
\begin{equation*}
\left.u_{i}=(+) u_{j, i j}+\mu \nabla^{2} u_{i}+\alpha\left(e_{i j k} e_{k p q} u_{q, p i}\right)\right)_{, l l}-\beta\left(1+\tau_{1} \frac{\partial}{\partial t}\right) T_{,} \tag{8}
\end{equation*}
$$

ili. Formulation of the Problem

We consider two homogeneous isotropic couple stress generalized thermoelastic half spaces M_{1} and M_{2} connecting at the interface $x_{3}=0$. We consider a rectangular Cartesian coordinate system, $\left(x_{1}, x_{2}, x_{3}\right)$ at any point on the plane horizontal surface and
x_{1}-axis in the direction of the wave propagation and x_{3}-axis taking vertically downward into the half-space so that all particles on a line parallel to x_{2}-axis are equally displaced, therefore, all the field quantities will be independent of x_{2}-coordinates. Medium M_{2} occupies the region $-\infty<x_{3}<0$ and region $x_{3}>0$ is occupied by the half-space (medium $\left.M_{1}\right)$. The plane $x_{3}=0$ represents the interface between two media M_{1} and M_{2}.
We take the displacements components as

$$
\begin{equation*}
u_{i}=\left(u_{1}, 0, u_{3}\right) \tag{9}
\end{equation*}
$$

With the help of following Helmholtz's representation of displacement components u_{1} and u_{3} in terms of potentials ϕ and ψ

$$
\begin{equation*}
u_{1}=\frac{\partial \phi}{\partial x_{1}}-\frac{\partial \psi}{\partial x_{3}}, \quad u_{3}=\frac{\partial \phi}{\partial x_{3}}+\frac{\partial \psi}{\partial x_{1}} \tag{10}
\end{equation*}
$$

and non dimensional quantities

$$
\begin{align*}
& x_{1}^{\prime}=\frac{\omega^{*}}{c_{1}} x_{1}, x_{3}^{\prime}=\frac{\omega^{*}}{c_{1}} x_{3}, t^{\prime}=\omega^{*} t, t_{i j}^{\prime}=\frac{t_{i j}}{\beta T_{0}}, m_{i j}^{\prime}=\frac{\omega^{*} m_{i j}}{c_{1} \beta T_{0}}, u_{1}^{\prime}=\frac{\omega^{*}}{c_{1}} u_{1}, \\
& u_{3}^{\prime}=\frac{\omega^{*}}{c_{1}} u_{3}, T^{\prime}=\frac{T}{T_{0}}, \tau_{1}^{\prime}=\omega^{*} \tau_{1}, \tau_{0}^{\prime}=\omega^{*} \tau_{0}, t_{0}^{\prime}=\omega^{*} t_{0}, h^{\prime}=\frac{c_{1} h}{\omega^{*}}, \omega^{* 2}=\frac{\lambda^{2}}{\rho \alpha}, c_{1}^{2}=\frac{\lambda+2 \mu}{\rho}, \tag{11}
\end{align*}
$$

where ω^{*} is the characteristic frequency,
equation (8) with the aid of equations (10) and (11) after suppressing the primes can be written as

$$
\begin{align*}
& \nabla^{2} \phi-a_{5}\left(1+\tau_{1} \frac{\partial}{\partial t}\right) T=\ddot{\phi} \tag{12}\\
& \nabla^{2} \psi-a_{6} \nabla^{4} \psi=\frac{c_{1}^{2}}{c_{2}^{2}} \ddot{\psi} \tag{13}\\
& \nabla^{2} T-a_{7}\left(\frac{\partial T}{\partial t}+\tau_{0} \frac{\partial^{2} T}{\partial t^{2}}\right)=a_{8}\left(\frac{\partial u_{i, i}}{\partial t}+\tau_{0} n_{o} \frac{\partial^{2} u_{i, i}}{\partial t^{2}}\right) \tag{14}
\end{align*}
$$

where

$$
\begin{align*}
& a_{1}=\frac{\mu}{\lambda+\mu}, a_{2}=\frac{\alpha \omega^{* 2}}{c_{1}^{2}(\lambda+\mu)}, a_{3}=\frac{\beta T_{0}}{\lambda+\mu}, a_{4}=\frac{\rho c_{1}^{2}}{\lambda+\mu}, a_{5}=\frac{a_{3}}{1+a_{1}}, a_{6}=\frac{a_{2}}{a_{1}}, \\
& a_{7}=\frac{\rho c_{e} c_{1}^{2}}{K^{*} \omega^{*}}, a_{8}=\frac{c_{1}^{2} \beta}{K^{*} \omega^{*}}, a_{9}=\frac{\lambda}{\beta T_{0}}, a_{10}=\frac{\mu}{\beta T_{0}}, a_{11}=\frac{\alpha \omega^{* 2}}{c_{1}^{2} \beta T_{0}}, a_{12}=\frac{2 \alpha \omega^{* 2}}{c_{1}^{2} \beta T_{0}}, \tag{15}\\
& a_{13}=\frac{2 \beta_{1} \omega^{*^{2}}}{c_{1}^{2} \beta T_{0}}
\end{align*}
$$

The equation (13) corresponds to purely transverse wave mode that decouples from rest of the motion and is not affected by the thermal effect.

IV. Solution of the Problem

We assume the solution of equations (12)-(14) of the form

$$
\begin{equation*}
(\phi, \psi, T)=\left(\phi_{1}\left(x_{3}\right), \psi_{1}\left(x_{3}\right), T_{1}\left(x_{3}\right)\right) e^{i\left(k x_{1}-\omega t\right)} \tag{16}
\end{equation*}
$$

where $c=\frac{\omega}{k}$ is the non-dimensional phase velocity, ω is the frequency and k is the wave number. Substituting the values ϕ, ψ, T from equation (16) in equations (12)-(14) and satisfying the radiation condition as $\phi, \psi, T \rightarrow 0$ as $x_{3} \rightarrow \infty$, we obtain the values of ϕ, ψ, T for medium M_{1},

$$
\begin{gather*}
\phi=\left(A_{1} e^{-m_{1} x_{3}}+A_{2} e^{-m_{2} x_{3}}\right) e^{i\left(k x_{1}-\omega t\right)}, \tag{17}\\
\psi=\left(B_{1} e^{-m_{3} x_{3}}+B_{2} e^{-m_{4} x_{3}}\right) e^{i\left(k x_{1}-\omega t\right)} \tag{18}\\
T=\left(b_{1} A_{1} e^{-m_{1} x_{3}}+b_{2} A_{2} e^{-m_{2} x_{3}}\right) e^{i\left(k x_{1}-\omega t\right)} \tag{19}
\end{gather*}
$$

We attach bars for the medium M_{2} and write the appropriate values of $\bar{\phi}, \bar{\psi}, \bar{T}$ for $M_{2}\left(x_{3}<0\right)$ satisfying the radiation conditions as:

$$
\begin{gather*}
\bar{\phi}=\left(\bar{A}_{1} e^{\bar{m}_{1} x_{3}}+\bar{A}_{2} e^{\bar{m}_{2} x_{3}}\right) e^{i\left(k x_{1}-\omega t\right)} \tag{20}\\
\bar{\psi}=\left(\bar{B}_{1} e^{\bar{m}_{3} x_{3}}+\bar{B}_{2}^{\bar{m}_{4} x_{3}}\right) e^{i\left(k x_{1}-\omega t\right)} \\
\bar{T}=\left(\bar{b}_{1} \bar{A}_{1} e^{\bar{m}_{1} x_{3}}+\bar{b}_{2} \bar{A}_{2} e^{\bar{m}_{2} x_{3}}\right) e^{i\left(k x_{1}-\omega t\right)} \tag{22}
\end{gather*}
$$

where m_{1}, m_{2} are the roots of equation

$$
\begin{equation*}
\frac{d^{4}}{d x_{3}^{4}}+S \frac{d^{2}}{d x_{3}^{2}}+P=0 \tag{23}
\end{equation*}
$$

and m_{3}, m_{4} are the roots of equation

$$
\begin{equation*}
\frac{d^{4}}{d x_{3}^{4}}+S_{1} \frac{d^{2}}{d x_{3}^{2}}+P_{1}=0 \tag{24}
\end{equation*}
$$

where

$$
\begin{gathered}
S=\left(A-2 k^{2}\right), P=\left(k^{4}-k^{2} A+B\right), l_{4}=-\left(\frac{c_{1}^{2} \omega^{2}}{a_{6} c_{2}^{2}}\right), \\
S_{1}=-\left(\frac{1}{a_{6}}\right)-2 k^{2}, P_{1}=k^{4}+\frac{k^{2}}{a_{6}}-l_{4}, b_{i}=-\left(\frac{a_{8} \omega h l_{3}}{m_{i}^{2}-k^{2}+a_{7} \omega^{2} l_{2}+i a_{8} \omega^{3} l_{3} a_{5} l_{1}}\right), i=1,2, \\
A=\left(\omega^{2}+l_{2} a_{7} \omega^{2}+a_{5} i \omega l_{1} a_{8} \omega^{2} l_{3}\right), B=\left(\omega^{4} l_{2} a_{7}\right), l_{1}=\tau_{1}+i \omega^{-1}, l_{2}=\tau_{0}+i \omega^{-1}, l_{3}=\tau_{0} n_{0}+i \omega^{-1}
\end{gathered}
$$

Substituting the values of $\phi, \psi, T, \bar{\phi}, \bar{\psi}$ and \bar{T} from equations (17)-(22) in equation (10), we obtained the displacement components

For medium M_{1}

$$
\begin{align*}
& u_{1}=A_{1} i k e^{-m_{1} x_{3}}+i k A_{2} e^{-m_{2} x_{3}}+m_{3} B_{1} e^{-m_{3} x_{3}}+m_{4} B_{2} e^{-m_{4} x_{3}} \tag{25}\\
& u_{3}=-m_{1} A_{1} e^{-m_{1} x_{3}}-m_{2} A_{2} e^{-m_{2} x_{3}}+i k B_{1} e^{-m_{3} x_{3}}+i k B_{2} e^{-m_{4} x_{3}} \tag{26}
\end{align*}
$$

For medium M_{2}

$$
\begin{align*}
& \bar{u}_{1}=i k \bar{A}_{1} e^{\bar{m}_{1} x_{3}}+i k \bar{A}_{2} e^{\bar{m}_{2} x_{3}}-\bar{m}_{3} \bar{B}_{1} e^{\bar{m}_{3} x_{3}}-\bar{m}_{4} \bar{B}_{2} e^{\bar{m}_{4} x_{3}} \tag{27}\\
& \bar{u}_{3}=\bar{m}_{1} \bar{A}_{1} e^{\bar{m}_{1} x_{3}} \bar{m}_{2} \bar{A}_{2} e^{\bar{m}_{2} x_{3}}+i k \bar{B}_{1} e^{\bar{m}_{3} x_{3}}+i k \bar{B}_{2} e^{\bar{m}_{4} x_{3}} \tag{28}
\end{align*}
$$

V. Boundary Conditions

a) Mechanical Conditions

The boundary conditions are the continuity of normal stress, tangential stress, tangential couple stress, displacement components, temperature and rotations vector at the interface of elastic half spaces. Mathematically these can be written as

$$
\left.\begin{array}{l}
t_{33}=\bar{t}_{33} \tag{29}\\
t_{31}=\bar{t}_{31} \\
m_{32}=\bar{m}_{32} \\
u_{1}=\bar{u}_{1} \\
u_{3}=\bar{u}_{3} \\
\phi_{2}=\bar{\phi}_{2}
\end{array}\right\} \text { at } x_{3}=0
$$

b) Thermal Condition

The thermal condition corresponding to insulated boundary is given by

$$
\left.\begin{array}{l}
T=\bar{T} \tag{30}\\
K * \frac{\partial T}{\partial x_{3}}=\bar{K} * \frac{\partial \bar{T}}{\partial x_{3}}
\end{array}\right\} \text { at } x_{3}=0
$$

Using equations (6) and (7) with aid of (11) in equations (4) and (5), we obtain the values of $t_{i j}$ and $m_{i j}$ as

$$
\begin{gather*}
t_{i j}=a_{9} \delta_{i j} e+a_{10}\left(u_{i, j}+u_{j, i}\right)-a_{11} e_{i j k} e_{k p q} u_{q, p l l}-\beta\left(1+\tau_{1} \frac{\partial}{\partial t}\right) T \delta_{i j} \tag{31}\\
m_{i j}=a_{12} e_{i p q} u_{q, p j}+a_{13} e_{j p q} u_{q, p i} . \tag{32}
\end{gather*}
$$

With the help of equations (31) and (32) with aid of (17)-(22) and (25)-(28) from equations (29) and (30), we obtain a system of eight homogeneous simultaneous linear equations and after some simplification, we obtain the secular equation as

$$
\begin{equation*}
c^{2}=\frac{-\omega^{2} a_{9}}{Q Q} \tag{33}
\end{equation*}
$$

where

$$
Q Q=P_{12} Q_{1}-P_{13} Q_{2}+P_{13} Q_{3}-P_{14} Q_{4}+P_{15} Q_{5}-P_{16} Q_{6}+P_{17} Q_{7}-P_{18} Q_{8}
$$

$$
\begin{aligned}
& Q_{1}=\frac{D 2}{D 1}, Q_{2}=\frac{D 3}{D 1}, Q_{3}=\frac{D 4}{D 1}, Q_{4}=\frac{D 5}{D 1}, Q_{6}=\frac{D 6}{D 1}, Q_{7}=\frac{D 7}{D 1}, Q_{8}=\frac{D 8}{D 1}, \\
& P_{11}=-a_{9} k^{2}+\left(a_{9}+a_{10}\right) m_{1}^{2}+b_{1} l_{1}, P_{12}=-a_{9} k^{2}+\left(a_{9}+a_{10}\right) m_{2}^{2}+b_{2} l_{1} P_{13}=-i a_{10} k m_{3}, \\
& P_{14}=-i a_{10} k m_{4}, P_{15}=-\bar{a}_{9} k^{2}+\left(\bar{a}_{9}+\bar{a}_{10}\right) \bar{m}_{1}^{2}+\left(b_{1}\right)^{2} l_{1}, P_{16}=-\bar{a}_{9} k^{2}+\left(\bar{a}_{9}+\bar{a}_{10}\right) \bar{m}_{2}^{2}+\left(b_{1}\right)^{2} l_{1}, \\
& P_{17}=-i \bar{a}_{10} k m_{3}, P_{18}=-i \bar{a}_{10} k m_{4}, P_{21}=-2 i k a_{10} m_{1}-a_{11}\left[\left(m_{1}\right)^{4}+m_{1} i k^{3}\right], \\
& \left.\left.P_{22}=-2 i k a_{10} m_{2}-a_{11}\left[\left(m_{2}\right)^{4}+m_{2} i k^{3}\right], P_{23}=-a_{10} \mid m_{3}^{2}+k^{2}\right]-a_{11} \mid i k m_{3}^{3}+2 m_{3}^{2} k^{2}-m_{3}^{4}\right], \\
& P_{24}=-a_{10}\left[m_{4}^{2}+k^{2}\right]-a_{11}\left[i k m_{4}^{3}+2 m_{4}^{2} k^{2}-m_{4}^{4}\right], P_{25}=-2 i \bar{a}_{10} k \bar{m}_{1}, P_{25}=-2 i \bar{a}_{10} k \bar{m}_{2}, \\
& P_{27}=\bar{a}_{10}\left[\bar{m}_{3}^{2}+k^{2}\right]+\bar{a}_{11}\left[-k^{4}+2 \bar{m}_{3}^{2} k^{2}-\bar{m}_{3}^{4}\right], P_{28}=\bar{a}_{10}\left[\bar{m}_{4}^{2}+k^{2}\right]+\bar{a}_{11}\left[-k^{4}+2 \bar{m}_{4}^{2} k^{2}-\bar{m}_{4}^{4}\right], \\
& P_{33}=a_{12}\left(\left(m_{3}\right)^{3}+k^{2} m_{3}\right), P_{34}=a_{12}\left(\left(m_{4}\right)^{3}-k^{2} m_{4}\right), P_{37}=\bar{a}_{12}\left(\left(\bar{m}_{3}\right)^{3}+k^{2} \bar{m}_{3}\right), \\
& P_{38}=\bar{a}_{12}\left(\left(\bar{m}_{4}\right)^{3}+k^{2} \bar{m}_{4}\right), P_{41}=-b_{1} k m_{1}, P_{42}=-b_{2} k m_{2}, P_{45}=-\bar{b}_{1} k \bar{m}_{1}, P_{46}=-\bar{b}_{1} k \bar{m}_{2}, P_{51}=i k, \\
& P_{52}=i k, P_{53}=m_{3}, P_{54}=m_{4}, P_{55}=P_{56}=-i k, P_{57}=\bar{m}_{3}, P_{58}=\bar{m}_{4}, P_{61}=-m_{1}, P_{62}=-m_{2}, \\
& P_{63}=P_{64}=i k, P_{65}=-\bar{m}_{1}, P_{66}=-\bar{m}_{2}, P_{67}=P_{68}=-i k, P_{71}=b_{1}, P_{72}=b_{2}, P_{75}=-\bar{b}_{1}, P_{76}=-\bar{b}_{2}, \\
& P_{81}=-2 i k m_{1}, P_{82}=-2 i k m_{2}, P_{83}=-\left\{\left(m_{2}\right)^{2}+k^{2}\right\}, P_{84}=-\left\{\left(m_{4}\right)^{2}+k^{2}\right\}, \\
& P_{87}=\left\{\left(\bar{m}_{3}\right)^{2}-k^{2}\right\}, P_{88}=\left\{\left(\bar{m}_{4}\right)^{2}-k^{2}\right\}
\end{aligned}
$$

and
$D 1=\left[\begin{array}{ccccccc}P_{22} & P_{23} & P_{24} & P_{25} & P_{26} & P_{27} & P_{28} \\ P_{32} & P_{33} & P_{34} & P_{35} & P_{36} & P_{37} & P_{38} \\ P_{42} & 0 & 0 & P_{45} & P_{46} & 0 & 0 \\ P_{52} & P_{53} & P_{54} & P_{55} & P_{56} & P_{57} & P_{58} \\ P_{62} & P_{63} & P_{64} & P_{65} & P_{66} & P_{67} & P_{68} \\ P_{72} & P_{73} & P_{74} & P_{75} & P_{76} & 0 & 0 \\ P_{82} & P_{83} & P_{84} & 0 & 0 & P_{87} & P_{88}\end{array}\right], \quad D 2=\left[\begin{array}{ccccccc}P_{21} & P_{23} & P_{24} & P_{25} & P_{26} & P_{27} & P_{28} \\ P_{31} & P_{33} & P_{34} & P_{35} & P_{36} & P_{37} & P_{38} \\ P_{41} & 0 & 0 & P_{45} & P_{46} & 0 & 0 \\ P_{51} & P_{53} & P_{54} & P_{55} & P_{56} & P_{57} & P_{58} \\ P_{61} & P_{63} & P_{64} & P_{65} & P_{66} & P_{67} & P_{68} \\ P_{71} & P_{73} & P_{74} & P_{75} & P_{76} & 0 & 0 \\ P_{81} & P_{83} & P_{84} & 0 & 0 & P_{87} & P_{88}\end{array}\right]$,
$D 3=\left[\begin{array}{ccccccc}P_{21} & P_{22} & P_{24} & P_{25} & P_{26} & P_{27} & P_{28} \\ P_{31} & P_{32} & P_{34} & P_{35} & P_{36} & P_{37} & P_{38} \\ P_{41} & P_{42} & 0 & P_{45} & P_{46} & 0 & 0 \\ P_{51} & P_{52} & P_{54} & P_{55} & P_{56} & P_{57} & P_{58} \\ P_{61} & P_{62} & P_{64} & P_{65} & P_{66} & P_{67} & P_{68} \\ P_{71} & P_{72} & P_{74} & P_{75} & P_{76} & 0 & 0 \\ P_{81} & P_{82} & P_{84} & 0 & 0 & P_{87} & P_{88}\end{array}\right], \quad D 4=\left[\begin{array}{ccccccc}P_{21} & P_{22} & P_{23} & P_{25} & P_{26} & P_{27} & P_{28} \\ P_{31} & P_{32} & P_{33} & P_{35} & P_{36} & P_{37} & P_{38} \\ P_{41} & P_{42} & 0 & P_{45} & P_{46} & 0 & 0 \\ P_{51} & P_{52} & P_{53} & P_{55} & P_{56} & P_{57} & P_{58} \\ P_{61} & P_{62} & P_{63} & P_{65} & P_{66} & P_{67} & P_{68} \\ P_{71} & P_{72} & P_{73} & P_{75} & P_{76} & 0 & 0 \\ P_{81} & P_{82} & P_{83} & 0 & 0 & P_{87} & P_{88}\end{array}\right]$,

$D 5$	$=\left[\begin{array}{llllllc}P_{21} & P_{22} & P_{23} & P_{24} & P_{26} & P_{27} & P_{28} \\ P_{31} & P_{32} & P_{33} & P_{34} & P_{36} & P_{37} & P_{38} \\ P_{41} & P_{42} & 0 & 0 & P_{46} & 0 & 0 \\ P_{51} & P_{52} & P_{53} & P_{54} & P_{56} & P_{57} & P_{58} \\ P_{61} & P_{62} & P_{63} & P_{64} & P_{66} & P_{67} & P_{68} \\ P_{71} & P_{72} & P_{73} & P_{74} & P_{76} & 0 & 0 \\ P_{81} & P_{82} & P_{83} & P_{84} & 0 & P_{87} & P_{88}\end{array}\right], \quad D 6=\left[\begin{array}{llllllc}P_{21} & P_{22} & P_{23} & P_{24} & P_{25} & P_{27} & P_{28} \\ P_{31} & P_{32} & P_{33} & P_{34} & P_{35} & P_{37} & P_{38} \\ P_{41} & P_{42} & 0 & 0 & P_{45} & 0 & 0 \\ P_{51} & P_{52} & P_{53} & P_{54} & P_{55} & P_{57} & P_{58} \\ P_{61} & P_{62} & P_{63} & P_{64} & P_{65} & P_{67} & P_{68} \\ P_{71} & P_{72} & P_{73} & P_{74} & P_{75} & 0 & 0 \\ P_{81} & P_{82} & P_{83} & P_{84} & 0 & P_{87} & P_{88}\end{array}\right]$,
$D 7$	$=\left[\begin{array}{ccccccccccc}P_{21} & P_{22} & P_{23} & P_{24} & P_{25} & P_{26} & P_{28} \\ P_{31} & P_{32} & P_{33} & P_{34} & P_{35} & P_{36} & P_{38} \\ P_{41} & P_{42} & 0 & 0 & P_{45} & P_{46} & 0 \\ P_{51} & P_{52} & P_{53} & P_{54} & P_{55} & P_{56} & P_{58} \\ P_{61} & P_{62} & P_{63} & P_{64} & P_{65} & P_{66} & P_{68} \\ P_{71} & P_{72} & P_{73} & P_{74} & P_{75} & P_{76} & 0 \\ P_{81} & P_{82} & P_{83} & P_{84} & 0 & P_{86} & P_{88}\end{array}\right]$ and $D 8=\left[\begin{array}{ccccccc}P_{21} & P_{22} & P_{23} & P_{24} & P_{25} & P_{26} & P_{27} \\ P_{31} & P_{32} & P_{33} & P_{34} & P_{35} & P_{36} & P_{37} \\ P_{41} & P_{42} & 0 & 0 & P_{45} & P_{46} & 0 \\ P_{51} & P_{52} & P_{53} & P_{54} & P_{55} & P_{56} & P_{57} \\ P_{61} & P_{62} & P_{63} & P_{64} & P_{65} & P_{66} & P_{67} \\ P_{71} & P_{72} & P_{73} & P_{74} & P_{75} & P_{76} & 0 \\ P_{81} & P_{82} & P_{83} & P_{84} & 0 & P_{86} & P_{87}\end{array}\right]$.

VI. Amplitude Ratios

The amplitude ratios of displacement components and temperature distribution at the interface $x_{3}=0$ for insulated boundary are given by

$$
\frac{A_{2}}{A_{1}}=-\frac{P_{41}}{P_{42}}, \frac{B_{1}}{A_{1}}=L_{1} L_{2}, \frac{B_{2}}{A_{1}}=L_{3}-\frac{P_{41}}{P_{42}} L_{1} L_{2},
$$

where

$$
L_{1}=-\frac{P_{21}}{P_{25}}+\frac{P_{22} P_{41}}{P_{42} P_{24}}+\frac{P_{11} P_{23}}{P_{24} P_{13}}-\frac{P_{23} P_{12} P_{24}}{P_{13} P_{42} P_{24}}, L_{2}=\frac{P_{24} P_{13}}{\left(P_{24} P_{13}-P_{23} P_{14}\right)}, L_{3}=-\frac{P_{11}}{P_{13}}+\frac{P_{12} P_{14}}{P_{13} P_{24}} .
$$

VII. Special Cases

For LS theory: Taking $\tau_{1}=0, n_{0}=1$ in equation (33), we obtain the secular equation for couple stress thermoelastic media with one relaxation time with the changed values of l_{1}, l_{3} as

$$
l_{1}=i \omega^{-1}, l_{3}=i \omega+\tau_{0}
$$

For GL theory: In this case, taking $n_{0}=0$ in equation (33), we obtain the secular equation in couple stress thermoelastic medium with two relaxation times with the changed values of l_{3} as

$$
l_{3}=i \omega
$$

For C-T theory: Taking $\tau_{1}=\tau_{0}=0$, in equation (33), yield the secular equation in couple stress thermoelastic medium with the changed values of l_{1}, l_{2}, l_{3} as

$$
l_{1}=l_{2}=l_{3}=i \omega^{-1}
$$

Viil. Numerical Discussion

With view of illustrating theoretical results derived in preceding sections, we now present some numerical results in this section. The physical data for medium M_{1} and M_{2} is given by
For medium M_{1} :

$$
\begin{aligned}
& \lambda=2.17 \mathrm{~N} / \mathrm{m}^{2}, \mu=3.28 \mathrm{~N} / \mathrm{m}^{2}, \rho=1.74 \mathrm{~kg} / \mathrm{m}^{3}, c_{e}=1.04 \times 10^{3} \mathrm{Jkg}^{-1} \mathrm{deg}^{-1}, \\
& K^{*}=1.7 \times 10^{2} \mathrm{Wm}^{-1} \mathrm{deg}^{-1}, T_{0}=.298^{o} K, \alpha=2.05 \mathrm{~N}, \beta=2.68 \mathrm{Nm}^{-1} \mathrm{deg}^{-1}, \beta_{1}=1.5 \mathrm{~N}
\end{aligned}
$$

For Medium M_{2} :

$$
\begin{aligned}
& \bar{\lambda}=2.238 \mathrm{~N} / \mathrm{m}^{2}, \bar{\mu}=2.992 \mathrm{~N} / \mathrm{m}^{2}, \rho=2.65 \mathrm{~kg} / \mathrm{m}^{3}, \bar{c}_{e}=0.021 \times 10^{3} \mathrm{Jkg}^{-1} \mathrm{deg}^{-1}, \\
& \bar{K}^{*}=2.4 \times 10^{2} \mathrm{Wm}^{-1} \mathrm{deg}^{-1}, \bar{T}_{0}=.296^{\circ} \mathrm{K}, \bar{\alpha}=1.9 \mathrm{~N}, \bar{\beta}=2.03 \mathrm{Nm}^{-1} \mathrm{deg}^{-1}, \beta_{1}^{\prime}=2.4 \mathrm{~N}
\end{aligned}
$$

Using the above values of parameters, the dispersion curves of non-dimensional phase velocity, attenuation coefficient and amplitude ratios are shown graphically with respect to the non-dimensional wave number for insulated boundary. CGL region corresponds to the coupled theory of Green-Lindsay, region CLS corresponds to coupled theory of Lord-Shulman, region GL corresponds to Green-Lindsay and the region LS corresponds to Lord-Shulman theory.

From fig. 1 it is noticed that the values of phase velocity increase for all the theories CLS, CGL, LS and GL for small values of wave number whereas the values of phase velocity decrease for large values of the wave number and the values for CGL remain higher than the other theories.

From fig. 2 we observed that the values of attenuation coefficient decrease sharply for all the theories then increase monotonically for all the theories. The values for GL are higher for small values of wave number than CLS, CGL and LS for $0 \leq k \leq 1.15$ whereas the values for CGL remain higher than the other theories for intermediate values of wave number. But the values for LS are higher than the other as the values of the wave number increase.

Figs. 3, 4 and 5 are showing the behaviors of amplitude ratios of displacements and temperature with respect to wave number. The pattern of amplitude ratios in fig. 3 is very similar. It decreases for all the four theories CLS, CGL, LS and GL. From fig. 4 it is noticed that the values of amplitude ratio for CLS and CGL increase whereas it decrease for LS and GL theories. From fig. 5 it can be observed that the amplitude ratios increase for CLS and CGL theories.

IX. Conclusion

The propagation of Stoneley waves at the interface of two couple stress thermoelastic half spaces in the context of LS and GL theories of thermoelasticity have been studied. It has been observed that the transverse wave mode is not affected by thermal effect and get decoupled from rest of motion. The behavior and trends of variation of phase velocity is similar for CGL, CLS, LS and GL theories with difference in their magnitude values whereas the behavior of the attenuation coefficient is similar for all the theories. Appreciable effect of thermal relaxation times is obtained on phase velocity, attenuation coefficient and amplitude ratios of displacement components and thermal distribution.

References Références Referencias

1. Achenbach, J. D., 1973, "Wave Propagation in Elastic Solids", North Holland Amsterdam, The Netherlands.
2. Aggarwal, H.R and Alverson, R.C., 1969, "Effects of couple-stresses on the diffraction of plane elastic waves by cylindrical cavity", International journal of Solids and Structures, 5, 491-511.
3. Anthonie, A., 2000, "Effects of couple stresses on the elastic bending of beams", International journal of Solids and Structures, 37, 1003-1018.
4. Bogy, D. B. andSternberg, E., 1967, "The effect of couple-stresses on singularities due to dislocation loadings", International Journal of Solids and Structures, 3, 757-770.
5. Brekhoviskikh, L. M., 1960, "Waves in Layered Media", Academic Press, NewYork.
6. Bullen, K. E. and Bolt, B. A., 1985 "An introduction to the theory of Seismology", Cambridge University Press, Cambridge, UK.
7. Chen, S. and Wang, T., 2001, "Strain gradient theory with couple stress for crystalline solids", European Journal Mechanics and Solids", 20, 739-756.
8. Chung, J. and Wass, A. M., 2010 "The inplane orthotropic couplet stress elasticity constant of elliptical cell honey combs", International Journal of Engineering Sciences, 48(11), 1123-1136.
9. Cosserat, E. and Cosserat F., 1909 "Theory des corps deformables", A. Herman Et. Fils, Paris.
10. Ewing, W. M., Zardetzky, W. S. and Press, F., 1957, "Elastic Waves in Layered Media", McGraw-Hill, New York.
11. Gourdiotis, P. A. and Georgiadis, 2008 "An opporroach based on distributed dislocations and dislocations for crack problems in couple-stress elasticity", International Journal of Solids and Structures, 45(21), 5521-5539.
12. Green, A.E. and Lindsay, K.A., 1972, Journal of. Elasticity, 1, 2, 1-7.
13. Green, A.E. and Rivlin, R.S., 1964, "Simple force and stress multiples", Archives of Rational Mechanics and Analysis, 16, 325-354.
14. Kröner, E., 1963, "On the physical reality of torque stresses in the continuum mechanics", International Journal of Engineering Sciences, 1(2), 261-278.
15. Kumar, R., Deswal, S., 2006, "Some problem of wave propagation in micropolar elasticity medium voids" Journal of Vibration and Control, 12(8), 647-664.
16. Kumar, R., Kaur, M. and Rajvanshi, S., 2012, "Wave propagation in micropolar thermoelastic layer with two temperatures" Journal of Vibration and Control, first published on November 5, 2012.
17. Kumar, R., Kumar, K. and Nautiyal, R. C.,2012a, "Wave Propagation in couple stress thermoelastic half space underlying an inviscid liquid layer" International of Applied Mathematics and Engineering, 17(1), 161-177.
18. Kumar, R., Kumar, K. and Nautiyal, R. C., 2012b, "Propagation of SH-Waves in Couple Stress Elastic Half Space Underlying an Elastic Layer" Afrika Matematika, DOI 10.1007/s13370-012-0073-y.
19. Lakes, R. S., 1982, "Dynamic study of couple stress effects in human compact bone", ASME Journal of Biomechanical Engineering., 104, 16-21.
20. Lord, H. and Shulman, Y., 1967, "A generalized dynamical theory of elasticity", Journal of Mechanics and Physics of Solids, 15,299-309.
21. Love, A. E. H., 1911"Some problems of Geodynamics", Cambridge University Press, Cambridge, UK.
22. Lubarda, V.A. and Markenscoff, X., 2000, "Conservation integrals in couple stress elasticity", Journal of the Mechanics and Physics of Solids, 3, 553-564.
23. Lubarda, V. A., 2003, "Circular inclusions in anti-plane strain couple stress elasticity", International Journal of Solids and Structures, 40, 3827-3851.
24. Mindlin, R. D. and Tiersten, H.F., 1962, "Effects of couple stresses in linear elasticity", Archive of Rational Mechanics and Analysis, 11, 415-448.
25. Nayfeh, A. N. and Abdelrahman, W.G., 2000, "An Approximate Model for Wave Propagation in Rectangular Rods and Their Geometric Limits" Journal of Vibration and Control, 6(1), 3-17.
26. Radi, E., 2007, "Effects of characteristic material lengths on Mode III crack propagation in couple stress elastic-plastic materials", International Journal of Plasticity, 23, 1439-1456.
27. Rayleigh, L., 1885, "On waves propagated along the plane surface of an elastic solid," Proceedings of the London Mathematical Society, 17, 4-11.
28. Scholte, J. G., 1947, "The range of existence of Rayleigh and Stoneley waves," Monthly Notices of Royal Astronomical Society, Geophysical Supplement 5, 120-126.
29. Selim, M. M., 2006, "Orthotropic elastic medium under the effect of initial and couple stress", Applied Mathematics and computations, 181(1), 185-192.
30. Sengupta, P. R. and Ghosh, B., 1974a, "Effects of couple stresses on the surface waves in elastic media", Gerlands Beitr. Geophysik, Leipzig, 82, 309-318.
31. Sengupta, P. R. and Ghosh, B., 1974b, "Effects of couple stresses on propagation of waves in an elastic layer", Pure Applied Physics, 112, 331-338.
32. Sengupta, P. R. and Benerji, D. K., 1978 "Effects of couple-stresses on propagation of waves in an elastic layer immersed in an infinite liquid", International Journal of Pure and Applied Maths, 9,17-28.
33. Shodja, H. M. and Ghagisaeidi, M., 2007, "Effects of couple stresses on anti plane problems of piezoelectric media with inhomogeneties", European Journal of Mechanics and Solids, 26, 26, 647-658.
34. Stefeniak, J., 1969, "Reflection of plane longitudinal wave from a free plane in cosserat medium", Archives of Mechanics, Polish Academy of Sciences, 21 (6), 745.
35. Stoneley, R., 1924, "Elastic waves at the surface of separation of two solids," Proceedings of Royal Society of London, 106, 416-428.
36. Tomar, S. K., 2005, "Wave propagation in elastic plates with voids" Journal of Vibration and Control, 11(6), 849-863.
37. Tomar, S. K. and Singh, D., 2006, "Propagation of stoneley waves at an interface between two microstretch elastic half-spaces" Journal of Vibration and Control, 12(9), 995-1009.
38. Toupin, R.A., 1962 "Elastic materials with couple-stresses", Archive of Rational Mechanics and Analysis, 11, 385-413.
39. Udias, A., 1999, "Principles of Seismology", Cambridge University Press, Campridge, UK.
40. Voigt, W., 1887, "theoretische studien uber die elastizitastsverhaltnisse der kristalle", Abh. Ges. Wiss. Gottingen, 34.
41. Weitsman, Y., 1965, "Couple stress effects on stress concentration around a cylindrical inclusion in a field of uniaxial tension", ASME Journal of Applied Mechanics, 32, 424-428.
42. Weitsman, Y., 1967, "A note on singularities in a cosserat medium", Qly. Appl. Mech., 25, 213-217.

Figure 1 : variation of phase velocity w. r. t. wave number

Figure 3 : variation of tangential amplitude verses wave number

Figure 2 : variation of attenuation coefficient w. r. t. wave number

Figure 4 : variation of normal amplitude verses wave number

Figure 5 : variation of temperature distribution verses wave number

This page is intentionally left blank

Global Journal of Science Frontier Research
MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 5 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Unsteady Couette Flow with Transpiration in a Rotating System

By Idowu, A.S, Joseph K. M, Are, E.B \& Daniel K.S

University of Ilorin, Nigeria

Abstract

The unsteady Couette flow with transpiration of a viscous fluid in a rotating system has been considered. An exact solution of the governing equations has been obtained by using Laplace Transform Technique. Solutions for velocity distributions and the shear stresses have been obtained for small time $\boldsymbol{\tau}=\mathbf{0} .05$ as well as large time $\boldsymbol{\tau}=\mathbf{1 0} . \mathbf{0}$. it is found that for small times the primary velocity profile increases with decrease in \boldsymbol{K}^{2} with constant $\boldsymbol{R} \boldsymbol{e}$ while the secondary velocity profile decreases with decrease in \boldsymbol{K}^{2}. It is also found that for large times, the primary flow increases with increase in \boldsymbol{K}^{2}, the secondary velocity behaves in an oscillatory manner near the moving plate and increases near the stationary plate. There exists a back flow in the region $\mathbf{0 . 0}<\boldsymbol{\varphi} \ll \mathbf{1}$. $\mathbf{0}$. The shear stress due to primary flow decreases with increase in \boldsymbol{K}^{2}. On the other hand, it increases due to secondary flow with increase in rotation parameter with constant $\boldsymbol{R} \boldsymbol{e}$ for small times. It is also observed that the shear stress for large time with constant $\boldsymbol{R e}$ shows layers of separation in both primary and secondary flow due to high rotation..

Keywords : couette flow, transpiration, rotating system, shear stress,
GJSFR-F Classification : MSC 2010: 76U05

Strictly as per the compliance and regulations of :

© 2013. Idowu, A.S, Joseph K. M, Are, E.B \& Daniel K.S. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Unsteady Couette Flow with Transpiration in a Rotating System

Idowu, A. S^{α}, Joseph K. M ${ }^{\sigma}$, Are, E.B ${ }^{\rho}$ \& Daniel K. S^{ω}

Abstract - The unsteady Couette flow with transpiration of a viscous fluid in a rotating system has been considered. An exact solution of the governing equations has been obtained by using Laplace Transform Technique. Solutions for velocity distributions and the shear stresses have been obtained for small time $\boldsymbol{\tau}=\mathbf{0 . 0 5}$ as well as large time $\boldsymbol{\tau}=\mathbf{1 0 . 0}$. it is found that for small times the primary velocity profile increases with decrease in K^{2} with constant $R e$ while the secondary velocity profile decreases with decrease in \boldsymbol{K}^{2}. It is also found that for large times, the primary flow increases with increase in K^{2}, the secondary velocity behaves in an oscillatory manner near the moving plate and increases near the stationary plate. There exists a back flow in the region $\mathbf{0 . 0}<\boldsymbol{\varphi} \ll \mathbf{1 . 0}$. The shear stress due to primary flow decreases with increase in \boldsymbol{K}^{2}. On the other hand, it increases due to secondary flow with increase in rotation parameter with constant $\boldsymbol{R} \boldsymbol{e}$ for small times. It is also observed that the shear stress for large time with constant $\boldsymbol{R e} \boldsymbol{e}$ shows layers of separation in both primary and secondary flow due to high rotation.
Keywords : couette flow, transpiration, rotating system, shear stress.

Nomenclature

Re Reynolds number
$\tau \quad$ Time
$\Omega \quad$ Uniform angular velocity
$d \quad$ Distance between the two parallel plates
$U \quad$ Uniform velocity
$u \quad$ Velocity component along x-direction
$v \quad$ Velocity component along y-direction
$K^{2} \quad$ Rotation parameter which is the reciprocal of Ekman number
$u_{1} \quad$ Velocity distribution due to primary flow
$v_{1} \quad$ Velocity distribution due to secondary flow
$q(\varphi, \tau)$ Velocity distribution
$\tau_{x} \quad$ Non - dimensional shear stress due to primary flow for small time τ
$\tau_{y} \quad$ Non - dimensional shear stress due to secondary flow for small time τ
$\tau_{x_{0}} \quad$ Non - dimensional shear stress due to primary flow for large time τ
$\tau_{y_{0}} \quad$ Non - dimensional shear stress due to secondary flow for large time τ

[^1]$v=\frac{\mu}{\rho} \quad$ Kinematic coefficient of viscosity
$w_{0} \quad$ Transpiration parameter
$\varphi \quad$ Non-dimensional variable

I. Introduction

The study of the flow of a viscous incompressible fluid in rotating frame of reference has drawn considerable interest in recent years due to its wide applications in designing thermo siphon tubes, in cooling turbine blades, etc. Also Hydrodynamic coquette flow in a rotating system is a challenging approach to atmospheric Science that exerts its influence of rotation to help in understanding the behavior of Oceanic circulation and the formation of galaxies in taking into account the flow of electron is continuously liberated from the sun what is called Solar Wind. Several investigations have been carried out on various types of flow in a rotating frame of reference. Couette flow in a rotating systems leads to a start up process implying thereby a viscous layer boundary is suddenly set into motion and the rate of rotation becomes important in the application of geophysics and fluid engineering as already stated in such a way that the problem is to be analysed by the effect of rotation for small as well as large time τ. However, Vidyanidhi and Nigam (1967) expedite the situation of a secondary flow in a rotating channel by taking into account of the flow of a viscous fluid between two parallel plates in a rotating system with uniform angular velocity about an axis perpendicular to their planes under the influence of a constant pressure gradient. Barik, et al (2012) made an attempt to study the effects of heat and mass transfer on the flow over stretching sheet in the presence of a heat source. Seth et al (2011) studied MHD couette flow of class II in a rotating system. Jana and Datta (1977) have studied the steady Couette flow and heat transfer in a rotating system. Mazumder (1991) investigated an exact solution of an oscillatory Couette flow in a rotating system. Khaled (2012) also studied the transient magnetohydrodynamic in mixed double convection along a vertical plate embedded in a non - Darcy porous medium. Al - Odat (2012) studied transient non - Darcy mixed convection during a vertical surface in porous medium with such suction or injection. Seth et al. (1982) have studied unsteady Couette Flow in a rotating system. Our present problem is to study the unsteady Couette flow with transpiration confined between two plates, rotating with the same angular velocity Ω about an axis perpendicular to their planes and the flow is induced due to the motion of the upper plate. When the upper plate is not moving with uniform velocity, we have the problem considered by Berker (1979). It is important to note that when the upper plate is moving there is no reason to expect only the axially symmetric solution. In this context, it may be noted that Berker [4] established the existence of non - axisymmetric solution for the flow of an incompressible viscous fluid between two disk rotating about a common axis with d same angular velocity. In relating to the fact that Rajagopal [17] has studied, the now of viscoelastic fluid between two rotating disks is a decisive importance to an asymmetric solution of this problem. Singh, Gorla and Rajhans [20] investigated a periodic solution of oscillatory couette flow through a porous medium in a rotating system. Parter and Rajagopal [16] investigated the problem of flow of an incompressible viscous fluid between two parallel disks about a common axis with different angular speeds. They rigorously proved that the problem admits of solution that lacks axial symmetry. With regard to the existence theorem of Parter and Rajagopal it is pointed out that an extensive numerical computation were carried out by Lai et al. [13] with their study of non - axisymmetric
flow between two parallel rotating disks. It becomes a significant approach to a viscous flow above a single rotating disk which gives a similar result as studied by Lai et al. [14]. Erdogan [6] has considered the unsteady flow induced by the rotation about non coincident axes while both of the disks are initially rotating with the same angular velocity about a common axis. An extension of this problem of the unsteady flow produced by a sudden coincidence of the axes while two disks are initially rotating with the same angular velocity about non - coincident axes was studied by Ersoy [7]. Greenspan [9] devoted to the theory of unsteady hydrodynamic Couette flow in a rotating system.

The aim and objective of this our present work deals with the time development of a start up Couette flow with transpiration in a rotating frame of reference for small time τ and large time τ where the frictional layer of the upper plate is suddenly set into motion with uniform velocity U with the transparency of a rigid body rotation. A remarkable feature of this problem is to discuss the physical insight into the flow pattern for small time τ by applying Laplace transform technique. The velocity distributions and the shear stresses due to the primary and secondary flows are obtained for small as well as large time τ.

II. Formulation of the Problem

Consider the unsteady flow of a viscous incompressible fluid confined between parallel plates at a distance d apart, rotating with uniform angular velocity Ω about an axis normal to the plate with transpiration w_{0}. We choose the coordinate system in such a way that the x-axis is along the plate (stationary plate) and z-axis is perpendicular to it and y-axis normal to the $x y$ - plane. The flow is induced by motion of the upper plate while the lower plate is kept fixed. The upper upper plate moves with uniform velocity $U(t>0)$ in the x-direction. Since the plates are infinite along x and $y-$ directions, all physical quantities will be the functions of z and t only.

Denoting velocity u and v along x and y-directions, respectively, the Navier Stoke equations in a rotating frame of reference are

$$
\begin{align*}
& \frac{\partial u}{\partial t}-w_{0} \frac{\partial u}{\partial z}=v \frac{\partial^{2} u}{\partial z^{2}}+2 \Omega v \tag{2.1}\\
& \frac{\partial v}{\partial t}-w_{0} \frac{\partial v}{\partial z}=v \frac{\partial^{2} v}{\partial z^{2}}-2 \Omega u \tag{2.2}
\end{align*}
$$

Where $v=\frac{\mu}{\rho}$ is the kinematic coefficient of viscosity and w_{0} is the transpiration parameter.

The initial and boundary conditions are

$$
\begin{align*}
& u=v=0 \text { for } t \leq 0,0 \leq z \leq d \tag{2.3}\\
& u=v=0 \text { at } z=0, t>0 \\
& u=U, v=0 \text { at } z=0, t>0 \tag{2.4}
\end{align*}
$$

Let us define the dimensionless quantities as

$$
\begin{equation*}
u_{1}=\frac{u}{U}, v_{1}=\frac{v}{U}, \varphi=\frac{z}{d}, \tau=\frac{v t}{d^{2}}, w_{0}=\frac{R e v}{d} \tag{2.5}
\end{equation*}
$$

Therefore, as a consequence of equation (2.5), equations (2.1) and (2.2) become

$$
\begin{align*}
& \frac{\partial u_{1}}{\partial \tau}-w_{0} \frac{\partial u_{1}}{\partial \varphi}=v \frac{\partial^{2} u_{1}}{\partial \varphi^{2}}+2 K^{2} v_{1} \tag{2.6}\\
& \frac{\partial v_{1}}{\partial \tau}-w_{0} \frac{\partial v_{1}}{\partial \varphi}=v \frac{\partial^{2} v_{1}}{\partial \varphi^{2}}-2 K^{2} u_{1} \tag{2.7}
\end{align*}
$$

Where $K^{2}=\frac{\Omega d^{2}}{v}$ is the rotating parameter which is the reciprocal of Eckman number.
Combining equations (2.6) and (2.7), we get

$$
\begin{gather*}
\frac{\partial q}{\partial \tau}-\operatorname{Re} \frac{\partial q}{\partial \varphi}=v \frac{\partial^{2} q}{\partial \varphi^{2}}-2 i K^{2} q \tag{2.8}\\
q=u_{1}+i v_{1}, i=\sqrt{-1} \tag{2.9}
\end{gather*}
$$

The initial and boundary conditions (2.3) and (2.4) become

$$
\begin{align*}
& q=0 \text { for } \tau \leq 0,0 \leq \varphi \leq 1 \tag{2.10}\\
& q=0 \text { at } \varphi=0, \tau>0 \\
& q=1 \text { at } \varphi=1, \tau>0 \tag{2.11}
\end{align*}
$$

iII. The Laplace Transform Technique Solution

In this section, the Laplace transforms technique which leads to the solution of equation (2.8) together with the initial and boundary condition (2.10) and (2.11) is described.
Substituting,

$$
\begin{equation*}
q(\varphi, \tau)=F(\varphi, \tau) e^{-2 i K^{2}} \tag{3.1}
\end{equation*}
$$

Equation (2.8) becomes

$$
\begin{equation*}
\frac{\partial F}{\partial \tau}-\operatorname{Re} \frac{\partial F}{\partial \varphi}=\frac{\partial^{2} F}{\partial \varphi^{2}} \tag{3.2}
\end{equation*}
$$

The initial and boundary conditions (2.10) and (2.11) become

$$
\begin{equation*}
F(0, \tau)=0, F(0, \tau)=0 \text { and } F(1, \tau)=e^{2 i K^{2} \tau} \tag{3.3}
\end{equation*}
$$

Using the Laplace transform technique, equation (3.2) becomes

$$
\begin{equation*}
s \bar{F}=\frac{\partial^{2} \bar{F}}{\partial \varphi^{2}}+\operatorname{Re} \frac{\partial \bar{F}}{\partial \varphi} \tag{3.4}
\end{equation*}
$$

Where

$$
\begin{equation*}
\bar{F}=\int_{0}^{\infty} F(\varphi, \tau) d \tau \tag{3.5}
\end{equation*}
$$

Finally, the boundary conditions (3.3) take the form

$$
\begin{equation*}
\bar{F}(0)=0 \text { and } \bar{F}(1)=\frac{1}{s-2 i K^{2}} \tag{3.6}
\end{equation*}
$$

The solution of equation (3.4) together with conditions (3.6) is

$$
\begin{equation*}
\bar{F}(\varphi, s)=\frac{\sinh \left(\frac{\sqrt{R e^{2}+4 s}-R e}{2}\right) \varphi}{s-2 i K^{2} \sinh \left(\frac{\sqrt{R e^{2}+4 s}-R e}{2}\right)} \tag{3.7}
\end{equation*}
$$

Equation (3.7) is the solution of the problem. Since the flow is unsteady, we shall discuss the following cases:
Case 1: Solutions for sma 11 time τ. In this case the method used by Ersoy [7] is used because it converges rapidly for small time ($\tau \ll 1$) corresponding to large $s(\gg 1)$ and thus equation (3.7) can be written using Lorent's expansion as

$$
\begin{align*}
& \bar{F}(\varphi, s)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{\left(2 i K^{2}\right)^{2}}{s^{n+1}}\left[e^{-(2 m+1-\varphi)\left(\frac{\sqrt{R e^{2}+4 s}-R e}{2}\right)}-e^{-(2 m+1+\varphi)\left(\frac{\sqrt{R e} 2+4 s}{}-R e\right.}\right) \tag{3.8}\\
& F(\varphi, \tau)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left(2 i K^{2}\right)^{n}(4 \tau)^{n} e^{-\frac{R e}{2}}\left\{i ^ { 2 n } \frac { 1 } { 2 } \left[\exp \left(\operatorname{Re}\left(\frac{2 m+1-\varphi}{2}\right)\right) \operatorname{erfc}\left(\frac{2 m+1-\varphi}{8 \sqrt{\tau}}+2 \operatorname{Re} \sqrt{\tau}\right)+\right.\right. \\
& \left.\exp \left(-\operatorname{Re}\left(\frac{2 m+1-\varphi}{2}\right)\right) \operatorname{erfc}\left(\frac{2 m+1-\varphi}{8 \sqrt{\tau}}-2 \operatorname{Re} \sqrt{\tau}\right)\right]-i^{2 n} \frac{1}{2}\left[\operatorname { e x p } (\operatorname { R e } (\frac { 2 m + 1 + \varphi } { 2 })) \operatorname { e r f c } \left(\frac{2 m+1+\varphi}{8 \sqrt{\tau}}+\right.\right. \\
& \left.\left.2 \operatorname{Re} \sqrt{\tau})+\exp \left(-\operatorname{Re}\left(\frac{2 m+1-\varphi}{2}\right)\right) \operatorname{erfc}\left(\frac{2 m+1-\varphi}{8 \sqrt{\tau}}-2 \operatorname{Re} \sqrt{\tau}\right)\right]\right\} \tag{3.9}
\end{align*}
$$

Where

$$
\begin{gather*}
i^{n} \operatorname{erfc}(x)=\int_{x}^{\infty} i^{n-1} \operatorname{erf} c(\zeta) d \zeta \\
\operatorname{ierfc}(x)=\int_{x}^{\infty} \operatorname{erfc} c(\zeta) d \zeta \\
i^{0} \operatorname{erfc}(x)=\operatorname{erf}(x) \tag{3.10}
\end{gather*}
$$

The solution (3.9) can be written as

$$
\begin{equation*}
F(\varphi, \tau)=\sum_{n=0}^{\infty}\left(2 K^{2}\right)^{n} i^{n}(4 \tau)^{n} T_{r} \quad r=0,2,4,6 \ldots \tag{3.11}
\end{equation*}
$$

Where
$T_{r}=\sum_{m=0}^{\infty} e^{-\frac{R e}{2}}\left\{i^{2 n} \frac{1}{2}\left[\exp \left(\operatorname{Re}\left(\frac{2 m+1-\varphi}{2}\right)\right) \operatorname{erfc}\left(\frac{2 m+1-\varphi}{8 \sqrt{\tau}}+2 \operatorname{Re} \sqrt{\tau}\right)+\right.\right.$
$\left.\exp \left(-\operatorname{Re}\left(\frac{2 m+1-\varphi}{2}\right)\right) \operatorname{erfc}\left(\frac{2 m+1-\varphi}{8 \sqrt{\tau}}-2 \operatorname{Re} \sqrt{\tau}\right)\right]-i^{2 n} \frac{1}{2}\left[\exp \left(\operatorname{Re}\left(\frac{2 m+1+\varphi}{2}\right)\right) \operatorname{erfc}\left(\frac{2 m+1+\varphi}{8 \sqrt{\tau}}+\right.\right.$
$\left.\left.2 \operatorname{Re} \sqrt{\tau})+\exp \left(-\operatorname{Re}\left(\frac{2 m+1-\varphi}{2}\right)\right) \operatorname{erfc}\left(\frac{2 m+1-\varphi}{8 \sqrt{\tau}}-2 \operatorname{Re} \sqrt{\tau}\right)\right]\right\} r=0,2,4,6,8, \ldots$

On separating real and imaginary parts, we get the velocity distributions for primary and secondary flow respectively as follows

$$
\begin{align*}
& u_{1}=e^{-\frac{R e}{2}\left\{\left[T_{0}-\left(2 K^{2}\right)^{2}(4 \tau)^{2} T_{4}+\left(2 K^{2}\right)^{4}(4 \tau)^{4} T_{8}+\left(2 K^{2}\right)^{6}(4 \tau)^{6} T_{12} \ldots\right] \cos 2 K^{2} \tau+\left[\left(2 K^{2}\right)(4 \tau) T_{2}-\right.\right.} \\
& \left.\left.\left(2 K^{2}\right)^{3}(4 \tau)^{3} T_{6}+\left(2 K^{2}\right)^{5}(4 \tau)^{5} T_{10}+\left(2 K^{2}\right)^{7}(4 \tau)^{7} T_{14} \ldots\right] \sin 2 K^{2} \tau\right\} \tag{3.13}\\
& v_{1}=e^{-\frac{R e}{2}}\left\{\left[\left(2 K^{2}\right)(4 \tau) T_{2}-\left(2 K^{2}\right)^{3}(4 \tau)^{3} T_{6}+\left(2 K^{2}\right)^{5}(4 \tau)^{5} T_{10}+\left(2 K^{2}\right)^{7}(4 \tau)^{7} T_{14} \ldots\right] \cos 2 K^{2} \tau-\right.
\end{align*}
$$

Differentiating equation (3.12) with respect to φ, we get

$$
\begin{align*}
& \frac{d T_{r}}{d \varphi}=e^{-\frac{R e}{2}}\left\{i ^ { 2 n } \frac { 1 } { 2 } \left[\exp \left(\operatorname{Re}\left(\frac{2 m+1-\varphi}{2}\right)\right) \operatorname{erfc}\left(\frac{2 m+1-\varphi}{8 \sqrt{\tau}}+2 \operatorname{Re} \sqrt{\tau}\right)\left(\frac{1}{8 \sqrt{\tau}}-\frac{R e}{2}\right)+\right.\right. \\
& \left.\exp \left(-\operatorname{Re}\left(\frac{2 m+1-\varphi}{2}\right)\right) \operatorname{erfc}\left(\frac{2 m+1-\varphi}{8 \sqrt{\tau}}-2 \operatorname{Re} \sqrt{\tau}\right)\left(\frac{1}{8 \sqrt{\tau}}-\frac{R e}{2}\right)\right]- \\
& i^{2 n} \frac{1}{2}\left[\exp \left(\operatorname{Re}\left(\frac{2 m+1+\varphi}{2}\right)\right) \operatorname{erfc}\left(\frac{2 m+1+\varphi}{8 \sqrt{\tau}}+2 \operatorname{Re} \sqrt{\tau}\right)\left(\frac{1}{8 \sqrt{\tau}}-\frac{R e}{2}\right)+\right. \\
& \left.\left.\exp \left(-\operatorname{Re}\left(\frac{2 m+1-\varphi}{2}\right)\right) \operatorname{erfc}\left(\frac{2 m+1-\varphi}{8 \sqrt{\tau}}-2 \operatorname{Re} \sqrt{\tau}\right)\left(\frac{1}{8 \sqrt{\tau}}-\frac{R e}{2}\right)\right]\right\} \tag{3.15}
\end{align*}
$$

This gives

$$
\begin{equation*}
\frac{d T_{r}}{d \varphi}=Y_{r-1}\left(\frac{1}{8 \sqrt{\tau}}-\frac{R e}{2}\right) e^{-\frac{R e}{2}}, r=0,1,2,3, \ldots \tag{3.16}
\end{equation*}
$$

Where

$$
\begin{align*}
& Y_{r-1}=\left\{i ^ { 2 n } \frac { 1 } { 2 } \left[\exp \left(\operatorname{Re}\left(\frac{2 m+1-\varphi}{2}\right)\right) \operatorname{erfc}\left(\frac{2 m+1-\varphi}{8 \sqrt{\tau}}+2 \operatorname{Re} \sqrt{\tau}\right)\left(\frac{1}{8 \sqrt{\tau}}-\frac{R e}{2}\right)+\right.\right. \\
& \left.\exp \left(-\operatorname{Re}\left(\frac{2 m+1-\varphi}{2}\right)\right) \operatorname{erfc}\left(\frac{2 m+1-\varphi}{8 \sqrt{\tau}}-2 \operatorname{Re} \sqrt{\tau}\right)\left(\frac{1}{8 \sqrt{\tau}}-\frac{R e}{2}\right)\right]- \\
& i^{2 n} \frac{1}{2}\left[\exp \left(\operatorname{Re}\left(\frac{2 m+1+\varphi}{2}\right)\right) \operatorname{erfc}\left(\frac{2 m+1+\varphi}{8 \sqrt{\tau}}+2 \operatorname{Re} \sqrt{\tau}\right)\left(\frac{1}{8 \sqrt{\tau}}-\frac{R e}{2}\right)+\right. \\
& \left.\left.\exp \left(-\operatorname{Re}\left(\frac{2 m+1-\varphi}{2}\right)\right) \operatorname{erfc}\left(\frac{2 m+1-\varphi}{8 \sqrt{\tau}}-2 \operatorname{Re} \sqrt{\tau}\right)\left(\frac{1}{8 \sqrt{\tau}}-\frac{R e}{2}\right)\right]\right\}, r=0,1,2.3, \ldots \tag{3.17}
\end{align*}
$$

The non-dimensional shear stress can be obtained as

$$
\begin{equation*}
\frac{d q}{d \varphi}=\left(\frac{1}{8 \sqrt{\tau}}-\frac{R e}{2}\right) \sum_{n=0}^{\infty}\left(2 K^{2}\right)^{n} i^{n}(4 \tau)^{n} Y_{n-1} e^{-2 i K^{2}-\frac{R e}{2}} \tag{3.18}
\end{equation*}
$$

The non - dimensional shear stresses due to primary flows and secondary flows at the plate $\varphi=0$ can be respectively written as

$$
\begin{align*}
& \tau_{x}=\left(\frac{1}{8 \sqrt{\tau}}-\frac{R e}{2}\right) e^{-\frac{R e}{2}}\left\{\left[Y_{-1}-\left(2 K^{2}\right)^{2}(4 \tau)^{2} Y_{3}+\left(2 K^{2}\right)^{4}(4 \tau)^{4} Y_{7}+\left(2 K^{2}\right)^{6}(4 \tau)^{6} Y_{11} \ldots\right] \cos 2 K^{2} \tau+\right. \\
& \left.\left[\left(2 K^{2}\right)(4 \tau) Y_{1}-\left(2 K^{2}\right)^{3}(4 \tau)^{3} Y_{5}+\left(2 K^{2}\right)^{5}(4 \tau)^{5} Y_{9}+\left(2 K^{2}\right)^{7}(4 \tau)^{7} Y_{13} \ldots\right] \sin 2 K^{2} \tau\right\}_{\varphi=0} \tag{3.19}
\end{align*}
$$

$\tau_{y}=\left(\frac{1}{8 \sqrt{\tau}}-\frac{R e}{2}\right) e^{-\frac{R e}{2}}\left\{\left[\left(2 K^{2}\right)(4 \tau) Y_{1}-\left(2 K^{2}\right)^{3}(4 \tau)^{3} Y_{5}+\left(2 K^{2}\right)^{5}(4 \tau)^{5} Y_{9}+\left(2 K^{2}\right)^{7}(4 \tau)^{7} Y_{13} \ldots\right] \cos 2\right.$
$\left.K^{2} \tau-\left[Y_{-1}-\left(2 K^{2}\right)^{2}(4 \tau)^{2} Y_{3}+\left(2 K^{2}\right)^{4}(4 \tau)^{4} Y_{7}+\left(2 K^{2}\right)^{6}(4 \tau)^{6} Y_{11} \ldots\right] \sin 2 K^{2} \tau\right\}_{\varphi=0}$
Case 2: Solution for large time τ. For large time the method given in Batchelor[3] can be used. The solution of equation (2.8) subject to the conditions (2.10) and (2.11), can be written in the form

$$
\begin{equation*}
q(\varphi, s)=\frac{\sinh \left(\frac{\sqrt{R e^{2}+4 s}-R e}{2}\right) \varphi}{s-2 i K^{2} \sinh \left(\frac{\sqrt{R e^{2}+4 s}-R e}{2}\right)}+F_{1}(\varphi, \tau) \tag{3.21}
\end{equation*}
$$

Where the first term on the right hand side is the steady solution and $F_{1}(\varphi, \tau)$ shows the departure from steady state. $F_{1}(\varphi, \tau)$ Satisfies the differential equation

$$
\begin{equation*}
\frac{\partial F}{\partial \tau}+2 i K^{2} F_{1}=\frac{\partial^{2} F}{\partial \varphi^{2}}+\operatorname{Re} \frac{\partial F}{\partial \varphi} \tag{3.22}
\end{equation*}
$$

With

$$
\begin{equation*}
F_{1}(0, \tau)=0, F_{1}(1, \tau)=0, F_{1}(0, \tau)=-\frac{\sinh \left(\frac{\sqrt{R e^{2}+4 s}-R e}{2}\right) \varphi}{\sinh \left(\frac{\sqrt{R e^{2}+4 s}-R e}{2}\right)} \tag{3.23}
\end{equation*}
$$

The solution of equation (3.22) may be written in the form

$$
\begin{equation*}
F_{1}(\varphi, \tau)=A_{n} \operatorname{sinn} \pi \varphi e^{-\lambda_{n}^{2} \tau-\frac{R e}{2}} \tag{3.24}
\end{equation*}
$$

Where

$$
\begin{equation*}
\lambda_{n}^{2}=\frac{\pi^{2} n^{2}+8 i K^{2}}{4} \tag{3.25}
\end{equation*}
$$

The coefficient A_{n} can be determined from the initial conditions which is

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{n} \operatorname{sinn} \pi \varphi=-\frac{\sinh \left(\frac{\sqrt{R e^{2}+4 s}-R e}{2}\right) \varphi}{\sinh \left(\frac{\sqrt{R e^{2}+4 s}-R e}{2}\right)} \tag{3.26}
\end{equation*}
$$

The velocity distribution $q(\varphi, s)$ is given by

$$
\begin{equation*}
q(\varphi, s)=\frac{\sinh \left(\sqrt{R e^{2}+8 i K^{2}}-R e\right) \varphi}{\sinh \left(\sqrt{R e^{2}+8 i K^{2}}-R e\right)}+4 \sum_{n=1}^{\infty} \frac{n \pi(-1)^{n} e^{-\lambda_{n}^{2} \tau-\frac{R e}{2}}}{n^{2} \pi^{2}+8 i K^{2}} \operatorname{sinn} \pi \varphi \tag{3.27}
\end{equation*}
$$

On separating the real and imaginary parts, we get

$$
\begin{align*}
& u_{1}=\frac{S(4 K R e \varphi) S(4 K R e)+C(4 K R e \varphi) C(4 K R e)}{S^{2}(4 K R e)+C^{2}(4 K R e)}+4 \sum_{n=1}^{\infty} \frac{n \pi(-1)^{n} e^{-\lambda_{n}^{2} \tau-\frac{R e}{2}}}{\left(n^{2} \pi^{2}\right)^{2}+\left(8 i K^{2}\right)^{2}} \sin n \pi \varphi \times\left(n^{2} \pi^{2} \cos 2 K^{2}-\right. \\
& \left.8 K^{2} \sin 2 K^{2}\right) \tag{3.28}
\end{align*}
$$

$$
\begin{align*}
& v_{1}=\frac{C(4 K R e \varphi) C(4 K R e)-S(4 K R e \varphi) S(4 K R e)}{S^{2}(4 K R e)+C^{2}(4 K R e)}+4 \sum_{n=1}^{\infty} \frac{n \pi(-1)^{n} e^{-\lambda_{n}^{2} \tau-\frac{R e}{2}}}{\left(n^{2} \pi^{2}\right)^{2}+\left(8 i K^{2}\right)^{2}} \sin n \pi \varphi \times\left(8 K^{2} \cos 2 K^{2}+\right. \\
& \left.n^{2} \pi^{2} \sin 2 K^{2}\right) \tag{3.29}
\end{align*}
$$

Where,

$$
\begin{align*}
& S(4 K R e \varphi)=\operatorname{Sinh}(4 K R e \varphi) \cos (4 K R e) \\
& C(4 K R e \varphi)=\cosh (4 K R e \varphi) \sin (4 K R e) \\
& S(4 K R e)=\operatorname{Sinh}(4 K R e) \cos (4 K R e) \\
& S(4 K R e \varphi)=\cosh (4 K R e \varphi) \sin (4 K R e) \tag{3.30}
\end{align*}
$$

The second term of equations (3.28) and (3.29) represent the initial oscillations of the fluid velocity which decay experimentally with time and the frequency of the oscillation is $2 K^{2}$.

The non - dimensional shear stresses due to primary and secondary flows at the stationary plate $\varphi=0$ are given by

$$
\begin{equation*}
\left(\frac{\partial q}{\partial \varphi}\right)_{\varphi=0}=\frac{\sqrt{R e^{2}+8 i K^{2}}-R e}{\sinh \left(\sqrt{R e^{2}+8 i K^{2}}-R e\right)}+2 \sum_{n=1}^{\infty} \frac{n^{2} \pi^{2}(-1)^{n} e^{-\left(\frac{n^{2} \pi^{2}+8 i K^{2}}{4}\right) \tau}}{n^{2} \pi^{2}+8 i K^{2}} \tag{3.31}
\end{equation*}
$$

On separating the real and imaginary parts, we get the shear stresses components of due to the primary and the secondary flows respectively as

$$
\begin{gather*}
\tau_{x_{0}}=\frac{4 K R e[S(4 K R e)+C(4 K R e)]}{S^{2}(4 K R e)+C^{2}(4 K R e)}+2 \sum_{n=1}^{\infty} \frac{n \pi(-1)^{n} e^{-\lambda_{n}^{2} \tau-\frac{R e}{2}}}{\left(n^{2} \pi^{2}\right)^{2}+\left(8 i K^{2}\right)^{2}} \sin n \pi \varphi \times\left(n^{2} \pi^{2} \cos 2 K^{2}-8 K^{2} \sin 2 K^{2}\right) \tag{3.32}\\
\tau_{y_{0}}=\frac{4 K R e[S(4 K R e)+C(4 K R e)]}{S^{2}(4 K R e)+C^{2}(4 K R e)}+2 \sum_{n=1}^{\infty} \frac{n \pi(-1)^{n} e^{-\lambda_{n}^{2} \tau-\frac{R e}{2}}}{\left(n^{2} \pi^{2}\right)^{2}+\left(8 i K^{2}\right)^{2}} \sin n \pi \varphi \times\left(+8 K^{2} \sin 2 K^{2} n^{2} \pi^{2} \cos 2 K^{2}\right) \tag{3.33}
\end{gather*}
$$

Where
$S(4 K R e)$ and $C(4 K R e)$ are defined in (3.30).

IV. Discussion of Results

To study the effect of rotation with transpiration, the stream wise velocity profiles for primary and the secondary flows are plotted graphically against φ for different values of K^{2} and constant Value for $R e$ with small time ($\tau \ll 1$) and large time ($\tau \gg 1$). Taking $\tau=0.05$ and $\tau=10.0$

Figures 1 and 2 show the variation of primary and secondary velocities u_{1} and v_{1} respectively against φ for different values of rotation parameter K^{2} with $=0.05$. Here $R e$ is assumed a value so that the transpiration of the flow in the system is laminar. It is evident from figure 1 that the primary velocity u_{1} increases with decrease in K^{2}. Figure 2 shows that the secondary velocity v_{1} increases with increase in K^{2}. It is also observed from figure 2 that the velocity profiles are skewed near the moving plate while the maximum peak occurs near the stationary plate this is due to the transpiration from the system.

Figures 3 and 4 are plotted such that they show the variation of primary and secondary velocities u_{1} and v_{1} respectively against φ for different values of rotation
parameter K^{2} with $\tau=10.0$. it is observed from figure 3 that the primary velocity u_{1} increases with increase in K^{2}. It is seen from figure 4 that v_{1} behaves in an oscillatory manner near the moving plate due to the transpiration while it increases near the stationary plate with increase in K^{2}. It is stated that there exists a back flow which lies in the region $0.0 \ll \varphi \ll 1.0$. It comes to a conclusion that the start up flow will lead to an occurrence of a back flow for large time when the rate of rotation is high with constant transpiration.

Figure 1 : Primary velocity profile u_{1} against φ for diffent values of K^{2} with $\tau=0.05$

Figure 2: Secondary velocity profile v_{1} against φ for diffent values of K^{2} with $\tau=0.05$

Figure 3 : Primary velocity profile v_{1} against φ for diffent values of K^{2} with $\tau=10.0$

Figure 4 : Secondary velocity profile v_{1} against φ for diffent values of K^{2} with $\tau=10.0$

Table 1 : Shear Stresses at the plate $\varphi=0$ for small time $\tau=0.05$ and $\operatorname{Re}=10.00$

K^{2}	Shear Stress due to Primary Flow $\left(\tau_{x}\right)$	Shear Stress due to Secondary Flow $\left(\tau_{y}\right)$
2.0	0.064991990	0.015195550
4.0	0.057874710	0.027697940
6.0	0.047290120	0.035139770
8.0	0.035079770	0.035767860
10.0	0.023563680	0.028661410
12.0	0.015325670	0.013854810

Table 2: Shear Stresses at the plate $\varphi=0$ for Large time $\tau=10.0$ and $\operatorname{Re}=10.0$

K	Shear Stress due to Primary Flow $\left(\tau_{x_{0}}\right)$	Shear Stress due to Secondary Flow $\left(\tau_{y_{0}}\right)$
1.0	9.2544900	-3.1758700
1.5	6.7748620	-5.9575870
2.0	2.7346490	-7.0528330
2.5	0.79611640	-5.7605270
3.0	-2.5394700	-3.3887110
3.5	-2.7236030	-1.2372250
4.0	-2.0665060	0.15183220
4.5	-1.1879270	0.76656270
5.0	-0.4549140	0.83720510

Tables 1 and 2 presented the Shear stresses at the stationary plate $\varphi=0$ due to the primary and secondary flows for small time $\tau=0.05$ and large time $\tau=10.0$ and $R e=10.0$.

Table 1 shows that the shear stress due to primary flow (τ_{x}) decreases with increase in K^{2} for small time τ. On the other hand, it increases due to secondary flow $\left(\tau_{y}\right)$ with increase in K^{2}. It is noticed from Table 2 that the shear stress due primary flow $\left(\tau_{x_{0}}\right)$ decreases from $K=1.0$ to 2.5 and increases from $K=3.0$ to 5.0. Similarly the shear stress due to secondary flow $\left(\tau_{y_{0}}\right)$ decreases from $K=1.0$ to 2.0 and increases from $K=2.5$ to 5.0 .

V. Conclusion

An analysis and investigation has been made on unsteady Couette flow with transpiration in a rotating system for small time as well as large time τ. Laplace transform technique is applied for the solution of velocity distributions and shear stresses are analyzed for small time as well as large time τ.

Unsteady coquette flow with transpiration in a rotating system leads to a start up flow with occurrence of back flow for large time τ when the rate of rotation is high and the transpiration is constant. The significant of a study of the flow pattern is in such a way that the shear stresses due to primary and secondary flow for large time $\tau=10.0$ show layer of separation when a back flow occurs.

References Références Referencias

1. Al - odat M. Q. (2012), Transient MHD in Mixed Double Convection Along Vertical Surface in Porous Medium with Suction or Injection. J. Applied Math. And Comp. Sci. 156, 679-694.
2. Barik R. N, Dash G. C and Rath K. (2012), Effects of Heat and Mass Transfer on the Flow over a Stretching Surface with Heat Source. Journ. of Mathematics and Modeling, 2, 7.
3. Batchelor G. K. (1967), An introduction to fluid Dynamics, Cambridge press, Cambridge.
4. Berker R. (1979), Arch. Mech. Stosow. 31, 265
5. Dash S, Maji S, L, Guria M, Jana R. N.(2009), Unsteady Couette Flow in a Rotating System, Mathematical and Comp. Modeling, 50, 1211 - 1217.
6. Erdogan M. E. (1995), Unsteady Flow Induced by Rotation about Non - Coincident axes, Int. J. Non - Linear Mech. 30, 711.
7. Ersoy H. V. (2003), Unsteady Flow Produced by the Rotation of a Coincidence of Axes, Meccanica 38, 325.
8. Guria M, Jana R.N, Ghosh S.K. (2006), Unsteady Couette Flow in a Rotating System, Int. J. Non - Linear Mech. 41, 838 - 843.
9. Greenspan H. P. (1990), The theory of Rotating Fluids Cambridge University press, Cambridge.
10. Jana R.N, Datta N. (1977), Couette Flow and Heat Transfer in a Rotating System, Acta Mech, 26, 301.
11. Jana R. N, Datta N, Mazumder B.S., 1977), MHD Couette Flow and Heat Transfer in a Rotating Systems, J. Phys. Soc. Japan, 42, 1034 - 1039.
12. Khaled K. Jaber (1984), Transient MHD Mixed Double Diffusive Convection along a Vertical Plate Embedded in a Non - Darcy Porous Medium with Suction or Injection, J. Math. Stat. 8, (1), $15-23$.
13. Lai C. Y, Rajagopal K. R. (1984), Non - asymmetric Flow between Two Parallel Rotating Disks., J. Fluid Mech. 146, 203.
14. Lai C. Y, Rajagopal K. R. (1985), Viscous Flow above a Single Rotating Disk, J. Fluid Mech. 157, 471.
15. Mazumber B. S. (1991),An Exact Solution of an Oscillatory Couette Flow in a Rotating Systems, Trans. ASME J. Appl. Mech. 58, 1104 - 1107.
16. Parter S. V, Rajagopal K.R. (1984), Flow of an incompressible Viscous Fluid between Two Parallel Disks, Arch. Ration. Mech. Anal. 86, 305
17. Rajagopal K. R. (1992), Viscouselastic Fluid between Two Rotating Disks, Theor. Comput. Fluid Dyn. 3, (4), 185.
18. Seth G. S, Hussain S. M and Singh J. K. (2011), MHD Couette Flow of Class II in a Rotating System, J. Appl. Math. Bioinformatics, 1, (1), 31 - 35.
19. Seth. G. S, Jana R. N, Maiti M. K. (1982), Unsteady Couette Flow between in a Rotating Systems, Int. J. Eng. Sci. 20, 989.
20. Singh K. D, Gork G, Rajhans. (2005), Periodic Of Oscillatory Couette Flow through a Porous Medium in a Rotating Systems, Indian J. Pure Appl. Math. 36, (3), 151 159.
21. Vidyanidhi V, Nigan S.D. (1967), Secondary Flow in a Rotating Channel J. Math. Phys. Sci. 1, 85.

Global Journal of Science Frontier Research MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 5 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

A Priori Estimate and Fourier's Method for Nonlocal Boundary Conditions of Mixed Problem for Singular Parabolic Equations in Sobolev Function Spaces

By Djibibe Moussa Zakari \& Tcharie Kokou

University of Lomé, Togo
Abstract - The aims of this paper is to prove existence and uniqueness of following integral boundary conditions mixed problem for parabolic equation:

The proofs are based on a priori estimates established in Sobolev function spaces and Fourier's method.

Keywords : fourier's method, a priori estimate, nonlocal conditions, mixed problem, parabolic, sobolev espace.

GJSFR-F Classification : 35K20, 35B30, 35D05, 46E40, 46E99.

Strictly as per the compliance and regulations of :

epaper

A Priori Estimate and Fourier's Method for Nonlocal Boundary Conditions of Mixed Problem for Singular Parabolic Equations in Sobolev Function Spaces

Djibibe Moussa Zakari ${ }^{\alpha}$ \& Tcharie Kokou ${ }^{\sigma}$

Abstract - The aims of this paper is to prove existence and uniqueness of following integral boundary conditions mixed problem for parabolic equation:

$$
\left\{\begin{array}{l}
\frac{\partial \theta}{\partial t}-\frac{a(t)}{x^{2}} \frac{\partial}{\partial x}\left(x^{2} \frac{\partial \theta}{\partial x}\right)+b(t) \theta=\vartheta(x, t) \\
\theta(x, 0)=\lambda(x), 0 \leq x \leq \ell \\
\int_{0}^{\ell} x \theta(x, t) d x=E(t), 0 \leq t \leq T \tag{0.1}\\
\int_{0}^{\ell} x^{2} \theta(x, t) d x=G(t), 0 \leq t \leq \ell
\end{array}\right.
$$

The proofs are based on a priori estimates established in Sobolev function spaces and Fourier's method.
Keywords : fourier's method, a priori estimate, nonlocal conditions, mixed problem, parabolic, sobolev espace.

I. InTRODUCTION

This paper deals with existence and uniqueness of a class of parabolic equation with time and space-variable characteristics, with a nonlocal boundary condition. The precise statement of the problem is a follows: let $\ell>0, T>0$, and $\Omega=\left\{(x, t) \in \mathbb{R}^{2}\right.$: $0<\mathrm{x}<\ell, 0<\mathrm{t}<\mathrm{T}\}$. We shall determine a solution θ, in Ω of the differential equation

$$
\begin{equation*}
\frac{\partial \theta}{\partial t}-\frac{a(t)}{x^{2}} \frac{\partial}{\partial x}\left(x^{2} \frac{\partial \theta}{\partial x}\right)+b(t) \theta=\vartheta(x, t), \quad(x, t) \in \Omega . \tag{1.1}
\end{equation*}
$$

[^2]satisfying the initial condition
\[

$$
\begin{equation*}
\theta(x, 0)=\lambda(x), 0 \leq x \leq \ell \tag{1.2}
\end{equation*}
$$

\]

and the integral conditions

$$
\begin{align*}
& \int_{0}^{\ell} x \theta(x, t) d x=E(t), 0 \leq t \leq T \tag{1.3}\\
& \int_{0}^{\ell} x^{2} \theta(x, t) d x=G(t), 0 \leq t \leq T \tag{1.4}
\end{align*}
$$

where $\lambda, \mathrm{E}, \mathrm{G}, \mathrm{a}, \mathrm{b}$ and ϑ are known functions

Assumption 1.1

For all $(\mathrm{x}, \mathrm{t}) \in \bar{\Omega}$, we assume that

$$
\begin{aligned}
& a_{0} \leq a(t) \leq a_{1}, \quad a_{2} \leq \frac{d a(t)}{d t} \leq a_{3} \\
& b_{0} \leq b(t) \leq b_{1}, \quad b_{2} \leq \frac{d b(t)}{d t} \leq b_{3} \\
& \frac{b(t)}{a(t)}=s
\end{aligned}
$$

where $a_{0}, a_{1}, a_{2}, a_{3}, b_{0}, b_{1}, b_{2}$ are positive constants.
The data satisfies the following compatibility conditions: For consistency, we have

$$
\int_{0}^{\ell} x \lambda(x)=\mathrm{E}(0), \quad \text { and } \int_{0}^{\ell} x^{2} \lambda(x)=\mathrm{G}(0),
$$

The importance of problems with integral conditions has been pointed out by Samarskii[11]. Mathematical modelling by evolution problems with a nonlocal constraint of the form $\frac{1}{1-\alpha} \int_{\alpha}^{1} u(x, t) d x=\chi(t)$ is encountered in heat transmission theory, thermoelasticity, chemical engineering, underground water flow, and plasma physic.

Many methods were used to investigate the existence and uniqueness of the solution of mixed problems which combine classical and integral conditions. J. R. Cannon [7] used the potentiel method, combining a Dirichlet and an intégral condition for a parabolic equation. L. A. Mouravey and V. Philinovoski [10] used the maximum principle, combining a Neumann and an integral condition for heat equation. Ionkin [8] and L. Bougoffa[4] used the Fourier method for same purpose.
Recently, mixed problems with integral conditions for generalization of equation (1.1) have been treated using the energy-integral method. See N. E. Benouar and N. I. Yurchuk [1], N. E. Benouar and A. Bouziani [2],[3], A. Bouziani[5], [6], M. Z. Duibibe el al. [12],[13], N. I. Yurchuk[14],[15], M. Mesloub, A. Bouziani and N. Kechkar[9]. Differently to these works, in the present paper we combine a priori estimate and Fourier's method to prove existence and uniqueness solution of the problem (1.1)- (1.4).
The result of the paper are new. It is interesting to note that the application of Fourier method to this nonlocal problem is made possible thanks, essentially, to the use of a Sobolev function space.

To this, we reduce the inhomogeneous boundary conditions (1.3) and (1.4) to homogeneous conditions, by introducing a new unknown function z by $z(x, t)=\theta(x, t)-\eta(x, t)$, where

$$
\begin{align*}
\eta(x, t)= & \frac{10 l^{4} x^{2}-12\left(l^{5}+20\right) x+3 l\left(l^{5}+60\right)}{10 \ell^{3}} E(t) \tag{1.5}\\
& +\frac{10 \ell^{5} x^{2}-12\left(\ell^{6}-30\right) x+3 \ell\left(l^{6}-80\right)}{10 \ell^{4}} G(t) .
\end{align*}
$$

Then, problem (1.1), (1.2), (1.3) and (1.4) is transformed into the following homogeneous boundary value problem

$$
\begin{gather*}
\frac{\partial z}{\partial t}-\frac{a(t)}{x^{2}} \frac{\partial}{\partial x}\left(x^{2} \frac{\partial z}{\partial x}\right)+b(t) z=\xi(x, t), \quad(x, t) \in \Omega \tag{1.6}\\
z(x, 0)=\Lambda(x), 0 \leq x \leq \ell \tag{1.7}\\
\int_{0}^{\ell} x z(x, t) d x=0,0 \leq t \leq T \tag{1.8}\\
\int_{0}^{\ell} x^{2} z(x, t) d x=0,0 \leq t \leq T \tag{1.9}
\end{gather*}
$$

where

$$
\begin{align*}
\xi(x, t)= & \vartheta(x, t)-\frac{10 l^{4} x^{2}-12\left(l^{5}+20\right) x+3 l\left(l^{5}+60\right)}{10 \ell^{3}} E^{\prime}(t) \\
& -\frac{10 \ell^{5} x^{2}-12\left(\ell^{6}-30\right) x+3 \ell\left(l^{6}-80\right)}{10 \ell^{4}} G^{\prime}(t) \\
& +a(t)\left(6 \ell-\frac{6\left(\ell^{5}+20\right)}{5 \ell^{3} x^{2}}+\right) E(t)+a(t)\left(4 \ell-\frac{6\left(\ell^{6}-30\right)}{5 \ell^{4} x^{2}}\right) G(t) \\
& -\frac{10 l^{4} x^{2}-12\left(l^{5}+20\right) x+3 l\left(l^{5}+60\right)}{10 \ell^{3}} b(t) E(t) \\
& -\frac{10 \ell^{5} x^{2}-12\left(\ell^{6}-30\right) x+3 \ell\left(l^{6}-80\right)}{10 \ell^{4}} b(t) G(t) \tag{1.10}\\
\Lambda(x)= & \lambda(x)-\frac{10 l^{4} x^{2}-12\left(l^{5}+20\right) x+3 l\left(l^{5}+60\right)}{10 \ell^{3}} E(0) \\
& +\frac{10 \ell^{5} x^{2}-12\left(\ell^{6}-30\right) x+3 \ell\left(l^{6}-80\right)}{10 \ell^{4}} G(0) \tag{1.11}
\end{align*}
$$

Here, taking account assumption 1.1, we assume that the function Λ satisfy conditions of (1.8) and (1.9), that is

$$
\begin{equation*}
\int_{0}^{l} x \Lambda(x) d x=\int_{0}^{l} x^{2} \Lambda(x) d x=0 . \tag{1.12}
\end{equation*}
$$

Instead of searching for the function θ, we search for the function z. So the solution of problem (1.1), (1.2), (1.3) and (1.4) will be given by $\theta(x, t)=z(x, t)+\eta(x, t)$.

The general difficult which arises to us is the presence of integral conditions which complicates the application of standard methods. It may, however, be worth while if this type of problem can be transformed into another equivalent problem which involves no integral conditions. For this, we convert problem (1.6), (1.7), (1.8) and (1.9) to the following classical problem.
Theorem 1.1
The problem (1.6), (1.7), (1.8) and (1.9) is equivalent to the following classical problem :

Proof

Firstly, multiplying (1.6) with x, and integrating the obtained result with respect x over $(0, \ell)$, we obtain

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{0}^{\ell} x z \mathrm{~d} x-\mathrm{a}(\mathrm{t}) \int_{0}^{\ell} \frac{1}{x} \frac{\partial}{\partial x}\left(x^{2} \frac{\partial z}{\partial x}\right) \mathrm{d} x+\mathrm{b} \int_{0}^{\ell} x z \mathrm{~d} x=\int_{0}^{\ell} x \xi(x, \mathrm{t}) \mathrm{d} x . \tag{1.17}
\end{equation*}
$$

Integrating by parts the integrals on the left-hand side of (1.17), and taking into account condition (1.8), we get

$$
\begin{equation*}
\ell \frac{\partial z}{\partial x}(\ell, t)+z(\ell, t)-z(0, t)=-\frac{1}{a(t)} \int_{0}^{\ell} x \xi(x, t) d x \tag{1.18}
\end{equation*}
$$

Secondly, multiplying (1.6) with x^{2} and integrating the result obtained over $(0, \ell)$, he have

$$
\begin{equation*}
-a(t) \int_{0}^{\ell} \frac{\partial}{\partial x}\left(x^{2} \frac{\partial z}{\partial x}\right) d x=\int_{0}^{\ell} x^{2} \xi(x, t) d x \tag{1.19}
\end{equation*}
$$

Integrating by parts the integrals on the left-hand side of (1.19).

$$
\begin{equation*}
\frac{\partial z}{\partial x}(\ell, t)=-\frac{1}{\ell^{2} a(t)} \int_{0}^{\ell} x^{2} \xi(x, t) d x \tag{1.20}
\end{equation*}
$$

Combining the equalities (1.19) and (1.20), we have

$$
\begin{equation*}
z(\ell, t)-z(0, t)=\frac{1}{\ell a(t)} \int_{0}^{\ell}\left(x^{2}-\ell x\right) \xi(x, t) d x \tag{1.21}
\end{equation*}
$$

Finaly, it remains to prove that $\int_{0}^{\ell} x z(x, t) d x=0$ and $\int_{0}^{\ell} x^{2} z(x, t) d x=0$.

By using (1.6) and taking into account (1.18) and (1.20) we get

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{dt}} \int_{0}^{\ell} x z(x, \mathrm{t}) \mathrm{d} x+\mathrm{b} \int_{0}^{\ell} x z(x, \mathrm{t}) \mathrm{d} x=0,0 \leq \mathrm{t} \leq \mathrm{T} \\
& \frac{\mathrm{~d}}{\mathrm{dt}} \int_{0}^{\ell} x^{2} z(x, \mathrm{t}) \mathrm{d} x+\mathrm{b} \int_{0}^{\ell} x^{2} z(x, \mathrm{t}) \mathrm{d} x=0,0 \leq \mathrm{t} \leq \mathrm{T}
\end{aligned}
$$

By virtue of the compatibility of the conditions, it follows that

$$
\int_{0}^{\ell} x z(x, t) d x=\int_{0}^{\ell} x^{2} z(x, t) d x=0
$$

This complete the proof of Theorem (1.1).
By introducing the new unknown function

$$
u(x, t)=z(x, t)-\alpha(x, t) \int_{0}^{\ell} x^{2} \xi(x, t) d x-\beta(x, t) \int_{0}^{\ell} x \xi(x, t) d x
$$

where

$$
\alpha(x, t)=\frac{-3 x^{3}+3 \ell x^{2}+\ell^{5} a(t)}{\ell^{4} a(t)}
$$

and

$$
\beta(x, t)=\frac{2 x^{3}-3 \ell x^{2}-\ell^{3} a(t)}{\ell^{3} a(t)}
$$

the problem $(1.13),(1.14),(1.15)$ and (1.16) is transformed into the following local boundary conditions problem,

$$
\begin{align*}
& \frac{\partial u}{\partial t}-\frac{a(t)}{x^{2}} \frac{\partial}{\partial x}\left(x^{2} \frac{\partial u}{\partial x}\right)+b u=f(x, t), \quad(x, t) \in \Omega \tag{1.22}\\
& u(x, 0)=\varphi(x), 0 \leq x \leq \ell \tag{1.23}\\
& z(\ell, t)=u(0, t), 0 \leq t \leq T \tag{1.24}\\
& \frac{\partial u}{\partial x}(\ell, t)=0,0 \leq t \leq T \tag{1.25}
\end{align*}
$$

where

$$
\begin{aligned}
f(x, t) & =\xi(x, t)+\frac{3 x^{3}-3 \ell x^{2}-a^{\prime}(t) \ell^{5}}{\ell^{4} a^{\prime}(t)} \int_{0}^{\ell} x^{2} \frac{\partial \xi}{\partial t}(x, t) d x-\frac{18(2 x-\ell)}{\ell^{4}} \int_{0}^{\ell} x^{2} \xi(x, t) d x \\
& +\frac{\left(3 x^{3}-3 \ell x^{2}-a(t) \ell^{5}\right) b(t)}{\ell^{4} a(t)} \int_{0}^{\ell} x^{2} \xi(x, t) d x+\frac{6(4 x-3 \ell)}{\ell^{3}} \int_{0}^{\ell} x \xi(x, t) d x
\end{aligned}
$$

$$
\begin{gathered}
-\frac{\left(2 x^{3}-3 \ell x^{2}-\ell^{3} a(t)\right) b(t)}{\ell^{3} a(t)} \int_{0}^{\ell} x \xi(x, t) d x-\frac{2 x^{3}-3 \ell x^{2}-\ell^{3} a^{\prime}(t)}{\ell^{3} a^{\prime}(t)} \int_{0}^{\ell} x \frac{\partial \xi}{\partial t}(x, t) d x, \\
\varphi(x)= \\
=\Lambda(x)+\frac{3 x^{3}-3 \ell x^{2}-a(0) \ell^{5}}{\ell^{4} a(0)} \int_{0}^{\ell} x^{2} \xi(x, 0) d x-\frac{2 x^{3}-3 \ell x^{2}-\ell^{3} a(0)}{\ell^{3} a(0)} \int_{0}^{\ell} x \xi(x, 0) d x .
\end{gathered}
$$

II. Main Results

a) An Energy Inequality

The problem (1.17), (1.18), (1.19) and (1.20) can be considered as solving the following operator equation :

$$
\mathrm{Lu}=(\varphi, f)=\mathcal{F}
$$

where L is an operator defined on E into F. E is the banach space of functions $u \in L^{2}(\Omega)$, satisfying conditions (1.19) and (1.20) with the norm

$$
\|u\|_{E}^{2}=\int_{\Omega_{\tau}}\left(x^{2} u^{2}+\left|x \frac{\partial u}{\partial x}\right|^{2}+\left|x \frac{\partial u}{\partial t}\right|^{2}\right) d x d t+\sup _{0 \leq t \leq T} \int_{0}^{l}\left(x^{2} u^{2}+\left|x \frac{\partial u}{\partial x}\right|^{2}\right) d x
$$

and F is the Hilbert space $\mathrm{L}^{2}(\Omega) \times \mathrm{L}^{2}(0, \ell)$ which consists of elements $\mathcal{F}=(\varphi, \mathrm{f})$ with the norm

$$
\|\mathcal{F}\|_{F}^{2}=\int_{0}^{\ell}\left(\varphi^{2}(x)+\left(\frac{d \varphi}{d x}\right)^{2}\right) d x+\int_{\Omega_{\tau}} f^{2}(x, t) d x d t .
$$

Let $D(L)$ be the set of all function \mathfrak{u}, for which $\mathfrak{u}, x \mathfrak{u}, x^{2} \frac{\partial u}{\partial x} \in L^{2}(0, \ell)$ and $\mathfrak{u}, x \frac{\partial u}{\partial x}, x \frac{\partial u}{\partial t}$, $x^{2} \frac{\partial u}{\partial x}, \frac{\partial}{\partial x}\left(x^{2} \frac{\partial u}{\partial x}\right) \in L^{2}(\Omega)$.

Theorem 2.1

There exists a positive constant \mathbf{c}, such that for each function $\mathfrak{u} \in \mathrm{D}(\mathrm{L})$ we have

$$
\begin{equation*}
\|\mathfrak{u}\|_{\mathrm{E}} \leq \mathrm{c}\|\mathrm{Lu}\|_{\mathrm{F}} . \tag{2.1}
\end{equation*}
$$

Proof
We consider the scalar product in $\mathrm{L}^{2}\left(\Omega_{\tau}\right)$ with $0 \leq \mathrm{t} \leq \tau$ of equation (1.22) and $x \mathfrak{u}(x, \mathrm{t})+$ $x^{2} \frac{\partial u}{\partial t}$, yields

$$
\begin{align*}
& \int_{\Omega_{\tau}} x u \frac{\partial u}{\partial t} d x d t+\int_{\Omega} x^{2}\left(\frac{\partial u}{\partial t}\right)^{2} d x d t-\int_{\Omega_{\tau}} \frac{a(t) u}{x} \frac{\partial}{\partial x}\left(x^{2} \frac{\partial u}{\partial x}\right) d x d t \\
- & \int_{\Omega_{\tau}} a(t) \frac{\partial}{\partial x}\left(x^{2} \frac{\partial u}{\partial x}\right) \frac{\partial u}{\partial t} d x d t+\int_{\Omega_{\tau}} b(t) x u^{2} d x d t+\int_{\Omega_{\tau}} b(t) x^{2} u \frac{\partial u}{\partial t} d x d t \\
= & \int_{\Omega_{\tau}} x u f(x, t) d x d t+\int_{\Omega_{\tau}} x^{2} f(x, t) \frac{\partial u}{\partial t} d x d t . \tag{2.2}
\end{align*}
$$

Integrating by parts certains integrals of left-hand side of (2.2), we get

$$
\begin{align*}
& \int_{\Omega_{\tau}} x u \frac{\partial u}{\partial t} d x d t=\int_{0}^{\ell} x u^{2}(x, \tau) d x-\frac{1}{2} \int_{0}^{\ell} x \varphi^{2}(x) d x \tag{2.3}\\
& -\int_{\Omega_{\tau}} \frac{a(t) u}{x} \frac{\partial}{\partial x}\left(x^{2} \frac{\partial u}{\partial x}\right) d x d t=\int_{\Omega_{\tau}} a(t)\left(x \frac{\partial u}{\partial x}\right)^{2} d x d t \tag{2.4}\\
& \int_{\Omega_{\tau}} b(t) x^{2} u \frac{\partial u}{\partial t} d x d t=\frac{1}{2} \int_{0}^{\ell} b(0) x^{2} u(x, \tau) d x-\frac{1}{2} \int_{0}^{\ell} b(0) x^{2} \varphi^{2}(x) d x \\
& -\frac{1}{2} \int_{\Omega_{\tau}} b^{\prime}(t) x^{2} u^{2} d x d t
\end{aligned}, \quad \begin{aligned}
& -\int_{\Omega_{\tau}} a(t) \frac{\partial}{\partial x}\left(x^{2} \frac{\partial u}{\partial x}\right) \frac{\partial u}{\partial t} d x d t=\frac{1}{2} \int_{0}^{\ell} a(t)\left(x \frac{\partial u}{\partial x}\right)^{2} d x-\frac{1}{2} \int_{0}^{\ell} a^{\prime}(t)\left(x \frac{d \varphi}{d x}\right)^{2} d x . \tag{2.5}
\end{align*}
$$

Substituting the equalities (2.3), (2.4), (2.5) and (2.6) into (2.2), it follows that

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega_{\tau}}\left(2 b(t) x-b^{\prime}(t) x^{2}\right) u^{2} d x d t+\int_{\Omega_{\tau}} a(t)\left(x \frac{\partial u}{\partial x}\right)^{2} d x d t+\int_{\Omega}\left(x \frac{\partial u}{\partial t}\right)^{2} d x d t \\
& +\int_{0}^{\ell} x u^{2}(x, \tau) d x+\frac{b(0)}{2} \int_{0}^{\ell} x^{2} u(x, \tau) d x+\frac{1}{2} \int_{0}^{\ell} a(t)\left(x \frac{\partial u}{\partial x}\right)^{2} d x=\int_{\Omega_{\tau}} x u f(x, t) d x d t \\
& +\int_{\Omega_{\tau}} x^{2} f(x, t) \frac{\partial u}{\partial t} d x d t+\frac{1}{2} \int_{0}^{\ell} x \varphi^{2}(x) d x+\frac{b(0)}{2} \int_{0}^{\ell} x^{2} \varphi^{2}(x) d x+\frac{1}{2} \int_{0}^{\ell} a^{\prime}(t)\left(x \frac{d \varphi}{d x}\right)^{2} d x . \tag{2.7}
\end{align*}
$$

Estimating the first and the two first integrals of the right-hand side of (2.7), by applying elementary inequalities, we get

$$
\begin{align*}
& \int_{\Omega_{\tau}} x u f(x, t) d x d t \leq \frac{\varepsilon_{1}}{2} \int_{\Omega_{\tau}} x u^{2} d x d t+\frac{1}{2 \varepsilon_{1}} \int_{\Omega_{\tau}} x f(x, t) d x d t \tag{2.8}\\
& \int_{\Omega_{\tau}} x^{2} f(x, t) \frac{\partial u}{\partial t} d x d t \leq \frac{1}{2} \int_{\Omega_{\tau}}\left(x \frac{\partial u}{\partial t}\right)^{2} d x d t+\frac{1}{2} \int_{\Omega_{\tau}} x^{2} f^{2}(x, t) d x d t . \tag{2.9}
\end{align*}
$$

Therefore, by formulas (2.7), (2.8) and (2.9), we obtain

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega_{\tau}}\left(2 b(t)-\varepsilon_{1}-b^{\prime}(t) x\right) x u^{2} d x d t+\frac{1}{2} \int_{\Omega}\left(x \frac{\partial u}{\partial t}\right)^{2} d x d t+\int_{0}^{\ell} x u^{2}(x, \tau) d x \\
& +\frac{b(0)}{2} \int_{0}^{\ell} x^{2} u(x, \tau) d x+\frac{1}{2} \int_{0}^{\ell} a(t)\left(x \frac{\partial u}{\partial x}\right)^{2} d x \leq \frac{1+\ell^{2}}{2 \varepsilon_{1}} \int_{\Omega_{\tau}} f^{2}(x, t) d x d t \\
& +\frac{1}{2} \int_{0}^{\ell} x \varphi^{2}(x) d x+\frac{b(0)}{2} \int_{0}^{\ell} x^{2} \varphi^{2}(x) d x+\frac{1}{2} \int_{0}^{\ell} a^{\prime}(t)\left(x \frac{d \varphi}{d x}\right)^{2} d x . \tag{2.10}
\end{align*}
$$

Hence, if $\varepsilon_{1}>0$ satisfies $\varepsilon_{1} \leq \min _{\Omega_{\tau}}\left\{2 \mathrm{~b}(\mathrm{t})-\mathrm{x} \frac{\mathrm{db}(\mathrm{t})}{\mathrm{dt}}\right\}$, and choosing $\varepsilon_{2}=2 \mathrm{~b}_{0}-\varepsilon_{1}-\ell \mathrm{b}_{3}$, then inequality (2.10) implies

$$
\begin{align*}
& \frac{\varepsilon_{2}}{2} \int_{\Omega_{\tau}} x u^{2} d x d t+a_{0} \int_{\Omega_{\tau}}\left(x \frac{\partial u}{\partial x}\right)^{2} d x d t+\frac{1}{2} \int_{\Omega}\left(x \frac{\partial u}{\partial t}\right)^{2} d x d t \\
& +\frac{2+b_{0} \ell}{2 \ell} \int_{0}^{\ell} x^{2} u^{2}(x, \tau) d x+\frac{a_{0}}{2} \int_{0}^{\ell}\left(x \frac{\partial u}{\partial x}\right)^{2} d x \leq \frac{1+\ell^{2}}{2 \varepsilon_{1}} \int_{\Omega_{\tau}} f^{2}(x, t) d x d t \\
& +\frac{1+b_{1} \ell}{2} \int_{0}^{\ell} x \varphi^{2}(x) d x+\frac{a_{3}}{2} \int_{0}^{\ell}\left(x \frac{d \varphi}{d x}\right)^{2} d x . \tag{2.11}
\end{align*}
$$

Therefore, by formulas (2.11) and of assumption (1.1), we obtain

$$
\begin{align*}
& \int_{\Omega_{\tau}} x u^{2} d x d t+\int_{\Omega_{\tau}}\left(x \frac{\partial u}{\partial x}\right)^{2} d x d t+\int_{\Omega}\left(x \frac{\partial u}{\partial t}\right)^{2} d x d t+\int_{0}^{\ell} x^{2} u^{2}(x, \tau) d x+ \\
& +\int_{0}^{\ell}\left(x \frac{\partial u}{\partial x}\right)^{2} d x \leq \frac{A}{B}\left[\int_{\Omega_{\tau}} f^{2}(x, t) d x d t+\int_{0}^{\ell} x \varphi^{2}(x) d x+\int_{0}^{\ell}\left(x \frac{d \varphi}{d x}\right)^{2} d x\right] \tag{2.12}
\end{align*}
$$

where

$$
A=\min \left(\frac{2+b_{0} \ell}{2 \ell}, \frac{a_{0}}{2}, \frac{1}{2}, \frac{\varepsilon_{2}}{2}\right) \quad B=\max \left(\frac{1+\ell^{2}}{2 \varepsilon_{1}}, \frac{1+b_{1} \ell}{2}, \frac{a_{3}}{2}\right)
$$

The right-hand side of (2.12) is independent of τ, replacing the left-hand side by the upper with respect to τ. Thus inequality (2.1) holds, where

$$
\mathrm{c}=\sqrt{\frac{\min \left(\frac{2+\mathrm{b}_{0} \ell}{2 \ell}, \frac{\mathrm{a}_{0}}{2}, \frac{1}{2}, \frac{\varepsilon_{2}}{2}\right)}{\max \left(\frac{1+\ell^{2}}{2 \varepsilon_{1}}, \frac{1+\mathrm{b}_{1} \ell}{2}, \frac{\mathrm{a}_{3}}{2}\right)}}
$$

This completes the proof of Theorem (1.1).

b) Solvability of the Problem

Now we shall start to prove the existence of the boundary value problem (1.13), (1.14), (1.15) and (1.16). We use the Fourier's method.

Consider the fouction $u_{n}(x, t)=v_{n}(x) w_{n}(t)$, where $v_{n}(t)$ is a eigenfunction of the following boundary value problem

$$
\left\{\begin{array}{l}
-\frac{1}{x^{2}} \frac{d}{d x}\left(x^{2} \frac{d v_{n}(x)}{d x}\right)+s v_{n}(x)=\alpha_{n} v_{n}(x) \\
v_{n}(0)=v_{n}(\ell) \\
\frac{d v_{n}(\ell)}{d x}=0
\end{array}\right.
$$

where α_{n} is the eigenvalue corresponding to the eigenfunction $v_{n}(x)$, and $w_{n}(t)$ satisfying the initial problem

$$
\left\{\begin{array}{l}
\frac{d w_{n}(t)}{a(t) d t}-\alpha_{n} w_{n}(t)=f_{n}(t) \\
w_{n}(0)=\varphi_{n}
\end{array}\right.
$$

Here

$$
\begin{aligned}
\varphi(x) & =\sum_{n=1}^{+\infty} \varphi_{n} v_{n}(x) \\
\varphi^{\prime}(x) & =\sum_{n=0}^{+\infty} \rho_{n} v_{n}(x) \\
f(x, t) & =\sum_{n=1}^{+\infty} f_{n}(t) v_{n}(x)
\end{aligned}
$$

Theorem 2.2
Let assumption 1.1 be fulfilled. Then for any $\mathrm{f} \in \mathrm{L}^{2}(\Omega)$ and $\varphi \in \mathrm{L}_{2}(0, \ell)$ which $\frac{\mathrm{d} \varphi}{\mathrm{d} x} \in$ $\mathrm{L}^{2}(0, \ell)$, problem $(1.13),(1.14),(1.15)$ and (1.16) admits a unique solution and its represented by series (2.13) which converge in E .

Proof

Consider the partial $\operatorname{sum} S_{n}(x, t)=\sum_{k=1}^{n} v_{k}(x) w_{k}(t)$ of the series (2.13).
By applaying the Theorem 1.1, then it follows that

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} v_{k}(x) w_{k}(t)\right\| \leq C \sum_{n=1}^{+\infty}\left(\int_{0}^{T} f_{n}^{2}(t) d t+\varphi_{n}^{2}+\rho_{n}^{2}\right) \tag{2.14}
\end{equation*}
$$

The series $\sum_{n=1}^{+\infty} \int_{0}^{T} f_{n}^{2}(t) d t=\int_{\Omega} f^{2}(x, t) d x d t, \sum_{n=1}^{+\infty} \varphi_{n}^{2}$ and $\sum_{n=1}^{+\infty} \rho_{n}^{2}$ converge.
Therefore, from (2.14) it follows that the series (2.13) converge in E.
This completes the proof of the Theorem 2.2.

References Références Referencias

[1] N. E. Benouar and N. I. Yurchuk; Mixed problem with an integral condition for parabolic equation with the Bessel operator, Differentsial'nye Uravneniya, 27 (1991), p. 2094-2098.
[2] N. E Benouar and A.Bouziani; Problème mixte avec conditions intégrales pour une classe d'équation paraboli, C.R.A.S, Paris, 321, Série I, (1995), p. 1177-1182.
[3] N. E. Benouar and A.Bouziani; Mixed problem with integral conditions for third order parabolic equation, Kobe J. Math., 15 (1998), p. 47-58.
[4] L. Bougoffa ; Parabolic equations with nonlocal conditions, Applied Mathematical Science, Vol. 1, 2007, no. 21, p.1041-1048.
[5] A. Bouziani ; On the solvability of a class of singular parabolic equations with nonlocal boundary conditions in nonclassical function spaces. IJMMS., 30:7 (2002), p. 435-447.
[6] A. BouziAni ; Inital boundary value problem with a nonlocal condition for a viscosity equation, $I J M M S$, 30:6 (2002), p.327-338.
[7] J. R. Cannon ; The solution of heat equation to the specification of energy, Quart. Appl. Math. 21(1963), No. 2, p.155-160.
[8] N. I. Ionkin ; Solution of boundary value problem in heat conduction theory with non local boundary condition, (Russian) Differentsial'nye Uravneniya, 13(1977), p.294304.
[9] M. Mesloub, A. Bouziani and N. Kechkar ; A strong solution of a problem with integral conditions, Georgian Mathematical, 9(1) (2002), p.149-159.
[10] L. A. Mouravey and V. Philipovski ; Sur un problème avec une condition aux limites non locale pour une équation parabolique, (Russian) Mat. Sb. 182(1991), No. 10, p. 1479.
[11] A. A. Samarkii; Some problems in differential equtions theory, Differents. Uravn., 16:11 (1980), p. $1925-1935$.
[12] Moussa Zakari Disbibe, K. Kokou Tcharie and N. Iossifovich Yurchuk ; An energy inequality and its applications of Nonlocal boundary conditions of mixed problem for singular parabolic equations in nonclassical function spaces, International Scholarly Research Network ISRN Applied Mathematics Volume 2012, Article ID 138308, 9 pages doi:10.5402/2012/138308.
[13] M. Z. Djibibe, K. Tcharie and N. I. Yurchuk ; Continuous dependence of solutions to mixed boundary value problems for a parabolic equation, Electronic Journal of Differential Equations, Vol. 2008(2008), No. 17, p. 1-10.
[14] N. I. Yurchuk; Mixed problem with an integral condition for certain parabolic equations, Differents. Uravn., 22:12, (1986), p. 2117-2126.
[15] N. I. Yurchuk ; Solvability of boundary value problems for certain operatordifferential equation, Differentsial'nye Uravney, 13, (1977), No. 4, p. 626-636.

Global Journal of Science Frontier Research MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 5 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Generalized and Perturbed Lamé System

By B. Merouani, A. Boulaouad \& M. Me.ah

University F. ABBAS de Sétif, Algeria
Abstract - In this work, we study the existence, the uniqueness and the regularity of the solution for some boundary value problems gouverned by perturbed and generalized dynamical Lamé system operator.

Keywords : lamé system (elasticity), perturbed, existence, unique-ness, regularity.
GJSFR-F Classification : MSC 2010: 35B40, 35B65, 35C20

Strictly as per the compliance and regulations of :

© 2013. B. Merouani, A. Boulaouad \& M. Me.ah. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

l

Generalized and Perturbed Lamé System

B. Merouani ${ }^{\alpha}$, A. Boulaouad ${ }^{\sigma}$ \& M. Me.ah ${ }^{\rho}$

Abstract - In this work, we study the existence, the uniqueness and the regularity of the solution for some boundary value problems gouverned by perturbed and generalized dynamical Lamé system operator.
Keywords : lamé system (elasticity), perturbed, existence, unique-ness, regularity.

I. Introduction

1. Notations.- Ω is a bounded and connected open set of $\mathbb{R}^{n}(n=$ 2,3) with boundary $\Gamma=\bar{\Gamma}_{1} \cup \bar{\Gamma}_{2}$, a lipschitzian manifold of dimension $n-1$, were $\Gamma_{i} \subset \Gamma, i=1,2$, with $\operatorname{mes}\left(\Gamma_{1}\right)>0$ and $\Gamma_{1} \cap \Gamma_{2}=\phi$.
2. Position of the Problem.- We consider firstly the mathematical model of the perturbed Lamé system :

$$
-L_{p} u+F(u)
$$

were $F(u)$ is the perturbation and

$$
L_{p} u=\mu \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{i}}\right)+(\lambda+\mu) \nabla(\operatorname{div}(u)),
$$

p, q are two real numbers such that $p \in] 1, \infty\left[\right.$ and $\frac{1}{p}+\frac{1}{q}=1$,
λ and μ are the Lamé coefficients subjected to the constraint $\lambda+\mu \geq 0$ and $\lambda>0$,
ν denotes the outgoing normal vector to Γ_{2}.
For $p=2$, we recover the classical dynamical Lamé system.
Given f and $\varphi=\left(\varphi_{i, j}\right)_{1<i, j<n}$, such that $\varphi_{i, j}=\varphi_{j, i} \in C^{0,1}(\bar{\Omega})$ and $\varphi_{i, j}(x)>$ $0, \forall x \in \Gamma_{2}$.We study the existence, the uniqueness and the regularity of the complex-valued solution $u=u(x), x \in \Omega$, for the following problem :

$$
(P)\left\{\begin{array}{r}
-L_{p} u+F(u)=f, \quad \text { in } Q \tag{2.1}\\
u=0, \text { on } \Gamma_{1} \\
\sigma(u) \cdot \nu+\varphi(x) u=0, \text { on } \Gamma_{2}
\end{array}\right.
$$

Here $\sigma(u)=\left(\sigma_{i j}(u)\right)_{1<i, j<n}$ is the matrix of the constraints tensor $\sigma_{i j}(u)=$ $\lambda \operatorname{div}(u) \delta_{i j}+2 \mu \varepsilon_{i j}(u)$, were $\varepsilon_{i j}(u)=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right), 1 \leq i, j \leq n$, are the components of the deformation tensor.

In this work, we consider the cases $F(u)=0, F(u)=|u|^{\rho} u$ with $\rho=p-2>$ $0, F(u)=u^{3}$ and $F(u) \equiv a(x, t)$.

[^3]We distinguish the cases:
when $\Gamma_{2}=\phi,(P)$ becomes a Dirichlet problem,
when $\Gamma_{1}=\phi$, and $\varphi \equiv 0$ on $\Gamma_{2},(P)$ becomes a Neumann problem,
when, $\Gamma_{2} \neq \phi$ and $\varphi \equiv 0$ on $\Gamma_{2},(P)$ becomes a mixed problem : DirichletNeumann,
when $\Gamma_{1}, \Gamma_{2} \neq \phi$ and $\varphi(x) \neq 0$ on $\Gamma_{2},(P)$ becomes a mixed problem : Dirichlet-(2.3).

Of course, when it is question of a Neumann problem ($\Gamma_{1}=\phi$ and $\varphi \equiv 0$ on Γ_{2}), we suppose verified the necessary condition of existence that is, the data are orthogonal to the rigid displacements :

$$
\int_{\Omega} f \cdot v d x=\int_{\Gamma} 0 . v d s=0,
$$

for any v of the form

$$
v(x, y)=\left\{\begin{array}{l}
a+c y \\
b-c x
\end{array}\right\},
$$

with a, b, c arbitrary real numbers.
In the remaining part of this paper we study with details the last cas with $F(u)=|u|^{\rho} u$.

The main result is
Theorem 2.1.- We suppose that

$$
\left.f \in\left(W^{-1, q}(\Omega)\right)^{n}\right) .
$$

Then, there exist a function $u=u(x)$ solution of the problem (P) with :

$$
\left.u \in\left(W^{1, p}(\Omega)\right)^{n}\right),
$$

Before giving the proof, we make the following remarks :
Remark 2.1.- The space $V=\left(H_{0}^{1}(\Omega)\right)^{n} \cap\left(L^{p}(\Omega)\right)^{n}$, were $p=\rho+2$, is separable (i.e. admits a countable dense subset).

In fact, V is identified, by the application $v \rightarrow\left\{v, \frac{\partial v}{\partial x_{1}}, \frac{\partial v}{\partial x_{2}}, \ldots, \frac{\partial v}{\partial x_{n}}\right\}$, to a closed subspace of
$\left(L^{p}(\Omega)\right)^{n} \times\left(L^{2}(\Omega)\right)^{n} \times \ldots \times\left(L^{2}(\Omega)\right)^{n}$,separable and uniformly convex, in such way that it possible to project a countable dense set on this subspace.

Remarque 2.3.- The application defined on $\left(L^{p}(\Omega)\right)^{n}$ by $u \longrightarrow|u|^{p-2} u$, is $\left(L^{q}(\Omega)\right)^{n}$-valued, moreover it is continuous. To see that, if $u \in\left(L^{p}(\Omega)\right)^{n},|u|^{p-2} u$ est mesurable and

$$
\left.\left.\int_{\Omega}| | u\right|^{p-2} u\right|^{q} d x=\int_{\Omega}|u|^{p} d x<\infty \Longrightarrow u \in\left(L^{q}(\Omega)\right)^{n} .
$$

We deduce that $\forall u \in\left(W^{1, p}(\Omega)\right)^{n}, \forall i, 1 \leq i \leq n$,

$$
\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{i}} \in\left(L^{q}(\Omega)\right)^{n} .
$$

So, it is possible to define the real-valued application :

$$
\begin{gathered}
\left(\left(W^{1, p}(\Omega)\right)^{n}\right)^{2} \longrightarrow \mathbb{R},(u, v) \longmapsto a_{p}(u, v) . \\
a_{p}(u, v)=\mu \sum_{i, j=1}^{n} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u_{j}}{\partial x_{i}} \frac{\partial v_{j}}{\partial x_{i}} d x+(\lambda+\mu) \int_{\Omega} \operatorname{div}(u) \operatorname{div}(v) d x .
\end{gathered}
$$

For any u in $\left(W^{1, p}(\Omega)\right)^{n}$, the application $\left(W^{1, p}(\Omega)\right)^{n} \longrightarrow \mathbb{R}, v \longrightarrow a_{p}(u, v)$, is a continuous linear form. then c.f. [5] there exist a unique element $A(u)$ of $\left(W^{-1, q}(\Omega)\right)^{n}$, such that

$$
a(u, v)_{p}=\langle A(u), v\rangle, \forall v \in\left(W_{0}^{1, p}(\Omega)\right)^{n}
$$

The application $\left(W^{1, p}(\Omega)\right)^{n} \longrightarrow\left(W^{-1, q}(\Omega)\right)^{n}, u \longrightarrow A(u)$, is noted :

$$
-L_{p} u=-\mu \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{i}}\right)-(\lambda+\mu) \nabla(\operatorname{div}(u)),
$$

and is called a p-Lamé application.
The following proposition gives some properties of $-L_{p}$:
Proposition 2.1.- The operator $-L_{p}:\left(W^{1, p}(\Omega)\right)^{n} \rightarrow\left(W^{-1, q}(\Omega)\right)^{n}$ is bounded, hemicontinuous, monotone and coercitive.

Demonstration: Using the expression of the norm in dual space espace dual and Lebesgue's dominated convergence theorem, we prove that $-L_{p}$ is bounded and hemicontinuous. From the convexity of the real application $t \longrightarrow|t|^{p}$, we deduce the monotonicity of $-L_{p}$.

Proposition 2.2.- The problem (P) and the variational problem $(P . V)$:

$$
a_{p}(u, v)+\left(|u|^{p-2} u, v\right)=(f, v)+\left(-\varphi(x)(u, v), \forall v \in\left(W^{1, p}(\Omega)\right)^{n}\right.
$$

are equivalent.
Demonstration: Indeed, it suffices to observe that $u=0$ on $\Gamma_{1}=0 \Leftrightarrow \in$ $\left(W_{0}^{1, p}(\Omega)\right)^{n}$, and the variationnal equality is then equivalent to

$$
-L_{p} u+|u|^{p-2} u=f \text { in } \Omega
$$

because $(D(\Omega))^{n}$ is dense in $\left(W_{0}^{1, p}(\Omega)\right)^{n}$.
Let us return to the demonstration of Theorème2.1.

(i) Construction of approximated solutions :

We look for $u_{m}=\sum_{i=1}^{n} \lambda_{i} v_{i}$ solution of the following problem $\left(P_{m}\right)$:
$\forall j, 1 \leq j \leq m:$

$$
a_{p}\left(u_{m}, v_{j}\right)+\left(\left|u_{m}\right|^{p-2} u_{m}, v_{j}\right)=\left(f, v_{j}\right)+\left(-\varphi(x)\left(u_{m}, v_{j}\right)\right.
$$

We obtain a second order nonlinear differential system. Let be the function
$F\left(\lambda_{1}, \ldots, \lambda_{m}\right)=\left(\left\langle A\left(\sum_{i=1}^{n} \lambda_{i} v_{i}\right), \mathbb{R}_{j}^{m}\right\rangle-\left(\left(f, v_{j}\right)+\left(-\varphi(x)\left(u_{m}, v_{j}\right)\right) .\right)_{1 \leq j \leq m}\right.$

(ii) Establishment of priori estimates.-

- Of the coercivité of to one deducts that $\left\|u_{m}\right\|$ is a bounded;
- The operator has a bounded $\Longrightarrow\left(A\left(u_{m}\right)\right)_{m \in \mathbb{N}}$ is a bounded in V^{\prime};
$-\exists u \in V, \exists \chi \in V^{\prime} \Longrightarrow\left\{\begin{array}{c}u_{p} \rightharpoonup u, \sigma\left(V, V^{\prime}\right), \\ A\left(u_{m}\right) \rightharpoonup \chi, \sigma\left(V^{\prime}, V\right) \text {. }\end{array}\right.$
(iii) Passage to the limit via compactness.
- The monotony and the hemicontinuous $\Longrightarrow \chi=A(u)$.

What finishes the demonstration of the Theorem 2.1.

Bibliographie

1. Haim Brézis, Analyse fonctionnelle. Dunod, Paris, 1999.
2. J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non-linéaires. Dunod, Gauthier-Villars, Paris, 1969.
3. Luc Tartar, Topics in non lineair analysis. Université de Paris-Sud, Publications Mathematiques d.Orsay, novembre 1978.
4. Lions-Magenes, Problèmes aux limites non homogène et applications, volume1. Dunod paris, 1968.
5. Marie-Thérèse, Distributions Espaces de Sobolev Applications. Lacroix-Sonrier, ellipses édition marketing S.A, paris, 1998.
6. P. Grisvard, Singularities in boundary value problems. Springer-verlag, Masson (Paris), 1992.
7. S. D. Chartterji, Cours d.Analyse, vols 3. Presses polytechniques et universitaires romandes, Lausanne, 1998.
8. Mikhailov, Equations aux dérivées partielles. Traduction française Editions Mir, 1980.
9. M. Dilmi, H. Benseridi and B. Merouani, Nonlinear and Oblique Bound-ary Value problems for the Lamé Equations, Applied Mathematical Sciences, Vol. 1, 2007, 2517-2528.

Global Journal of Science Frontier Research
MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 5 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Mathematical Modeling of Gonorrheal Disease a Case Study with Reference to Anantapur District-Andhrapradesh-India

By Dr. G.Prabhakararao

S.V.G.M. Government Degree College, India

Abstract

In this paper we have analyzed the Mathematical modeling of Gonorrheal disease, the spread of a contagious disease involves interactions of two populations: the susceptible and the infectives. In some diseases these two populations are from different species. For example, malaria is not passed directly between animals but by the anopheline mosquitoes, and schistosomiasis is passed from animal to animal only through contact with water in which live snails that can incubate the disease-causing helminthes. In other diseases, the infection can be passed direct from invectives to susceptible: Viral diseases like chicken-pox, measles, and influenza, and bacterial diseases like tuberculosis can pass through a population much like flame through fuel.

Keywords : modeling, infectious diseases, epidemics, stratified populations, susceptible, chainbranched reactions.

GJSFR-F Classification : MSC 2010: 00A71, 93A30

Strictly as per the compliance and regulations of :

© 2013. Dr. G.Prabhakararao. This is a research/review paper, distributed under the terms of the Creative Commons AttributionNoncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
epaper

Mathematical Modeling of Gonorrheal Disease a Case Study with Reference to Anantapur District-Andhrapradesh-India

Abstract

$\overline{\text { Abstract - In this paper we have analyzed the Mathematical modeling of Gonorrheal disease, the spread of a contagious }}$ disease involves interactions of two populations: the susceptible and the infectives. In some diseases these two populations are from different species. For example, malaria is not passed directly between animals but by the anopheline mosquitoes, and schistosomiasis is passed from animal to animal only through contact with water in which live snails that can incubate the disease-causing helminthes. In other diseases, the infection can be passed direct from invectives to susceptible: Viral diseases like chicken-pox, measles, and influenza, and bacterial diseases like tuberculosis can pass through a population much like flame through fuel. Keywords : modeling, infectious diseases, epidemics, stratified populations, susceptible, chain-branched reactions.

I. Introduction

The spread of a contagious disease involves interactions of two populations: the susceptible and the infectives. In some diseases these two populations are from different species. For example, malaria is not passed directly between animals but by the anopheline mosquitoes, and schistosomiasis is passed from animal to animal only through contact with water in which live snails that can incubate the disease-causing helminthes. In other diseases, the infection can be passed direct from invectives to susceptible: Viral diseases like chicken-pox, measles, and influenza, and bacterial diseases like tuberculosis can pass through a population much like flame through fuel.

There are useful analogies between epidemics and chemical reactions. A theory of epidemics was derived by W.O.Kermack, a chemist, and A.G.Mc Kendrick, a physician, who worked at the Royal college of Surgeons in Edinburgh between 1900 and 1930.They introduced and used many novel mathematical ideas in studies of populations [4].One important result of theirs is that any infection determines a threshold size for the

Dr. G.Prabhakararao

[^4]susceptible population, above which an epidemic will propagate. Their theoretical epidemic threshold is observed in practice, and it measures to what extent a real population is vulnerable to spread of an epidemic. At roughly the same time V.I.Semenov [6] derived a theory of combustion that identified explosion meets beyond which combinations of pressure and temperature cause chemicals to begin explosive chainbranched reactions

These models can serve as building blocks to study other diseases, for example ones having intermediate hosts, and diseases in stratified populations, for example where there are mixing groups that have various contact probabilities, like families, preschools, and social groups. Some of these extensions are described in the exercises

iI. Spread of an Epidemic and Deterministic Models

Consider the situation where a small group of people having an infectious disease mixes with a sizable population susceptible to carry the infection. The equations a use how many people will ultimately catch the disease? Will the infection spread rapidly or die out gradually? How does the epidemic evolve in time? In order to discuss this situation, we consider a fixed population and assume that three kinds of individuals in it exist viz, susceptibles, infectives and removals. Susceptibles can acquire the infection upon effective contact with an infective. Infectives have the disease and are capable of transmitting it. Removals are those who have passed through the disease process but are no longer susceptible or infective. We assume that a person who as permanent immunity and also the disease has a negligibly short incubation period. This implies that an individual who contracts the disease becomes infective immediately after words. The flow of the disease is describe as follows

$$
S \rightarrow I \rightarrow R
$$

Indicating that susceptible might become infectives, and invectives might be removed, but there is no supply of new susceptible to the processes.

We now begin with the Reed-Frost model which describes the spread of infection in population due to random sampling.

In a given population let S_{n}, I_{n} and R_{n} be the number of susceptible infected persons and removals at the $\mathrm{n}^{\text {th }}$ sampling time at the end of $\mathrm{n}^{\text {th }}$ sampling interval, the corresponding numbers are S_{n+1}, I_{n+1} and R_{n+1}.

The probability that a susceptible avoids contact with all of the infectives during the sampling interval is

$$
q_{n}=(1-p)^{I_{n}}
$$

Therefore, the probability that

$$
\begin{gathered}
S_{n+1}=k \text { is } \\
\binom{S_{n}}{k} q_{n}{ }^{k}(1-p)^{S_{n}-k}
\end{gathered}
$$

which is a simple binomial distribution. That is, the probability that k survive the sampling interval as susceptible is the number of ways k can be selected from among candidates times the probability that k avoid effective contact and the probability that have effective contact. If

$$
S_{n+1}=k \text { then } I_{n+1}=S_{n+1}-k \text { and } R_{n+1}=R_{n}+I_{n}
$$

This calculation is summarized by the formula

$$
\operatorname{Pr}\left[S_{n+1}=\frac{k}{S_{n}} \text { and } I_{n}\right]=\binom{S_{n}}{k} q_{n}{ }^{k}(1-p)^{S_{n}-k}
$$

and this called the Reed-Frost model [1].
The Kermack-Mc Kendrick model [2] is a nonrandom model that describes the proportion in large populations.

Let x_{n} denote the number of susceptible, y_{n} the number of infectives and the number of removals. It might be expected that the number of susceptible in the next sampling interval would be

$$
x_{n}=(1-p)^{y_{n}} x_{n}
$$

since the factor $(1-p)^{y_{n}}$ is the proportion of susceptible who avoid effective contact with all infectives.

Let $a=-\log (1-p)$ so that e^{-a} is the probability that a given susceptible will successfully avoid contact with each infective during the sampling interval. Assume that the sampling interval is the same as the interval of infectiousness. Supposing that those leaving the susceptible class enter directly into the infectious class, and that a proportion, say b, of the infectives remain infective at the end of each sampling interval. Then

$$
x_{n+1}=e^{-a y_{n}} x_{n} \text { and }
$$

$$
y_{n+1}=\left(1-e^{-a y_{n}}\right) x_{n}+b y_{n}
$$

determine their numbers. This model is the Kermack-Mc Kendrick model.
We now consider simple deterministic models without removal [3].In a given population at time t, let s be the number of susceptible $S(t), I(t)$ be the number of infected persons. Let n be the initial number of susceptible in the population and let one person is infected initially. Assuming that the rate of decrease of $S(t)$ or the rate of increase of $I(t)$, is proportional to the product of the number of susceptible and the number of infected. We obtain a model

$$
\frac{d S}{d t}=-\beta S I, \frac{d I}{d t}=-\beta S I
$$

Since $S(0)$ is n and $I(0)$ is one and $S(t)+I(t)=N+1$. we obtain

$$
\frac{d S}{d t}=-\beta S(n+1-S)
$$

Integrating using the initial conditions

$$
S(t)=\frac{n(n+1)}{n+e^{(n+1) \beta t}}, I(t)=\frac{(n+1) e^{(n+1) \beta t}}{n+e^{(n+1) \beta t}}
$$

So that

$$
\underset{n \rightarrow \infty}{L t} S(t)=0, \underset{n \rightarrow \infty}{\operatorname{Lt}} I(t)=n+1
$$

and, ultimately, all persons will be infected.
A modification of above model may be obtain by assuming that a susceptible person can become infected at a rate proportional to $S I$ and an infected person can recover and become susceptible again at a rate γI so that we get the model

$$
\begin{equation*}
\frac{d S}{d t}=-\beta S I+\gamma I \quad \frac{d I}{d t}=\beta S I-\gamma I \tag{2.1}
\end{equation*}
$$

which gives

$$
\begin{equation*}
S(t)+I(t)=N=S(0)+I(0)=S_{0}+I_{0}\left(I_{0} \neq 0\right) \tag{2.2}
\end{equation*}
$$

from (2.1) and (2.2)

$$
\frac{d I}{d t}=(\beta N-\gamma) I-\beta I^{2}=k I-\beta I^{2}
$$

Integrating，we obtain

$$
I(t)=\left[\begin{array}{cc}
\frac{e^{k t}}{} & (k \neq 0) \\
\frac{1}{\frac{\beta\left[e^{k t}-1\right]}{k}+I_{0}^{-1}} & \\
\frac{1}{\beta t+I_{0}^{-1}} & (k=0)
\end{array}\right]
$$

As $t \rightarrow \infty$ ，

$$
I(t)=\left[\begin{array}{lll}
N-\rho & \text { if } & N \succ \rho=\frac{\gamma}{\beta} \\
0 & \text { if } & N \leq \rho=\frac{\gamma}{\beta}
\end{array}\right)
$$

We now discuss the deterministic model taking into account the number of persons removed from the population by recovery，immunization，death，hospitalization or by any other means．We make use of the following assumptions［5］．

I．The population remains at affixed level N in the time interval under consideration．This means，of course，that we neglect births，deaths from causes unrelated to the disease under consideration，immigration and emigration．

II．The rate of change of the susceptible population is proportional to the product of the number of (S) and the number of members of (I) ．

III．Individuals are removed from the infectious class (I) at the proportional to the size of （I）．

Let $S(t), I(t)$ ，and $R(t)$ denote the number of individuals in classes $(S),(I)$ ，and （ R ），respectively，at time t ．It follows immediately form rules（I－III）that $S(t), I(t)$ ，and R (t) satisfies the system of differential equations．

$$
\begin{align*}
& \frac{d S}{d t}=-r S I \\
& \frac{d I}{d t}=r S I-\gamma I \tag{2.3}\\
& \frac{d R}{d t}=\gamma I
\end{align*}
$$

For some positive constants r and γ. The proportionality constant r is called the infection rate, and the proportionality constant γ is called removal rate.

The first two equations of $(2.1,2.2)$ do not depend on R.Thus, we need only consider the system of equations.

$$
\begin{equation*}
\frac{d S}{d t}=-r S I, \frac{d I}{d t}=r S I-\gamma I \tag{2.4}
\end{equation*}
$$

For the two unknown functions $S(t)$ and $I(t)$. Once $S(t)$ and $I(t)$ are known, we can solve for $R(t)$ form the third equation of (2.3). Alternately, observe that $\frac{d(S+I+R)}{d t}$. Thus,

$$
S(t)+I(t)+R(t)=\text { constant }=N
$$

so that $R(t)=N-S(t)-I(t)$,
the orbits of (2.2) are the solution curves of the first-order equation

$$
\begin{equation*}
\frac{d I}{d t}=\frac{r S I-\gamma I}{-r S I}=-1+\frac{\gamma}{r S} \tag{2.5}
\end{equation*}
$$

Integrating this differential equation gives

$$
\begin{equation*}
I(S)=I_{0}+S_{0}-S+\rho \log \frac{S}{S_{0}} \tag{2.6}
\end{equation*}
$$

where S_{0} and I_{0} are the number of susceptible and infectives at the initial time $t=t_{0}$ and $\rho=\frac{\gamma}{r}$. To analzethe behavior of the curves(2.6), we compute $I^{\prime}(S)=-1+\frac{\rho}{S}$. The quantity $-1+\frac{\rho}{S}$ is negative for $S \succ \rho$, and positive for $S \prec \rho$.Hence, $I(S)$ is an increasing function of S for $S \prec \rho$ and a decreasing function of S for $S \succ \rho$.Next, observe that $I(0)=-\infty$ and $I\left(S_{0}\right)=I_{0} \succ 0$. Consequently, there exists a unique point S_{∞} with $0 \prec S_{\infty} \prec S_{0}$, such that $I\left(S_{\infty}\right)=0$, and $I(S) \succ 0$ for $S_{\infty} \prec S \leq S_{0}$. The point $\left(S_{\infty}, 0\right)$ is an equilibrium point of (2.2) since both $\frac{d S}{d t}$ and $\frac{d I}{d t}$ vanish when $I=0$.

Let us see what all this implies about the spread of the disease within the population. As t runs from t_{0} to ∞, the point $(S(t), I(t))$ travels along the curve (2.4), and it moves along the curve in the direction of decreasing S, since $S(t)$ decreases monotonically with time. Consequently, if S_{0} is less than, then $\mathrm{I}(\mathrm{t})$ decreases
monotonically to zero, and $S(t)$ decreases monotonically to S_{∞}. Thus, if a small group of infectives I_{0} is inserted into a group of susceptible S_{0}, with $S_{0} \prec \rho$, then the disease will die out rapidly. On the other hand, if S_{0} is greater than, then $I(t)$ increases as $S(t)$ decreases to ρ, and it achieves a maximum value when $S=\rho$. It only starts decreasing when number of susceptible falls below the threshold value ρ. From these results we may draw the following conclusions.

Conclusions I. An epidemic will occur if the number of susceptible in a population exceeds the threshold value $\rho=\frac{\gamma}{r}$.
II. The spread of the disease does not stop for lack of a susceptible population; it stops only for lack of infectives. In particular, some individuals will escape the disease altogether.

a) Spread of Infection within a Family

What happens when an infectious diseases is introduced into a small family? What is the likelihood of spread within the family? We can answer these questions by carefully counting the possibilities.

Consider a fixed population and assume that three kinds of individuals in it are defined by a disease: susceptibles,infectives, and removals.Susceptibles can acquire the infection upon effective contact with an infective, infectives have the disease and are capable of transmitting it, and removals are those who have passed through the disease process but are no longer susceptible or infective.

$$
S \rightarrow I \rightarrow R
$$

indicating that susceptible might become infectives, and invectives might be removed, but there is no supply of new susceptible to the processes.

There are problems with taking such a simple view of a disease. For example, there are great variations in the level of susceptibility, infectiousness, and immunity among individuals in populations. Also, these definitions may depend on stratifying attributes such as age groups, genetic type or mixing groups, etc, there are many diseases whose transmission mechanisms are not known, nor how long are latency periods between becoming infective and the appearance of symptoms.

iII. Calculation of the Severity of an Epidemic

Suppose that there are smooth functions $S(t), I(t)$, and $R(t)$ and a small interval h such that $x_{n}=S(n h), y_{n}=I(n h)$, and $z_{n}=R(n h)$. Since the sampling interval h is small, we must rescale a and b

Let $a=r h$ and $b=1-h \sigma$.Then setting $t=n h$, we have

It follows that

$$
\begin{aligned}
S(t+h)-S(t) & =\left(e^{-r h I(t)}-1\right) S(t) \sim-r h I(t) S(t) \\
I(t+h)-I(t) & =-h \sigma I(t)+\left(1-e^{-r h I(t)}\right) S(t) \\
& \sim-h \sigma I(t)+r h I(t) S(t) \\
R(t+h)-R(t) & =h \sigma I(t)
\end{aligned}
$$

Dividing these equations by h and passing to the limit $h=0$ gives three differential equations for approximations to $S(t), I(t)$, and $R(t)$; which we write as

$$
\begin{aligned}
& \frac{d s}{d t}=-r I S \\
& \frac{d I}{d t}=r I S-\sigma I \\
& \frac{d R}{d t}=\sigma I
\end{aligned}
$$

This system of equations is the continuous-time version of Kermark and Mc Kendrick's model.Incidentally, the calculation just completed gives a neat derivation of the law of mass action in chemistry in which the rate at which to chemical species ,say having concentrations S and, I interact is proportional to product $S I$. Thus, the Law of mass action follows from the binomial distribution of random interactions since the expected number of interactions occurring in a specified (short) time interval is

$$
\left(1-q_{n}\right) S_{n}=\left(1-e^{-r h I_{n}}\right) S_{n} \sim r h I_{n} S_{n}
$$

Obviously, this law and the two model derived for epidemics depend on the assumption that the populations are thoroughly mixing as the process continues

We can solve the differential equations and so determine the severity of an epidemic.Taking the ratio of the first two equations gives

$$
\frac{d S}{d I}=-\frac{r I S}{r I S-\sigma I}=\frac{-r S}{r S-\sigma}
$$

Therefore

$$
d I=\left(\frac{\sigma}{r S}-1\right) d S
$$

Integrating this equation gives

$$
\mathrm{I}=\left(\frac{\sigma}{\mathrm{r}}\right) \log \mathrm{S}-\mathrm{S}+C
$$

where c is a constant of integration that is determined by the initial conditions:

$$
C=I_{0}-\log S_{0}+S_{0}
$$

Typical trajectories
In the infinitesimal sampling process, the threshold level of S^{*} becomes

$$
S^{*}=\frac{(1-b)}{\left(1-e^{a}\right)} \sim\left(\frac{\sigma}{r}\right)
$$

S^{*} is the value of S for which $\frac{D I}{D t}=0$. We see that trajectories starting near but about this value describe epidemics that end at a comparable distance below this value.Trajectories that start well about S^{*} end up near $S=0$.However, in each case the final size of the susceptible population, S (infinity), is where the trajectory meets the $I=0$ axis Therefore ,solving the equation

$$
\mathrm{S}-\left(\frac{\sigma}{r}\right) \log \mathrm{S}=\mathrm{C}
$$

For its smaller of two roots gives the final size .this is not possible to do in a convenient form; however, it is easy to do using a computer. In this way, we can estimate an epidemic's severity once we have estimated the infectiousness (a or r) and the removal rate (b or σ)

Recurrent diseases. Finally, there are diseases in which removals can eventually become susceptible again .This is the case for a variety of sexually transmitted diseases, for example gonorrhea. The flow of such a disease is depicted by the graph

$$
S \rightarrow I \rightarrow S
$$

Without further discussion, we can write down a model of such a disease:

$$
\begin{aligned}
& \frac{d S}{d t}=-r S I+\sigma I \\
& \frac{d I}{d t}=r S I-\sigma I
\end{aligned}
$$

We see that if $S^{*}=\frac{\sigma}{r} \prec I_{0}+S_{0}$, then $S \rightarrow S^{*}$ in this case! In the other case $S \rightarrow I_{0}+S_{0}$, and the infection dies out of the population. When $S \rightarrow S^{*}$, the disease is epidemic. Stratification of the population, latency periods of the disease, hidden carriers, seasonal cycling of contact rates, and many other factors confound the study of epidemics, but the simple modals derived here provide useful and interesting methods.

iv. Spread of Gonorrhea in Anantapur District (a Case Study)

Gonorrhea ranks first today among reportable communicable diseases in the United States. There are more reported cases of gonorrhea every year than the combined totals for syphilis, measles, mumps, and infectious hepatitis. This painful and dangerous disease, which is caused by the gonococcus germ, is spread from person to person by sexual contact. A few days after the infection there is usually itching and burning of the genital area, particularly while urinating. About the same time a discharge develops which males will notice, but which females may not notice. Infected women may have no easily recognizable symptoms, even while the disease does substantial internal damage. Gonorrhea can only be cured by antibiotics (usually penicillin). However, treatment must be given early if the disease is to be stopped from doing serious damage to the body. If untreated, gonorrhea can result in blindness, sterility, arthritis, heart failure, and ultimately, death.

In this section we construct a mathematical model of the spread of gonorrhea. Our work is greatly simplified by the fact that the incubation period of gonorrhea is very short (3-7 days) compared to the often quite long period of active infectiousness. Thus, we will
assume in our model that an individual becomes infective immediately after contracting gonorrhea. In addition, gonorrhea does not confer even partial immunity to those individuals who have recovered from it. Immediately after recovery, an individual is again susceptible. Thus, we can split the sexually active and promiscuous portion of the population into two groups, susceptibles and infectives. Let $c_{1}(t)$ be the total number of promiscuous males, $c_{2}(t)$ be the total number of promiscuous females, $x(t)$ the total number of infective males, and $y(t)$ the total number of infective females, at time t . Then, the total numbers of susceptible males and susceptible females are $c_{1}(t)-x(t)$ and $c_{2}(t)-y(t)$ respectively. The spread of gonorrhea is presumed to be governed by the following rules:
I. Males infectives are cured at a rate a_{1} proportional to their total number, and female infectives are cured at a rate a_{2} proportional to their total number. The constant a_{1} is larger than a_{2} since infective males quickly develop painful symptoms and therefore seek prompt medical attention. Female infectives, on the other hand, are usually asymptomatic, and therefore are infectious for much longer periods.
II. New infectives are added to the male population at a rate b_{1} proportional to the total number of male susceptibles and female infectives. Similarly, new infectives are added to the female population at a rate b_{2} proportional to the total number of female susceptibles and male infectives.
III. The total numbers of promiscuous males and promiscuous females remain at constant levels c_{1} and c_{2}, respectively.

It follows immediately from rules I-III that

$$
\begin{align*}
& \frac{d x}{d t}=-a_{1} x+b_{1}\left(c_{1}-x\right) y \tag{4.1}\\
& \frac{d y}{d t}=-a_{2} y+b_{2}\left(c_{2}-y\right) x
\end{align*}
$$

If $x\left(t_{0}\right)$ and $y\left(t_{0}\right)$ are positive, then $x(t)$ and $y(t)$ are positive for all $t \geq t_{0}$
If $x\left(t_{0}\right)$ is less than c_{1} and $y\left(t_{0}\right)$ is less than c_{2} then $x(t)$ is less than c_{1} and $y(t)$ is less than c_{2} for all $t \geq t_{0}$

We can show that equation (4.1)
(a) Suppose that $a_{1} a_{2}$ is less than $b_{1} b_{2} c_{1} c_{2}$.Then, every solution $x(t), y(t)$ of (4.1) with $0 \prec x\left(t_{0}\right) \prec c_{1}$ and $0 \prec y\left(t_{0}\right) \prec c_{2}$, approaches the equilibrium solution.

$$
x=\frac{b_{1} b_{2} c_{1} c_{2}-a_{1} a_{2}}{a_{1} b_{2}+b_{1} b_{2} c_{2}}, y=\frac{b_{1} b_{2} c_{1} c_{2}-a_{1} a_{2}}{a_{2} b_{1}+b_{1} b_{2} c_{1}}
$$

$$
\begin{aligned}
-a_{1} x+b_{1}\left(c_{1}-x\right) y & =0 \\
b_{1} y\left(c_{1}-x\right) & =a_{l} x \\
y & =\frac{a_{l} x}{b_{1}\left(c_{1}-x\right)}=\phi_{1} x
\end{aligned}
$$

Similarly, setting $\frac{d y}{d t}=0$ in (4.1)

$$
\begin{gathered}
-a_{2} y+b_{2} x\left(c_{1}-y\right)=0 \\
b_{2} x\left(c_{2}-y\right)=a_{2} y \\
x=\frac{a_{2} y}{b_{2}\left(c_{2}-y\right)} \\
x b_{2}\left(c_{2}-y\right)=a_{2} y \\
x b_{2} c_{2}-x b_{2} y=a_{2} y \\
x b_{2} c_{2}=a_{2} y+x b_{2} y \\
x b_{2} c_{2}=y\left(a_{2}+x b_{2}\right) \\
\frac{x b_{2} c_{2}}{a_{2}+x b_{2}}=y \\
y=\frac{x b_{2} c_{2}}{a_{2}+x b_{2}}=\phi_{2} x
\end{gathered}
$$

Observe that $\phi_{1} x$ and $\phi_{2} x$ are monotonic increasing functions of $x ; \phi_{1} x$ approaches infinity as x approaches c_{1} and $\phi_{2} x$ approaches c_{2} as x approaches infinity. Second, observe that the curves $y=\phi_{1} x, y=\phi_{2} x$ intersect at $(0,0)$ and at $\left(x_{0}, y_{0}\right)$ where

$$
x_{0}=\frac{b_{1} b_{2} c_{1} c_{2}-a_{1} a_{2}}{a_{1} b_{2}+b_{1} b_{2} c_{2}}, y_{0}=\frac{b_{1} b_{2} c_{1} c_{2}-a_{1} a_{2}}{a_{2} b_{1}+b_{1} b_{2} c_{1}}
$$

Third, observe that $\phi_{2} x$ is increasing faster than $\phi_{1} x$ at $x=0$, since

$$
\phi_{2}^{\prime}(0)=\frac{b_{2} c_{2}}{a_{2}} \succ \frac{a_{1}}{b_{1} c_{1}}
$$

Hence, $\phi_{2} x$ lies above for $0 \prec x \prec x_{0}$ and lies below $\phi_{1} x$ for $x_{0} \prec x \prec c_{1}$. The point $\left(x_{0}, y_{0}\right)$ is an equilibrium point of (4.1) since both $\frac{d x}{d t}$ and $\frac{d y}{d t}$ are zero when $x=x_{0}$ and $y=y_{0}$.

Finally, observe that $\frac{d x}{d t}$ is positive at any point (x, y) above the curve $y=\phi_{1} x$, and negative at any point (x, y) below this curve. Similarly, $\frac{d y}{d t}$ is positive at any point (x, y) below curve $y=\phi_{2} x$, and negative point (x, y) above this curve. Thus, the curves $y=\phi_{1} x$, and $y=\phi_{2} x$ split the rectangle $0 \prec x \prec c_{1}$ and $0 \prec y \prec c_{2}$ into four regions in which $\frac{d x}{d t}$ and $\frac{d y}{d t}$ haved fixed sings.

It can be established that any solution $x(t), y(t)$ of (4.1) which starts in region I at time $t=t_{0}$, will remain in this region for all future time $t \geq t_{0}$ that and approach the equilibrium solution $x=x_{0,} y=y_{0}$ as t approaches infinity.

Any solution $x(t), y(t)$ of (4.1) which starts in region II at time $t=t_{0}$, will remain in this region II for all future time, must approach the equilibrium solution $x=x_{0,} y=y_{0}$ as t approaches infinity.

Any solution $x(t), y(t)$ of (4.1) which starts in region IV at time $t=t_{0}$, will remain in this region IV for all future time, must approach the equilibrium solution $x=x_{0,} y=y_{0}$ as t approaches infinity.

We make use of the above mentioned deterministic model to study of severity of Gonorrhea diseased in Anantapur district during the period of 1995-2003 based on the data collection from the Head Quarters of Hospital Anantapur during this period.

Year wise male population in Anantapur district and case study of gonorrheal disease form the recorded data of Government Head Quarters Hospital, Anantapur, Andhra Pradesh

Table 1

Years	Total Male population	Total number of promiscuous Males	Total number of Infective Males	Total number of Males Cured
1995	1686038	16860.38	7250	6975
1996	1698463	16984.63	5178	4846
1997	1723455	17234.55	6147	5872
1998	1748654	17486.54	3065	2969
1999	1798563	17985.63	6598	5985
2000	1810943	18109.43	3657	3465
2001	1859588	18595.88	2713	2285
2002	1910464	19104.64	2577	2299
2003	1945084	19450.84	1954	1835

Year wise Female population in Anantapur district and case study of gonorrheal disease form the recorded data of Government Head Quarters Hospital, Anantapur, Andhra Pradesh

Table 2

Years	Total Female population	Total number of promiscuous Females	Total number of Infective Females	Total number of Females Cured
1995	1516549	15165.49	3549	3020
1996	1576910	15769.10	1988	1866
1997	1624704	16247.04	1769	1665
1998	1672291	16722.91	1935	1798
1999	1695168	16951.68	1701	1595
2000	1755574	17555.74	1278	1152
2001	1780890	17808.90	1356	1265
2002	1801626	18016.26	1093	943
2003	1839792	18397.92	899	844

Figure 2: Profile of Infective Females with Gonorrheal Disease during the period of 1995-2003

Figure 3 : Profile of Number of Infective Males Vs Number of Infective Females during the period of 1995-2003

V. Discussion

The Study of epidemic is quite interesting and important. When a small group of people having infected with an epidemic disease is inserted into a large population which is capable of catching the disease, the question arises what happens as time evolves. Will the disease die out rapidly or its spreads? How many people will catches is disease? To answer these questions, we have chosen a mathematical modeling consisting of a system of differential equations which govern the spread of infected disease within the population and analyse the behavior of its solution. This approach will lead to the famous threshold theorem of Epidemiology which states that an epidemic will occur only if the number of people who are susceptible to the disease exceeds a certain threshold value. In this paper, we discussed the spread of Gonorrheal disease among males and females in Anantapur District during the period 1995-2003, based on the recorded data available in Government Head Quarters Hospital Anantapur. As already stated, we assume in our model that an individual become infective immediately after contacting the Gonorrhea. The proportional rate a_{1}, a_{2} and b_{1} and b_{2} are quite difficult to evaluate. However, we have made the crude estimate of these proportional constants based on available data. It is interesting note that condition $a_{1} a_{2} \prec b_{1} b_{2} c_{1} c_{2}$ is satisfied by the said constants. This
condition is equivalent to $1 \prec\left(\frac{b_{1} c_{1}}{a_{2}}\right)\left(\frac{b_{2} c_{2}}{a_{1}}\right)$. The expression $\left(\frac{b_{1} c_{1}}{a_{2}}\right)$ can be interpreted as the average number of males that one female infective contact during her infectious period, if every male is susceptible. Similarly the expression $\left(\frac{b_{2} c_{2}}{a_{1}}\right)$ can be interpreted as the average number of females that one male infective contact during his infectious period, if every female is susceptible. These quantity $\left(\frac{b_{1} c_{1}}{a_{2}}\right)$ and $\left(\frac{b_{2} c_{2}}{a_{1}}\right)$ are called the maximal female and male contacts rates. In view of the fact that this product of maximal male and female contact rates is greater than one, we may conclude that the solution of the mathematical model approaches the equilibrium solution and the Gonorrheal disease will approach a non zero steady state in course of time. This equilibrium solution also implies that the total number of infective males and infective females will ultimately level off, and from Fig (3) the point of the equilibrium approximately gives x_{0} (Infective males $)=260, y_{0}($ Infective females $)=266$. We may conclude that this Epidemic disease does not die out but ultimately approach a steady state with reference to its severity among the population of Anantapur District.

References Références Referencias

1. N.T.S.Bailey, The theory of infectives disease and its application, Charle Griffin, London, 1975.
2. F.C.Hoppen Steadt, Mathematics methods of population Biology, Cambridge Univ.Press, 1982.
3. J.N.Kapur Mathematical models in Biology and Medicine,East-west press private limited 2000.
4. W.O.Kermark and A.G.Mc.Kendrick,A contribution to the theory of epidemics Proc.Roy.Soc. (A) 115 (1923), 700-721,139(1932), 55
5. Classic Papers in the theory of epidemics.See also A.G.Mc.Kendrick, Mathematics applied to medical problems, Roy.Soc.Edinb.,1926.
6. Martin Braun The threshold theorem of epidemiology,Differentail equations and their applications Springer-Verlag Publishers.
7. N.N.Semenov, Chemical Kinetics and chain reactions, Oxford Univ., Press, Oxford, 1935.

This page is intentionally left blank

Global Journal of Science Frontier Research MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 5 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Formation of a Summation Formula in Connection with Hypergeometric and Gamma Function

By Salahuddin \& Intazar Husain
P.D.M College of Engineering, India

Abstract - The main objective of the present paper is to establish a summation formula in connection with Hypergeometric and Gamma function.

Keywords : contiguous relation, gauss second summation theorem, recurrence relation.
GJSFR-F Classification : MSC 2010: 11S80, 40A25

Strictly as per the compliance and regulations of :

Formation of a Summation Formula in Connection with Hypergeometric and Gamma Function

Salahuddin ${ }^{\alpha}$ \& Intazar Husain ${ }^{\sigma}$

Abstract - The main objective of the present paper is to establish a summation formula in connection with Hypergeometric and Gamma function.
Keywords and Phrases : contiguous relation, gauss second summation theorem, recurrence relation .

I. Introduction

Generalized Gaussian Hypergeometric function of one variable is defined by

$$
{ }_{A} F_{B}\left[\begin{array}{ccc}
a_{1}, a_{2}, \cdots, a_{A} & ; & \\
b_{1}, b_{2}, \cdots, b_{B} & ; & z
\end{array}\right]=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{A}\right)_{k} z^{k}}{\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \cdots\left(b_{B}\right)_{k} k!}
$$

or

$$
{ }_{A} F_{B}\left[\begin{array}{ccc}
\left(a_{A}\right) & ; & \tag{1}\\
\left(b_{B}\right) & ; & z
\end{array}\right] \equiv{ }_{A} F_{B}\left[\begin{array}{ccc}
\left(a_{j}\right)_{j=1}^{A} & ; & \\
\left(b_{j}\right)_{j=1}^{B} & ; & z
\end{array}\right]=\sum_{k=0}^{\infty} \frac{\left(\left(a_{A}\right)\right)_{k} z^{k}}{\left(\left(b_{B}\right)\right)_{k} k!}
$$

where the parameters $b_{1}, b_{2}, \cdots, b_{B}$ are neither zero nor negative integers and A, B are nonnegative integers and $|z|=1$.

Contiguous Relation is defined by

[Andrews p.363(9.16)]

$$
(a-b)_{2} F_{1}\left[\begin{array}{cc}
a, b ; & z \tag{2}\\
c & ;
\end{array}\right]=a_{2} F_{1}\left[\begin{array}{ccc}
a+1, & b ; & z \\
c & ; &
\end{array}\right]-b_{2} F_{1}\left[\begin{array}{ll}
a, b+1 ; & z \\
c ; &
\end{array}\right]
$$

Gauss second summation theorem is defined by [Prudnikov, 491(7.3.7.8)]

$$
\begin{gather*}
{ }_{2} F_{1}\left[\begin{array}{cc}
a, b ; & 1 \\
\frac{a+b+1}{2} ; & \frac{1}{2}
\end{array}\right]=\frac{\Gamma\left(\frac{a+b+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{a+1}{2}\right) \Gamma\left(\frac{b+1}{2}\right)} \tag{3}\\
\quad=\frac{2^{(b-1)} \Gamma\left(\frac{b}{2}\right) \Gamma\left(\frac{a+b+1}{2}\right)}{\Gamma(b) \Gamma\left(\frac{a+1}{2}\right)} \tag{4}
\end{gather*}
$$

[^5]
Recurrence relation is defined by

$$
\begin{equation*}
\Gamma(z+1)=z \Gamma(z) \tag{5}
\end{equation*}
$$

iI. Main Summation Formula

$$
{ }_{2} F_{1}\left[\begin{array}{ll}
a, \quad b ; & \frac{1}{2} \\
\frac{a+b+38}{2} ;
\end{array}\right]=\frac{2^{b} \Gamma\left(\frac{a+b+38}{2}\right)}{(a-b) \Gamma(b)} \times
$$

$$
\times\left[\frac { \Gamma (\frac { b } { 2 }) } { \Gamma (\frac { a } { 2 }) } \left\{\frac{262144\left(-46620662575398912000 a+80177108784198451200 a^{2}-59690268905460203520 a^{3}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+\right.\right.
$$

$$
\begin{aligned}
& +\frac{262144\left(25941016178319163392 a^{4}-7448984828674965504 a^{5}+1511475811264036864 a^{6}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(-225747898745241600 a^{7}+25468769585086464 a^{8}-2205749914587648 a^{9}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(147948773077248 a^{10}-7705944829440 a^{11}+310606256896 a^{12}-9588825792 a^{13}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(222345312 a^{14}-3745440 a^{15}+43248 a^{16}-306 a^{17}+a^{18}+46620662575398912000 b\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(227646051134629478400 a b-84561518714872135680 a^{2} b+204544425045918744576 a^{3} b\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(-41476667627670994944 a^{4} b+22943568120596004864 a^{5} b-2670969522028953600 a^{6} b\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& \left.+\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right] \\
& +\frac{262144\left(653655295920635904 a^{7} b-4636764351078912 a^{8} b+6087033574989312 a^{9} b\right)}{}+ \\
& \left.+\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right] \\
& \left.+\frac{262144\left(-267452777940480 a^{10} b+20310289142784 a^{11} b-538587975744 a^{12} b+23985898944 a^{13} b\right)}{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]
\end{aligned}+
$$

$$
\begin{aligned}
& +\frac{262144\left(84561518714872135680 a b^{2}+376765373892274421760 a^{2} b^{2}-37106107946844291072 a^{3} b^{2}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(94661921845665792000 a^{4} b^{2}-8250058245827543040 a^{5} b^{2}+4834484937423912960 a^{6} b^{2}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(-286088788492683264 a^{7} b^{2}+73488037086731520 a^{8} b^{2}-2830362252157440 a^{9} b^{2}\right)}{\left[\prod^{17}\{a-b-2 \delta\}\right]\left[\prod^{18}(a-b+2)\right]}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{262144\left(385171067635200 a^{10} b^{2}-9214702632576 a^{11} b^{2}+714494944800 a^{12} b^{2}-9600101280 a^{13} b^{2}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(427616640 a^{14} b^{2}-2450448 a^{15} b^{2}+58905 a^{16} b^{2}+59690268905460203520 b^{3}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(204544425045918744576 a b^{3}+37106107946844291072 a^{2} b^{3}+148152339170291613696 a^{3} b^{3}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(-5954608749608386560 a^{4} b^{3}+14798435273785540608 a^{5} b^{3}-655755966671984640 a^{6} b^{3}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(380668112993642496 a^{7} b^{3}-12411632232552960 a^{8} b^{3}+3161240677647360 a^{9} b^{3}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(-67636609729920 a^{10} b^{3}+9071028833664 a^{11} b^{3}-112495612320 a^{12} b^{3}+8492373120 a^{13} b^{3}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(-45912240 a^{14} b^{3}+1947792 a^{15} b^{3}+25941016178319163392 b^{4}+41476667627670994944 a b^{4}\right)}{[17}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{262144\left(94661921845665792000 a^{2} b^{4}+5954608749608386560 a^{3} b^{4}+21248405057917255680 a^{4} b^{4}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(-417333234097511424 a^{5} b^{4}+979202192033640960 a^{6} b^{4}-23674554904366080 a^{7} b^{4}\right)}{\left[\prod^{17}\left\{a-b+{ }^{18}(a-b+2)\right]\right.}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{262144\left(13190080234763520 a^{8} b^{4}-239192223842880 a^{9} b^{4}+58647685995360 a^{10} b^{4}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{262144\left(-654569667360 a^{11} b^{4}+84112741440 a^{12} b^{4}-423644760 a^{13} b^{4}+30260340 a^{14} b^{4}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(7448984828674965504 b^{5}+22943568120596004864 a b^{5}+8250058245827543040 a^{2} b^{5}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(14798435273785540608 a^{3} b^{5}+417333234097511424 a^{4} b^{5}+1333407400586376192 a^{5} b^{5}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(-13876520995814400 a^{6} b^{5}+30294926136059904 a^{7} b^{5}-403001238644928 a^{8} b^{5}\right)}{\left[\prod^{17}\{a-b-2 \delta\}\right]\left[\prod^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(211792515536448 a^{9} b^{5}-1997908688160 a^{10} b^{5}+463267099008 a^{11} b^{5}-2102818536 a^{12} b^{5}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(254186856 a^{13} b^{5}+1511475811264036864 b^{6}+2670969522028953600 a b^{6}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(4834484937423912960 a^{2} b^{6}+655755966671984640 a^{3} b^{6}+979202192033640960 a^{4} b^{6}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(13876520995814400 a^{5} b^{6}+39814926411617280 a^{6} b^{6}-223040891969280 a^{7} b^{6}\right)}{\left[{ }^{17}\right.}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{262144\left(449675387995680 a^{8} b^{6}-3081641824800 a^{9} b^{6}+1511564503680 a^{10} b^{6}-5776974000 a^{11} b^{6}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(1251677700 a^{1} 2 b^{6}+225747898745241600 b^{7}+653655295920635904 a b^{7}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(286088788492683264 a^{2} b^{7}+380668112993642496 a^{3} b^{7}+23674554904366080 a^{4} b^{7}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(30294926136059904 a^{5} b^{7}+223040891969280 a^{6} b^{7}+576376172064000 a^{7} b^{7}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(-1635980781600 a^{8} b^{7}+3032869276800 a^{9} b^{7}-8351853840 a^{10} b^{7}+3796297200 a^{11} b^{7}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{262144\left(25468769585086464 b^{8}+46367643951078912 a b^{8}+73488037086731520 a^{2} b^{8}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(12411632232552960 a^{3} b^{8}+13190080234763520 a^{4} b^{8}+403001238644928 a^{5} b^{8}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
\end{aligned}
$$

$$
+\frac{262144\left(449675387995680 a^{6} b^{8}+1635980781600 a^{7} b^{8}+3817288490400 a^{8} b^{8}-4298748300 a^{9} b^{8}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{262144\left(7307872110 a^{10} b^{8}+2205749914587648 b^{9}+6087033574989312 a b^{9}+2830362252157440 a^{2} b^{9}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{262144\left(3161240677647360 a^{3} b^{9}+239192223842880 a^{4} b^{9}+211792515536448 a^{5} b^{9}+3081641824800 a^{6} b^{9}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{262144\left(3032869276800 a^{7} b^{9}+4298748300 a^{8} b^{9}+9075135300 a^{9} b^{9}+147948773077248 b^{10}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{262144\left(267452777940480 a b^{10}+385171067635200 a^{2} b^{10}+67636609729920 a^{3} b^{10}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{262144\left(58647685995360 a^{4} b^{10}+1997908688160 a^{5} b^{10}+1511564503680 a^{6} b^{10}+8351853840 a^{7} b^{10}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{262144\left(7307872110 a^{8} b^{10}+7705944829440 b^{11}+20310289142784 a b^{11}+9214702632576 a^{2} b^{11}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{262144\left(9071028833664 a^{3} b^{11}+654569667360 a^{4} b^{11}+463267099008 a^{5} b^{11}+5776974000 a^{6} b^{11}\right)}{\Gamma}+
$$

$$
\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]
$$

$$
+\frac{262144\left(3796297200 a^{7} b^{11}+310606256896 b^{12}+538587975744 a b^{12}+714494944800 a^{2} b^{12}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{262144\left(112495612320 a^{3} b^{12}+84112741440 a^{4} b^{12}+2102818536 a^{5} b^{12}+1251677700 a^{6} b^{12}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{262144\left(9588825792 b^{13}+23985898944 a b^{13}+9600101280 a^{2} b^{13}+8492373120 a^{3} b^{13}+423644760 a^{4} b^{13}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
\begin{aligned}
& +\frac{262144\left(254186856 a^{5} b^{13}+222345312 b^{14}+350382240 a b^{14}+427616640 a^{2} b^{14}+45912240 a^{3} b^{14}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(30260340 a^{4} b^{14}+3745440 b^{15}+8727936 a b^{15}+2450448 a^{2} b^{15}+1947792 a^{3} b^{15}+43248 b^{16}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{262144\left(53550 a b^{16}+58905 a^{2} b^{16}+306 b^{17}+630 a b^{17}+b^{18}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 b\left(48500033587878297600 a+11328021094402621440 a^{2}+21140011005367025664 a^{3}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(2795023106067922944 a^{4}+1574025548791873536 a^{5}+128758187796725760 a^{6}\right)}{18}+ \\
& {\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]} \\
& +\frac{1048576 b\left(33175766006734848 a^{7}+1737630410723328 a^{8}+240371614509312 a^{9}+8050302965760 a^{10}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(638746221312 a^{11}+13154598912 a^{12}+603267168 a^{13}+6887040 a^{14}+172176 a^{15}+816 a^{16}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(9 a^{17}+48500033587878297600 b+83577021037226754048 a^{2} b+8034085366268952576 a^{3} b\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(13105766738956189696 a^{4} b+918253385961963520 a^{5} b+483223358349369344 a^{6} b\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(23020491316207616 a^{7} b+5654596258046208 a^{8} b+177925617745920 a^{9} b\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(23543562530048 a^{10} b+465775063040 a^{11} b+35113632736 a^{12} b+392680960 a^{13} b\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(16797360 a^{14} b+79968 a^{15} b+1785 a^{16} b-11328021094402621440 b^{2}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(83577021037226754048 a b^{2}+33618491552919846912 a^{3} b^{2}+1610580577687961600 a^{4} b^{2}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
\end{aligned}
$$

$$
\begin{gathered}
+\frac{1048576 b\left(2326378986350354432 a^{5} b^{2}+92960637851361280 a^{6} b^{2}+45218555603989504 a^{7} b^{2}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
+\frac{1048576 b\left(1285000248576000 a^{8} b^{2}+296035410612480 a^{9} b^{2}+5498064732160 a^{10} b^{2}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
\end{gathered}
$$

$$
+\frac{1048576 b\left(683281861696 a^{11} b^{2}+7361244800 a^{12} b^{2}+516583760 a^{13} b^{2}+2423520 a^{14} b^{2}+94248 a^{15} b^{2}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576 b\left(21140011005367025664 b^{3}-8034085366268952576 a b^{3}+33618491552919846912 a^{2} b^{3}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576 b\left(4891283590711992320 a^{4} b^{3}+128387637280415744 a^{5} b^{3}+165510896176890880 a^{6} b^{3}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576 b\left(3878969853214720 a^{7} b^{3}+1734099087578880 a^{8} b^{3}+28871685427200 a^{9} b^{3}\right)}{[18}+
$$

$$
\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]
$$

$$
+\frac{1048576 b\left(6174643478080 a^{10} b^{3}+62291568640 a^{11} b^{3}+7178203760 a^{12} b^{3}+32463200 a^{13} b^{3}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576 b\left(2086920 a^{14} b^{3}-2795023106067922944 b^{4}+13105766738956189696 a b^{4}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576 b\left(-1610580577687961600 a^{2} b^{4}+4891283590711992320 a^{3} b^{4}+309949836535381504 a^{5} b^{4}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576 b\left(4639359573094400 a^{6} b^{4}+5366111189204480 a^{7} b^{4}+72693320663040 a^{8} b^{4}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576 b\left(29762423312160 a^{9} b^{4}+267366915200 a^{10} b^{4}+52694561360 a^{11} b^{4}+222520480 a^{12} b^{4}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576 b\left(23535820 a^{13} b^{4}+1574025548791873536 b^{5}-918253385961963520 a b^{5}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576 b\left(2326378986350354432 a^{2} b^{5}-128387637280415744 a^{3} b^{5}+309949836535381504 a^{4} b^{5}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
\begin{aligned}
& +\frac{1048576 b\left(9319447558181376 a^{6} b^{5}+78989552345088 a^{7} b^{5}+82270476664992 a^{8} b^{5}+594896924160 a^{9} b^{5}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(222498227952 a^{10} b^{5}+831884256 a^{11} b^{5}+150201324 a^{12} b^{5}-128758187796725760 b^{6}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(483223358349369344 a b^{6}-92960637851361280 a^{2} b^{6}+165510896176890880 a^{3} b^{6}\right)}{\left[{ }^{18}\right.}+ \\
& {\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]} \\
& +\frac{1048576 b\left(-4639359573094400 a^{4} b^{6}+9319447558181376 a^{5} b^{6}+135601809678720 a^{7} b^{6}\right)}{\left[\prod^{18}\{a\right.}+ \\
& +\frac{1048576 b\left(604067587200 a^{8} b^{6}+567933181200 a^{9} b^{6}+1694579040 a^{10} b^{6}+577697400 a^{11} b^{6}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(33175766006734848 b^{7}-23020491316207616 a b^{7}+45218555603989504 a^{2} b^{7}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(-3878969853214720 a^{3} b^{7}+5366111189204480 a^{4} b^{7}-78989552345088 a^{5} b^{7}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(135601809678720 a^{6} b^{7}+901508929200 a^{8} b^{7}+1637618400 a^{9} b^{7}+1391975640 a^{10} b^{7}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(-1737630410723328 b^{8}+5654596258046208 a b^{8}-1285000248576000 a^{2} b^{8}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(1734099087578880 a^{3} b^{8}-72693320663040 a^{4} b^{8}+82270476664992 a^{5} b^{8}-604067587200 a^{6} b^{8}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(901508929200 a^{7} b^{8}+2149374150 a^{9} b^{8}+240371614509312 b^{9}-177925617745920 a b^{9}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(296035410612480 a^{2} b^{9}-28871685427200 a^{3} b^{9}+29762423312160 a^{4} b^{9}-594896924160 a^{5} b^{9}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(567933181200 a^{6} b^{9}-1637618400 a^{7} b^{9}+2149374150 a^{8} b^{9}-8050302965760 b^{10}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1048576 b\left(23543562530048 a b^{10}-5498064732160 a^{2} b^{10}+6174643478080 a^{3} b^{10}-267366915200 a^{4} b^{10}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(222498227952 a^{5} b^{10}-1694579040 a^{6} b^{10}+1391975640 a^{7} b^{10}+638746221312 b^{11}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(-465775063040 a b^{11}+683281861696 a^{2} b^{11}-62291568640 a^{3} b^{11}+52694561360 a^{4} b^{11}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576 b\left(-831884256 a^{5} b^{11}+577697400 a^{6} b^{11}-13154598912 b^{12}+35113632736 a b^{12}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]} \\
& +\frac{1048576 b\left(-392680960 a b^{13}+516583760 a^{2} b^{13}-32463200 a^{3} b^{13}+23535820 a^{4} b^{13}-6887040 b^{14}\right)}{}+ \\
& +\frac{1048576 b\left(16797360 a b^{14}-2423520 a^{2} b^{14}+2086920 a^{3} b^{14}+172176 b^{15}-79968 a b^{15}+94248 a^{2} b^{15}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& \left.+\frac{1048576 b\left(-816 b^{16}+1785 a b^{16}+9 b^{17}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}\right\}-
\end{aligned}
$$

$$
-\frac{\Gamma\left(\frac{b+1}{2}\right)}{\Gamma\left(\frac{a+1}{2}\right)}\left\{\frac{1048576 a\left(48500033587878297600 a-11328021094402621440 a^{2}+21140011005367025664 a^{3}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+\right.
$$

$$
+\frac{1048576 a\left(-2795023106067922944 a^{4}+1574025548791873536 a^{5}-128758187796725760 a^{6}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576 a\left(33175766006734848 a^{7}-1737630410723328 a^{8}+240371614509312 a^{9}-8050302965760 a^{10}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576 a\left(638746221312 a^{11}-13154598912 a^{12}+603267168 a^{13}-6887040 a^{14}+172176 a^{15}-816 a^{16}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576 a\left(9 a^{17}+48500033587878297600 b+83577021037226754048 a^{2} b-8034085366268952576 a^{3} b\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
\begin{aligned}
& +\frac{1048576 a\left(13105766738956189696 a^{4} b-918253385961963520 a^{5} b+483223358349369344 a^{6} b\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 a\left(-23020491316207616 a^{7} b+5654596258046208 a^{8} b-177925617745920 a^{9} b\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 a\left(23543562530048 a^{10} b-465775063040 a^{11} b+35113632736 a^{12} b-392680960 a^{13} b\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 a\left(16797360 a^{14} b-79968 a^{15} b+1785 a^{16} b+11328021094402621440 b^{2}\right)}{\left[{ }^{17}\right.}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{1048576 a\left(83577021037226754048 a b^{2}+33618491552919846912 a^{3} b^{2}-1610580577687961600 a^{4} b^{2}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 a\left(2326378986350354432 a^{5} b^{2}-92960637851361280 a^{6} b^{2}+45218555603989504 a^{7} b^{2}\right)}{[17}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{1048576 a\left(-1285000248576000 a^{8} b^{2}+296035410612480 a^{9} b^{2}-5498064732160 a^{10} b^{2}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 a\left(683281861696 a^{11} b^{2}-7361244800 a^{12} b^{2}+516583760 a^{13} b^{2}-2423520 a^{14} b^{2}+94248 a^{15} b^{2}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 a\left(21140011005367025664 b^{3}+8034085366268952576 a b^{3}+33618491552919846912 a^{2} b^{3}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 a\left(4891283590711992320 a^{4} b^{3}-128387637280415744 a^{5} b^{3}+165510896176890880 a^{6} b^{3}\right)}{[17}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{1048576 a\left(-3878969853214720 a^{7} b^{3}+1734099087578880 a^{8} b^{3}-28871685427200 a^{9} b^{3}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 a\left(6174643478080 a^{10} b^{3}-62291568640 a^{11} b^{3}+7178203760 a^{12} b^{3}-32463200 a^{13} b^{3}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 a\left(2086920 a^{14} b^{3}+2795023106067922944 b^{4}+13105766738956189696 a b^{4}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1048576 a\left(1610580577687961600 a^{2} b^{4}+4891283590711992320 a^{3} b^{4}+309949836535381504 a^{5} b^{4}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 a\left(-4639359573094400 a^{6} b^{4}+5366111189204480 a^{7} b^{4}-72693320663040 a^{8} b^{4}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 a\left(29762423312160 a^{9} b^{4}-267366915200 a^{10} b^{4}+52694561360 a^{11} b^{4}-222520480 a^{12} b^{4}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 a\left(23535820 a^{1} 3 b^{4}+1574025548791873536 b^{5}+918253385961963520 a b^{5}\right)}{\left[\prod^{17}\{a-b-25\}\right]\left[{ }^{18}\{a-b+2 \eta\}\right]}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{1048576 a\left(2326378986350354432 a^{2} b^{5}+128387637280415744 a^{3} b^{5}+309949836535381504 a^{4} b^{5}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 a\left(9319447558181376 a^{6} b^{5}-78989552345088 a^{7} b^{5}+82270476664992 a^{8} b^{5}-594896924160 a^{9} b^{5}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 a\left(222498227952 a^{10} b^{5}-831884256 a^{11} b^{5}+150201324 a^{12} b^{5}+128758187796725760 b^{6}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 a\left(483223358349369344 a b^{6}+92960637851361280 a^{2} b^{6}+165510896176890880 a^{3} b^{6}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 a\left(4639359573094400 a^{4} b^{6}+9319447558181376 a^{5} b^{6}+135601809678720 a^{7} b^{6}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 a\left(-604067587200 a^{8} b^{6}+567933181200 a^{9} b^{6}-1694579040 a^{10} b^{6}+577697400 a^{11} b^{6}\right)}{\left[\prod^{17}\{a-b)\right.}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{1048576 a\left(33175766006734848 b^{7}+23020491316207616 a b^{7}+45218555603989504 a^{2} b^{7}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576 a\left(3878969853214720 a^{3} b^{7}+5366111189204480 a^{4} b^{7}+78989552345088 a^{5} b^{7}\right)}{17}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{1048576 a\left(135601809678720 a^{6} b^{7}+901508929200 a^{8} b^{7}-1637618400 a^{9} b^{7}+1391975640 a^{10} b^{7}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
\end{aligned}
$$

$$
+\frac{1048576 a\left(1737630410723328 b^{8}+5654596258046208 a b^{8}+1285000248576000 a^{2} b^{8}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576 a\left(1734099087578880 a^{3} b^{8}+72693320663040 a^{4} b^{8}+82270476664992 a^{5} b^{8}+604067587200 a^{6} b^{8}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576 a\left(901508929200 a^{7} b^{8}+2149374150 a^{9} b^{8}+240371614509312 b^{9}+177925617745920 a b^{9}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576 a\left(296035410612480 a^{2} b^{9}+28871685427200 a^{3} b^{9}+29762423312160 a^{4} b^{9}+594896924160 a^{5} b^{9}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576 a\left(567933181200 a^{6} b^{9}+1637618400 a^{7} b^{9}+2149374150 a^{8} b^{9}+8050302965760 b^{10}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576 a\left(23543562530048 a b^{10}+5498064732160 a^{2} b^{10}+6174643478080 a^{3} b^{10}+267366915200 a^{4} b^{10}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576 a\left(222498227952 a^{5} b^{10}+1694579040 a^{6} b^{10}+1391975640 a^{7} b^{10}+638746221312 b^{11}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576 a\left(465775063040 a b^{11}+683281861696 a^{2} b^{11}+62291568640 a^{3} b^{11}+52694561360 a^{4} b^{11}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576 a\left(831884256 a^{5} b^{11}+577697400 a^{6} b^{11}+13154598912 b^{12}+35113632736 a b^{12}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576 a\left(7361244800 a^{2} b^{12}+7178203760 a^{3} b^{12}+222520480 a^{4} b^{12}+150201324 a^{5} b^{12}+603267168 b^{13}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576 a\left(392680960 a b^{13}+516583760 a^{2} b^{13}+32463200 a^{3} b^{13}+23535820 a^{4} b^{13}+6887040 b^{14}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576 a\left(16797360 a b^{14}+2423520 a^{2} b^{14}+2086920 a^{3} b^{14}+172176 b^{15}+79968 a b^{15}+94248 a^{2} b^{15}\right)}{\left[\frac{17}{\square}\right.}+
$$

$$
\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]
$$

$$
+\frac{1048576 a\left(816 b^{16}+1785 a b^{16}+9 b^{17}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
\begin{aligned}
& +\frac{262144\left(46620662575398912000 a+80177108784198451200 a^{2}+59690268905460203520 a^{3}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(25941016178319163392 a^{4}+7448984828674965504 a^{5}+1511475811264036864 a^{6}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(225747898745241600 a^{7}+25468769585086464 a^{8}+2205749914587648 a^{9}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(147948773077248 a^{10}+7705944829440 a^{11}+310606256896 a^{12}+9588825792 a^{13}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(222345312 a^{14}+3745440 a^{15}+43248 a^{16}+306 a^{17}+a^{18}-46620662575398912000 b\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(227646051134629478400 a b+84561518714872135680 a^{2} b+204544425045918744576 a^{3} b\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(41476667627670994944 a^{4} b+22943568120596004864 a^{5} b+2670969522028953600 a^{6} b\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(653655295920635904 a^{7} b+46367643951078912 a^{8} b+6087033574989312 a^{9} b\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(267452777940480 a^{10} b+20310289142784 a^{11} b+538587975744 a^{12} b+23985898944 a^{13} b\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(350382240 a^{14} b+8727936 a^{15} b+53550 a^{16} b+630 a^{17} b+80177108784198451200 b^{2}\right)}{[18}+ \\
& {\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]} \\
& +\frac{262144\left(-84561518714872135680 a b^{2}+376765373892274421760 a^{2} b^{2}+37106107946844291072 a^{3} b^{2}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(94661921845665792000 a^{4} b^{2}+8250058245827543040 a^{5} b^{2}+4834484937423912960 a^{6} b^{2}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(286088788492683264 a^{7} b^{2}+73488037086731520 a^{8} b^{2}+2830362252157440 a^{9} b^{2}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{262144\left(385171067635200 a^{10} b^{2}+9214702632576 a^{11} b^{2}+714494944800 a^{12} b^{2}+9600101280 a^{13} b^{2}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(427616640 a^{14} b^{2}+2450448 a^{15} b^{2}+58905 a^{16} b^{2}-59690268905460203520 b^{3}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(204544425045918744576 a b^{3}-37106107946844291072 a^{2} b^{3}+148152339170291613696 a^{3} b^{3}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(5954608749608386560 a^{4} b^{3}+14798435273785540608 a^{5} b^{3}+655755966671984640 a^{6} b^{3}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(380668112993642496 a^{7} b^{3}+12411632232552960 a^{8} b^{3}+3161240677647360 a^{9} b^{3}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(67636609729920 a^{10} b^{3}+9071028833664 a^{11} b^{3}+112495612320 a^{12} b^{3}+8492373120 a^{13} b^{3}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(45912240 a^{14} b^{3}+1947792 a^{15} b^{3}+25941016178319163392 b^{4}-41476667627670994944 a b^{4}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(94661921845665792000 a^{2} b^{4}-5954608749608386560 a^{3} b^{4}+21248405057917255680 a^{4} b^{4}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(417333234097511424 a^{5} b^{4}+979202192033640960 a^{6} b^{4}+23674554904366080 a^{7} b^{4}\right)}{18}+ \\
& {\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]} \\
& +\frac{262144\left(13190080234763520 a^{8} b^{4}+239192223842880 a^{9} b^{4}+58647685995360 a^{10} b^{4}\right)}{[18}+ \\
& {\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]} \\
& +\frac{262144\left(654569667360 a^{11} b^{4}+84112741440 a^{12} b^{4}+423644760 a^{13} b^{4}+30260340 a^{14} b^{4}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(-7448984828674965504 b^{5}+22943568120596004864 a b^{5}-8250058245827543040 a^{2} b^{5}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(14798435273785540608 a^{3} b^{5}-417333234097511424 a^{4} b^{5}+1333407400586376192 a^{5} b^{5}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
\end{aligned}
$$

$$
+\frac{262144\left(13876520995814400 a^{6} b^{5}+30294926136059904 a^{7} b^{5}+403001238644928 a^{8} b^{5}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{262144\left(211792515536448 a^{9} b^{5}+1997908688160 a^{10} b^{5}+463267099008 a^{11} b^{5}+2102818536 a^{12} b^{5}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{262144\left(254186856 a^{13} b^{5}+1511475811264036864 b^{6}-2670969522028953600 a b^{6}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{262144\left(4834484937423912960 a^{2} b^{6}-655755966671984640 a^{3} b^{6}+979202192033640960 a^{4} b^{6}\right)}{[18}+
$$

$$
\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]
$$

$$
+\frac{262144\left(-13876520995814400 a^{5} b^{6}+39814926411617280 a^{6} b^{6}+223040891969280 a^{7} b^{6}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{262144\left(449675387995680 a^{8} b^{6}+3081641824800 a^{9} b^{6}+1511564503680 a^{10} b^{6}+5776974000 a^{11} b^{6}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{262144\left(1251677700 a^{12} b^{6}-225747898745241600 b^{7}+653655295920635904 a b^{7}\right)}{\left[\frac{18}{\square}\right.}+
$$

$$
\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]
$$

$$
+\frac{262144\left(-286088788492683264 a^{2} b^{7}+380668112993642496 a^{3} b^{7}-23674554904366080 a^{4} b^{7}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{262144\left(30294926136059904 a^{5} b^{7}-223040891969280 a^{6} b^{7}+576376172064000 a^{7} b^{7}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{262144\left(1635980781600 a^{8} b^{7}+3032869276800 a^{9} b^{7}+8351853840 a^{10} b^{7}+3796297200 a^{11} b^{7}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{262144\left(25468769585086464 b^{8}-46367643951078912 a b^{8}+73488037086731520 a^{2} b^{8}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{262144\left(-12411632232552960 a^{3} b^{8}+13190080234763520 a^{4} b^{8}-403001238644928 a^{5} b^{8}\right)}{\left[\prod^{18}\{a-b-2 \sigma\}\right]\left[\prod^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]
$$

$$
+\frac{262144\left(449675387995680 a^{6} b^{8}-1635980781600 a^{7} b^{8}+3817288490400 a^{8} b^{8}+4298748300 a^{9} b^{8}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
\begin{align*}
& +\frac{262144\left(7307872110 a^{10} b^{8}-2205749914587648 b^{9}+6087033574989312 a b^{9}-2830362252157440 a^{2} b^{9}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(3161240677647360 a^{3} b^{9}-239192223842880 a^{4} b^{9}+211792515536448 a^{5} b^{9}-3081641824800 a^{6} b^{9}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(3032869276800 a^{7} b^{9}-4298748300 a^{8} b^{9}+9075135300 a^{9} b^{9}+147948773077248 b^{10}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(-267452777940480 a b^{10}+385171067635200 a^{2} b^{10}-67636609729920 a^{3} b^{10}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(58647685995360 a^{4} b^{10}-1997908688160 a^{5} b^{10}+1511564503680 a^{6} b^{10}-8351853840 a^{7} b^{10}\right)}{[18}+ \\
& {\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]} \\
& +\frac{262144\left(7307872110 a^{8} b^{10}-7705944829440 b^{11}+20310289142784 a b^{11}-9214702632576 a^{2} b^{11}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(9071028833664 a^{3} b^{11}-654569667360 a^{4} b^{11}+463267099008 a^{5} b^{11}-5776974000 a^{6} b^{11}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(3796297200 a^{7} b^{11}+310606256896 b^{12}-538587975744 a b^{12}+714494944800 a^{2} b^{12}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(-112495612320 a^{3} b^{12}+84112741440 a^{4} b^{12}-2102818536 a^{5} b^{12}+1251677700 a^{6} b^{12}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(-9588825792 b^{13}+23985898944 a b^{13}-9600101280 a^{2} b^{13}+8492373120 a^{3} b^{13}-423644760 a^{4} b^{13}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{262144\left(254186856 a^{5} b^{13}+222345312 b^{14}-350382240 a b^{14}+427616640 a^{2} b^{14}-45912240 a^{3} b^{14}\right)}{\left[\prod^{18}\right.}+ \\
& {\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]} \\
& +\frac{262144\left(30260340 a^{4} b^{14}-3745440 b^{15}+8727936 a b^{15}-2450448 a^{2} b^{15}+1947792 a^{3} b^{15}+43248 b^{16}\right)}{[18}+ \\
& {\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]} \\
& \left.\left.+\frac{262144\left(-53550 a b^{16}+58905 a^{2} b^{16}-306 b^{17}+630 a b^{17}+b^{18}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}\right\}\right] \tag{6}
\end{align*}
$$

iII. Derivation of the Summation Formula

Replacing c with $\frac{a+b+38}{2}$ and z with $\frac{1}{2}$ in equation (2), and involving derived from reference(6), we get

$$
\begin{aligned}
& \text { L.H.S }=a \frac{2^{b} \Gamma\left(\frac{a+b+38}{2}\right)}{\Gamma(b)}\left[\frac { \Gamma (\frac { b } { 2 }) } { \Gamma (\frac { a + 2 } { 2 }) } \left\{\frac{131072\left(-46620662575398912000 a+80177108784198451200 a^{2}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+\right.\right. \\
& +\frac{131072\left(-59690268905460203520 a^{3}+25941016178319163392 a^{4}-7448984828674965504 a^{5}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{131072\left(1511475811264036864 a^{6}-225747898745241600 a^{7}+25468769585086464 a^{8}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{131072\left(-2205749914587648 a^{9}+147948773077248 a^{10}-7705944829440 a^{11}+310606256896 a^{12}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{131072\left(-9588825792 a^{13}+222345312 a^{14}-3745440 a^{15}+43248 a^{16}-306 a^{17}+a^{18}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{131072\left(46620662575398912000 b+227646051134629478400 a b-84561518714872135680 a^{2} b\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{131072\left(204544425045918744576 a^{3} b-41476667627670994944 a^{4} b+22943568120596004864 a^{5} b\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{131072\left(-2670969522028953600 a^{6} b+653655295920635904 a^{7} b-46367643951078912 a^{8} b\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{131072\left(6087033574989312 a^{9} b-267452777940480 a^{10} b+20310289142784 a^{11} b-538587975744 a^{12} b\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{131072\left(23985898944 a^{13} b-350382240 a^{14} b+8727936 a^{15} b-53550 a^{16} b+630 a^{17} b\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{131072\left(80177108784198451200 b^{2}+84561518714872135680 a b^{2}+376765373892274421760 a^{2} b^{2}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{131072\left(-37106107946844291072 a^{3} b^{2}+94661921845665792000 a^{4} b^{2}-8250058245827543040 a^{5} b^{2}\right)}{[17}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{131072\left(4834484937423912960 a^{6} b^{2}-286088788492683264 a^{7} b^{2}+73488037086731520 a^{8} b^{2}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{131072\left(-2830362252157440 a^{9} b^{2}+385171067635200 a^{10} b^{2}-9214702632576 a^{11} b^{2}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{131072\left(714494944800 a^{12} b^{2}-9600101280 a^{13} b^{2}+427616640 a^{14} b^{2}-2450448 a^{15} b^{2}+58905 a^{16} b^{2}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{131072\left(59690268905460203520 b^{3}+204544425045918744576 a b^{3}+37106107946844291072 a^{2} b^{3}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{131072\left(148152339170291613696 a^{3} b^{3}-5954608749608386560 a^{4} b^{3}+14798435273785540608 a^{5} b^{3}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{131072\left(-655755966671984640 a^{6} b^{3}+380668112993642496 a^{7} b^{3}-12411632232552960 a^{8} b^{3}\right)}{\left[\prod^{17}\{a-b+18]\right.}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{131072\left(3161240677647360 a^{9} b^{3}-67636609729920 a^{10} b^{3}+9071028833664 a^{11} b^{3}-112495612320 a^{12} b^{3}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{131072\left(8492373120 a^{13} b^{3}-45912240 a^{14} b^{3}+1947792 a^{15} b^{3}+25941016178319163392 b^{4}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{131072\left(41476667627670994944 a b^{4}+94661921845665792000 a^{2} b^{4}+5954608749608386560 a^{3} b^{4}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{131072\left(21248405057917255680 a^{4} b^{4}-417333234097511424 a^{5} b^{4}+979202192033640960 a^{6} b^{4}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{131072\left(-23674554904366080 a^{7} b^{4}+13190080234763520 a^{8} b^{4}-239192223842880 a^{9} b^{4}\right)}{\left[\prod^{17}\{a-b-2]\left[{ }^{18}\{a-b+2]^{2}\right]\right.}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{131072\left(58647685995360 a^{10} b^{4}-654569667360 a^{11} b^{4}+84112741440 a^{12} b^{4}-423644760 a^{13} b^{4}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
\end{aligned}
$$

$$
+\frac{131072\left(30260340 a^{14} b^{4}+7448984828674965504 b^{5}+22943568120596004864 a b^{5}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(8250058245827543040 a^{2} b^{5}+14798435273785540608 a^{3} b^{5}+417333234097511424 a^{4} b^{5}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(1333407400586376192 a^{5} b^{5}-13876520995814400 a^{6} b^{5}+30294926136059904 a^{7} b^{5}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(-403001238644928 a^{8} b^{5}+211792515536448 a^{9} b^{5}-1997908688160 a^{10} b^{5}+463267099008 a^{11} b^{5}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(-2102818536 a^{12} b^{5}+254186856 a^{13} b^{5}+1511475811264036864 b^{6}+2670969522028953600 a b^{6}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(4834484937423912960 a^{2} b^{6}+655755966671984640 a^{3} b^{6}+979202192033640960 a^{4} b^{6}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(13876520995814400 a^{5} b^{6}+39814926411617280 a^{6} b^{6}-223040891969280 a^{7} b^{6}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(449675387995680 a^{8} b^{6}-3081641824800 a^{9} b^{6}+1511564503680 a^{10} b^{6}-5776974000 a^{11} b^{6}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(1251677700 a^{1} 2 b^{6}+225747898745241600 b^{7}+653655295920635904 a b^{7}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(286088788492683264 a^{2} b^{7}+380668112993642496 a^{3} b^{7}+23674554904366080 a^{4} b^{7}\right)}{}+
$$

$$
\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]
$$

$$
+\frac{131072\left(30294926136059904 a^{5} b^{7}+223040891969280 a^{6} b^{7}+576376172064000 a^{7} b^{7}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(-1635980781600 a^{8} b^{7}+3032869276800 a^{9} b^{7}-8351853840 a^{10} b^{7}+3796297200 a^{11} b^{7}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(25468769585086464 b^{8}+46367643951078912 a b^{8}+73488037086731520 a^{2} b^{8}\right)}{[17}+
$$

$$
\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]
$$

$$
+\frac{131072\left(12411632232552960 a^{3} b^{8}+13190080234763520 a^{4} b^{8}+403001238644928 a^{5} b^{8}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(7307872110 a^{10} b^{8}+2205749914587648 b^{9}+6087033574989312 a b^{9}+2830362252157440 a^{2} b^{9}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(3161240677647360 a^{3} b^{9}+239192223842880 a^{4} b^{9}+211792515536448 a^{5} b^{9}+3081641824800 a^{6} b^{9}\right)}{17}+
$$

$$
\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]
$$

$$
+\frac{131072\left(3032869276800 a^{7} b^{9}+4298748300 a^{8} b^{9}+9075135300 a^{9} b^{9}+147948773077248 b^{10}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(267452777940480 a b^{10}+385171067635200 a^{2} b^{10}+67636609729920 a^{3} b^{10}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(58647685995360 a^{4} b^{10}+1997908688160 a^{5} b^{10}+1511564503680 a^{6} b^{10}+8351853840 a^{7} b^{10}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(7307872110 a^{8} b^{10}+7705944829440 b^{11}+20310289142784 a b^{11}+9214702632576 a^{2} b^{11}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(9071028833664 a^{3} b^{11}+654569667360 a^{4} b^{11}+463267099008 a^{5} b^{11}+5776974000 a^{6} b^{11}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(3796297200 a^{7} b^{11}+310606256896 b^{12}+538587975744 a b^{12}+714494944800 a^{2} b^{12}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(112495612320 a^{3} b^{12}+84112741440 a^{4} b^{12}+2102818536 a^{5} b^{12}+1251677700 a^{6} b^{12}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(9588825792 b^{13}+23985898944 a b^{13}+9600101280 a^{2} b^{13}+8492373120 a^{3} b^{13}+423644760 a^{4} b^{13}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{131072\left(254186856 a^{5} b^{13}+222345312 b^{14}+350382240 a b^{14}+427616640 a^{2} b^{14}+45912240 a^{3} b^{14}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
\begin{aligned}
& +\frac{131072\left(30260340 a^{4} b^{14}+3745440 b^{15}+8727936 a b^{15}+2450448 a^{2} b^{15}+1947792 a^{3} b^{15}+43248 b^{16}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& \left.+\frac{131072\left(53550 a b^{16}+58905 a^{2} b^{16}+306 b^{17}+630 a b^{17}+b^{18}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}\right\}- \\
& -\frac{\Gamma\left(\frac{b+1}{2}\right)}{\Gamma\left(\frac{a+1}{2}\right)}\left\{\frac{1048576\left(48500033587878297600 a-11328021094402621440 a^{2}+21140011005367025664 a^{3}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}\right. \\
& +\frac{1048576\left(-2795023106067922944 a^{4}+1574025548791873536 a^{5}-128758187796725760 a^{6}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(33175766006734848 a^{7}-1737630410723328 a^{8}+240371614509312 a^{9}-8050302965760 a^{10}\right)}{\left[{ }^{17}\right.}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{1048576\left(638746221312 a^{11}-13154598912 a^{12}+603267168 a^{13}-6887040 a^{14}+172176 a^{15}-816 a^{16}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(9 a^{17}+48500033587878297600 b+83577021037226754048 a^{2} b-8034085366268952576 a^{3} b\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(13105766738956189696 a^{4} b-918253385961963520 a^{5} b+483223358349369344 a^{6} b\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(-23020491316207616 a^{7} b+5654596258046208 a^{8} b-177925617745920 a^{9} b\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(23543562530048 a^{10} b-465775063040 a^{11} b+35113632736 a^{12} b-392680960 a^{13} b\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(16797360 a^{14} b-79968 a^{15} b+1785 a^{16} b+11328021094402621440 b^{2}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(83577021037226754048 a b^{2}+33618491552919846912 a^{3} b^{2}-1610580577687961600 a^{4} b^{2}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(2326378986350354432 a^{5} b^{2}-92960637851361280 a^{6} b^{2}+45218555603989504 a^{7} b^{2}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1048576\left(-1285000248576000 a^{8} b^{2}+296035410612480 a^{9} b^{2}-5498064732160 a^{10} b^{2}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(683281861696 a^{11} b^{2}-7361244800 a^{12} b^{2}+516583760 a^{13} b^{2}-2423520 a^{14} b^{2}+94248 a^{15} b^{2}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(21140011005367025664 b^{3}+8034085366268952576 a b^{3}+33618491552919846912 a^{2} b^{3}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(4891283590711992320 a^{4} b^{3}-128387637280415744 a^{5} b^{3}+165510896176890880 a^{6} b^{3}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(-3878969853214720 a^{7} b^{3}+1734099087578880 a^{8} b^{3}-28871685427200 a^{9} b^{3}\right)}{[17}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{1048576\left(6174643478080 a^{10} b^{3}-62291568640 a^{11} b^{3}+7178203760 a^{12} b^{3}-32463200 a^{13} b^{3}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(2086920 a^{14} b^{3}+2795023106067922944 b^{4}+13105766738956189696 a b^{4}\right)}{[17}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{1048576\left(1610580577687961600 a^{2} b^{4}+4891283590711992320 a^{3} b^{4}+309949836535381504 a^{5} b^{4}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(-4639359573094400 a^{6} b^{4}+5366111189204480 a^{7} b^{4}-72693320663040 a^{8} b^{4}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(29762423312160 a^{9} b^{4}-267366915200 a^{10} b^{4}+52694561360 a^{11} b^{4}-222520480 a^{12} b^{4}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(23535820 a^{13} b^{4}+1574025548791873536 b^{5}+918253385961963520 a b^{5}\right)}{\left[{ }^{17}\right.}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{1048576\left(2326378986350354432 a^{2} b^{5}+128387637280415744 a^{3} b^{5}+309949836535381504 a^{4} b^{5}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(9319447558181376 a^{6} b^{5}-78989552345088 a^{7} b^{5}+82270476664992 a^{8} b^{5}-594896924160 a^{9} b^{5}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1048576\left(222498227952 a^{10} b^{5}-831884256 a^{11} b^{5}+150201324 a^{12} b^{5}+128758187796725760 b^{6}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(483223358349369344 a b^{6}+92960637851361280 a^{2} b^{6}+165510896176890880 a^{3} b^{6}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(4639359573094400 a^{4} b^{6}+9319447558181376 a^{5} b^{6}+135601809678720 a^{7} b^{6}\right)}{[17}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{1048576\left(-604067587200 a^{8} b^{6}+567933181200 a^{9} b^{6}-1694579040 a^{10} b^{6}+577697400 a^{11} b^{6}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(33175766006734848 b^{7}+23020491316207616 a b^{7}+45218555603989504 a^{2} b^{7}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(3878969853214720 a^{3} b^{7}+5366111189204480 a^{4} b^{7}+78989552345088 a^{5} b^{7}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(135601809678720 a^{6} b^{7}+901508929200 a^{8} b^{7}-1637618400 a^{9} b^{7}+1391975640 a^{10} b^{7}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(1737630410723328 b^{8}+5654596258046208 a b^{8}+1285000248576000 a^{2} b^{8}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(1734099087578880 a^{3} b^{8}+72693320663040 a^{4} b^{8}+82270476664992 a^{5} b^{8}+604067587200 a^{6} b^{8}\right)}{\left[{ } ^ { 1 7 } \left\{a[]^{18}\right.\right.}+ \\
& {\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]} \\
& +\frac{1048576\left(901508929200 a^{7} b^{8}+2149374150 a^{9} b^{8}+240371614509312 b^{9}+177925617745920 a b^{9}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(296035410612480 a^{2} b^{9}+28871685427200 a^{3} b^{9}+29762423312160 a^{4} b^{9}+594896924160 a^{5} b^{9}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(567933181200 a^{6} b^{9}+1637618400 a^{7} b^{9}+2149374150 a^{8} b^{9}+8050302965760 b^{10}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+ \\
& +\frac{1048576\left(23543562530048 a b^{10}+5498064732160 a^{2} b^{10}+6174643478080 a^{3} b^{10}+267366915200 a^{4} b^{10}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
\end{aligned}
$$

$$
+\frac{1048576\left(222498227952 a^{5} b^{10}+1694579040 a^{6} b^{10}+1391975640 a^{7} b^{10}+638746221312 b^{11}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576\left(465775063040 a b^{11}+683281861696 a^{2} b^{11}+62291568640 a^{3} b^{11}+52694561360 a^{4} b^{11}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576\left(831884256 a^{5} b^{11}+577697400 a^{6} b^{11}+13154598912 b^{12}+35113632736 a b^{12}+7361244800 a^{2} b^{12}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576\left(7178203760 a^{3} b^{12}+222520480 a^{4} b^{12}+150201324 a^{5} b^{12}+603267168 b^{13}+392680960 a b^{13}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576\left(516583760 a^{2} b^{13}+32463200 a^{3} b^{13}+23535820 a^{4} b^{13}+6887040 b^{14}+16797360 a b^{14}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
+\frac{1048576\left(2423520 a^{2} b^{14}+2086920 a^{3} b^{14}+172176 b^{15}+79968 a b^{15}+94248 a^{2} b^{15}+816 b^{16}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}+
$$

$$
\left.\left.+\frac{1048576\left(1785 a b^{16}+9 b^{17}\right)}{\left[\prod_{\delta=0}^{17}\{a-b-2 \delta\}\right]\left[\prod_{\eta=1}^{18}\{a-b+2 \eta\}\right]}\right\}\right]-
$$

$$
-\frac{2^{b+1} \Gamma\left(\frac{a+b+38}{2}\right)}{\Gamma(b)}\left[\frac { \Gamma (\frac { b + 1 } { 2 }) } { \Gamma (\frac { a + 1 } { 2 }) } \left\{\frac{131072\left(46620662575398912000 a+80177108784198451200 a^{2}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+\right.\right.
$$

$$
+\frac{131072\left(59690268905460203520 a^{3}+25941016178319163392 a^{4}+7448984828674965504 a^{5}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{131072\left(1511475811264036864 a^{6}+225747898745241600 a^{7}+25468769585086464 a^{8}\right)}{18}+
$$

$$
\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]
$$

$$
+\frac{131072\left(2205749914587648 a^{9}+147948773077248 a^{10}+7705944829440 a^{11}+310606256896 a^{12}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{131072\left(9588825792 a^{13}+222345312 a^{14}+3745440 a^{15}+43248 a^{16}+306 a^{17}+a^{18}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{131072\left(-46620662575398912000 b+227646051134629478400 a b+84561518714872135680 a^{2} b\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

 \(+\frac{131072\left(204544425045918744576 a^{3} b+41476667627670994944 a^{4} b+22943568120596004864 a^{5} b\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+\)
 \(+\frac{131072\left(2670969522028953600 a^{6} b+653655295920635904 a^{7} b+46367643951078912 a^{8} b\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+\)
 \(+\frac{131072\left(6087033574989312 a^{9} b+267452777940480 a^{10} b+20310289142784 a^{11} b+538587975744 a^{12} b\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+\)
 \(+\frac{131072\left(23985898944 a^{13} b+350382240 a^{14} b+8727936 a^{15} b+53550 a^{16} b+630 a^{17} b\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+\)
 \(+\frac{131072\left(80177108784198451200 b^{2}-84561518714872135680 a b^{2}+376765373892274421760 a^{2} b^{2}\right)}{[18}+\)
 \(\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]\)
 \(+\frac{131072\left(37106107946844291072 a^{3} b^{2}+94661921845665792000 a^{4} b^{2}+8250058245827543040 a^{5} b^{2}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+\)
 \(+\frac{131072\left(4834484937423912960 a^{6} b^{2}+286088788492683264 a^{7} b^{2}+73488037086731520 a^{8} b^{2}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+\)
 $+\frac{131072\left(2830362252157440 a^{9} b^{2}+385171067635200 a^{10} b^{2}+9214702632576 a^{11} b^{2}+714494944800 a^{12} b^{2}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+$
$+\frac{131072\left(9600101280 a^{13} b^{2}+427616640 a^{14} b^{2}+2450448 a^{15} b^{2}+58905 a^{16} b^{2}-59690268905460203520 b^{3}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+$
$+\frac{131072\left(204544425045918744576 a b^{3}-37106107946844291072 a^{2} b^{3}+148152339170291613696 a^{3} b^{3}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+$
$+\frac{131072\left(5954608749608386560 a^{4} b^{3}+14798435273785540608 a^{5} b^{3}+655755966671984640 a^{6} b^{3}\right)}{\left[{ }^{18}\right.}+$
$\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]$
$+\frac{131072\left(380668112993642496 a^{7} b^{3}+12411632232552960 a^{8} b^{3}+3161240677647360 a^{9} b^{3}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+$
$+\frac{131072\left(67636609729920 a^{10} b^{3}+9071028833664 a^{11} b^{3}+112495612320 a^{12} b^{3}+8492373120 a^{13} b^{3}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+$

$$
\begin{aligned}
& +\frac{131072\left(45912240 a^{14} b^{3}+1947792 a^{15} b^{3}+25941016178319163392 b^{4}-41476667627670994944 a b^{4}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{131072\left(94661921845665792000 a^{2} b^{4}-5954608749608386560 a^{3} b^{4}+21248405057917255680 a^{4} b^{4}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{131072\left(417333234097511424 a^{5} b^{4}+979202192033640960 a^{6} b^{4}+23674554904366080 a^{7} b^{4}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{131072\left(13190080234763520 a^{8} b^{4}+239192223842880 a^{9} b^{4}+58647685995360 a^{10} b^{4}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{131072\left(654569667360 a^{11} b^{4}+84112741440 a^{12} b^{4}+423644760 a^{13} b^{4}+30260340 a^{14} b^{4}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{131072\left(-7448984828674965504 b^{5}+22943568120596004864 a b^{5}-8250058245827543040 a^{2} b^{5}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{131072\left(14798435273785540608 a^{3} b^{5}-417333234097511424 a^{4} b^{5}+1333407400586376192 a^{5} b^{5}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{131072\left(13876520995814400 a^{6} b^{5}+30294926136059904 a^{7} b^{5}+403001238644928 a^{8} b^{5}\right)}{\left[{ }^{18}\right.}+ \\
& {\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]} \\
& +\frac{131072\left(211792515536448 a^{9} b^{5}+1997908688160 a^{10} b^{5}+463267099008 a^{11} b^{5}+2102818536 a^{12} b^{5}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{131072\left(254186856 a^{13} b^{5}+1511475811264036864 b^{6}-2670969522028953600 a b^{6}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{131072\left(4834484937423912960 a^{2} b^{6}-655755966671984640 a^{3} b^{6}+979202192033640960 a^{4} b^{6}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{131072\left(-13876520995814400 a^{5} b^{6}+39814926411617280 a^{6} b^{6}+223040891969280 a^{7} b^{6}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{131072\left(449675387995680 a^{8} b^{6}+3081641824800 a^{9} b^{6}+1511564503680 a^{10} b^{6}+5776974000 a^{11} b^{6}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
\end{aligned}
$$

$$
+\frac{131072\left(1251677700 a^{12} b^{6}-225747898745241600 b^{7}+653655295920635904 a b^{7}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{131072\left(-286088788492683264 a^{2} b^{7}+380668112993642496 a^{3} b^{7}-23674554904366080 a^{4} b^{7}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{131072\left(30294926136059904 a^{5} b^{7}-223040891969280 a^{6} b^{7}+576376172064000 a^{7} b^{7}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{131072\left(1635980781600 a^{8} b^{7}+3032869276800 a^{9} b^{7}+8351853840 a^{10} b^{7}+3796297200 a^{11} b^{7}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{131072\left(25468769585086464 b^{8}-46367643951078912 a b^{8}+73488037086731520 a^{2} b^{8}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{131072\left(-12411632232552960 a^{3} b^{8}+13190080234763520 a^{4} b^{8}-403001238644928 a^{5} b^{8}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{131072\left(449675387995680 a^{6} b^{8}-1635980781600 a^{7} b^{8}+3817288490400 a^{8} b^{8}+4298748300 a^{9} b^{8}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{131072\left(7307872110 a^{10} b^{8}-2205749914587648 b^{9}+6087033574989312 a b^{9}-2830362252157440 a^{2} b^{9}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{131072\left(3161240677647360 a^{3} b^{9}-239192223842880 a^{4} b^{9}+211792515536448 a^{5} b^{9}-3081641824800 a^{6} b^{9}\right)}{}+
$$

$$
\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]
$$

$$
+\frac{131072\left(3032869276800 a^{7} b^{9}-4298748300 a^{8} b^{9}+9075135300 a^{9} b^{9}+147948773077248 b^{10}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{131072\left(-267452777940480 a b^{10}+385171067635200 a^{2} b^{10}-67636609729920 a^{3} b^{10}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{131072\left(58647685995360 a^{4} b^{10}-1997908688160 a^{5} b^{10}+1511564503680 a^{6} b^{10}-8351853840 a^{7} b^{10}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{131072\left(7307872110 a^{8} b^{10}-7705944829440 b^{11}+20310289142784 a b^{11}-9214702632576 a^{2} b^{11}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
\begin{aligned}
& +\frac{131072\left(9071028833664 a^{3} b^{11}-654569667360 a^{4} b^{11}+463267099008 a^{5} b^{11}-5776974000 a^{6} b^{11}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{131072\left(3796297200 a^{7} b^{11}+310606256896 b^{12}-538587975744 a b^{12}+714494944800 a^{2} b^{12}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{131072\left(-112495612320 a^{3} b^{12}+84112741440 a^{4} b^{12}-2102818536 a^{5} b^{12}+1251677700 a^{6} b^{12}\right)}{[18}+ \\
& {\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]} \\
& +\frac{131072\left(-9588825792 b^{13}+23985898944 a b^{13}-9600101280 a^{2} b^{13}+8492373120 a^{3} b^{13}-423644760 a^{4} b^{13}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{131072\left(254186856 a^{5} b^{13}+222345312 b^{14}-350382240 a b^{14}+427616640 a^{2} b^{14}-45912240 a^{3} b^{14}\right)}{[18}+ \\
& {\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]} \\
& +\frac{131072\left(30260340 a^{4} b^{14}-3745440 b^{15}+8727936 a b^{15}-2450448 a^{2} b^{15}+1947792 a^{3} b^{15}+43248 b^{16}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& \left.+\frac{131072\left(-53550 a b^{16}+58905 a^{2} b^{16}-306 b^{17}+630 a b^{17}+b^{18}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}\right\}- \\
& -\frac{\Gamma\left(\frac{b+2}{2}\right)}{\Gamma\left(\frac{a}{2}\right)}\left\{\frac{1048576\left(48500033587878297600 a+11328021094402621440 a^{2}+21140011005367025664 a^{3}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}\right. \\
& +\frac{1048576\left(2795023106067922944 a^{4}+1574025548791873536 a^{5}+128758187796725760 a^{6}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576\left(33175766006734848 a^{7}+1737630410723328 a^{8}+240371614509312 a^{9}+8050302965760 a^{10}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+ \\
& +\frac{1048576\left(638746221312 a^{11}+13154598912 a^{12}+603267168 a^{13}+6887040 a^{14}+172176 a^{15}+816 a^{16}\right)}{[18}+ \\
& {\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]} \\
& +\frac{1048576\left(9 a^{17}+48500033587878297600 b+83577021037226754048 a^{2} b+8034085366268952576 a^{3} b\right)}{[18}+ \\
& {\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]} \\
& +\frac{1048576\left(13105766738956189696 a^{4} b+918253385961963520 a^{5} b+483223358349369344 a^{6} b\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
\end{aligned}
$$

$$
+\frac{1048576\left(23020491316207616 a^{7} b+5654596258046208 a^{8} b+177925617745920 a^{9} b\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(23543562530048 a^{10} b+465775063040 a^{11} b+35113632736 a^{12} b+392680960 a^{13} b\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(16797360 a^{14} b+79968 a^{15} b+1785 a^{16} b-11328021094402621440 b^{2}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(83577021037226754048 a b^{2}+33618491552919846912 a^{3} b^{2}+1610580577687961600 a^{4} b^{2}\right)}{18}+
$$

$$
\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]
$$

$$
+\frac{1048576\left(2326378986350354432 a^{5} b^{2}+92960637851361280 a^{6} b^{2}+45218555603989504 a^{7} b^{2}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(1285000248576000 a^{8} b^{2}+296035410612480 a^{9} b^{2}+5498064732160 a^{10} b^{2}+683281861696 a^{11} b^{2}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(7361244800 a^{12} b^{2}+516583760 a^{13} b^{2}+2423520 a^{14} b^{2}+94248 a^{15} b^{2}+21140011005367025664 b^{3}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(-8034085366268952576 a b^{3}+33618491552919846912 a^{2} b^{3}+4891283590711992320 a^{4} b^{3}\right)}{18}+
$$

$$
\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]
$$

$$
+\frac{1048576\left(128387637280415744 a^{5} b^{3}+165510896176890880 a^{6} b^{3}+3878969853214720 a^{7} b^{3}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(1734099087578880 a^{8} b^{3}+28871685427200 a^{9} b^{3}+6174643478080 a^{10} b^{3}+62291568640 a^{11} b^{3}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(7178203760 a^{12} b^{3}+32463200 a^{13} b^{3}+2086920 a^{14} b^{3}-2795023106067922944 b^{4}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(13105766738956189696 a b^{4}-1610580577687961600 a^{2} b^{4}+4891283590711992320 a^{3} b^{4}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(309949836535381504 a^{5} b^{4}+4639359573094400 a^{6} b^{4}+5366111189204480 a^{7} b^{4}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(72693320663040 a^{8} b^{4}+29762423312160 a^{9} b^{4}+267366915200 a^{10} b^{4}+52694561360 a^{11} b^{4}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(222520480 a^{12} b^{4}+23535820 a^{13} b^{4}+1574025548791873536 b^{5}-918253385961963520 a b^{5}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(2326378986350354432 a^{2} b^{5}-128387637280415744 a^{3} b^{5}+309949836535381504 a^{4} b^{5}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(9319447558181376 a^{6} b^{5}+78989552345088 a^{7} b^{5}+82270476664992 a^{8} b^{5}+594896924160 a^{9} b^{5}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(222498227952 a^{10} b^{5}+831884256 a^{11} b^{5}+150201324 a^{12} b^{5}-128758187796725760 b^{6}\right)}{7}+
$$

$$
\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]
$$

$$
+\frac{1048576\left(483223358349369344 a b^{6}-92960637851361280 a^{2} b^{6}+165510896176890880 a^{3} b^{6}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(-4639359573094400 a^{4} b^{6}+9319447558181376 a^{5} b^{6}+135601809678720 a^{7} b^{6}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(604067587200 a^{8} b^{6}+567933181200 a^{9} b^{6}+1694579040 a^{10} b^{6}+577697400 a^{11} b^{6}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(33175766006734848 b^{7}-23020491316207616 a b^{7}+45218555603989504 a^{2} b^{7}\right)}{7}+
$$

$$
\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]
$$

$$
+\frac{1048576\left(-3878969853214720 a^{3} b^{7}+5366111189204480 a^{4} b^{7}-78989552345088 a^{5} b^{7}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(135601809678720 a^{6} b^{7}+901508929200 a^{8} b^{7}+1637618400 a^{9} b^{7}+1391975640 a^{10} b^{7}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(-1737630410723328 b^{8}+5654596258046208 a b^{8}-1285000248576000 a^{2} b^{8}\right)}{}+
$$

$$
\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]
$$

$$
+\frac{1048576\left(1734099087578880 a^{3} b^{8}-72693320663040 a^{4} b^{8}+82270476664992 a^{5} b^{8}-604067587200 a^{6} b^{8}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(901508929200 a^{7} b^{8}+2149374150 a^{9} b^{8}+240371614509312 b^{9}-177925617745920 a b^{9}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(296035410612480 a^{2} b^{9}-28871685427200 a^{3} b^{9}+29762423312160 a^{4} b^{9}-594896924160 a^{5} b^{9}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(567933181200 a^{6} b^{9}-1637618400 a^{7} b^{9}+2149374150 a^{8} b^{9}-8050302965760 b^{10}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(23543562530048 a b^{10}-5498064732160 a^{2} b^{10}+6174643478080 a^{3} b^{10}-267366915200 a^{4} b^{10}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(222498227952 a^{5} b^{10}-1694579040 a^{6} b^{10}+1391975640 a^{7} b^{10}+638746221312 b^{11}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(-465775063040 a b^{11}+683281861696 a^{2} b^{11}-62291568640 a^{3} b^{11}+52694561360 a^{4} b^{11}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(-831884256 a^{5} b^{11}+577697400 a^{6} b^{11}-13154598912 b^{12}+35113632736 a b^{12}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(-7361244800 a^{2} b^{12}+7178203760 a^{3} b^{12}-222520480 a^{4} b^{12}+150201324 a^{5} b^{1} 2+603267168 b^{13}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(-392680960 a b^{13}+516583760 a^{2} b^{13}-32463200 a^{3} b^{13}+23535820 a^{4} b^{13}-6887040 b^{14}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
+\frac{1048576\left(16797360 a b^{14}-2423520 a^{2} b^{14}+2086920 a^{3} b^{14}+172176 b^{15}-79968 a b^{15}+94248 a^{2} b^{15}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}+
$$

$$
\left.\left.+\frac{1048576\left(-816 b^{16}+1785 a b^{16}+9 b^{17}\right)}{\left[\prod_{\sigma=0}^{18}\{a-b-2 \sigma\}\right]\left[\prod_{\varsigma=1}^{17}\{a-b+2 \varsigma\}\right]}\right\}\right]
$$

References Références Referencias

1. Andrews, L.C.(1992) ; Special Function of mathematics for Engineers,second Edition, McGraw-Hill Co Inc., New York.
2. Bells, Richard, Wong, Roderick ; Special Functions, A Graduate Text. Cambridge Studies in Advanced Mathematics, 2010.
3. Koepf, Wolfram(1998) ; Hypergeometric Summation, Vieweg, Germany.
4. Mathai, A.M.,Haubold , Hans J.(2008) ; Special Functions for Applied Scientists, Springer, New York.
5. Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O.I.; Integrals and Series Vol. 3: More Special Functions. Nauka, Moscow, 1986. Translated from the Russian by G.G. Gould, Gordon and Breach Science Publishers, New York, Philadelphia, London, Paris, Montreux, Tokyo, Melbourne, 1990.
6. Salahuddin, Khola, R.K,Yadav, S.R ;Development of a Summation Formula in Connection with Hypergeometric and Gamma Function, Global Journal of Science Frontier Re$\operatorname{search}(F), 13(2013), 25-53$.
7. Wang,Z.X,Guo,D.R.(1989) ; Special functions, World Scientific, Singapore.

New Results and Applications on Robust Stability and Tracking of Pseudo-Quadratic Uncertain MIMO Discrete-Time Systems

By Laura Celentano

Università degli Studi di Napoli Federico II, Napoli
Abstract - In this paper new fundamental theorems are stated, which allow to easily determine a first-order majorant system of a pseudo-quadratic uncertain MIMO discrete-time system.

For the above class of systems, some results and systematic methods are provided, which allow to solve, "via majorant system", several analysis problems of robust stability, stabilization and tracking of a generic reference signal with bounded variation in presence of a generic disturbance with bounded variation.

The utility and the efficiency of the main results proposed in this paper are illustrated with three significant examples.
Keywords : pseudo-quadratic mimo uncertain discrete-time systems; majorant system; robust stability; stabilization and tracking.

GJSFR-F Classification : MSC 2010: 11K45, 11 R11

Strictly as per the compliance and regulations of :

© 2013. Laura Celentano. This is a research/review paper, distributed under the terms of the Creative Commons AttributionNoncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

New Results and Applications on Robust Stability and Tracking of Pseudo-Quadratic Uncertain MIMO Discrete-Time Systems

Laura Celentano

$\overline{\text { Abstract - In this paper new fundamental theorems are stated, which allow to easily determine a first-order majorant system of a }}$ pseudo-quadratic uncertain MIMO discrete-time system.

For the above class of systems, some results and systematic methods are provided, which allow to solve, "via majorant system", several analysis problems of robust stability, stabilization and tracking of a generic reference signal with bounded variation in presence of a generic disturbance with bounded variation.

The utility and the efficiency of the main results proposed in this paper are illustrated with three significant examples.
Keywords : pseudo-quadratic mimo uncertain discrete-time systems; majorant system; robust stability; stabilization and tracking.

I. Introduction

There exist many discrete-time systems linear but with uncertain parameters, uncertain pseudo-linear and with bounded coefficients, uncertain pseudo-quadratic and with bounded coefficients, having, in several cases, a bounded nonlinear additional term or that are solicited with non standard inputs, for whose not always an equilibrium state or the steady-state response exists.
Regarding this, consider: the demographic, economic, resource and traffic management, environmental, agricultural, biological, medical, sampled systems, etc.
For a given system of the above mentioned significant class, it is important to obtain an estimate of its evolution in a finite or infinite time, for all the initial conditions belonging to a prefixed compact set and for all the values of uncertainties, or to design a controller in order to practically stabilize it or, finally, to design a controller to force this system to track a sufficiently regular prefixed trajectory with a bounded error.
Despite the numerous scientific papers available in literature (e.g. [1]-[16]), some of which also very recent (e.g. [19], [23]-[25]), the following practical limitations remain: 1. the considered classes of systems are often with little relevant interest to engineers; 2. the considered signals (references, disturbances, etc.) are almost always standard waveforms (polynomial and/or sinusoidal ones); 3. the controllers are often not very robust and/or do not allow satisfying more than a single specification.
In this paper a systematic method, in a more general framework with respect to the ones proposed in literature (see e.g. [1]-[16],[19], [23]-[25]), for the analysis, for the practical stabilization and the tracking of a significant class of pseudo-linear and pseudo-quadratic uncertain MIMO systems, with additional bounded nonlinearities and/or bounded disturbances, is considered. Some of these results are an extension of analogous results for the continuous-time systems provided in [18],[21],[22],[26],[27].

[^6]In detail, in Section II the considered class of pseudo-quadratic uncertain MIMO systems is presented, the definition of majorant system is given and, finally, several analysis and synthesis problems are formulated. In Section III some basic theorems are stated, which allow to determine, by calculating the eigenvalues of appropriate matrices only in correspondence of the extreme values of the uncertain parameters and of the vertices of suitable polytopes of the state space, if the system is pseudo-quadratic, a majorant system of a pseudo-quadratic uncertain MIMO system. In Section IV some methods are proposed to analyze the robust practical stability, via majorant system, of a pseudo-quadratic uncertain MIMO system.
In Section V some theorems are provided, which allow to determine a state feedback control law to stabilize a pseudo-quadratic uncertain MIMO system and to design an integral controller with state reaction, that forces a LTI uncertain MIMO system to track a generic reference signal with bounded variation in presence of a generic disturbance with bounded variation too.
In Section VI the main results proposed in this paper are illustrated with three significant examples.

II. Problem formulation

Consider the following class of nonlinear discrete-time dynamic systems

$$
\begin{align*}
& x_{k+1}=a\left(x_{k}, p, k\right)+A_{0}\left(x_{k}, w_{k}, p, k\right) x_{k}+\left(\sum_{i=1}^{n} A_{i}\left(x_{k}, w_{k}, p, k\right) x_{i k}\right) x_{k}+B\left(x_{k}, p, k\right) u_{k} \tag{1}\\
& y_{k}=C\left(x_{k}, p, k\right) x_{k},
\end{align*}
$$

where: $k \in Z$ is the time; $x \in R^{n}$ is the state; $u \in U \subset R^{h}$, with U compact set, is the control and/or disturbance input; $w \in W \subset R^{l}$, with W compact set, is a possible parametric input; $y \in R^{m}$ is the output; $p \in\left[p^{-}, p^{+}\right] \subset R^{\nu}$ is the vector of uncertain parameters; $A_{i} \in R^{n \times n}, i=0,1, \ldots, n, B \in R^{n \times h}$ and $C \in R^{m \times n}$ are bounded matrices continuous with respect to their arguments, with C of full rank, and multilinear with respect to p and $w ; a \in R^{n}$ is a bounded continuous vector multilinear with respect to p, which models particular nonlinearities of the system.

The following preliminary notations and definitions are introduced:

$$
\begin{equation*}
\|x\|_{P}=\sqrt{x^{T} P x},\|x\|=\|x\|_{I}=\sqrt{x^{T} x}, \quad S_{P, \rho}=\left\{x:\|x\|_{P} \leq \rho\right\}, \quad C_{P, \rho}=\left\{x:\|x\|_{P}=\rho\right\}, \quad \hat{C}_{P, \rho} \supseteq C_{P, \rho}, \tag{2}
\end{equation*}
$$

where $P \in R^{n \times n}$ is a symmetric and positive definite (p.d.) matrix, x^{T} is the transpose of $x \in R^{n}$ and $\hat{C}_{P, \rho}$ is a compact set; $\lambda_{\text {max }}(Q)=\max _{i=1,2, \ldots n}\left\|\lambda_{i}(Q)\right\|$, where $Q \in R^{n \times n}$;

$$
\begin{equation*}
\tau_{\max }(A)=-\frac{1}{\ln \left(\lambda_{\max }(A)\right)}, \quad \text { where } A \in R^{n \times n} . \tag{3}
\end{equation*}
$$

Definition 1. Give the system (1), an hyper-interval $W_{I}=\left[w^{-}, w^{+}\right] \subseteq W$, a $\delta \geq 0$ and a p.d. symmetric matrix $P \in R^{n \times n}$. A positive first-order system $\rho_{k+1}=f\left(\rho_{k}, \delta\right), \rho_{0}=\left\|x_{0}\right\|_{P}, v_{k}=\eta\left(\rho_{k}\right)$, where $\rho_{k}=\left\|x_{k}\right\|_{P}$, such that $\left\|y_{k}\right\| \leq v_{k}, \quad \forall k \geq 0, \forall x_{0} \in R^{n}, \forall w_{k} \in W_{I}, \forall u_{k} \in U:\left\|u_{k}\right\| \leq \delta$ and $\forall p \in\left[p^{-}, p^{+}\right]$, is said to be majorant system of the system (1).

Since a majorant system of a system belonging to the class of uncertain nonlinear systems (1), that obviously includes also the linear uncertain system, is a first-order time-invariant system, this system can be used to easily solve numerous analysis and synthesis problems. E.g. the analysis of practical stability, the analysis of the performances decreasing of a control system, or its impossibility to guarantee given performances in the hypothesis of deterioration and/or faults of its components (fault tolerance), the robust stabilization, the robust tracking.

The aim of the present paper is to establish new fundamental results which easily allow to determine a majorant system of the system (1) and to provide systematic methods, via majorant system, to solve, for brevity, only some main problems between the numerous analysis and synthesis above mentioned ones.

iII. Basic Theorems

To easily determine and analyze a majorant system of the system (1) the following basic theorems are necessary.
Theorem 1. Let $P \in R^{n \times n}$ be a symmetric p.d. matrix, $Q(x, p) \in R^{n \times n}$ be a symmetric s.p.d. matrix, $g(x, p) \in R^{n}$ be a vector, continuous with respect to $x \in R^{n}$ and $p \in \wp \subset R^{v}$, with \wp compact set; then $\forall \rho \geq 0$ it is:

$$
\begin{align*}
& \max _{x \in C_{p, p}, p \in \wp_{\mathcal{P}}} x^{T} Q(x, p) x \leq \max _{x \in C_{p, p}, p \in \wp_{\rho}} \lambda_{\max }\left(Q(x, p) P^{-1}\right) \rho^{2} \leq \max _{x \in \mathcal{C}_{p, p}, p \in \rho} \lambda_{\max }\left(Q(x, p) P^{-1}\right) \rho^{2} \tag{4}\\
& \max _{x \in C_{P, p}, p \in \mathcal{P}} x^{T} g(x, p) \leq \max _{x \in C_{P, p, p \in \mathcal{P}}} \sqrt{g(x, p)^{T} P^{-1} g(x, p)} \rho \leq \max _{x \in C_{P}, p, p \in \mathscr{P}} \sqrt{g(x, p)^{T} P^{-1} g(x, p)} \rho . \tag{5}
\end{align*}
$$

Moreover, if $Q(x, p)$ is linear with respect to x it is

$$
\begin{equation*}
\max _{x \in C_{p, p}, p \in \mathscr{P}} x^{T} Q(x, p) x \leq \max _{x \in C_{P, 1}, p \in \mathscr{\rho}} \lambda_{\max }\left(Q(x, p) P^{-1}\right) \rho^{3} \leq \max _{x \in \mathcal{C}_{P, 1}, p \in \mathcal{\rho}} \lambda_{\max }\left(Q(x, p) P^{-1}\right) \rho^{3}, \tag{6}
\end{equation*}
$$

while if $Q(x, p)$ is quadratic with respect to x it turns out to be

$$
\begin{equation*}
\max _{x \in C_{P, p, p \in \rho}} x^{T} Q(x, p) x \leq \max _{x \in C_{P, p}, p \in \mathcal{P}} \lambda_{\max }\left(Q(x, p) P^{-1}\right) \rho^{4} \leq \max _{x \in \mathcal{C}_{P, 1}, p \in \mathcal{\rho}} \lambda_{\max }\left(Q(x, p) P^{-1}\right) \rho^{4} . \tag{7}
\end{equation*}
$$

More in general, if $Q(x, p)$ is continuous, pseudo-linear with respect to x and with bounded coefficients, i.e. if $Q(x, p)=\sum_{i=1}^{n} Q_{i}(x, p) x_{i}$, with bounded $Q_{i}(x, p)$, then

$$
\begin{align*}
& \max _{x \in C_{\rho, p, p} p \in \mathcal{\rho}} x^{T}\left(\sum_{i=1}^{n} Q_{i}(x, p) x_{i}\right) x \leq \max _{\substack{x \in C_{p, p}, p \in \epsilon_{\mathcal{P}} \\
z \in R^{+}}} \lambda_{\max }\left(\sum_{i=1}^{n} Q_{i}(z, p) x_{i} P^{-1}\right) \rho^{3} \leq \\
& \leq \max _{\substack{x \in \mathcal{C}_{1,1} \\
z \in R^{i}}} \lambda_{\max }\left(\sum_{i=1}^{n} Q_{i}(z, p) x_{i} P^{-1}\right) \rho^{3}, \tag{8}
\end{align*}
$$

whereas if $Q(x, p)$ is continuous, pseudo-quadratic with respect to x and with bounded coefficients, i.e. if $Q(x, p)=\sum_{i=1}^{n} \sum_{j=1}^{n} Q_{i j}(x, p) x_{i} x_{j}$, with bounded $Q_{i j}(x, p)$, then

$$
\begin{align*}
& \max _{x \in C_{p, p}, p \in \mathcal{\rho}} \\
& x^{T}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} Q_{i j}(x, p) x_{i} x_{j}\right) x \leq \max _{\substack{x \in C_{p, p \in \in \rho} \\
z \in R^{\prime \prime}}} \lambda_{\max }\left(\sum_{i=1}^{n} \sum_{j=1}^{n} Q_{i j}(z, p) x_{i} x_{j} P^{-1}\right) \rho^{4} \leq \tag{9}\\
& \leq \max _{\substack{x \in \mathcal{P}_{1}, p \in \rho \\
z \in R^{i}}} \lambda_{\max }\left(\sum_{i=1}^{n} \sum_{j=1}^{n} Q_{i j}(z, p) x_{i} x_{j} P^{-1}\right) \rho^{4} .
\end{align*}
$$

Proof. Note that, if $f(x) \in R$ is a continuous function with respect to $x \in R^{n}$ and $X_{1}, X_{2}, X_{1} \subset X_{2}$, are compact subsets of R^{n}, it is $\max _{x \in X_{1}} f(x) \leq \max _{x \in X_{2}} f(x)$. Moreover, since P is $p . d$., there exists a symmetric nonsingular matrix S such that $P=S^{2}$. Hence, by posing $z=S y$, it is

$$
\begin{align*}
& \max _{x \in C_{p, p}, p \in \mathscr{P}} x^{T} Q(x, p) x \leq \max _{y \in C_{p, p}, x \in C_{p, p}, p \in \mathscr{p}} y^{T} Q(x, p) y=\max _{z \in C_{1, p}, x \in C_{p, p}, p \in \mathscr{P}} z^{T} S^{-1} Q(x, p) S^{-1} z=\max _{z \in C_{1, p}, x \in C_{p, p}, p \in \mathcal{P}} \lambda_{\max }\left(S^{-1} Q(x, p) S^{-1}\right) z^{T} z= \\
& =\max _{x \in C_{P, p}, p \in \mathscr{\rho}} \lambda_{\max }\left(S S^{-1} Q(x, p) S^{-1} S^{-1}\right) \rho^{2}=\max _{x \in C_{P, p}, p \in \rho} \lambda_{\max }\left(Q(x, p) P^{-1}\right) \rho^{2} \leq \max _{x \in \mathcal{C}_{p, \rho}, p \in \rho} \lambda_{\max }\left(Q(x, p) P^{-1}\right) \rho^{2}, \tag{10}
\end{align*}
$$

and so (4). Similarly

$$
\begin{align*}
& \max _{x \in C_{P, p}, p \in \mathcal{P}} x^{T} g(x, p) \leq \max _{y \in C_{P, p}, x \in C_{p, p}, p \in \mathfrak{P}} y^{T} g(x, p)=\max _{z \in C_{1, p}, x \in C_{P, p}, p \in \mathfrak{P}} z^{T} S^{-1} g(x, p) \leq \\
& \leq \max _{z \in C_{1, p}, x \in C_{P, p}, p \in \mathcal{\rho}}\|z\|\left\|S^{-1} g(x, p)\right\|=\max _{x \in C_{P, p}, p \in \mathscr{\rho}} \sqrt{g(x, p)^{T} P^{-1} g(x, p)} \rho \leq \max _{x \in \mathcal{C}_{p, p}, p \in \mathcal{F}_{\mathcal{P}}} \sqrt{g(x, p)^{T} P^{-1} g(x, p)} \rho, \tag{11}
\end{align*}
$$

and hence (5).
Inequalities (6) easily follow from the fact that, if $Q(x, p)$ is linear with respect to x, $\left.Q(x, p)\right|_{x \in C_{P, p}}=\left.Q(x, p)\right|_{x \in C_{P, 1}} \rho$. Inequalities (7), (8), (9) analogously follow.

Remark 1. Theorem 1 can be easily generalized to the case in which $Q(x, p)$ is a homogeneous function of degree v with respect to x.

Remark 2. Clearly, if $Q(x, p)$ and $g(x, p)$ are independent of x, inequalities (4) and (5) hold with the equal sign. Moreover, if $Q(x, p)$ depends on x, it is quite difficult to compute $\max _{x \in C_{p, p}} x^{T} Q(x, p) x$ because $\left.x^{T} Q(x, p) x\right|_{x \in C_{P, \rho}}$ has, in general, different points of relative maximum, of relative minimum and of "inflection"; the second and third members of (4), ((6),(8)), ((7),(9)) allow an easier computation of an upper bound on $\left.x^{T} Q(x, p) x\right|_{x \in C_{p, \rho}}$ proportional to $\rho^{2}, \rho^{3}, \rho^{4}$, respectively, as it will be shown later on. A similar talking is valid if $g(x, p)$ depends on x.

Theorem 2. Let $P \in R^{n \times n}$ be a p.d. symmetrix matrix, $C \in R^{n \times n}$ be a matrix with rank m and $B \in R^{n \times h}$ be a matrix with rank h. Then

$$
\begin{array}{r}
v=\|C x\| \leq \sqrt{\lambda_{\max }\left(C P^{-1} C^{T}\right)} \rho, \quad \forall x \in C_{P, \rho} \\
\|B u\|_{P} \leq \sqrt{\lambda_{\max }\left(B^{T} P B\right)}\|u\|, \quad \forall u \in R^{h} . \tag{13}
\end{array}
$$

Proof. By taking into account that, if F is a real matrix $m \times n$ with rank m, the matrix $F^{T} F$ has $n-m$ null eigenvalues and m positive eigenvalues equal to the ones of $F F^{T}$ and, by posing $z=S x$, where S is a symmetric nonsingular matrix such that $P=S^{2}$, it is

$$
\begin{align*}
& v=\|C x\|=\sqrt{x^{T} C^{T} C x}=\sqrt{z^{T} S^{-1} C^{T} C S^{-1} z} \leq \sqrt{\lambda_{\max }\left(S^{-1} C^{T} C S^{-1}\right)}\|z\|= \tag{14}\\
& =\sqrt{\lambda_{\text {max }}\left(C S^{-1} S^{-1} C^{T}\right)}\|S x\|=\sqrt{\lambda_{\text {max }}\left(C P^{-1} C^{T}\right)} \rho
\end{align*}
$$

and so (12). The proof of (13) easily follows.

Theorem 3. Let $A=\sum_{i_{1}, i_{2}, \ldots, i_{\mu} \in\{0,1\}} A_{i i_{2}, \ldots, i} \pi_{1}^{i_{1}} \pi_{2}^{i_{2} \ldots} \pi_{\mu}^{i_{\mu}} \in R^{n n}$ be a matrix multilinearly depending on the parameters $\left[\begin{array}{llll}\pi_{1} & \pi_{2} & \ldots & \pi_{\mu}\end{array}\right]^{T}=\pi \in \Pi=\left\{\pi \in R^{\mu}: \pi^{-} \leq \pi \leq \pi^{+}\right\}$and let $P \in R^{n \times n}$ be a symmetric p.d. matrix. Then the maximum of $\lambda_{\max }\left(Q P^{-1}\right)$, where $Q=A^{T} P A$, is attained in one of the 2^{μ} vertices of Π.

Proof. Note that for a constant $\pi_{j}, j \neq i$, it is $A=A_{0}+\pi_{i} A_{1}, \pi_{i} \in\left[\pi_{i}^{-}, \pi_{i}^{+}\right]$. Moreover, since for Theorem 1 and Remark 2 it is $\lambda_{\text {max }}\left(Q P^{-1}\right)=\max _{x \in C_{P, 1}} x^{T} Q x$, it turns out to be

$$
\begin{align*}
& \max _{\pi_{i}\left[\pi_{i} i\right.} \pi_{\left.\pi_{i}^{t}\right]} \lambda_{\max }\left(\left(A_{0}+\pi_{i} A_{1}\right)^{T} P\left(A_{0}+\pi_{i} A_{1}\right) P^{-1}\right)=\max _{\pi_{i}\left[\left[\pi_{i}, \pi_{i}^{1}\right], x \in C_{P, 1}\right.} x^{T}\left(\left(A_{0}+\pi_{i} A_{1}\right)^{T} P\left(A_{0}+\pi_{i} A_{1}\right)\right) x= \\
& \pi_{i} \in\left[\pi_{i}, \pi_{i}^{\top}\right], x \in C_{P, 1} \tag{15}\\
& x^{T}\left(A_{1}^{T} P A_{i} \pi_{i}^{2}+\left(A_{0}^{T} P A_{1}+A_{1}^{T} P A_{0}\right) \pi_{i}+A_{0}^{T} P A_{0}\right) x .
\end{align*}
$$

Therefore, said $\hat{\pi}_{i}, \hat{x}$ the point of maximum of $f\left(\pi_{i}, x\right)=\left.x^{T}\left(\left(A_{0}+\pi_{i} A_{1}\right)^{T} P\left(A_{0}+\pi_{i} A_{1}\right)\right) x\right|_{x \in C_{P, 1}, \pi_{i} \in\left[\pi_{i}^{T}, \pi_{i}^{+}\right]}$, it is

$$
\max _{\pi_{i} \in\left[\pi_{i}, \pi_{i}^{+}\right]} \lambda_{\max }\left(\left(A_{0}+\pi_{i} A_{1}\right)^{T} P\left(A_{0}+\pi_{i} A_{1}\right) P^{-1}\right)=\max _{\pi_{i} \in\left[\pi_{i}, \pi_{i}^{t}\right], x \in C_{P_{,}}} x^{T}\left(\left(A_{0}+\pi_{i} A_{1}\right)^{T} P\left(A_{0}+\pi_{i} A_{1}\right)\right) x=
$$

Since $\hat{c}_{2}=\hat{x}^{T} A_{1}^{T} P A_{1} \hat{x} \geq 0$, it is

$$
\begin{equation*}
\max _{\pi_{i}\left[\left[\pi_{i}, \pi_{i}^{+}\right]\right.}\left(\hat{c}_{2} \pi_{i}^{2}+\hat{c}_{1} \pi_{i}+\hat{c}_{0}\right)=\max \left\{\hat{c}_{2}\left(\pi_{i}^{-}\right)^{2}+\hat{c}_{\mathrm{i}} \pi_{i}^{-}+\hat{c}_{0}, \quad \hat{c}_{2}\left(\pi_{i}^{+}\right)^{2}+\hat{c}_{\mathrm{i}} \pi_{i}^{+}+\hat{c}_{0}\right\} . \tag{17}
\end{equation*}
$$

The proof easily follows from (16) and (17).
From Theorem 3 the next Corollary easily follows.
Corollary 1. Let $A=\sum_{i_{1}, i_{2}, \ldots, i_{\mu} \in\{0,1,2\}} A_{i i_{2} \ldots, i,} \pi_{1}^{i_{1}} \pi_{2}^{i_{2}} \ldots \pi_{\mu}^{i_{\mu}} \in R^{n n}$ be a matrix multiquadratic depending on the parameters $\left[\begin{array}{cccc}\pi_{1} & \pi_{2} & \ldots & \pi_{\mu}\end{array}\right]^{T}=\pi \in \Pi=\left\{\pi \in R^{\mu}: \pi^{-} \leq \pi \leq \pi^{+}\right\}$and $P \in R^{n \times n}$ a symmetric $p . d$. matrix. Then an upper bound of the maximum of $\lambda_{\pi \max }\left(Q P^{-1}\right)$, where $Q=A^{T} P A$, is equal to the maximum of $\lambda_{\max }\left(A_{e}^{T} P A_{e} P^{-1}\right)$, attained in one of the $2^{2 \mu}$ vertices of $\Pi \times \Pi$, where A_{e} is obtained from matrix A by substituting the product $\pi_{i} \pi_{\mu+i}$, $i=1,2, \ldots, \mu$, to π_{i}^{2}.

Theorem 3 can be generalized as follows.
Theorem 4. Let A be the matrix

$$
\begin{equation*}
A=\sum_{i_{1}, i_{2}, \ldots, i_{\mu} \in\{0,1\}} A_{i i_{1}, i_{\mu}} g_{1}\left(\pi_{1}\right)^{i_{1}} g_{2}\left(\pi_{2}\right)^{i_{2}} \ldots g_{\mu}\left(\pi_{l}\right)^{i_{\mu}} \in R^{n x n}, \tag{18}
\end{equation*}
$$

in which $\left[\begin{array}{llll}\pi_{1} & \pi_{2} & \ldots & \pi_{\mu}\end{array}\right]^{T}=\pi \in \Pi=\left\{\pi \in R^{\mu}: \pi^{-} \leq \pi \leq \pi^{+}\right\}$and each function $g_{i}, i=1,2, . ., \mu$, is continuous with respect to π_{i}, and let $P \in R^{n \times n}$ be a p.d. symmetric matrix. Then the maximum of $\lambda_{\max }\left(Q P^{-1}\right)$, where $Q=A^{T} P A$, is attained in one of 2^{μ} vertices of Γ, where

$$
\begin{equation*}
\Gamma=\left\{\gamma \in R^{\mu}: \min \left[g_{1} \ldots g_{\mu}\right] \leq \gamma \leq \max \left[g_{1} \ldots g_{\mu}\right]\right\} . \tag{19}
\end{equation*}
$$

Proof. The proof follows from Theorem 3, by making the change of variable $\gamma=g(\pi)=\left[g_{1}\left(\pi_{1}\right) g_{2}\left(\pi_{2}\right) \ldots g_{\mu}\left(\pi_{\mu}\right)\right]$ and by noting that $\max _{\pi \in \Pi} \lambda_{\max }\left(Q(g(\pi)) P^{-1}\right)=\max _{\gamma \in \Gamma} \lambda_{\max }\left(Q(\gamma) P^{-1}\right)$.

Remark 3. For Theorem 3 and Corollary 1 the computation of $\max _{x \in \tilde{C}_{p, p}} \lambda_{\max }\left(Q(x, p) P^{-1}\right)$, if $Q(x, p)$ is linear or quadratic with respect to x, is very easy if $\hat{C}_{P, 1} \supseteq C_{P, 1}$ is an hyper-rectangle (or a polytope decomposable into hyper-rectangles). To this aim, to compute the vertices of $\hat{C}_{P, 1}$, it is easy to prove that the point of contact of the hyper-line orthogonal to the versor $e_{i}, i=1,2, \ldots, n$, of R^{n} and tangent to the hyper-ellipse $C_{P, 1}$ (see Fig. 1) is

$$
\begin{equation*}
p_{i}=\frac{P^{-1} e_{i}}{\sqrt{e_{i}^{T} P^{-1} e_{i}}} \tag{20}
\end{equation*}
$$

Figure 1: Points of contact of the hyper-rectangle circumscribed to $C_{P, 1}$.
Theorem 5. Consider the quadratic discrete-time system

$$
\begin{equation*}
\rho_{k+1}=a_{2} \rho_{k}^{2}+a_{1} \rho_{k}+a_{0}, \quad a_{0} \geq 0, \mathrm{a}_{1} \geq 0, \mathrm{a}_{2} \geq 0, \quad \rho_{0} \geq 0 . \tag{21}
\end{equation*}
$$

If $a_{1}>1$ the system (21) is unstable. If $0<a_{1}<1$ and $\mathrm{a}_{2}=0, \forall \rho_{0} \geq 0$ the system evolves toward the equilibrium point $\rho_{e}=\frac{a_{0}}{1-a_{1}} \quad$ with time constant $\tau=-\frac{1}{\ln a_{1}}$. Finally, if $a_{2}>0,0<a_{1}<1$ and $\left(1-a_{1}\right)^{2}-4 a_{2} a_{0}>0$, said $\rho_{1}, \rho_{2}, \rho_{1}<\rho_{2}$, the roots of the algebraic equation $a_{2} \rho^{2}+\left(a_{1}-1\right) \rho+a_{0}=0, \forall \rho_{0} \in\left[0, \rho_{2}\right)$, the system evolves toward the equilibrium point $\rho_{e}=\rho_{1}$ with time constant of the linearized system equal to $\tau_{l}=-\frac{1}{\ln \alpha_{1}}$, where $\alpha_{1}=a_{1}+2 a_{2} \rho_{e}$.

Proof. If $a_{1}>1$ it is always $\rho_{k+1}>\rho_{k}$ and, hence, the system is unstable. The remaining part of the proof easily follows by making standard manipulations and from Fig. 2.

Figure 2: Graphical illustration of Theorem 5.
Theorem 6. Let $A \in R^{n \times n}$ be a matrix with v real distinct eigenvalues $\lambda_{i}, i=1, \ldots, v$, and with $\mu=\frac{n-v}{2}$ distinct pair of complex conjugate eigenvalues $\lambda_{h \pm}=\alpha_{h} \pm j \omega_{h}, h=1, \ldots, \mu$; moreover, let $u_{i}, i=1, \ldots, v$, and $u_{h \pm}=u_{a h} \pm j u_{b h}, h=1, \ldots, \mu$, be the associated eigenvectors. Then, by denoting with Z^{*} the conjugate transpose of the matrix of the eigenvectors $Z=\left[u_{1} \ldots u_{v} u_{a 1}+j u_{b 1} u_{a 1}-j u_{b 1} \ldots u_{a \mu}+j u_{b \mu} u_{a \mu}-j u_{b \mu}\right]$ and with $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{\nu}, \alpha_{1}+j \omega_{1}, \alpha_{1}-j \omega_{1}, \ldots, \alpha_{\mu}+j \omega_{\mu}, \alpha_{\mu}-j \omega_{\mu}\right)$ the diagonal matrix of the eigenvalues, the matrix

$$
\begin{equation*}
P=\left(Z Z^{*}\right)^{-1}=\left[\sum_{i=1}^{v} u_{i} u_{i}^{T}+2 \sum_{h=1}^{\mu}\left(u_{a h} u_{a h}^{T}+u_{b h} u_{b h}^{T}\right)\right]^{-1} \tag{22}
\end{equation*}
$$

turns out to be always p.d.; moreover it is

$$
\begin{equation*}
\lambda_{\max }\left(Q P^{-1}\right)=\lambda_{\max }^{2}(A) \Rightarrow \tau_{\max }(A)=-\frac{2}{\ln \left(\lambda_{\max }\left(Q P^{-1}\right)\right)}, \tag{23}
\end{equation*}
$$

where $Q=A^{T} P A$.
Proof. As, for hypothesis, the eigenvalues of A are distinct, the matrix of the eigenvectors Z is nonsingular. Hence the matrix $Z Z^{*}$ is p.d. and, therefore, also its inverse P is p.d. . Moreover, since $A=Z \Lambda Z^{-1}$, it is

$$
\begin{equation*}
Q P^{-1}=A^{T} P A P^{-1}=A^{*} P A P^{-1}=\left(Z^{*}\right)^{-1} \Lambda^{*} Z^{*}\left(Z^{*}\right)^{-1} Z^{-1} Z \Lambda Z^{-1} Z Z^{*}=\left(Z^{*}\right)^{-1} Z^{-1} Z \Lambda Z^{-1}=\left(Z^{*}\right)^{-1}\left(\Lambda^{*} \Lambda\right) Z^{*} \tag{24}
\end{equation*}
$$

Hence the eigenvalues of $Q P^{-1}$ are $\lambda_{j}^{*} \lambda_{j}=\left\|\lambda_{j}\right\|^{2}, j=1, \ldots, n$, from which the proof follows.

IV. Stability Analysis

First, consider the linear and time-invariant uncertain MIMO system

$$
\begin{align*}
& x_{k+1}=A(p) x_{k}+B(p) u_{k}, \quad y_{k}=C(p) x_{k}, \quad \text { with } \tag{25}
\end{align*}
$$

$$
\begin{aligned}
& C(p)=\sum_{i_{1}, i_{2}, \ldots, i_{v} \in\{0,1\}} C_{i i_{2}, \ldots, p_{1}} p_{1}^{i_{i}} p_{2}^{i_{2}} \ldots p_{v}^{i_{v}} \in R^{n n n}, p \in\left[p^{-}, p^{+}\right] \subset R^{v} .
\end{aligned}
$$

It is well-known that this system is asymptotically stable if $a=\max _{p \in\left[p^{-}, p^{+}\right]} \lambda_{\max }(A)<1$. If the goal is only to study the asymptotic stability without calculating a, then the Jury criterion to the characteristic polynomial $d(\lambda, p)=\operatorname{det}(\lambda I-A(p))$ can be applied or it is possible to use one of the several methods to establish the definite positivity of the matrix $P(p)$, which is solution of the Lyapunov equation
$A^{T}(p) P(p) A(p)-P(p)=-Q$, with $Q p . d$. As it can be easily realized, both the methods are very onerous because of the strong nonlinearity with respect to the parameters p both of $d(\lambda, p)$ and $P(p)$. Clearly the computation of a is even more onerous.
Let P be a p.d. symmetric matrix and fixed a $\rho_{k} \geq 0, \forall x_{k} \in C_{P, \rho_{k}}$ from the first of (25) for $u_{k}=0$ and from Theorem 1 easily follows that

$$
\begin{equation*}
\rho_{k+1}=\left\|x_{k+1}\right\|_{P}=\left.\sqrt{x_{k}^{T} A^{T}(p) P A(p) x_{k}}\right|_{x_{k} \in C_{p, p k}} \leq a \rho_{k} \Rightarrow \rho_{k} \leq a^{k} \rho_{0}, \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\sqrt{\max _{p \in\left[p^{-}, p^{+}\right]} \lambda_{\max }\left(Q(p) P^{-1}\right)}=\sqrt{\max _{p \in V_{p}} \lambda_{\max }\left(Q(p) P^{-1}\right)}, Q(p)=A^{T}(p) P A(p), \tag{27}
\end{equation*}
$$

in which V_{p} is the set of the 2^{ν} vertices of the hyper-rectangle $\left[p^{-}, p^{+}\right]$.
It is interesting to note that the last of (26) provides an upper bound of the free evolution of the system (25) $\forall p \in\left[p^{-}, p^{+}\right]$. Clearly the goodness of this bound depends on P; a not appropriate matrix P could provide a value of a greater than 1 also when $p^{-}=p^{+}$and the system is asymptotic stable.
If for a given $\hat{p} \in\left[p^{-}, p^{+}\right]$the matrix $A(\hat{p})$ has distinct eigenvalues, condition almost always verified, the relative matrix P given by (22) is always p.d and for (23) it is always that $a=\sqrt{\lambda_{\text {max }}\left(Q(\hat{p}) P^{-1}\right)}=\lambda_{\text {max }}(A(\hat{p}))$, also when $A(\hat{p})$ has not all the eigenvalues with magnitude less than 1.

From this reasoning, from the theorems stated in Section III and from the fact that $\left\|x_{1}+x_{2}\right\|_{P} \leq\left\|x_{1}\right\|_{P}+\left\|x_{2}\right\|_{P}, \forall x_{1}, x_{2} \in R^{n}$, the following theorems easily derive.

Theorem 7. Give a matrix $A(p)=\sum_{i_{1, i_{2}, \ldots, i_{i} \in\{0,1\}}} A_{i i_{2} \ldots i_{i}} p_{1}^{i_{i}} p_{2}^{i_{2} \ldots} p_{v}^{i_{v}^{i}} \in R^{n x n}, \quad p \in \wp \subset R^{v}$, with \wp a compact set. An estimate of the $\max _{p \in \mathscr{\beta}} \lambda_{\max }(A(p))$ can be obtained by covering the set \wp with N hyper-rectangles $\left[p_{i}^{-}, p_{i}^{+}\right]$and by computing the maximum of $\left\{a_{i}: a_{i}=\sqrt{\max _{p \in V_{p}} \lambda_{\text {max }}\left(Q\left(p_{i}\right) P_{i}^{-1}\right)}, Q\left(p_{i}\right)=A^{T}\left(p_{i}\right) P_{i} A\left(p_{i}\right), i=1,2, \ldots, N\right\}$, where $p_{i}=\frac{p_{i}^{-}+p_{i}^{+}}{2}$ or it is a near value, $P_{i}=\left(Z_{i} Z_{i}^{*}\right)^{-1}$, where Z_{i} is the eigenvectors matrix of $A\left(p_{i}\right)$ and $V_{i p}$ is the set of vertices of $\left[p_{i}^{-}, p_{i}^{+}\right]$.

Theorem 8. Suppose there exist a $\hat{p} \in\left[p^{-}, p^{+}\right]$such that the dynamic matrix $A(\hat{p})$ of the multivariable uncertain system (25) has distinct eigenvalues; said $P=\left(Z Z^{*}\right)^{-1}$, where Z is the eigenvectors matrix of $A(\hat{p})$, a majorant system of the system (25) is

$$
\begin{equation*}
\rho_{k+1}=a \rho_{k}+b \delta, \quad v_{k}=c \rho_{k}, \tag{28}
\end{equation*}
$$

in \quad which: $\quad \rho_{k}=\left\|x_{k}\right\|_{P}, \quad \delta \geq\left\|u_{k}\right\|, \quad v_{k}=\left\|y_{k}\right\|, \quad a=\sqrt{\max _{p \in V_{p}} \lambda_{\max }\left(Q(p) P^{-1}\right)}, Q(p)=A^{T}(p) P A(p)$, $b=\sqrt{\max _{p \in V_{p}} \lambda_{\max }\left(B^{T}(p) P B(p)\right)}, c=\sqrt{\max _{p \in V_{p}} \lambda_{\max }\left(C(p) P^{-1} C^{T}(p)\right)}$, where V_{p} is the set of the 2^{v} vertices of the hyper-rectangle $\left[p^{-}, p^{+}\right]$.

Remark 4. By using the theorems stated in Section III, Theorem 8 can be easily extended also to the case in which the system (25) is pseudo-linear, i.e. to the case in which the matrices A, B, C depend also on x_{k} and k and they are bounded.

Now consider the quadratic uncertain MIMO system

$$
\begin{align*}
& x_{k+1}=A_{0}(p) x_{k}+\left(\sum_{i=1}^{n} A_{i}(p) x_{i k}\right) x_{k}+B(p) u_{k} \tag{29}\\
& y_{k}=C(p) x_{k},
\end{align*}
$$

where $A_{i}(p), i=0,1, \ldots, n, B(p), C(p)$ are multilinear functions of $p \in\left[p^{-}, p^{+}\right]$. The following theorem holds.
Theorem 9. Suppose that there exists a $\hat{p} \in\left[p^{-}, p^{+}\right]$such that the matrix $A_{0}(\hat{p})$ in (29) has distinct eigenvalues; by choosing $P=\left(Z Z^{*}\right)^{-1}$, where Z is the eigenvectors matrix of $A_{0}(\hat{p})$, a majorant system of the system (29) turns out to be

$$
\begin{equation*}
\rho_{k+1}=a_{1} \rho_{k}+a_{2} \rho_{k}^{2}+b \delta, \quad v_{k}=c \rho_{k}, \tag{30}
\end{equation*}
$$

where: $\quad \rho_{k}=\left\|x_{k}\right\|_{P}, \quad \delta \geq\left\|u_{k}\right\|, \quad v_{k}=\left\|y_{k}\right\|, \quad a_{1}=\sqrt{\max _{p \in V_{p}} \lambda_{\max }\left(Q_{1}(p) P^{-1}\right)}, Q_{1}(p)=A_{0}^{T}(p) P A_{0}(p)$, $a_{2}=\sqrt{\max _{p \in V_{p}, x V_{X}} \lambda_{\max }\left(Q_{2}(p, x) P^{-1}\right)}, \quad Q_{2}(p, x)=\left(\sum_{i=1}^{n} A_{i}^{T}(p) x_{i}\right) P\left(\sum_{i=1}^{n} A_{i}(p) x_{i}\right), \quad b=\sqrt{\max _{p \in V_{p}} \lambda_{\max }\left(B^{T}(p) P B(p)\right)}$, $c=\sqrt{\max _{p \in V_{p}} \lambda_{\max }\left(C(p) P^{-1} C^{T}(p)\right)}, V_{p}$ is the set of the 2^{ν} vertices of the hyper-rectangle $\left[p^{-}, p^{+}\right]$and V_{x} is the set of the 2^{n} vertices of the hyper-rectangle $\left[x^{-}, x^{+}\right]$circumscribed to the hyper-circle $C_{P, 1}$.
Proof. The proof easily follows from Theorems 1, 2, 3.
Remark 5. By using the results stated in Section III, Theorems 9 can be easily extended also to the case in which the system (29) is pseudo-quadratic, i.e. to the case in which the matrices A_{i}, B, C depends also on x_{k} and k and they are bounded.
Remark 6. Give the system $x_{k+1}=f\left(x_{k}, p\right)$, with $f(0, p)=0$, being

$$
\begin{align*}
& x_{k+1}=\partial f /\left.\partial x_{k}\right|_{x_{k}=0} x_{k}+1 / 2\left[\left.\left.x_{k}^{T}\left\{\partial^{2} f_{1} / \partial x_{i k} \partial x_{j k}\right\}\right|_{x_{k}=\xi} x_{k} \ldots x_{k}^{T}\left\{\partial^{2} f_{n} / \partial x_{i k} \partial x_{j k}\right\}\right|_{x_{k}=v_{k}} x_{k}\right]^{T}= \tag{31}\\
& =A_{0}(p) x_{k}+\left(\sum_{i=1}^{n} A_{i}\left(w_{k}, p\right) x_{i k}\right) x_{k}, 0 \leq w_{k} \leq x_{k},
\end{align*}
$$

if the second order partial derivatives of f are bounded then, by using the stated theorems, it is easy and systematic to estimate a region of asymptotic stability (RAS) of the origin and, moreover, to estimate the degree of linearity of the system by comparing a_{1} to a_{2} of a related majorant system.

V. Robust Stabilization and Tracking of a Pseudo-Quadratic
 Uncertain Mimo System

The problem of stabilization and tracking of an uncertain discrete-time system is very complex and, in some cases, it is impossible to solve, above all when the interval of uncertainties is very wide, unless an identification method of the parameters is used. It is sufficient to consider, e.g., the system $x_{k+1}=a x_{k}+u_{k}$, with a uncertain parameter belonging to an interval of amplitude greater than 2. By considering bounded enough uncertainties, in many cases, the following results are very useful.

Theorem 10. Give the system (29), suppose that the state is measurable and that there exists a $\hat{p} \in\left[p^{-}, p^{+}\right]$ such that the couple $\left(A_{0}(\hat{p}), B(\hat{p})\right)$ is reachable. Said $\bar{\Lambda}=\left\{\bar{\lambda}_{1}, \bar{\lambda}_{2}, \ldots, \bar{\lambda}_{n}\right\}$ a symmetric set of n distinct complex numbers with $\lambda_{\text {max }}\left(\lambda_{i}\right) \leq 1$, a possible control law to stabilize or to increase the RAS of the system (29) is the following

$$
\begin{equation*}
u_{k}=-K_{0} x_{k}-\left(\sum_{i=1}^{n} K_{i} x_{i k}\right) x_{k}, \tag{32}
\end{equation*}
$$

where K_{0} is such that $\operatorname{eig}\left(A_{0}(\hat{p})-B(\hat{p}) K_{0}\right)=r \bar{\Lambda}, r \in[0,1)$ and K_{i}, with $i=1,2, \ldots, n$, is such that to minimize $\left\|A_{i}(\hat{p})-B(\hat{p}) K_{i}\right\|_{P}$, where $P=\left(Z Z^{*}\right)^{-1}$, in which Z is the eigenvectors matrix of $A_{0}(\hat{p})-B(\hat{p}) K_{0}$.

Remark 7. If $\operatorname{rank}(B(\hat{p}))>1$, by posing $K 0=K_{0}, A c=A_{0}(\hat{p}), B c=B(\hat{p}), L=r \bar{\Lambda}$, the matrix K_{0} can be computed by using the Matlab command $K 0=\operatorname{place}(A c, B c, L)$, based on the algorithm in [3], that uses the extra degrees of freedom to find a solution that minimizes the sensitivity of the closed-loop poles to perturbation in $A_{0}(\hat{p})$ or $B(\hat{p})$.
Instead, by posing $A i=A_{i}(\hat{p}), K i=K_{i}$, the matrices $K_{i}, i=1,2, \ldots, n$, can be computed with the Matlab commands: $S=P^{\wedge} .5 ; \operatorname{Ki}=\operatorname{pinv}\left(S^{*} B c, S^{*} A i\right)$.
Finally the value of r can be used to reduce both a_{1} and a_{2}, or to maximize $\left(1-a_{1}\right) / a_{2}$.
Consider now the LTI uncertain MIMO plant described by

$$
\begin{equation*}
x_{k+1}=A(p) x_{k}+B(p) u_{k}+E(p) d_{k}, \quad y_{k}=C(p) x_{k}+D(p) d_{k}, \tag{33}
\end{equation*}
$$

where: $x_{k} \in R^{n}$ is the state, $u_{k} \in R^{r}$ is the control signal, $d_{k} \in R^{l}$ is the disturbance, $y_{k} \in R^{m}$ is the output, $A(p), B(p), E(p), C(p), D(p)$ are matrices of suitable dimensions, which are multilinear functions of the parameter vector $p \in \wp$. Suppose that $\wp=\left\{p: p \in\left[p^{-}, p^{+}\right]\right\} \subset R^{\nu}$ is an hyper-rectangle and that the following reachable condition

$$
\operatorname{rank}\left[\begin{array}{llll}
B(\hat{p}) & A(\hat{p}) B(\hat{p}) & \ldots & A^{n-1}(\hat{p}) B(\hat{p}) \tag{34}
\end{array}\right]=n
$$

is satisfied for at least a $\hat{p} \in \wp$.
In the following, for simplicity of notations, the dependency of $A(p), B(p), E(p), C(p), D(p)$ on p will be omitted.

A main goal is :

1) to state new results to estimate, $\forall p \in \wp$ and for an assigned controller with integral (I) action of the system (33), the maximum time constant and the maximum tracking error of a generic reference signal r_{k}, with bounded variation $\delta r_{k}=r_{k}-r_{k-1}$, in presence of a generic disturbance d_{k} with bounded variation $\delta d_{k}=d_{k}-d_{k-1}$ too;
2) to design, if possible, a LTI controller such that to force the uncertain MIMO system (33) to track, with prefixed maximum time constant and maximum error, a generic reference signal r_{k}, with bounded variation, in presence of a generic disturbance d_{k} with bounded variation, $\forall p \in \wp$.
Regarding this, it is important to note that a relevant class of reference signals r_{k} with generic behavior but with bounded variation is very recurring in the practice and easily feasible by using digital technologies (see Fig. 3).

Figure 3 : A possible reference signal r_{k} with its bounded variation δr_{k}.
Remark 8. Note that, nowadays, the reference signal of a control system (e.g. manufacturing systems, ...) is in general a non standard (not polynomial and/or cisoidal) signal whose variation is the desired "working velocity" (clearly finite, even if the planners and the builders make a great effort to make it as higher as it is possible).
The problems 1) and 2), not suitably solved in literature ([1]-[16],[19], [23]-[25]), are very important from a theoretical and practical point of view.
Among the several controllers available in literature, for brevity, in the following it will be considered only the well-known state feedback control scheme with an I action of Fig. 4.

Figure 4 : State feedback control scheme with an I control action.

As regards suppose that there exists at least a $\hat{p} \in \wp$ such that, in addition to (34), also the following condition is satisfied

$$
\operatorname{rank}\left[\begin{array}{cc}
I-A & B \tag{35}\\
C & 0
\end{array}\right]=n+m .
$$

From the control scheme of Fig. 4 it easily derives that:

$$
\begin{align*}
& x_{k+1}=A x_{k}+B u_{k}+E d_{k}, \quad u=K_{l} z_{k}+K_{R} x_{k}, \quad e_{k}=r_{k}-C x_{k}-D d_{k} \tag{36}\\
& z_{k+1}=z_{k}+r_{k}-y_{k}=z_{k}+r_{k}-C x_{k}-D d_{k},
\end{align*}
$$

from which:
where:

$$
\begin{align*}
& A_{c}=\left[\begin{array}{cc}
A+B K_{R} & B K_{I} \\
-C & I
\end{array}\right], \quad B_{c}=\left[\begin{array}{l}
0 \\
I
\end{array}\right], \quad E_{c}=\left[\begin{array}{c}
E \\
-D
\end{array}\right], \\
& C_{c}=\left[\begin{array}{ll}
-C & 0
\end{array}\right], \quad \xi=\left[\begin{array}{l}
x \\
z
\end{array}\right] . \tag{38}
\end{align*}
$$

In order to solve the problems 1) and 2) the following preliminary important result is necessary.
Theorem 11. The control system (37) can be described also by:

$$
\zeta_{k+1}=A_{c} \zeta_{k}+B_{c} \delta r_{k+1}+E_{c} \delta d_{k+1}, \quad e_{k}=H_{c} \zeta_{k}, \quad H_{c}=\left[\begin{array}{ll}
0 & I \tag{39}
\end{array}\right],
$$

or equivalently by

$$
\begin{equation*}
C_{c}\left(z I-A_{c}\right)^{-1}\left[B_{c} E_{c}\right]+[I-D]=H_{c}\left(z I-A_{c}\right)^{-1}\left[B_{c} E_{c}\right](z-1), \tag{40}
\end{equation*}
$$

where $\delta r_{k+1}=r_{k+1}-r_{k}, \delta d_{k+1}=d_{k+1}-d_{k}, \quad e_{k}=r_{k}-y_{k}$ is the tracking error and I is the identity matrix of appropriate order.
Proof. Posed

$$
\left(z I-A_{c}\right)^{-1}=\left[\begin{array}{cc}
F_{1} & F_{2} \tag{41}\\
C & (z-1) I
\end{array}\right]^{-1}=\left[\begin{array}{ll}
G_{1} & G_{2} \\
G_{3} & G_{4}
\end{array}\right],
$$

by using a known formula of the inverse of a partitioned matrix (see e.g. [17]), it is easy to prove that

$$
\begin{align*}
& G_{1}=\left(F_{1}-\frac{F_{2} C}{z-1}\right)^{-1}, \quad G_{2}=\left(F_{1}-\frac{F_{2} C}{z-1}\right)^{-1} \frac{F_{2}}{z-1}, \tag{42}\\
& G_{3}=-\frac{C}{z-1}\left(F_{1}-\frac{F_{2} C}{z-1}\right)^{-1}, \quad G_{4}=\frac{1}{z-1}\left(I-C\left(F_{1}-\frac{F_{2} C}{z-1}\right)^{-1} \frac{F_{2}}{z-1}\right) .
\end{align*}
$$

From (38), from the last of (39) and by using (42), after tedious steps, (40) follows and hence the proof.

Remark 9. Note that

$$
A_{c}=\left[\begin{array}{cc}
A+B K_{R} & B K_{I} \tag{43}\\
-C & I
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
-C & I
\end{array}\right]-\left[\begin{array}{c}
B \\
0
\end{array}\right]\left[\begin{array}{ll}
-K_{R} & -K_{I}
\end{array}\right]=A_{0}-B_{0} K .
$$

Therefore, if there exists a $\hat{p} \in \wp$ such that (34) and (35) are satisfied, the eigenvalues of A_{c} can be arbitrarily assigned.

Remark 10. Theorem 11 is very significant because it allows to evaluate or estimate, via majorant system, the tracking error e_{k}.
Now the following main result, concerning the robust tracking, can be stated.
Theorem 12. Let K_{l}, K_{R} be two matrices such that the matrix A_{c}, for $p=\hat{p}$, has distinct eigenvalues with magnitudes less than one. Then a majorant system of the system (39) with respect to the norm $\|\zeta\|_{P}$ with $P=\left(Z Z^{*}\right)^{-1}$, where Z is the eigenvectors matrix of A_{c} for $p=\hat{p}$, is

$$
\begin{equation*}
\rho_{k+1}=a_{c} \rho_{k}+b_{c} \max \left\|\delta r_{k+1}\right\|+e_{c} \max \left\|\delta d_{k+1}\right\|, \quad\left\|e_{k}\right\|=h_{c} \rho_{k}, \tag{44}
\end{equation*}
$$

in which: $\quad a_{c}=\sqrt{\max _{p \in V_{p}} \lambda_{\max }\left(Q(p) P^{-1}\right)}, Q(p)=A_{c}^{T}(p) P A^{T}(p), \quad b_{c}=\sqrt{\max _{p \in V_{p}} \lambda_{\max }\left(B_{c}^{T}(p) P B(p)\right)}$, $e_{c}=\sqrt{\max _{p \in V_{p}} \lambda_{\max }\left(E_{c}^{T}(p) P E_{c}(p)\right)}, h_{c}=\sqrt{\max _{p \in V_{p}} \lambda_{\max }\left(H_{c}(p) P^{-1} H_{c}^{T}(p)\right)}$, being V_{p} the set of the 2^{v} vertices of the hyper-rectangle $\left[p_{-}, p_{+}\right]$.
Proof. The proof is standard.
Remark 11. Note that, if $\wp=\hat{p}$, then the time constant of the majorant system $\tau=-1 / \ln a_{c}$ is positive and coincides, for Theorem 6, with the maximum time constant of the control system. Moreover, "at steadystate", the tracking error satisfies relation

$$
\begin{equation*}
\left\|e_{k}\right\| \leq \frac{h_{c} b_{c}}{1-a_{c}} \max \left\|\delta r_{k+1}\right\|+\frac{h_{c} e_{c}}{1-a_{c}} \max \left\|\delta d_{k+1}\right\| . \tag{45}
\end{equation*}
$$

Remark 12. Clearly, if the initial state of the control system is not null and/or r_{k} and/or d_{k} are "discontinuous" in zero, the tracking error e_{k} has an additional term, whose practical duration depends on the time constant τ of the majorant system.

VI. Examples

The following examples show the great utility and efficiency of the results stated in the previous sections.
Example 1. Consider the system

$$
\begin{align*}
& x_{k+1}=\left(A_{0}+A_{1} p_{1}+A_{2} p_{2}+A_{12} p_{1} p_{2}+A_{11} p_{1}^{2}\right) x_{k}+\left(B_{0}+p_{1} \sin x_{1 k} B_{1}\right) u_{k}, \quad y_{k}=C x_{k}, \text { where } \\
& A_{0}=\left[\begin{array}{cc}
0.6677 & 0.3864 \\
-0.2338 & 0.6265
\end{array}\right], A_{1}=\left[\begin{array}{cc}
0.1259 & -0.1492 \\
0.1623 & 0.1654
\end{array}\right], A_{2}=\left[\begin{array}{cc}
0.0529 & -0.0886 \\
-0.1610 & 0.0188
\end{array}\right], A_{12}=\left[\begin{array}{cc}
0.0915 & -0.0685 \\
0.0930 & 0.0941
\end{array}\right], \tag{46}
\end{align*}
$$

$$
A_{11}=\left[\begin{array}{cc}
0.0433 & 0.1000 \\
-0.0406 & -0.1035
\end{array}\right], B_{0}=\left[\begin{array}{c}
0.0187 \\
0.1801
\end{array}\right], B_{1}=\left[\begin{array}{c}
-0.0112 \\
0.1080
\end{array}\right], C=\left[\begin{array}{ll}
1 & 0
\end{array}\right], p_{1} \in\left[\begin{array}{ll}
0.9 & 1.1
\end{array}\right], p_{2} \in\left[\begin{array}{ll}
0.9 & 1.1
\end{array}\right] .
$$

By posing $\hat{p}_{1}=1, \hat{p}_{2}=1$ and by using Theorem 6 with $A=A(\hat{p})=A_{0}+A_{1}+A_{2}+A_{12}+A_{11}$, it is

$$
P=\left[\begin{array}{ll}
1.3373 & 0.7606 \tag{47}\\
0.7606 & 1.4895
\end{array}\right]
$$

By using this P, Theorem 8 and Remark 4, a majorant system of the system (46) turns out to be:

$$
\begin{equation*}
\rho_{k+1}=a \rho_{k}+b \delta, \quad v_{k}=c \rho_{k}, \tag{48}
\end{equation*}
$$

where, for Theorem 3, Corollary 1 and Theorem 4, it is:

$$
\begin{align*}
& a=\sqrt{\max _{\substack{\pi_{1}=0.01,1.1 \\
\pi_{1} \\
\pi_{3}=0.0 .1 .1 .1}} \lambda_{\max }\left(A^{T}(\pi) P A(\pi) P^{-1}\right)}, \quad A(\pi)=A_{0}+A_{1} \pi_{1}+A_{2} \pi_{2}+A_{12} \pi_{1} \pi_{2}+A_{11} \pi_{1} \pi_{3} \\
& b=\sqrt{\max _{\substack{\gamma_{1}=0.1,1 \\
\gamma_{2}=-1,1}} B^{T}(\gamma) B(\gamma)}, \quad B=B_{0}+\gamma_{1} \gamma_{2} B_{1} \tag{49}\\
& c=\sqrt{C P^{-1} C} \text {; }
\end{align*}
$$

hence $\rho_{k+1}=0.9574 \rho_{k}+0.3688 \delta, \quad v_{k}=1.0266 \rho_{k}$.
From (48) it follows that $\left|y_{k}\right| \leq \frac{c b}{1-a} \delta+c a^{k}\left(\rho_{o}-\frac{b}{1-a} \delta\right), \quad \forall x_{0}:\left\|x_{0}\right\|_{P} \leq \rho_{0}$ and $\forall u_{k}:\left|u_{k}\right| \leq \delta$; hence the system (46) is externally asymptotically stable and for $u_{k}=0$ also internally asymptotically stable.

Note that if $u_{k}=0$ the system (46) is linear and time invariant. The characteristic polynomial of $A(p)=A_{0}+A_{1} p_{1}+A_{2} p_{2}+A_{12} p_{1} p_{2}+A_{11} p_{1}^{2}$ is of the type
$d(\lambda, p)=\operatorname{det}(\lambda I-A(p))=\lambda^{2}+\left(\alpha_{0}+\alpha_{1} p_{1}+\alpha_{2} p_{2}+\alpha_{3} p_{1} p_{2}+\alpha_{4} p_{1}^{2}\right) \lambda+$
$+\left(\beta_{0}+\beta_{1} p_{1}+\beta_{2} p_{2}+\beta_{3} p_{1} p_{2}+\beta_{4} p_{1}^{2}+\beta_{5} p_{2}^{2}+\beta_{6} p_{1}^{2} p_{2}+\beta_{7} p_{1} p_{2}^{2}+\beta_{8} p_{1}^{3}+\beta_{9} p_{1}^{2} p_{2}^{2}+\beta_{10} p_{1}^{3} p_{2}+\beta_{11} p_{1}^{4}\right) ;$
therefore, it is very onerous both to establish the asymptotic stability of $x_{k+1}=A(p) x_{k}$ and to determine $a=\max _{p \in\left[p^{p}, p^{+}\right]} \lambda_{\max }(A(p)$). Numerically it is $a=0.9315$, while by using the proposed method, very efficient (see Theorem 3 and Corollary 1), an upper bound of a turns out to be $a=0.9574$. By using Corollary 1 and Theorem 7 with four rectangles, an upper bound of a turns out to be $a=0.9458$.

Example 2. Consider the system

$$
\begin{align*}
& y_{k+1}=\left(p_{1} a_{11}+p_{2} a_{12}\right) y_{k}+\left(p_{1} a_{21}+p_{2} a_{22}\right) y_{k-1}+g_{11}\left(y_{k}, y_{k-1}, p_{1}, p_{2}, k\right) y_{k}^{2}+g_{12}\left(y_{k}, y_{k-1}, p_{1}, p_{2}, k\right) y_{k} y_{k-1}+ \tag{50}\\
& +g_{22}\left(y_{k}, y_{k-1}, p_{1}, p_{2}, k\right) y_{k-1}^{2}+\left(b_{0}+p_{1} b_{1}\right) u_{k},
\end{align*}
$$

where: $a_{11}=-0.730, a_{12}=-0.490, a_{21}=1.310, a_{22}=0.870, b_{0}=0.200, b_{1}=0.050$;
$p_{1} \in\left[\begin{array}{ll}0.9, & 1.1\end{array}\right], p_{2} \in\left[\begin{array}{ll}0.8, & 1.2\end{array}\right], g_{11} \in\left[\begin{array}{ll}0.08, & 0.12\end{array}\right], g_{12} \in\left[\begin{array}{ll}0.07, & 0.13\end{array}\right], g_{22} \in\left[\begin{array}{ll}-0.12, & -0.08\end{array}\right]$.
By posing $x_{1 k}=y_{k}, x_{2 k}=y_{k-1}, \gamma_{1}=g_{11}, \gamma_{2}=g_{12}, \gamma_{3}=g_{22}$, system (50) can be put in the form

$$
\begin{align*}
& x_{k+1}=\left[\begin{array}{cc}
0 & 1 \\
p_{1} a_{21}+p_{2} a_{22} & p_{1} a_{11}+p_{2} a_{12}
\end{array}\right] x_{k}+\left(\left[\begin{array}{cc}
0 & 1 \\
\gamma_{1} & \gamma_{2} / 2
\end{array}\right] x_{1 k}+\left[\begin{array}{cc}
0 & 1 \\
\gamma_{2} / 2 & \gamma_{3}
\end{array}\right] x_{2 k}\right) x_{k}+\left[\begin{array}{c}
0 \\
b_{0}+b_{1} p_{1}
\end{array}\right] u_{k} \tag{51}\\
& y_{k}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x_{k} .
\end{align*}
$$

By applying Theorem 9 with $\hat{p}_{1}=1, \hat{p}_{2}=1$, a majorant system of the system (50) turns out to be

$$
\begin{equation*}
\rho_{k+1}=1.749 \rho_{k}+1.413 \rho_{k}^{2}+1.504 \delta, \quad v_{k}=1.0484 \rho_{k} . \tag{52}
\end{equation*}
$$

This system is clearly unstable $\forall \delta \geq 0$, since $a_{1}=1.749>1$ (see Theorem 5).
By considering the closed-loop system of (51) with the control law

$$
u_{k}=-\left[\begin{array}{ll}
-3.9075 & 5.7213
\end{array}\right] x_{k}-\left(\left[\begin{array}{ll}
0.400 & 0.200
\end{array}\right] x_{1 k}+\left[\begin{array}{ll}
0.200 & -0.400 \tag{53}
\end{array}\right] x_{2 k}\right) x_{k}+v_{k},
$$

obtained by applying Theorem 10 with $\hat{p}_{1}=1, \hat{p}_{2}=1$, $\hat{\gamma}_{1}=0.1, \hat{\gamma}_{2}=0.1, \hat{\gamma}_{3}=-0.1, r \bar{\Lambda}=\{0.3749+j 0.3203,0.3749-j 0.3203\}$, a majorant system of the closed-loop system is

$$
\begin{equation*}
\rho_{k+1}=0.8046 \rho_{k}+0.1488 \rho_{k}^{2}+0.6276 \delta, \quad v_{k}=0.6254 \rho_{k}, \tag{54}
\end{equation*}
$$

where

$$
\rho=\|x\|_{P}, P=\left[\begin{array}{cc}
1.4728 & -2.2708 \tag{55}\\
-2.2708 & 6.0579
\end{array}\right] .
$$

From the first of (54) and from Theorem 5 it can be deducted that, whatever the values of uncertainties are, if $v_{k}=0 \Rightarrow \delta=0, \forall x_{0}:\left\|x_{0}\right\|_{P}<1.3135$, it is $\left\|x_{k}\right\|_{P}<\left\|x_{0}\right\|_{P}, \forall k>0$, and $\lim _{k \rightarrow \infty} x_{k}=0$ (see Fig 5a). Moreover the time constant of the linearized of the majorant system (54) turns out to be $\tau=4.5995$.
Always from the first of (54) and from Theorem 5 it can be deducted that, for any values of uncertainties, $\forall v_{k}:\left|v_{k}\right| \leq 0.09$ and $\forall x_{0}:\left\|x_{0}\right\|_{P} \leq 0.4296, x_{k}$ remains always in the ellipse $C_{P, 0.4296}$, while $\forall v_{k}:\left|v_{k}\right| \leq 0.09$ and $\forall x_{0}:\left\|x_{0}\right\|_{P} \in(0.4296, \quad 0.8839)$, it is $\left\|x_{k}\right\|_{P}<\left\|x_{0}\right\|_{P}, \forall k>0$ and for k big enough x_{k} goes in the ellipse $C_{P, 0.4296}$ (see Fig 5b).

Moreover the time constant of the linearized of the majorant system (54) turns out to be $\tau=14.2978$.

Figure 5a: RAS for $v_{k}=0$.

Figure 5b : Practical RAS for $v_{k}=0$.

Example 3. Consider the control system of the traffic of the road network in Fig. 6. By denoting with $x_{i k}$ the distance of the vehicle $i(i=1,2)$ from the next one $i+1$ at the instant $k T$, where T is the sampling time,

with $u_{i k}$ the stretch of road that the vehicle $i(i=1,2)$ must cover in the interval $[k T,(k+1) T]$ and with d_{k} the stretch of road that the head vehicle (number 3 in Fig. 6) will run in the interval $[k T,(k+1) T]$, it is:

$$
\begin{equation*}
x_{1 k+1}=x_{1 k}-\left(1+p_{1}\right) u_{1 k}+\left(1+p_{2}\right) u_{2 k}, \quad x_{2 k+1}=x_{2 k}-\left(1+p_{2}\right) u_{2 k}+d_{k} \tag{56}
\end{equation*}
$$

where p_{1}, p_{2} are the relative errors of actuation. From (56) it is:

$$
\begin{equation*}
x_{k+1}=A x_{k}+B(p) u_{k}+E d_{k}, \quad y_{k}=C_{k} x_{k} \tag{57}
\end{equation*}
$$

where:

$$
A=\left[\begin{array}{ll}
1 & 0 \tag{58}\\
0 & 1
\end{array}\right], \quad B(p)=\left[\begin{array}{rr}
-1 & 1 \\
0 & -1
\end{array}\right]+\left[\begin{array}{rr}
-1 & 0 \\
0 & 0
\end{array}\right] p_{1}+\left[\begin{array}{rr}
0 & 1 \\
0 & -1
\end{array}\right] p_{2}, \quad E=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

An easier model is the one in which for the vehicle number 1 the signal $u_{2 k}$ is a disturbance, i.e. in the hypothesis of a decentralized control. In this case it is:

$$
\begin{equation*}
x_{i k+1}=x_{i k}-\left(1+p_{i}\right) u_{i k}+d_{i k}, \quad i=1,2, \quad d_{1 k}=u_{2 k}, \quad d_{2 k}=d_{k}, \tag{59}
\end{equation*}
$$

By using the decentralized control law

$$
\begin{equation*}
z_{i k+1}=z_{i k}+\left(r_{i k}-y_{i k}\right), \quad u_{i k}=-0.5429 z_{i k}+1.2929 y_{i k}, \quad i=1,2 \tag{60}
\end{equation*}
$$

obtained such that the eigenvalues of $A_{i c}$ for $\hat{p}_{1}=\hat{p}_{2}=0$ are $0.5 e^{ \pm \frac{\pi}{4}}$, in the hypothesis that $p_{1} \in[-0.05,0.05], p_{2} \in[-0.05,0.05]$, upper bounds of the tracking errors can be determined by using the majorant systems

$$
\begin{equation*}
\rho_{i k+1}=0.5760 \rho_{i k}+2.6085 \max \left|\delta r_{i k+1}\right|+2.4843\left|\delta d_{i k+1}\right|, \quad\left|e_{i k}\right|=1.1385 \rho_{i k}, \quad i=1,2 \tag{61}
\end{equation*}
$$

computed with Theorem 12.
In Fig. 7 the simulation results of the controlled road network, in the hypothesis of $p_{1}=0.05, p_{2}=-0.05, r_{1 k}=10 \cdot 1_{k}, r_{2 k}=20 \cdot 1_{k}, d_{k}=\left(20+2 \sin \frac{k}{10}-2 \cos \frac{k}{20}\right) \cdot 1_{k}, \zeta_{0}=0$, are shown. After the transient phase, due to the initial "discontinuous" of $r_{1 k}, r_{2 k}$ and d_{k}, it is $\left|e_{2 k}\right| \leq 0.5827$, while from the majorant system it turns out to be that $\left|e_{2 k}\right| \leq 1.9993$.

Figure 7 : Errors and control signals of the controlled road network.

Vil. Conclusions and Future Developments

In this paper several basic theorems have been stated and proved. They allow to determine, by calculating the eigenvalues of suitable matrices only in correspondence of the vertices of appropriate polytopes, a majorant system of a pseudo-quadratic uncertain MIMO system.
By using the provided results, systematic methods have been derived, which allow to solve, via majorant system, several analysis and synthesis problems about the robust stability, robust stabilization and tracking of a generic reference signal with bounded variation, in presence of a generic disturbance with bounded too. The presented examples have shown the utility and the efficiency of the main proposed results.
Future developments are going on in the direction of the fault tolerance and of the robust tracking in the hypothesis of a non measurable state.

References

[1] A. Balestrino and G. Celentano, "Stabilization by digital controllers of multivariable linear systems with timelags," Proc. 7-th IFAC WORLD CONGRESS, Helsinki, 1978.
[2] B.R. Barmish, "Necessary and sufficient conditions for quadratic stabilizability of an uncertain system," J. Optim. Theory Appl., vol. 46, pp. 399-408, 1985.
[3] J. Kautsky and N.K. Nichols, "Robust Pole Assignment in Linear State Feedback", Int. J. Control, vol. 41, pp. 1129-1155, 1985.
[4] M.E. Magana and S.H. Zak, "Robust output feedback stabilization of discrete-time uncertain dynamical systems," IEEE Trans. Autom. Control, vol. 33, pp. 1082-1085, 1988.
[5] I. Bar-Kana, "Absolute stability and robust discrete adaptive control of multivariable systems," Control and Dynamic Systems, vol. 31, pp. 157-183, 1989.
[6] W.M. Haddad and D.S. Bernstein, "Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle, and Popov theorems and their application to robust stability part II: discrete-time theory," Int. J. Robust Nonlinear Control, vol. 4, pp. 249-265, 1994.
[7] W.H. Haddad and V. Kapila, "Robust stabilization for discrete-time systems with slowly time-varying uncertainty," Journal of the Franklin Institute, vol. 333(B), no. 7, pp. 71-84, 1996.
[8] Y. Stepanenko and X. Yang, "Stabilizing controllers for discrete bilinear systems," Int. J. Robust Nonlinear Control, vol. 6, pp. 855-867, 1996.
[9] G.F. Franklin, J.D. Powell, and M.L. Workman, Digital Control of Dynamic Systems, Menlo-Park CA, AddisonWesley, 1997.
[10] L. Grune and F. Wirth, "Feedback stabilization of discrete-time homogeneous semi-linear systems," Sys. Control Letters, vol. 37, pp. 19-30, 1999.
[11] J. Zhang and S. Dai, "NN control of discrete-time MIMO systems with input delay," Proc. American Control Conf., Minneapolis, MN, USA, 2006.
[12] X. Ji, H. Su, and J. Chu, "Robust state feedback H_{∞} control for uncertain linear discrete singular systems," IET Control Theory Appl., vol. 1, no. 1, pp. 195-200, 2007.
[13] S. Wo, Y. Zou, M. Sheng, and S. Xu, "Robust control for discrete-time singular large-scale systems with parameter uncertainty," Journal of the Franklin Institute, vol. 344, pp. 97-106, 2007.
[14] S. H.-S. Fu, C.-C. Cheng, "On direct adaptive control design for nonlinear discrete-time uncertain systems," Journal of the Franklin Institute, vol. 345, pp. 119-135, 2008.
[15] D.M. Adhyaru, I.N. Kar, and M. Gopal, "Constrained controller design for a class of nonlinear discrete-time uncertain systems," Proc. American Control Conf., MO, USA, 2009.
[16] H. Zhang, A. Saadat, Y. Shi, and J. Sheng, "New results on robust ${ }_{2}-_{\infty} l_{\infty}$ filtering for uncertain linear discretetime systems," Proc. American Control Conf., Baltimore, MD, USA, 2010.
[17] G. Celentano and L. Celentano, Modellistica, Simulazione, Analisi, Controllo e Tecnologie dei Sistemi Dinamici, FONDAMENTI DI DINAMICA DEI SISTEMI, EdiSES Editore, 2010.
[18]L. Celentano, "New robust tracking and stabilization methods for significant classes of uncertain linear and nonlinear systems," chapter of the book Recent Advances in Robust Control - Novel Approaches and Design Methods, edited by A. Mueller, publisher: InTech, pp. 247-270, 2011.
[19] Q. Hui, "Lyapunov-based semistability analysis for discrete-time switched network systems," Proc. American Control Conf., San Francisco, CA, USA, 2011.
[20]L. Celentano, Robust Tracking Controllers Design with Generic References for Continuous and Discrete Uncertain Linear SISO Systems, LAP LAMBERT Academic Publishing, 2012.
[21]L. Celentano, New results on practical stability for linear and nonlinear uncertain systems, Edizioni Nuova Cultura, Roma, 2012.
[22]L. Celentano, "Tracking Controllers Design of References with Bounded Derivative," Applied Mathematical Sciences, vol. 6, no. 95, pp. 4709 -4728, 2012.
[23] A. Pavlov and N. van de Wouw, "Steady-state analysis and regulation of discrete-time nonlinear systems," IEEE Trans. Autom. Control, vol. 57, no. 7, pp. 1793-1798, 2012.
[24] H. Wang and K. Ghosh, "A new robust control for a class of uncertain discrete-time systems," IEEE Trans. Autom. Control, vol. 42, no. 9, pp. 1252-1254, 2012.
[25] W. Xue and W. Mao, "Admissible finite-time stability and stabilization of uncertain discrete singular systems," ASME J. of Dynamic Systems, Measurement, and Control, vol. 135, pp. 1-6, 2013.
[26]L. Celentano, "Practical Stabilization for Uncertain Pseudo-Linear and Pseudo-Quadratic MIMO Systems," International Journal of Modern Nonlinear Theory and Application, vol. 2, no. 1, March 2013.
[27]L. Celentano, "Robust Tracking Method for Uncertain MIMO Systems of Realistic Trajectories," Journal of the Franklin Institute, vol. 350, no. 3, pp. 437-451, DOI: 10.1016/j.jfranklin.2012.12.002, 2013.

Global Journal of Science Frontier Research MATHEMATICS AND DECISION SCIENCES
Volume 13 Issue 5 Version 1.0 Year 2013
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

A Summation Formula in the Light of Recurrence Relation

By Salahuddin \& M. P. Chaudhary

P.D.M College of Engineering, India

Abstract - The main aim of the present paper is to compute a summation formula in the light of recurrence relation and contiguous relation.

Keywords : pochhammer symbol, gaussian hypergeometric function, contiguous function, recurrence relation, bailey summation theorem and legendre duplication formula.

GJSFR-F Classification : MSC 2010: 65Q30, 40A25

Strictly as per the compliance and regulations of :

© 2013. Salahuddin \& M. P. Chaudhary. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

A Summation Formula in the Light of Recurrence Relation

Salahuddin ${ }^{\alpha}$ \& M. P. Chaudhary ${ }^{\sigma}$

Abstract - The main aim of the present paper is to compute a summation formula in the light of recurrence relation and contiguous relation.
Keywords : pochhammer symbol, gaussian hypergeometric function, contiguous function, recurrence relation, bailey summation theorem and legendre duplication formula.

I. Introduction

The Pochhammer symbol or generalized factorial function or shifted factorial or falling factorial is defined by

$$
(a)_{n}=\frac{\Gamma(a+n)}{\Gamma(a)}= \begin{cases}a(a+1)(a+2) \cdots(a+n-1) ; & \text { if } n=1,2,3, \ldots \tag{1}\\ 1 & ; \\ n! & \text { if } n=0 \\ n! & \text { if } a=1, n=1,2,3, \ldots\end{cases}
$$

where $a \neq 0,-1,-2, \ldots$ and the notation Γ stands for Gamma function. Note that $(0)_{0}=1$.

If $m=1,2,3,4, \ldots$ and $n=0,1,2,3,4, \ldots$ then

$$
\begin{align*}
& \quad(b)_{m n}=m^{m n}\left(\frac{b}{m}\right)_{n}\left(\frac{b+1}{m}\right)_{n} \cdots\left(\frac{b+m-2}{m}\right)_{n}\left(\frac{b+m-1}{m}\right)_{n} \tag{2}\\
& \qquad(\alpha)_{p+q}=(\alpha)_{p}(\alpha+p)_{q}=(\alpha)_{q}(\alpha+q)_{p} \tag{3}\\
& \text { If } 0 \leq k \leq\left[\frac{n}{m}\right], \text { then }(b)_{n-m k}=\frac{\left(\frac{-1}{m}\right)^{m k}(b)_{n}}{\prod_{j=1}^{m}\left(\frac{j-b-n}{m}\right)_{k}} \tag{4}\\
& \qquad(n-m k)!=\frac{\left(\frac{-1}{m}\right)^{m k} n!}{\prod_{j=1}^{m-1}\left(\frac{j-n}{m}\right)_{k}} \tag{5}
\end{align*}
$$

[^7]where $[x]$ returns the largest integer less than or equal to x. In Slater's book $[90],(a)_{n}$ is denoted by (a, n).
\[

$$
\begin{equation*}
(b)_{-m}=\frac{\Gamma(b-m)}{\Gamma(b)}=\frac{(-1)^{m}}{(1-b)_{m}} \tag{6}
\end{equation*}
$$

\]

where, $b \neq 0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots$ and $m=1,2,3,4, \ldots$
Some properties of the Pochhammer's symbol are given by

$$
\begin{equation*}
\left(a_{1}\right)_{M+N}\left(a_{2}\right)_{M+N} \cdots\left(a_{A}\right)_{M+N}=\left[\left(a_{A}\right)\right]_{M+N}=\left[\left(a_{A}\right)\right]_{M}\left[\left(a_{A}\right)+M\right]_{N} \tag{7}
\end{equation*}
$$

Generalized Gaussian hypergeometric function of one variable is defined by

$$
{ }_{A} F_{B}\left[\begin{array}{ccc}
a_{1}, a_{2}, \cdots, a_{A} & ; & \\
b_{1}, b_{2}, \cdots, b_{B} & ; & z
\end{array}\right]=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{A}\right)_{k} z^{k}}{\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \cdots\left(b_{B}\right)_{k} k!}
$$

or

$$
{ }_{A} F_{B}\left[\begin{array}{ccc}
\left(a_{A}\right) & ; & \tag{9}\\
\left(b_{B}\right) & ; & z
\end{array}\right] \equiv{ }_{A} F_{B}\left[\begin{array}{ccc}
\left(a_{j}\right)_{j=1}^{A} & ; & \\
\left(b_{j}\right)_{j=1}^{B} & ; & z
\end{array}\right]=\sum_{k=0}^{\infty} \frac{\left(\left(a_{A}\right)\right)_{k} z^{k}}{\left(\left(b_{B}\right)\right)_{k} k!}
$$

where the parameters $b_{1}, b_{2}, \cdots, b_{B}$ are neither zero nor negative integers and A, B are non-negative integers.

Contiguous Relation[E. D. p.51(10), Andrews p.363(9.16)] is defined as follows

$$
(a-b){ }_{2} F_{1}\left[\begin{array}{cc}
a, b ; & z \tag{10}\\
c ; & z
\end{array}\right]=a_{2} F_{1}\left[\begin{array}{ccc}
a+1, & b ; & z \\
c & ; &
\end{array}\right]-b_{2} F_{1}\left[\begin{array}{cc}
a, b+1 ; & z \\
c & ;
\end{array}\right]
$$

Recurrence relation of gamma function is defined as follows

$$
\begin{equation*}
\Gamma(z+1)=z \Gamma(z) \tag{11}
\end{equation*}
$$

Legendre duplication formula[Bells \& Wong p.26(2.3.1)] is defined as follows

$$
\begin{gather*}
\sqrt{\pi} \Gamma(2 z)=2^{(2 z-1)} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right) \tag{12}\\
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}=\frac{2^{(b-1)} \Gamma\left(\frac{b}{2}\right) \Gamma\left(\frac{b+1}{2}\right)}{\Gamma(b)} \tag{13}\\
=\frac{2^{(a-1)} \Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{a+1}{2}\right)}{\Gamma(a)} \tag{14}
\end{gather*}
$$

Bailey summation theorem [Prud, p.491(7.3.7.8)]is defined as follows

$$
{ }_{2} F_{1}\left[\begin{array}{cc}
a, 1-a & ; \frac{1}{2} \tag{15}\\
c & ; 2
\end{array}\right]=\frac{\Gamma\left(\frac{c}{2}\right) \Gamma\left(\frac{c+1}{2}\right)}{\Gamma\left(\frac{c+a}{2}\right) \Gamma\left(\frac{c+1-a}{2}\right)}=\frac{\sqrt{\pi} \Gamma(c)}{2^{c-1} \Gamma\left(\frac{c+a}{2}\right) \Gamma\left(\frac{c+1-a}{2}\right)}
$$

II. Main Result of Summation Formula

$$
\begin{aligned}
& { }_{2} F_{1}\left[\begin{array}{ccc}
a & , & -a-52
\end{array} \quad ; \quad \frac{1}{2}\right] \\
& =\frac{\sqrt{\pi} \Gamma(c)}{2^{c+52}}\left[\frac{1}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+52}{2}\right)}\{-34928139885605446284439249144578048000000 a\right. \\
& +42071734873936699642597555068454010880000 a^{2} \\
& -18702590782686940348571526156051922944000 a^{3} \\
& +3913402400021039256540281604096498585600 a^{4} \\
& -377223664134626507934927914708226309120 a^{5} \\
& +7989571832148498655051443520007784192 a^{6} \\
& +1174255602469543244429680529972051136 a^{7} \\
& -54242832591167079430159654587460224 a^{8}-2099486579968189713328051113513424 a^{9} \\
& +100323804134273737793036422949216 a^{10}+3316399539464630274547807402916 a^{11} \\
& -77628055269984184239345272344 a^{12}-3592660349233917957600756619 a^{13} \\
& +2960249949153674689741751 a^{14}+1779080539870652651300486 a^{15} \\
& +23016566391037776183926 a^{16}-190007431218253569349 a^{17}-7060930082730585919 a^{18} \\
& -51640527170782264 a^{19}+222305063914076 a^{20}+5674507689851 a^{21}+31183770761 a^{22} \\
& +19511726 a^{23}-411034 a^{2} 4-1339 a^{25}-a^{26}+34928139885605461795649292475564032000000 c \\
& \text { - 108713895389033940384905944009117532160000ac } \\
& +85667290397062545722441695887557099520000 a^{2} c \\
& -28782401137982573090445263097848180736000 a^{3} c \\
& +4637974251374120667580887379246239744000 a^{4} c \\
& -316847044725090296206110319628987166720 a^{5} c \\
& -1563857130977117303914168219615196160 a^{6} c \\
& +1156581554571308787558041395625617536 a^{7} c \\
& -17988204353358933679295505292192256 a^{8} c-2131358777381452688712214007522016 a^{9} c \\
& +25330018423366040545047258836160 a^{10} c+2592864121485793208141761861016 a^{11} c \\
& +1993426292336480580601171904 a^{12} c-1727286054597891762330490106 a^{13} c \\
& -22567567093162234834920320 a^{14} c+385153303273201498890036 a^{15} c
\end{aligned}
$$

$$
\begin{gathered}
+11442926416738757850624 a^{16} c+53676149546932169114 a^{17} c-1197921355762331200 a^{18} c \\
-17815000979897264 a^{19} c-63344641295936 a^{20} c+419074409754 a^{21} c+4354571520 a^{22} c \\
+12064676 a^{23} c+1664 a^{24} c-26 a^{25} c+66642160515097299932437200641867120640000 c^{2} \\
-123530007507285230550469913161191653376000 a c^{2} \\
+72836076162669006670353194997063853670400 a^{2} c^{2} \\
-19198125365308987399707077724866986229760 a^{3} c^{2} \\
+2390293356263580742022446233482892201984 a^{4} c^{2} \\
-106639869605793744113294759506075235328 a^{5} c^{2} \\
-4039009831177711288344135516640635648 a^{6} c^{2} \\
+429345120922370013590359745329345792 a^{7} c^{2} \\
+2924092456618390432624901233201472 a^{8} c^{2}-717508866642990355306937873825472 a^{9} c^{2} \\
-5693513145785706123832854666512 a^{10} c^{2}+643056911388927866162172252528 a^{11} c^{2} \\
+10438645521862608379770730924 a^{12} c^{2}-236382900361254728454490208 a^{13} c^{2} \\
-7165093316952171182230168 a^{14} c^{2}-12462343097414871508848 a^{15} c^{2} \\
+1493203719892310086804 a^{16} c^{2}+18100386873203990784 a^{17} c^{2}+1921999601483104 a^{18} c^{2} \\
-1421335537237616 a^{19} c^{2}-10307915165548 a^{20} c^{2}-14758519776 a^{21} c^{2} \\
-1421335537237616 a^{19} c^{2}-10307915165548 a^{20} c^{2}-14758519776 a^{21} c^{2}+11493884 a^{22} c^{2} \\
+449904 a^{23} c^{2}+364 a^{24} c^{2}+56565307892909725656771291780848025600000 c^{3} \\
-76773094417412920099297189451582668800000 a c^{3} \\
+53252570814885682240 a^{16} c^{3}+1580615102252764864 a^{17} c^{3}+8756784251190976 a^{18} c^{3} \\
-23906001927808 a^{19} c^{3}-427022916320 a^{20} c^{3}-1408543136 a^{21} c^{3}-486304 a^{22} c^{3}
\end{gathered}
$$

$$
\begin{gathered}
+2912 a^{23} c^{3}+28806016992705549602379577692946169856000 c^{4} \\
-30724553168110953477991438028242126110720 a c^{4} \\
+11543473055958754330580818654387350798336 a^{2} c^{4} \\
-1945238887047803692289707223326304796672 a^{3} c^{4} \\
+137819551621716325411463744415324315648 a^{4} c^{4} \\
-393039136430981961339529809072310272 a^{5} c^{4} \\
-382841780809199389444887709129580032 a^{6} c^{4}
\end{gathered}
$$

$+7082850121116474548160130796313856 a^{7} c^{4}+549886429015282966428944773052416 a^{8} c^{4}$
$-7412569247412586213374053182464 a^{9} c^{4}-515227991826903035055902828640 a^{10} c^{4}$ $+422810709514797295299094032 a^{11} c^{4}+251292999460824514220950832 a^{12} c^{4}$ $+2498262451265766805892272 a^{13} c^{4}-38787567775641350473808 a^{14} c^{4}$
$-854071404221074696800 a^{15} c^{4}-2838712550035533600 a^{16} c^{4}+52246466127055200 a^{17} c^{4}$ $+528037255665920 a^{18} c^{4}+1175371397200 a^{19} c^{4}-5047362320 a^{20} c^{4}-24744720 a^{21} c^{4}$ $-21840 a^{22} c^{4}+9974649201644478928562193070681384550400 c^{5}$ $-8640585554004126875049263445819191721984 a c^{5}$ $+2656517823866208470117315410907289354240 a^{2} c^{5}$ $-358028789774988668805264520903466483712 a^{3} c^{5}$ $+17935286176989747076839920644418322432 a^{4} c^{5}$ $+355442453909769139900305632836153344 a^{5} c^{5}$ $-52527348703619549507837894069672960 a^{6} c^{5}$ $-12505282527286290482384609319424 a^{7} c^{5}+67454037252556288995311749430784 a^{8} c^{5}$ $+219397818188289582098492954112 a^{9} c^{5}-46016778963976907162308639680 a^{10} c^{5}$ $-512751282416399522108759328 a^{11} c^{5}+12640580059018263309525568 a^{12} c^{5}$ $+267811234488316292053280 a^{13} c^{5}+71398905144530071680 a^{14} c^{5}$ $-36483645504193293120 a^{15} c^{5}-299274518303080320 a^{16} c^{5}+153769503311424 a^{17} c^{5}$ $+11859338370880 a^{18} c^{5}+47353386080 a^{19} c^{5}+25945920 a^{20} c^{5}-96096 a^{21} c^{5}$ $+2517115005590931497891492998623145230336 c^{6}$ $-1801853977321067526697455847041071579136 a c^{6}$ $+455726047783891561444695637539919233024 a^{2} c^{6}$ $-48674513039202158062220201546533830656 a^{3} c^{6}$ $+1551457005425886971253405325641908224 a^{4} c^{6}$
$+80230918540267183957108427091656704 a^{5} c^{6}$ $-4712147101722244256167890918875136 a^{6} c^{6}$
$-80949537799940622691666899951616 a^{7} c^{6}+5019666177104202944487903014912 a^{8} c^{6}$

$$
+85093741985744014015254408192 a^{9} c^{6}-2249284999416552541736667648 a^{10} c^{6}
$$

$$
-54785553154700093310993408 a^{11} c^{6}+168828804235914347452928 a^{12} c^{6}
$$

$$
+13222154634544126695424 a^{13} c^{6}+89440977598582365184 a^{14} c^{6}-620508121535318016 a^{15} c^{6}
$$

$$
-9948567588191232 a^{16} c^{6}-30966082667520 a^{17} c^{6}+80492572160 a^{18} c^{6}+527887360 a^{19} c^{6}
$$ $+512512 a^{20} c^{6}+483660852688286891625240078330101760000 c^{7}$ $-288784604406716035728339496512327254016 a c^{7}$ $+60118481090561997033121611463415300096 a^{2} c^{7}$

$-5004094739060892517426524084057931776 a^{3} c^{7}$
$+76551424178011560809747847221084160 a^{4} c^{7}$
$+9771940611206132232479370064297984 a^{5} c^{7}$
$-269122974087776057073601826750464 a^{6} c^{7}$
$-10605991732212941814282457284608 a^{7} c^{7}+216222975061037181284162519040 a^{8} c^{7}$ $+7841056763355733743159140352 a^{9} c^{7}-39988601422769047492933632 a^{10} c^{7}$
$-2891381923725459611166720 a^{11} c^{7}-15754409471322469376000 a^{12} c^{7}$ $+329321364801098768384 a^{13} c^{7}+4183071746802364416 a^{14} c^{7}+5107933057683456 a^{15} c^{7}$ $-144795880120320 a^{16} c^{7}-719320842240 a^{17} c^{7}-546191360 a^{18} c^{7}+1464320 a^{19} c^{7}$ $+72910072727954904261408413239266508800 c^{8}$ $-36474852472244870176814084621011517440 a c^{8}$ $+6230093903807316255473526511485583360 a^{2} c^{8}$ $-393300928078289324915015388951871488 a^{3} c^{8}$ $-245793229567292484514255301705728 a^{4} c^{8}+799639238934967152950349849649152 a^{5} c^{8}$ $-7606812141141829899728367312896 a^{6} c^{8}-777675120102151229229952192512 a^{7} c^{8}$
$+2920838452302398033895211008 a^{8} c^{8}+408858494360585773604525568 a^{9} c^{8}$ $+2008775707935121289488896 a^{10} c^{8}-86250712938197895419904 a^{11} c^{8}$ $-1026703176419503458304 a^{12} c^{8}+2363773427743343616 a^{13} c^{8}+90598881000815616 a^{14} c^{8}$ $+382403192371200 a^{15} c^{8}-582581176320 a^{16} c^{8}-5769054720 a^{17} c^{8}-6223360 a^{18} c^{8}$ $+8808137552078681935540533466234880000 c^{9}$ $-3696567292216311695564223312451076096 a c^{9}$

$$
\begin{aligned}
& +514645272515113686120708497604608000 a^{2} c^{9} \\
& -23571768886505777039709873825906688 a^{3} c^{9}
\end{aligned}
$$

$-410665195256891335924961267351552 a^{4} c^{9}+46654013778602366582714548436992 a^{5} c^{9}$
$+175086456157762624088271257600 a^{6} c^{9}-37380386814276802111442378752 a^{7} c^{9}$
$-255375608547247647698956288 a^{8} c^{9}+13167416661772899692401664 a^{9} c^{9}$ $+165726899232209645158400 a^{10} c^{9}-1234133306569820360704 a^{11} c^{9}$ $-29257328226543312896 a^{12} c^{9}-86465927583107072 a^{13} c^{9}+922911144263680 a^{14} c^{9}$ $+5963024404480 a^{15} c^{9}+5924638720 a^{16} c^{9}-12446720 a^{17} c^{9}$
$+866098945127345991490462081896939520 c^{10}$
$-304540958192787528223807991254614016 a c^{10}$
$+34210444420795917018750648180015104 a^{2} c^{10}$
$-1051162919972578994559390648631296 a^{3} c^{10}$
$-40452740862753606890529175142400 a^{4} c^{10}+1957535148502131587273684287488 a^{5} c^{10}$ $+30955880629946654663058505728 a^{6} c^{10}-1197689504016564723322109952 a^{7} c^{10}$
$-19567007151200547456337920 a^{8} c^{10}+239699190978762219454464 a^{9} c^{10}$ $+5663934258171762253824 a^{10} c^{10}+5531597422827700224 a^{11} c^{10}$
$-449979323218833408 a^{12} c^{10}-2598360857444352 a^{13} c^{10}+1827158581248 a^{14} c^{10}$ $+36921950208 a^{15} c^{10}+44808192 a^{16} c^{10}+70109291045124599110797036093440000 c^{11}$

$$
-20585488425827118622084793353895936 a c^{11}
$$

$+1839284676392222644345529010487296 a^{2} c^{11}$
$-32104767303759400473777376591872 a^{3} c^{11}-2425300840370989085217474478080 a^{4} c^{11}$ $+56782379857751913335173152768 a^{5} c^{11}+1744924437647444656236920832 a^{6} c^{11}$ $-23329310065210776143462400 a^{7} c^{11}-717794312475266872934400 a^{8} c^{11}$ $+875768454359933681664 a^{9} c^{11}+112018680236419547136 a^{10} c^{11}$ $+572194842565312512 a^{11} c^{11}-3278505479208960 a^{12} c^{11}-29741407567872 a^{13} c^{11}$ $-37736644608 a^{1} 4 c^{1} 1+65175552 a^{15} c^{11}+4710548327431316893912148004044800 c^{12}$ $-1148847980873950647299179345346560 a c^{12}$
$+80040811817187427090064048390144 a^{2} c^{12}-445178481287516116952381652992 a^{3} c^{12}$
$-103649843330024916074523656192 a^{4} c^{12}+951878152127688583736393728 a^{5} c^{12}$
$+61469093240338376246198272 a^{6} c^{12}-134527445288024271601664 a^{7} c^{12}$
$-16428668892122988560384 a^{8} c^{12}-72880540472360484864 a^{9} c^{12}$ $+1274999648575930368 a^{10} c^{12}+10554547802652672 a^{11} c^{12}+299058020352 a^{12} c^{12}$
$-148806647808 a^{13} c^{12}-206389248 a^{14} c^{12}+264182165001061306106113949696000 c^{13}$
$-53130599487870584319708942565376 a c^{13}+2807478336028208943889142251520 a^{2} c^{13}$
$+15260030937719821979130789888 a^{3} c^{13}-3296550171202035393192787968 a^{4} c^{13}$
$-1789093359265617298718720 a^{5} c^{13}+1487778203438940404776960 a^{6} c^{13}$
$+6856149763792731078656 a^{7} c^{13}-239627967825216208896 a^{8} c^{13}$
$-2022962169603981312 a^{9} c^{13}+6320432896081920 a^{10} c^{13}+94010016694272 a^{11} c^{13}$
$+151584964608 a^{12} c^{13}-222265344 a^{13} c^{13}+12409623398297151947688965570560 c^{14}$
$-2038774563971023546676188020736 a c^{14}+78487220724481205883124056064 a^{2} c^{14}$
$+1273595162606966064093855744 a^{3} c^{14}-78517680522797909434433536 a^{4} c^{14}$
$-637343656812366102528000 a^{5} c^{14}+24837835829205411430400 a^{6} c^{14}$
$+242999004100263936000 a^{7} c^{14}-2009348138467983360 a^{8} c^{14}-26665802013081600 a^{9} c^{14}$
$-20998994657280 a^{10} c^{14}+392457093120 a^{11} c^{14}+635043840 a^{12} c^{14}$
$+488921602091245066382213120000 c^{15}-64844547829545383354062340096 a c^{15}$
$+1708414248369719055006826496 a^{2} c^{15}+48031603574786883105849344 a^{3} c^{15}$
$-1372860739785057558855680 a^{4} c^{15}-20665870381655345070080 a^{5} c^{15}$
$+268665255592101150720 a^{6} c^{15}+4136583940998168576 a^{7} c^{15}-4898824708423680 a^{8} c^{15}$
$-192540211937280 a^{9} c^{15}-398807531520 a^{10} c^{15}+508035072 a^{11} c^{15}$
$+16146436103803194911280332800 c^{16}-1703333566305929323746426880 a c^{16}$
$+27507095999231071735513088 a^{2} c^{16}+1224788724185037710032896 a^{3} c^{16}$
$-16556221196935418609664 a^{4} c^{16}-391199492197226840064 a^{5} c^{16}$
$+1453031658295590912 a^{6} c^{16}+42188713936158720 a^{7} c^{16}+72116213514240 a^{8} c^{16}$
$-686799912960 a^{9} c^{16}-1333592064 a^{10} c^{16}+445740409937736947990528000 c^{17}$
$-36713644648914482370707456 a c^{17}+282998508385046888448000 a^{2} c^{17}$
$+22756221968652276596736 a^{3} c^{17}-111606022601557671936 a^{4} c^{17}$
$-4897159164517810176 a^{5} c^{17}-3911355444756480 a^{6} c^{17}+254487543152640 a^{7} c^{17}$
$+696605736960 a^{8} c^{17}-784465920 a^{9} c^{17}+10233486366213291208867840 c^{18}$
$-642792585013175240359936 a c^{18}+554395334287545073664 a^{2} c^{18}$
$+312141351192959647744 a^{3} c^{18}+135529805017513984 a^{4} c^{18}-40588106321100800 a^{5} c^{18}$
$-123641939886080 a^{6} c^{18}+790044344320 a^{7} c^{18}+1917583360 a^{8} c^{18}$
$+193822750054704742400000 c^{19}-9006573823915181735936 a c^{19}$
$-40689982723550347264 a^{2} c^{19}+3113529551389458432 a^{3} c^{19}+11592014254571520 a^{4} c^{19}$
$-209294333050880 a^{5} c^{19}-800136888320 a^{6} c^{19}+807403520 a^{7} c^{19}$

$$
\begin{aligned}
& +2992860241094036684800 c^{20}-98819016954688307200 a c^{20}-842719940499734528 a^{2} c^{20} \\
& +21682030516371456 a^{3} c^{20}+119353052758016 a^{4} c^{20}-573821681664 a^{5} c^{20} \\
& -1857028096 a^{6} c^{20}+37037875694403584000 c^{21}-821933144230854656 a c^{21} \\
& -9220521208053760 a^{2} c^{21}+97319414398976 a^{3} c^{21}+580453924864 a^{4} c^{21}-530579456 a^{5} c^{21} \\
& +358292072043642880 c^{22}-4926934588850176 a c^{22}-61881771360256 a^{2} c^{22} \\
& +238471348224 a^{3} c^{22}+1157627904 a^{4} c^{22}+2608521543680000 c^{23}-19531632214016 a c^{23} \\
& -240987930624 a^{2} c^{23}+201326592 a^{3} c^{23}+13435194572800 c^{24}-43201331200 a c^{24} \\
& -419430400 a^{2} c^{24}+43620761600 c^{25}-33554432 a c^{25}+67108864 c^{26} \\
& +\frac{1}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+53}{2}\right)}\{199999709752403580401723552207732736000000 \\
& -377591849263958499693767992175103836160000 a \\
& +236178499610888430069672185198072020992000 a^{2} \\
& -67290223958711336049088671025057983283200 a^{3} \\
& +9174565960972243229229632317889447362560 a^{4} \\
& -454011662043974405665799107718370637824 a^{5} \\
& -19007341816349550298046336565703395840 a^{6} \\
& +2306333878665685107004618164151025472 a^{7}+15598565297982051344305671336513216 a^{8} \\
& -4996696802847303378983268654015472 a^{9}-39640383655090290519295793600656 a^{10} \\
& +6076260431496166202628862874492 a^{11}+107617375492357100570273102276 a^{12} \\
& -3263674121769242212100525677 a^{13}-110771538150352696821002641 a^{14} \\
& -118002054074797779098758 a^{15}+37006109991536463476426 a^{16} \\
& +537950317559878419053 a^{17}-359007056164719391 a^{18}-80542804789151848 a^{19} \\
& -793098224405344 a^{20}-1487999580067 a^{21}+24813226529 a^{22}+188133842 a^{2} 3+450866 a^{24} \\
& -13 a^{25}-a^{26}+522166060729665280421696827332954685440000 c \\
& \text {-745176201564121598450537124560894951424000ac } \\
& \text {-745176201564121598450537124560894951424000ac } \\
& +372441555493300344163325262554055927398400 a^{2} c \\
& -85354773266725179427212478848054782853120 a^{3} c \\
& +8958598012505868389788671447791655886848 a^{4} c \\
& -234502861644000249860202534560809949184 a^{5} c \\
& -27077713961678368732885244204595571200 a^{6} c \\
& +1432156101427259175387016604121472896 a^{7} c
\end{aligned}
$$

$$
\begin{aligned}
& +48373234567272598677839596362380672 a^{8} c-2671779229139060300259058269517728 a^{9} c \\
& -80271109381094535586859369741280 a^{10} c+2146824446409929307930188618536 a^{11} c \\
& +91457104835611657890691200232 a^{12} c-171288518581722035632148038 a^{13} c \\
& -46965112857488579600370160 a^{14} c-580709973511112714028084 a^{15} c \\
& +5364676043590544129592 a^{16} c+186209518476106290022 a^{17} c+1318543083159976960 a^{18} c \\
& -6301160011713424 a^{19} c-150822856992808 a^{20} c-812684971098 a^{21} c-424572720 a^{22} c \\
& +11103196 a^{23} c+35464 a^{24} c+26 a^{25} c+559236019293629113772855437019672739840000 c^{2} \\
& -637724196527259483026982345192120778752000 \text { ac }^{2} \\
& +260152072026883978151846635023139333079040 a^{2} c^{2} \\
& -48157827422365046321683686498664849784832 a^{3} c^{2} \\
& +3788447493746015685412651874412604919808 a^{4} c^{2} \\
& -12557813441544352864441620309497398272 a^{5} c^{2} \\
& -13344606072760031475468745436139845376 a^{6} c^{2} \\
& +289519294327574428251634196660470528 a^{7} c^{2} \\
& +24948277948518264814402797406247744 a^{8} c^{2} \\
& -415978283450986149308638903746240 a^{9} c^{2}-31879638346793643414710599244240 a^{10} c^{2} \\
& +61694532595820165339877883344 a^{11} c^{2}+22572467936644951504370566828 a^{12} c^{2} \\
& +255655896536005122768371488 a^{13} c^{2}-5573490785959241092209496 a^{14} c^{2} \\
& -146528598112733273847696 a^{15} c^{2}-559131740284799998316 a^{16} c^{2} \\
& +16855156515546615552 a^{17} c^{2}+230600014236825376 a^{18} c^{2}+723575163399088 a^{19} c^{2} \\
& -6151367250028 a^{20} c^{2}-57945215328 a^{21} c^{2}-151491704 a^{22} c^{2}+4368 a^{23} c^{2}+364 a^{24} c^{2} \\
& +343745761995310316138295779696817733632000 c^{3} \\
& -321970786125310756170650899719291540602880 a c^{3} \\
& +108363272317825774175239394945898909794304 a^{2} c^{3} \\
& -16157482482561003074249702023477494546432 a^{3} c^{3} \\
& +904981825394887777539320992568223006720 a^{4} c^{3} \\
& +20132854200151641860676569770012360704 a^{5} c^{3} \\
& -3415550824215825904835884830157647872 a^{6} c^{3} \\
& +948011229616276402960785012065280 a^{7} c^{3} \\
& +5836912754919624233629249046018560 a^{8} c^{3}+17877245263222213216874630272000 a^{9} c^{3} \\
& -5573832084370741404915824871936 a^{10} c^{3}-70168802606418423531863259840 a^{11} c^{3} \\
& +2311833564751397883528302880 a^{12} c^{3}+57936227825788902844995104 a^{13} c^{3}
\end{aligned}
$$

$-19938247346110460493984 a^{14} c^{3}-13626103943575502711904 a^{15} c^{3}$
$-144973907328968386240 a^{16} c^{3}+177790107683329856 a^{17} c^{3}+13134015010660544 a^{18} c^{3}$
$+85791249351808 a^{19} c^{3}+82212210080 a^{20} c^{3}-1139922784 a^{21} c^{3}-3969056 a^{22} c^{3}$ $-2912 a^{23} c^{3}+139785198927482868063794720396462260224000 c^{4}$
$-109173173021313754888459746835882064216064 a c^{4}$
$+30455002938983618463476272302355817693184 a^{2} c^{4}$
$-3624217259083503339262545206067485048832 a^{3} c^{4}$
$+130119533127769112006348630356027858944 a^{4} c^{4}$
$+7632382041245288606301248360679745536 a^{5} c^{4}$ $-518401907834902510539658057519831552 a^{6} c^{4}$
$-10001437828631166082823116232867072 a^{7} c^{4}+752144322857775632084699243943424 a^{8} c^{4}$ $+14510952962549839158735858596352 a^{9} c^{4}-487827716938432211835757884960 a^{10} c^{4}$
$-13899152796106319306786601744 a^{11} c^{4}+64023388782947130398961008 a^{12} c^{4}$
$+5426726276158304621327824 a^{13} c^{4}+45450057566720371385392 a^{14} c^{4}$
$-480834911205568851360 a^{15} c^{4}-10287195780452242080 a^{16} c^{4}-46372969999356000 a^{17} c^{4}$ $+233013036576320 a^{18} c^{4}+2897260366000 a^{19} c^{4}+8332083760 a^{20} c^{4}-240240 a^{21} c^{4}$ $-21840 a^{22} c^{4}+40681751115001572401733970907717210996736 c^{5}$
$-26714387971908730288588668082712142151680 a c^{5}$
$+6179145817699090115382316658387732398080 a^{2} c^{5}$
$-577273811552809028353769819290954039296 a^{3} c^{5}$
$+10032948122586384491208691220425064448 a^{4} c^{5}$
$+1464757153698071641970857847580758016 a^{5} c^{5}$
$-47246767030294558595596816821806080 a^{6} c^{5}-2132876053859894219443804790744576 a^{7} c^{5}$ $+53225798483767880802768984580608 a^{8} c^{5}+2238444805272791926270321801728 a^{9} c^{5}$
$-15491460511256179463144738880 a^{10} c^{5}-1264570711617178070890398432 a^{11} c^{5}$
$-8133580172902124992507456 a^{12} c^{5}+246631048417597220497120 a^{13} c^{5}$ $+4073449634771775223680 a^{14} c^{5}+5685270617461680960 a^{15} c^{5}-318113537996462208 a^{16} c^{5}$ $-2584761338263104 a^{17} c^{5}-3625048947520 a^{18} c^{5}+34197523360 a^{19} c^{5}+130882752 a^{20} c^{5}$ $+96096 a^{21} c^{5}+8903223567519743387702209716616414887936 c^{6}$
$-4936219104808499733342488455607167746048 a c^{6}$
$+943853294857844113376090076675415474176 a^{2} c^{6}$
$-67399517200360358744975163084433522688 a^{3} c^{6}$

$$
\begin{aligned}
& -45605686474587315122577598754914304 a^{4} c^{6} \\
& +181297147263341880893680990656544768 a^{5} c^{6} \\
& -2076275942741651866003322856677376 a^{6} c^{6}
\end{aligned}
$$

$-242834108832615668654984388812800 a^{7} c^{6}+1217326407853692029020146802688 a^{8} c^{6}$ $+187067019122621610817147290624 a^{9} c^{6}+1049805904697378625497605632 a^{10} c^{6}$ $-63236130792116837027945472 a^{11} c^{6}-948069003545306674071040 a^{12} c^{6}$ $+3460910865451680729088 a^{13} c^{6}+165949833333622733824 a^{14} c^{6}$ $+1027158317193136128 a^{15} c^{6}-3042388046810112 a^{16} c^{6}-55627391339520 a^{17} c^{6}$ $-177751974400 a^{18} c^{6}+5125120 a^{19} c^{6}+512512 a^{20} c^{6}$
$+1515332346475072855114721196047440281600 c^{7}$
$-710260970242735595762239511459102982144 a c^{7}$
$+111576607064744818979817081214213292032 a^{2} c^{7}$
$-5830171914831627911203476179118981120 a^{3} c^{7}$
$-116893690819599805259224915551191040 a^{4} c^{7}$
$+15576168780138353899100270419902464 a^{5} c^{7}$
$+63891191306042096044455949926400 a^{6} c^{7}$ $-17670667345729860248639456051200 a^{7} c^{7}$
$-139179818681872201228839567360 a^{8} c^{7}+9474915388447178435578355712 a^{9} c^{7}$ $+146388854199104017293551616 a^{10} c^{7}-1530591600194794297645056 a^{11} c^{7}$ $-46651339381319232102400 a^{12} c^{7}-182971317567662514176 a^{13} c^{7}$ $+3298243020196540416 a^{14} c^{7}+34781366180081664 a^{15} c^{7}+65605466234880 a^{16} c^{7}$
$-468992409600 a^{17} c^{7}-1992939520 a^{18} c^{7}-1464320 a^{19} c^{7}$ $+205438151531261673767145944387262873600 c^{8}$
$-81331336018663685396130552289662337024 a c^{8}$ $+10397506457289655507842207224756174848 a^{2} c^{8}$ $-367988270320855707131768715374100480 a^{3} c^{8}$ $-16473826829500841135438762134896640 a^{4} c^{8}$ $+946527318674394719712900327972864 a^{5} c^{8}+17552787850771789036593291649024 a^{6} c^{8}$
$-846756040769966544657515851776 a^{7} c^{8}-16706572158606020126100707328 a^{8} c^{8}$
$+271798445023534711704254976 a^{9} c^{8}+8086731761738607429044736 a^{10} c^{8}$ $+7945250659821441128448 a^{11} c^{8}-1260090039292461684736 a^{12} c^{8}$ $-10734519211374486528 a^{13} c^{8}+15648993424137216 a^{14} c^{8}+540380298332160 a^{15} c^{8}$

$$
\begin{gathered}
+1942584483840 a^{16} c^{8}-56010240 a^{17} c^{8}-6223360 a^{18} c^{8} \\
+22577836076655706876453878687198085120 c^{9} \\
-7528753230455776073622670732781682688 a c^{9} \\
+772789322062858943834472430006435840 a^{2} c^{9} \\
-15716087550232477055391879715880960 a^{3} c^{9}
\end{gathered}
$$ $+1450054250612407655185502371840 a^{6} c^{9}-24708328979924498535337238528 a^{7} c^{9}$

$-937131869377024327275855872 a^{8} c^{9}+1833355161347541457939456 a^{9} c^{9}$ $+260688832085355357798400 a^{10} c^{9}+1821669143804462977024 a^{11} c^{9}$ $-17081985599504809984 a^{12} c^{9}-251574335376652288 a^{13} c^{9}-615747403448320 a^{14} c^{9}$

$$
+3543481610240 a^{15} c^{9}+16927539200 a^{16} c^{9}+12446720 a^{17} c^{9}
$$

$$
+2037782135705176067711310194928517120 c^{10}
$$

$-569793844326570866079762456141365248 a c^{10}$
$+46090425606451459990677670412681216 a^{2} c^{10}$
$-304209930754329399595924536950784 a^{3} c^{10}$
$-83868587535772482425348489773056 a^{4} c^{10}+954934393548964169573733236736 a^{5} c^{10}$ $+74533497156301163834728562688 a^{6} c^{10}-230306275439180664968724480 a^{7} c^{10}$
$-32997165873735978321758208 a^{8} c^{10}-188666147369246744051712 a^{9} c^{10}$ $+4996217131620058865664 a^{10} c^{10}+61143325089304313856 a^{11} c^{10}$
$-9762816729329664 a^{12} c^{10}-3026129252450304 a^{13} c^{10}-12432600440832 a^{14} c^{10}$ $+358465536 a^{15} c^{10}+44808192 a^{16} c^{10}+152502945700414880139177560218009600 c^{11}$ $-35536494144245885679643339421384704 a c^{11}$
$+2206697710293075281261636937056256 a^{2} c^{11}$
$+14118569543018918924825049169920 a^{3} c^{11}-3749879776551751008983659315200 a^{4} c^{11}$
$-1656085257943166428054290432 a^{5} c^{11}+2648823398131666821616631808 a^{6} c^{11}$
$+15172062593733085529309184 a^{7} c^{11}-756558245660168386805760 a^{8} c^{11}$ $-8830270003914949165056 a^{9} c^{11}+45039527989949595648 a^{10} c^{11}$ $+1072951308819726336 a^{11} c^{11}+3371343490744320 a^{12} c^{11}-16235512430592 a^{13} c^{11}$ $-88573575168 a^{14} c^{11}-65175552 a^{15} c^{11}+9528996414921318868341984172441600 c^{12}$ $-1835736931253921638166112967327744 a c^{12}$ $+84230015569542559757953402929152 a^{2} c^{12}+1644865313578967661710323744768 a^{3} c^{12}$
$-126291814767927434121536208896 a^{4} c^{12}-1265233503121112490816241664 a^{5} c^{12}$ $+65970289874813137486446592 a^{6} c^{12}+851648177190694783664128 a^{7} c^{12}$ $-10404250386688062734336 a^{8} c^{12}-203705788082788712448 a^{9} c^{12}$
$-235284702223613952 a^{10} c^{12}+10453899609194496 a^{11} c^{12}+50107388018688 a^{12} c^{12}$ $-1444724736 a^{13} c^{12}-206389248 a^{14} c^{12}+499449706225226909826165149532160 c^{13}$ $-78752571133957968722050246770688 a c^{13}+2515119599058559842755207495680 a^{2} c^{13}$ $+86736118424560097458906988544 a^{3} c^{13}-3161160586838072858315587584 a^{4} c^{13}$ $-60906398366128428283985920 a^{5} c^{13}+1095434877030957892567040 a^{6} c^{13}$ $+23381921084010119593984 a^{7} c^{13}-47490543525098225664 a^{8} c^{13}$
$-2820529517926514688 a^{9} c^{13}-11462683879342080 a^{10} c^{13}+47457429454848 a^{11} c^{13}$ $+301836337152 a^{12} c^{13}+222265344 a^{13} c^{13}+22017811906854510322306420572160 c^{14}$ $-2806382504474260293901109690368 a c^{14}+56114056200198328788635877376 a^{2} c^{14}$ $+3130227668566099474800181248 a^{3} c^{14}-55744217498585353130868736 a^{4} c^{14}$ $-1746759006684340448133120 a^{5} c^{14}+9627703692985367920640 a^{6} c^{14}$ $+406844682258068275200 a^{7} c^{14}+1108341754219069440 a^{8} c^{14}-22975600361472000 a^{9} c^{14}$ $-132151988060160 a^{10} c^{14}+3810263040 a^{11} c^{14}+635043840 a^{12} c^{14}$
$+817035530887402535876401561600 c^{15}-82889552973985223208362573824 a c^{15}$
$+815118236417071270749798400 a^{2} c^{15}+83942160722637478791479296 a^{3} c^{15}$ $-571605198342643441991680 a^{4} c^{15}-34446359088247708057600 a^{5} c^{15}$ $-35428116169757294592 a^{6} c^{15}+4613271914955669504 a^{7} c^{15}+24896517801246720 a^{8} c^{15}$ $-90394680360960 a^{9} c^{15}-689403592704 a^{10} c^{15}-508035072 a^{11} c^{15}$ $+25492842205893327557597593600 c^{16}-2019148311322882102037315584 a c^{16}$ $+2535685215177442083209216 a^{2} c^{16}+1710864058321963742134272 a^{3} c^{16}$ $+742952151893710995456 a^{4} c^{16}-478301608597548761088 a^{5} c^{16}$
$-2379403980560990208 a^{6} c^{16}+32165836060753920 a^{7} c^{16}+231267090432000 a^{8} c^{16}$ $-6667960320 a^{9} c^{16}-1333592064 a^{10} c^{16}+666730090433021767780925440 c^{17}$ $-40228619723623414689169408 a c^{17}-238088094223184953344000 a^{2} c^{17}$ $+26459036472899161030656 a^{3} c^{17}+144718677935497150464 a^{4} c^{17}$
$-4566197464639340544 a^{5} c^{17}-34538024132935680 a^{6} c^{17}+111663493939200 a^{7} c^{17}$ $+1063735787520 a^{8} c^{17}+784465920 a^{9} c^{17}+14536732947779318909501440 c^{18}$ $-647212691205599241699328 a c^{18}-7677439917877812527104 a^{2} c^{18}$

$$
\begin{gathered}
+304500878910237442048 a^{3} c^{18}+2766935258250870784 a^{4} c^{18}-27750913550581760 a^{5} c^{18} \\
-266034009866240 a^{6} c^{18}+7670333440 a^{7} c^{18}+1917583360 a^{8} c^{18} \\
+262033355840517937561600 c^{19}-8248049013151460491264 a c^{19}
\end{gathered}
$$

$$
-138248122329271894016 a^{2} c^{19}+2500195370064150528 a^{3} c^{19}+29581529862635520 a^{4} c^{19}
$$

$$
-86195977584640 a^{5} c^{19}-1094031769600 a^{6} c^{19}-807403520 a^{7} c^{19}
$$

$$
+3858185886371518873600 c^{20}-80838990711104733184 a c^{20}
$$

$$
-1685561728040960000 a^{2} c^{20}+13437282599043072 a^{3} c^{20}+193225630416896 a^{4} c^{20}
$$

$$
-5571084288 a^{5} c^{20}-1857028096 a^{6} c^{20}+45608006280785428480 c^{21}
$$

$$
-580593322943315968 a c^{21}-14239028215808000 a^{2} c^{21}+37761870462976 a^{3} c^{21}
$$

$$
+718404583424 a^{4} c^{21}+530579456 a^{5} c^{21}+422097512279572480 c^{22}-2792162232107008 a c^{22}
$$

$$
-80301946568704 a^{2} c^{22}+2315255808 a^{3} c^{22}+1157627904 a^{4} c^{22}+2944226924953600 c^{23}
$$

$$
-7164273885184 a c^{23}-272394878976 a^{2} c^{23}-201326592 a^{3} c^{23}+14547523993600 c^{24}-419430400 a c^{24}
$$

$$
\begin{equation*}
\left.\left.-419430400 a^{2} c^{24}+45365592064 c^{25}+33554432 a c^{25}+67108864 c^{26}\right\}\right] \tag{16}
\end{equation*}
$$

Derivation of main result
Substituting $b=-a-52, z=\frac{1}{2}$ in given result (10), we get

$$
\begin{gathered}
(2 a+52){ }_{2} F_{1}\left[\begin{array}{ccc}
a,-a-52 & ; \frac{1}{2} \\
c & ; & \\
=a_{2} F_{1}\left[\begin{array}{c}
a+1 \\
c
\end{array}\right. & -a-52 & ; \\
\hline
\end{array}\right]+(a+52){ }_{2} F_{1}\left[\begin{array}{ccc}
a, & -a-51 & ; \frac{1}{2} \\
c & ;
\end{array}\right]
\end{gathered}
$$

Now involving the derived result of $\operatorname{Ref}[6]$, we can prove the main result.

References Références Referencias

1. Andrews, L.C.(1992) ; Special Function of mathematics for Engineers,second Edition, McGraw-Hill Co Inc., New York.
2. Bells, Richard, Wong, Roderick ; Special Functions, A Graduate Text. Cambridge Studies in Advanced Mathematics, 2010.
3. Lebedev, N.N.(1965) ; Special Functions and their applications, Printice-Hall Inc., New York.
4. Mathai, A.M.,Haubold, Hans J.(2008) ; Special Functions for Applied Scientists, Springer, New York.
5. Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O.I.; Integrals and Series Vol. 3: More Special Functions. Nauka, Moscow, 1986. Translated from the Russian by G.G. Gould, Gordon and Breach Science Publishers, New York, Philadelphia, London, Paris, Montreux, Tokyo, Melbourne, 1990.
6. Rainville, E.D.(1960) ; Special Functions, The Macmillan Company, New York.
7. Salahuddin, Chaudhary, M.P ; A New Summation Formula Clung to Contigious relation, Global Journal of Science Frontier Research(F), 13(2013),27- 39.

Global Journals Inc. (US) Guidelines Handbook 2013

WWW.GLOBALJOURNALS.ORG

FELLOWS

FELLOW OF ASSOCIATION OF RESEARCH SOCIETY IN SCIENCE (FARSS)

- 'FARSS' title will be awarded to the person after approval of Editor-in-Chief and Editorial Board. The title 'FARSS" can be added to name in the following manner. eg. Dr. John E. Hall, Ph.D., FARSS or William Walldroff Ph. D., M.S., FARSS
- Being FARSS is a respectful honor. It authenticates your research activities. After becoming FARSS, you can use 'FARSS' title as you use your degree in suffix of your name. This will definitely will enhance and add up your name. You can use it on your Career Counseling Materials/CV/Resume/Visiting Card/Name Plate etc.
- 60% Discount will be provided to FARSS members for publishing research papers in Global Journals Inc., if our Editorial Board and Peer Reviewers accept the paper. For the life time, if you are author/co-author of any paper bill sent to you will automatically be discounted one by 60%
- FARSS will be given a renowned, secure, free professional email address with 100 GB of space eg.johnhall@globaljournals.org. You will be facilitated with Webmail, SpamAssassin, Email Forwarders, Auto-Responders, Email Delivery Route tracing, etc.
- FARSS member is eligible to become paid peer reviewer at Global Journals Inc. to earn up to 15% of realized author charges taken from author of respective paper. After reviewing 5 or more papers you can request to transfer the amount to your bank account or to your PayPal account.
- Eg. If we had taken 420 USD from author, we can send 63 USD to your account.
- FARSS member can apply for free approval, grading and certification of some of their Educational and Institutional Degrees from Global Journals Inc. (US) and Open Association of Research,Society U.S.A.
- After you are FARSS. You can send us scanned copy of all of your documents. We will verify, grade and certify them within a month. It will be based on your academic records, quality of research papers published by you, and 50 more criteria. This is beneficial for your job interviews as recruiting organization need not just rely on you for authenticity and your unknown qualities, you would have authentic ranks of all of your documents. Our scale is unique worldwide.
- FARSS member can proceed to get benefits of free research podcasting in Global Research Radio with their research documents, slides and online movies.
- After your publication anywhere in the world, you can upload you research paper with your recorded voice or you can use our professional RJs to record your paper their voice. We can also stream your conference videos and display your slides online.
- FARSS will be eligible for free application of Standardization of their Researches by Open Scientific Standards. Standardization is next step and level after publishing in a journal. A team of research and professional will work with you to take your research to its next level, which is worldwide open standardization.
- FARSS is eligible to earn from their researches: While publishing his paper with Global Journals Inc. (US), FARSS can decide whether he/she would like to publish his/her research in closed manner. When readers will buy that individual research paper for reading, 80% of its earning by Global Journals Inc. (US) will be transferred to FARSS member's bank account after certain threshold balance. There is no time limit for collection. FARSS member can decide its price and we can help in decision.

MEMBER OF ASSOCIATION OF RESEARCH SOCIETY IN SCIENCE (MARSS)

- 'MARSS' title will be awarded to the person after approval of Editor-in-Chief and Editorial Board. The title 'MARSS" can be added to name in the following manner. eg. Dr. John E. Hall, Ph.D., MARSS or William Walldroff Ph. D., M.S., MARSS
- Being MARSS is a respectful honor. It authenticates your research activities. After becoming MARSS, you can use 'MARSS' title as you use your degree in suffix of your name. This will definitely will enhance and add up your name. You can use it on your Career Counseling Materials/CV/Resume/Visiting Card/Name Plate etc.
- 40% Discount will be provided to MARSS members for publishing research papers in Global Journals Inc., if our Editorial Board and Peer Reviewers accept the paper. For the life time, if you are author/co-author of any paper bill sent to you will automatically be discounted one by 60\%
- MARSS will be given a renowned, secure, free professional email address with 30 GB of space eg.johnhall@globaljournals.org. You will be facilitated with Webmail, SpamAssassin, Email Forwarders, Auto-Responders, Email Delivery Route tracing, etc.
- MARSS member is eligible to become paid peer reviewer at Global Journals Inc. to earn up to 10% of realized author charges taken from author of respective paper. After reviewing 5 or more papers you can request to transfer the amount to your bank account or to your PayPal account.
- MARSS member can apply for free approval, grading and certification of some of their Educational and Institutional Degrees from Global Journals Inc. (US) and Open Association of Research,Society U.S.A.
- MARSS is eligible to earn from their researches: While publishing his paper with Global Journals Inc. (US), MARSS can decide whether he/she would like to publish his/her research in closed manner. When readers will buy that individual research paper for reading, 40% of its earning by Global Journals Inc. (US) will be transferred to MARSS member's bank account after certain threshold balance. There is no time limit for collection. MARSS member can decide its price and we can help in decision.

AUXILIARY MEMbERSHIPS

ANNUAL MEMBER

- Annual Member will be authorized to receive e-Journal GJSFR for one year (subscription for one year).
- The member will be allotted free 1 GB Web-space along with subDomain to contribute and participate in our activities.
- A professional email address will be allotted free 500 MB email space.

PAPER PUBLICATION

- The members can publish paper once. The paper will be sent to two-peer reviewer. The paper will be published after the acceptance of peer reviewers and Editorial Board.

Process of submission of Research Paper

The Area or field of specialization may or may not be of any category as mentioned in 'Scope of Journal' menu of the GlobalJournals.org website. There are 37 Research Journal categorized with Six parental Journals GJCST, GJMR, GJRE, GJMBR, GJSFR, GJHSS. For Authors should prefer the mentioned categories. There are three widely used systems UDC, DDC and LCC. The details are available as 'Knowledge Abstract' at Home page. The major advantage of this coding is that, the research work will be exposed to and shared with all over the world as we are being abstracted and indexed worldwide.

The paper should be in proper format. The format can be downloaded from first page of 'Author Guideline' Menu. The Author is expected to follow the general rules as mentioned in this menu. The paper should be written in MS-Word Format (*.DOC,*.DOCX).

The Author can submit the paper either online or offline. The authors should prefer online submission. Online Submission: There are three ways to submit your paper:
(A) (I) First, register yourself using top right corner of Home page then Login. If you are already registered, then login using your username and password.
(II) Choose corresponding Journal.
(III) Click 'Submit Manuscript’. Fill required information and Upload the paper.
(B) If you are using Internet Explorer, then Direct Submission through Homepage is also available.
(C) If these two are not conveninet, and then email the paper directly to dean@globaljournals.org.

Offline Submission: Author can send the typed form of paper by Post. However, online submission should be preferred.

Preferred Author Guidelines

MANUSCRIPT STYLE INSTRUCTION (Must be strictly followed)

Page Size: $8.27^{\prime \prime} \times 11^{\prime \prime}$

- Left Margin: 0.65
- Right Margin: 0.65
- Top Margin: 0.75
- Bottom Margin: 0.75
- Font type of all text should be Swis 721 Lt BT.
- Paper Title should be of Font Size 24 with one Column section.
- Author Name in Font Size of 11 with one column as of Title.
- Abstract Font size of 9 Bold, "Abstract" word in Italic Bold.
- Main Text: Font size 10 with justified two columns section
- Two Column with Equal Column with of 3.38 and Gaping of . 2
- First Character must be three lines Drop capped.
- Paragraph before Spacing of 1 pt and After of 0 pt .
- Line Spacing of 1 pt
- Large Images must be in One Column
- Numbering of First Main Headings (Heading 1) must be in Roman Letters, Capital Letter, and Font Size of 10.
- Numbering of Second Main Headings (Heading 2) must be in Alphabets, Italic, and Font Size of 10.

You can use your own standard format also.

Author Guidelines:

1. General,
2. Ethical Guidelines,
3. Submission of Manuscripts,
4. Manuscript's Category,
5. Structure and Format of Manuscript,
6. After Acceptance.

1. GENERAL

Before submitting your research paper, one is advised to go through the details as mentioned in following heads. It will be beneficial, while peer reviewer justify your paper for publication.

Scope

The Global Journals Inc. (US) welcome the submission of original paper, review paper, survey article relevant to the all the streams of Philosophy and knowledge. The Global Journals Inc. (US) is parental platform for Global Journal of Computer Science and Technology, Researches in Engineering, Medical Research, Science Frontier Research, Human Social Science, Management, and Business organization. The choice of specific field can be done otherwise as following in Abstracting and Indexing Page on this Website. As the all Global
© Copyright by Global Journals Inc.(US) | Guidelines Handbook

Journals Inc. (US) are being abstracted and indexed (in process) by most of the reputed organizations. Topics of only narrow interest will not be accepted unless they have wider potential or consequences.

2. ETHICAL GUIDELINES

Authors should follow the ethical guidelines as mentioned below for publication of research paper and research activities.

Papers are accepted on strict understanding that the material in whole or in part has not been, nor is being, considered for publication elsewhere. If the paper once accepted by Global Journals Inc. (US) and Editorial Board, will become the copyright of the Global Journals Inc. (US).

Authorship: The authors and coauthors should have active contribution to conception design, analysis and interpretation of findings. They should critically review the contents and drafting of the paper. All should approve the final version of the paper before submission

The Global Journals Inc. (US) follows the definition of authorship set up by the Global Academy of Research and Development. According to the Global Academy of R\&D authorship, criteria must be based on:

1) Substantial contributions to conception and acquisition of data, analysis and interpretation of the findings.
2) Drafting the paper and revising it critically regarding important academic content.
3) Final approval of the version of the paper to be published.

All authors should have been credited according to their appropriate contribution in research activity and preparing paper. Contributors who do not match the criteria as authors may be mentioned under Acknowledgement.

Acknowledgements: Contributors to the research other than authors credited should be mentioned under acknowledgement. The specifications of the source of funding for the research if appropriate can be included. Suppliers of resources may be mentioned along with address.

Appeal of Decision: The Editorial Board's decision on publication of the paper is final and cannot be appealed elsewhere.

Permissions: It is the author's responsibility to have prior permission if all or parts of earlier published illustrations are used in this paper.

Please mention proper reference and appropriate acknowledgements wherever expected.
If all or parts of previously published illustrations are used, permission must be taken from the copyright holder concerned. It is the author's responsibility to take these in writing.

Approval for reproduction/modification of any information (including figures and tables) published elsewhere must be obtained by the authors/copyright holders before submission of the manuscript. Contributors (Authors) are responsible for any copyright fee involved.

3. SUBMISSION OF MANUSCRIPTS

Manuscripts should be uploaded via this online submission page. The online submission is most efficient method for submission of papers, as it enables rapid distribution of manuscripts and consequently speeds up the review procedure. It also enables authors to know the status of their own manuscripts by emailing us. Complete instructions for submitting a paper is available below.

Manuscript submission is a systematic procedure and little preparation is required beyond having all parts of your manuscript in a given format and a computer with an Internet connection and a Web browser. Full help and instructions are provided on-screen. As an author, you will be prompted for login and manuscript details as Field of Paper and then to upload your manuscript file(s) according to the instructions.

To avoid postal delays, all transaction is preferred by e-mail. A finished manuscript submission is confirmed by e-mail immediately and your paper enters the editorial process with no postal delays. When a conclusion is made about the publication of your paper by our Editorial Board, revisions can be submitted online with the same procedure, with an occasion to view and respond to all comments.

Complete support for both authors and co-author is provided.

4. MANUSCRIPT'S CATEGORY

Based on potential and nature, the manuscript can be categorized under the following heads:
Original research paper: Such papers are reports of high-level significant original research work.
Review papers: These are concise, significant but helpful and decisive topics for young researchers.
Research articles: These are handled with small investigation and applications
Research letters: The letters are small and concise comments on previously published matters.

5.STRUCTURE AND FORMAT OF MANUSCRIPT

The recommended size of original research paper is less than seven thousand words, review papers fewer than seven thousands words also. Preparation of research paper or how to write research paper, are major hurdle, while writing manuscript. The research articles and research letters should be fewer than three thousand words, the structure original research paper; sometime review paper should be as follows:

Papers: These are reports of significant research (typically less than 7000 words equivalent, including tables, figures, references), and comprise:
(a)Title should be relevant and commensurate with the theme of the paper.
(b) A brief Summary, "Abstract" (less than 150 words) containing the major results and conclusions.
(c) Up to ten keywords, that precisely identifies the paper's subject, purpose, and focus.
(d) An Introduction, giving necessary background excluding subheadings; objectives must be clearly declared.
(e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition; sources of information must be given and numerical methods must be specified by reference, unless non-standard.
(f) Results should be presented concisely, by well-designed tables and/or figures; the same data may not be used in both; suitable statistical data should be given. All data must be obtained with attention to numerical detail in the planning stage. As reproduced design has been recognized to be important to experiments for a considerable time, the Editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned un-refereed;
(g) Discussion should cover the implications and consequences, not just recapitulating the results; conclusions should be summarizing.
(h) Brief Acknowledgements.
(i) References in the proper form.

Authors should very cautiously consider the preparation of papers to ensure that they communicate efficiently. Papers are much more likely to be accepted, if they are cautiously designed and laid out, contain few or no errors, are summarizing, and be conventional to the approach and instructions. They will in addition, be published with much less delays than those that require much technical and editorial correction.

The Editorial Board reserves the right to make literary corrections and to make suggestions to improve briefness.

It is vital, that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

Format

Language: The language of publication is UK English. Authors, for whom English is a second language, must have their manuscript efficiently edited by an English-speaking person before submission to make sure that, the English is of high excellence. It is preferable, that manuscripts should be professionally edited.

Standard Usage, Abbreviations, and Units: Spelling and hyphenation should be conventional to The Concise Oxford English Dictionary. Statistics and measurements should at all times be given in figures, e.g. 16 min , except for when the number begins a sentence. When the number does not refer to a unit of measurement it should be spelt in full unless, it is 160 or greater.

Abbreviations supposed to be used carefully. The abbreviated name or expression is supposed to be cited in full at first usage, followed by the conventional abbreviation in parentheses.

Metric SI units are supposed to generally be used excluding where they conflict with current practice or are confusing. For illustration, 1.4 I rather than $1.4 \times 10-3 \mathrm{~m} 3$, or 4 mm somewhat than $4 \times 10-3 \mathrm{~m}$. Chemical formula and solutions must identify the form used, e.g. anhydrous or hydrated, and the concentration must be in clearly defined units. Common species names should be followed by underlines at the first mention. For following use the generic name should be constricted to a single letter, if it is clear.

Structure

All manuscripts submitted to Global Journals Inc. (US), ought to include:

Title: The title page must carry an instructive title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) wherever the work was carried out. The full postal address in addition with the email address of related author must be given. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining and indexing.

Abstract, used in Original Papers and Reviews:

Optimizing Abstract for Search Engines

Many researchers searching for information online will use search engines such as Google, Yahoo or similar. By optimizing your paper for search engines, you will amplify the chance of someone finding it. This in turn will make it more likely to be viewed and/or cited in a further work. Global Journals Inc. (US) have compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.

Key Words

A major linchpin in research work for the writing research paper is the keyword search, which one will employ to find both library and Internet resources.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy and planning a list of possible keywords and phrases to try.

Search engines for most searches, use Boolean searching, which is somewhat different from Internet searches. The Boolean search uses "operators," words (and, or, not, and near) that enable you to expand or narrow your affords. Tips for research paper while preparing research paper are very helpful guideline of research paper.

Choice of key words is first tool of tips to write research paper. Research paper writing is an art.A few tips for deciding as strategically as possible about keyword search:

- One should start brainstorming lists of possible keywords before even begin searching. Think about the most important concepts related to research work. Ask, "What words would a source have to include to be truly valuable in research paper?" Then consider synonyms for the important words.
- It may take the discovery of only one relevant paper to let steer in the right keyword direction because in most databases, the keywords under which a research paper is abstracted are listed with the paper.
- One should avoid outdated words.

Keywords are the key that opens a door to research work sources. Keyword searching is an art in which researcher's skills are bound to improve with experience and time.

Numerical Methods: Numerical methods used should be clear and, where appropriate, supported by references.

Acknowledgements: Please make these as concise as possible.

References

References follow the Harvard scheme of referencing. References in the text should cite the authors' names followed by the time of their publication, unless there are three or more authors when simply the first author's name is quoted followed by et al. unpublished work has to only be cited where necessary, and only in the text. Copies of references in press in other journals have to be supplied with submitted typescripts. It is necessary that all citations and references be carefully checked before submission, as mistakes or omissions will cause delays.

References to information on the World Wide Web can be given, but only if the information is available without charge to readers on an official site. Wikipedia and Similar websites are not allowed where anyone can change the information. Authors will be asked to make available electronic copies of the cited information for inclusion on the Global Journals Inc. (US) homepage at the judgment of the Editorial Board.

The Editorial Board and Global Journals Inc. (US) recommend that, citation of online-published papers and other material should be done via a DOI (digital object identifier). If an author cites anything, which does not have a DOI, they run the risk of the cited material not being noticeable.

The Editorial Board and Global Journals Inc. (US) recommend the use of a tool such as Reference Manager for reference management and formatting.

Tables, Figures and Figure Legends

Tables: Tables should be few in number, cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g. Table 4, a self-explanatory caption and be on a separate sheet. Vertical lines should not be used.

Figures: Figures are supposed to be submitted as separate files. Always take in a citation in the text for each figure using Arabic numbers, e.g. Fig. 4. Artwork must be submitted online in electronic form by e-mailing them.

Preparation of Electronic Figures for Publication
Even though low quality images are sufficient for review purposes, print publication requires high quality images to prevent the final product being blurred or fuzzy. Submit (or e-mail) EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Do not use pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings) in relation to the imitation size. Please give the data for figures in black and white or submit a Color Work Agreement Form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution (at final image size) ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs) : >350 dpi; figures containing both halftone and line images: $>650 \mathrm{dpi}$.

Color Charges: It is the rule of the Global Journals Inc. (US) for authors to pay the full cost for the reproduction of their color artwork. Hence, please note that, if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a color work agreement form before your paper can be published.

Figure Legends: Self-explanatory legends of all figures should be incorporated separately under the heading 'Legends to Figures'. In the full-text online edition of the journal, figure legends may possibly be truncated in abbreviated links to the full screen version. Therefore, the first 100 characters of any legend should notify the reader, about the key aspects of the figure.

6. AFTER ACCEPTANCE

Upon approval of a paper for publication, the manuscript will be forwarded to the dean, who is responsible for the publication of the Global Journals Inc. (US).

6.1 Proof Corrections

The corresponding author will receive an e-mail alert containing a link to a website or will be attached. A working e-mail address must therefore be provided for the related author.

Acrobat Reader will be required in order to read this file. This software can be downloaded
(Free of charge) from the following website:
www.adobe.com/products/acrobat/readstep2.html. This will facilitate the file to be opened, read on screen, and printed out in order for any corrections to be added. Further instructions will be sent with the proof.

Proofs must be returned to the dean at dean@globaljournals.org within three days of receipt.
As changes to proofs are costly, we inquire that you only correct typesetting errors. All illustrations are retained by the publisher. Please note that the authors are responsible for all statements made in their work, including changes made by the copy editor.

6.2 Early View of Global Journals Inc. (US) (Publication Prior to Print)

The Global Journals Inc. (US) are enclosed by our publishing's Early View service. Early View articles are complete full-text articles sent in advance of their publication. Early View articles are absolute and final. They have been completely reviewed, revised and edited for publication, and the authors' final corrections have been incorporated. Because they are in final form, no changes can be made after sending them. The nature of Early View articles means that they do not yet have volume, issue or page numbers, so Early View articles cannot be cited in the conventional way.

6.3 Author Services

Online production tracking is available for your article through Author Services. Author Services enables authors to track their article once it has been accepted - through the production process to publication online and in print. Authors can check the status of their articles online and choose to receive automated e-mails at key stages of production. The authors will receive an e-mail with a unique link that enables them to register and have their article automatically added to the system. Please ensure that a complete e-mail address is provided when submitting the manuscript.

6.4 Author Material Archive Policy

Please note that if not specifically requested, publisher will dispose off hardcopy \& electronic information submitted, after the two months of publication. If you require the return of any information submitted, please inform the Editorial Board or dean as soon as possible.

6.5 Offprint and Extra Copies

A PDF offprint of the online-published article will be provided free of charge to the related author, and may be distributed according to the Publisher's terms and conditions. Additional paper offprint may be ordered by emailing us at: editor@globaljournals.org .

Before start writing a good quality Computer Science Research Paper, let us first understand what is Computer Science Research Paper? So, Computer Science Research Paper is the paper which is written by professionals or scientists who are associated to Computer Science and Information Technology, or doing research study in these areas. If you are novel to this field then you can consult about this field from your supervisor or guide.

TECHNIQUES FOR WRITING A GOOD QUALITY RESEARCH PAPER:

1. Choosing the topic: In most cases, the topic is searched by the interest of author but it can be also suggested by the guides. You can have several topics and then you can judge that in which topic or subject you are finding yourself most comfortable. This can be done by asking several questions to yourself, like Will I be able to carry our search in this area? Will I find all necessary recourses to accomplish the search? Will I be able to find all information in this field area? If the answer of these types of questions will be "Yes" then you can choose that topic. In most of the cases, you may have to conduct the surveys and have to visit several places because this field is related to Computer Science and Information Technology. Also, you may have to do a lot of work to find all rise and falls regarding the various data of that subject. Sometimes, detailed information plays a vital role, instead of short information.
2. Evaluators are human: First thing to remember that evaluators are also human being. They are not only meant for rejecting a paper. They are here to evaluate your paper. So, present your Best.
3. Think Like Evaluators: If you are in a confusion or getting demotivated that your paper will be accepted by evaluators or not, then think and try to evaluate your paper like an Evaluator. Try to understand that what an evaluator wants in your research paper and automatically you will have your answer.
4. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.
5. Ask your Guides: If you are having any difficulty in your research, then do not hesitate to share your difficulty to your guide (if you have any). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work then ask the supervisor to help you with the alternative. He might also provide you the list of essential readings.
6. Use of computer is recommended: As you are doing research in the field of Computer Science, then this point is quite obvious.
7. Use right software: Always use good quality software packages. If you are not capable to judge good software then you can lose quality of your paper unknowingly. There are various software programs available to help you, which you can get through Internet.
8. Use the Internet for help: An excellent start for your paper can be by using the Google. It is an excellent search engine, where you can have your doubts resolved. You may also read some answers for the frequent question how to write my research paper or find model research paper. From the internet library you can download books. If you have all required books make important reading selecting and analyzing the specified information. Then put together research paper sketch out.
9. Use and get big pictures: Always use encyclopedias, Wikipedia to get pictures so that you can go into the depth.
10. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right! It is a good habit, which helps to not to lose your continuity. You should always use bookmarks while searching on Internet also, which will make your search easier.
11. Revise what you wrote: When you write anything, always read it, summarize it and then finalize it.
12. Make all efforts: Make all efforts to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in introduction, that what is the need of a particular research paper. Polish your work by good skill of writing and always give an evaluator, what he wants.
13. Have backups: When you are going to do any important thing like making research paper, you should always have backup copies of it either in your computer or in paper. This will help you to not to lose any of your important.
14. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. Using several and unnecessary diagrams will degrade the quality of your paper by creating "hotchpotch." So always, try to make and include those diagrams, which are made by your own to improve readability and understandability of your paper.
15. Use of direct quotes: When you do research relevant to literature, history or current affairs then use of quotes become essential but if study is relevant to science then use of quotes is not preferable.
16. Use proper verb tense: Use proper verb tenses in your paper. Use past tense, to present those events that happened. Use present tense to indicate events that are going on. Use future tense to indicate future happening events. Use of improper and wrong tenses will confuse the evaluator. Avoid the sentences that are incomplete.
17. Never use online paper: If you are getting any paper on Internet, then never use it as your research paper because it might be possible that evaluator has already seen it or maybe it is outdated version.
18. Pick a good study spot: To do your research studies always try to pick a spot, which is quiet. Every spot is not for studies. Spot that suits you choose it and proceed further.
19. Know what you know: Always try to know, what you know by making objectives. Else, you will be confused and cannot achieve your target.
20. Use good quality grammar: Always use a good quality grammar and use words that will throw positive impact on evaluator. Use of good quality grammar does not mean to use tough words, that for each word the evaluator has to go through dictionary. Do not start sentence with a conjunction. Do not fragment sentences. Eliminate one-word sentences. Ignore passive voice. Do not ever use a big word when a diminutive one would suffice. Verbs have to be in agreement with their subjects. Prepositions are not expressions to finish sentences with. It is incorrect to ever divide an infinitive. Avoid clichés like the disease. Also, always shun irritating alliteration. Use language that is simple and straight forward. put together a neat summary.
21. Arrangement of information: Each section of the main body should start with an opening sentence and there should be a changeover at the end of the section. Give only valid and powerful arguments to your topic. You may also maintain your arguments with records.
22. Never start in last minute: Always start at right time and give enough time to research work. Leaving everything to the last minute will degrade your paper and spoil your work.
23. Multitasking in research is not good: Doing several things at the same time proves bad habit in case of research activity. Research is an area, where everything has a particular time slot. Divide your research work in parts and do particular part in particular time slot.
24. Never copy others' work: Never copy others' work and give it your name because if evaluator has seen it anywhere you will be in trouble.
25. Take proper rest and food: No matter how many hours you spend for your research activity, if you are not taking care of your health then all your efforts will be in vain. For a quality research, study is must, and this can be done by taking proper rest and food.
26. Go for seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources.
27. Refresh your mind after intervals: Try to give rest to your mind by listening to soft music or by sleeping in intervals. This will also improve your memory.
28. Make colleagues: Always try to make colleagues. No matter how sharper or intelligent you are, if you make colleagues you can have several ideas, which will be helpful for your research.
29. Think technically: Always think technically. If anything happens, then search its reasons, its benefits, and demerits.
30. Think and then print: When you will go to print your paper, notice that tables are not be split, headings are not detached from their descriptions, and page sequence is maintained.
31. Adding unnecessary information: Do not add unnecessary information, like, I have used MS Excel to draw graph. Do not add irrelevant and inappropriate material. These all will create superfluous. Foreign terminology and phrases are not apropos. One should NEVER take a broad view. Analogy in script is like feathers on a snake. Not at all use a large word when a very small one would be sufficient. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grunt readers. Amplification is a billion times of inferior quality than sarcasm.
32. Never oversimplify everything: To add material in your research paper, never go for oversimplification. This will definitely irritate the evaluator. Be more or less specific. Also too, by no means, ever use rhythmic redundancies. Contractions aren't essential and shouldn't be there used. Comparisons are as terrible as clichés. Give up ampersands and abbreviations, and so on. Remove commas, that are, not necessary. Parenthetical words however should be together with this in commas. Understatement is all the time the complete best way to put onward earth-shaking thoughts. Give a detailed literary review.
33. Report concluded results: Use concluded results. From raw data, filter the results and then conclude your studies based on measurements and observations taken. Significant figures and appropriate number of decimal places should be used. Parenthetical remarks are prohibitive. Proofread carefully at final stage. In the end give outline to your arguments. Spot out perspectives of further study of this subject. Justify your conclusion by at the bottom of them with sufficient justifications and examples.
34. After conclusion: Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium though which your research is going to be in print to the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects in your research.

Informal Guidelines of Research Paper Writing

Key points to remember:

- Submit all work in its final form.
- Write your paper in the form, which is presented in the guidelines using the template.
- Please note the criterion for grading the final paper by peer-reviewers.

Final Points:

A purpose of organizing a research paper is to let people to interpret your effort selectively. The journal requires the following sections, submitted in the order listed, each section to start on a new page.

The introduction will be compiled from reference matter and will reflect the design processes or outline of basis that direct you to make study. As you will carry out the process of study, the method and process section will be constructed as like that. The result segment will show related statistics in nearly sequential order and will direct the reviewers next to the similar intellectual paths throughout the data that you took to carry out your study. The discussion section will provide understanding of the data and projections as to the implication of the results. The use of good quality references all through the paper will give the effort trustworthiness by representing an alertness of prior workings.

Writing a research paper is not an easy job no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record keeping are the only means to make straightforward the progression.

General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear

- Adhere to recommended page limits

Mistakes to evade

- Insertion a title at the foot of a page with the subsequent text on the next page
- Separating a table/chart or figure - impound each figure/table to a single page
- Submitting a manuscript with pages out of sequence

In every sections of your document

- Use standard writing style including articles ("a", "the," etc.)
- Keep on paying attention on the research topic of the paper
- Use paragraphs to split each significant point (excluding for the abstract)
- Align the primary line of each section
- Present your points in sound order
- Use present tense to report well accepted
- Use past tense to describe specific results
- Shun familiar wording, don't address the reviewer directly, and don't use slang, slang language, or superlatives
- Shun use of extra pictures - include only those figures essential to presenting results

Title Page:

Choose a revealing title. It should be short. It should not have non-standard acronyms or abbreviations. It should not exceed two printed lines. It should include the name(s) and address (es) of all authors.

Abstract

:

The summary should be two hundred words or less. It should briefly and clearly explain the key findings reported in the manuscript-must have precise statistics. It should not have abnormal acronyms or abbreviations. It should be logical in itself. Shun citing references at this point.

An abstract is a brief distinct paragraph summary of finished work or work in development. In a minute or less a reviewer can be taught the foundation behind the study, common approach to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Yet, use comprehensive sentences and do not let go readability for briefness. You can maintain it succinct by phrasing sentences so that they provide more than lone rationale. The author can at this moment go straight to shortening the outcome. Sum up the study, with the subsequent elements in any summary. Try to maintain the initial two items to no more than one ruling each.

- Reason of the study - theory, overall issue, purpose
- Fundamental goal
- To the point depiction of the research
- Consequences, including definite statistics - if the consequences are quantitative in nature, account quantitative data; results of any numerical analysis should be reported
- Significant conclusions or questions that track from the research(es)

Approach:

- Single section, and succinct
- As a outline of job done, it is always written in past tense
- A conceptual should situate on its own, and not submit to any other part of the paper such as a form or table
- Center on shortening results - bound background information to a verdict or two, if completely necessary
- What you account in an conceptual must be regular with what you reported in the manuscript
- Exact spelling, clearness of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else

Introduction:

The Introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable to comprehend and calculate the purpose of your study without having to submit to other works. The basis for the study should be offered. Give most important references but shun difficult to make a comprehensive appraisal of the topic. In the introduction, describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will have no attention in your result. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here. Following approach can create a valuable beginning:

- Explain the value (significance) of the study
- Shield the model - why did you employ this particular system or method? What is its compensation? You strength remark on its appropriateness from a abstract point of vision as well as point out sensible reasons for using it.
- Present a justification. Status your particular theory (es) or aim(s), and describe the logic that led you to choose them.
- Very for a short time explain the tentative propose and how it skilled the declared objectives.

Approach:

- Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done.
- Sort out your thoughts; manufacture one key point with every section. If you make the four points listed above, you will need a least of four paragraphs.
- Present surroundings information only as desirable in order hold up a situation. The reviewer does not desire to read the whole thing you know about a topic.
- Shape the theory/purpose specifically - do not take a broad view.
- As always, give awareness to spelling, simplicity and correctness of sentences and phrases.

Procedures (Methods and Materials):

This part is supposed to be the easiest to carve if you have good skills. A sound written Procedures segment allows a capable scientist to replacement your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt for the least amount of information that would permit another capable scientist to spare your outcome but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section. When a technique is used that has been well described in another object, mention the specific item describing a way but draw the basic principle while stating the situation. The purpose is to text all particular resources and broad procedures, so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step by step report of the whole thing you did, nor is a methods section a set of orders.

Materials:

- Explain materials individually only if the study is so complex that it saves liberty this way.
- Embrace particular materials, and any tools or provisions that are not frequently found in laboratories.
- Do not take in frequently found.
- If use of a definite type of tools.
- Materials may be reported in a part section or else they may be recognized along with your measures.

Methods:

- Report the method (not particulars of each process that engaged the same methodology)
- Describe the method entirely
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures
- Simplify - details how procedures were completed not how they were exclusively performed on a particular day.
- If well known procedures were used, account the procedure by name, possibly with reference, and that's all.

Approach:

- It is embarrassed or not possible to use vigorous voice when documenting methods with no using first person, which would focus the reviewer's interest on the researcher rather than the job. As a result when script up the methods most authors use third person passive voice.
- Use standard style in this and in every other part of the paper - avoid familiar lists, and use full sentences.

What to keep away from

- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings - save it for the argument.
- Leave out information that is immaterial to a third party.

Results:

The principle of a results segment is to present and demonstrate your conclusion. Create this part a entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Carry on to be to the point, by means of statistics and tables, if suitable, to present consequences most efficiently.You must obviously differentiate material that would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matter should not be submitted at all except requested by the instructor.

- Sum up your conclusion in text and demonstrate them, if suitable, with figures and tables.
- In manuscript, explain each of your consequences, point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation an exacting study.
- Explain results of control experiments and comprise remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or in manuscript form. What to stay away from
- Do not discuss or infer your outcome, report surroundings information, or try to explain anything.
- Not at all, take in raw data or intermediate calculations in a research manuscript.
- Do not present the similar data more than once.
- Manuscript should complement any figures or tables, not duplicate the identical information.
- Never confuse figures with tables - there is a difference.

Approach

- As forever, use past tense when you submit to your results, and put the whole thing in a reasonable order.
- Put figures and tables, appropriately numbered, in order at the end of the report
- If you desire, you may place your figures and tables properly within the text of your results part.

Figures and tables

- If you put figures and tables at the end of the details, make certain that they are visibly distinguished from any attach appendix materials, such as raw facts
- Despite of position, each figure must be numbered one after the other and complete with subtitle
- In spite of position, each table must be titled, numbered one after the other and complete with heading
- All figure and table must be adequately complete that it could situate on its own, divide from text

Discussion:
The Discussion is expected the trickiest segment to write and describe. A lot of papers submitted for journal are discarded based on problems with the Discussion. There is no head of state for how long a argument should be. Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implication of the study. The purpose here is to offer an understanding of your results and hold up for all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of result should be visibly described. Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved with prospect, and let it drop at that.

- Make a decision if each premise is supported, discarded, or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."
- Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work
- You may propose future guidelines, such as how the experiment might be personalized to accomplish a new idea.
- Give details all of your remarks as much as possible, focus on mechanisms.
- Make a decision if the tentative design sufficiently addressed the theory, and whether or not it was correctly restricted.
- Try to present substitute explanations if sensible alternatives be present.
- One research will not counter an overall question, so maintain the large picture in mind, where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

Approach:

- When you refer to information, differentiate data generated by your own studies from available information
- Submit to work done by specific persons (including you) in past tense.
- Submit to generally acknowledged facts and main beliefs in present tense.

Administration Rules Listed Before Submitting Your Research Paper to Global Journals Inc. (US)

Please carefully note down following rules and regulation before submitting your Research Paper to Global Journals Inc. (US):

Segment Draft and Final Research Paper: You have to strictly follow the template of research paper. If it is not done your paper may get rejected.

- The major constraint is that you must independently make all content, tables, graphs, and facts that are offered in the paper. You must write each part of the paper wholly on your own. The Peer-reviewers need to identify your own perceptive of the concepts in your own terms. NEVER extract straight from any foundation, and never rephrase someone else's analysis.
- Do not give permission to anyone else to "PROOFREAD" your manuscript.
- Methods to avoid Plagiarism is applied by us on every paper, if found guilty, you will be blacklisted by all of our collaborated research groups, your institution will be informed for this and strict legal actions will be taken immediately.)
- To guard yourself and others from possible illegal use please do not permit anyone right to use to your paper and files.

Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals Inc. (US).

Topics	Grades		
	A-B	C-D	E-F
Abstract	Clear and concise with appropriate content, Correct format. 200 words or below	Unclear summary and no specific data, Incorrect form	No specific data with ambiguous information
		Above 200 words	Above 250 words
Introduction	Containing all background details with clear goal and appropriate details, flow specification, no grammar and spelling mistake, well organized sentence and paragraph, reference cited	Unclear and confusing data, appropriate format, grammar and spelling errors with unorganized matter	Out of place depth and content, hazy format
Methods and Procedures	Clear and to the point with well arranged paragraph, precision and accuracy of facts and figures, well organized subheads	Difficult to comprehend with embarrassed text, too much explanation but completed	Incorrect and unorganized structure with hazy meaning
Result	Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake	Complete and embarrassed text, difficult to comprehend	Irregular format with wrong facts and figures
Discussion	Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph reference cited	Wordy, unclear conclusion, spurious	Conclusion is not cited, unorganized, difficult to comprehend
References	Complete and correct format, well organized	Beside the point, Incomplete	Wrong format and structuring

INDEX

G

Gonococcus • 76

I

Immunization • 67

L

Lebesgueís • 61
0

Orthotropic • 2, 18

P

Perturbed - 58
Piezoelectric - 2, 20
Pochhammer - 189
Promiscuous • 77, 81

S

Schistosomiasis • 63
Stoneley • 1, 20
Susceptibles • 64, 70

T

Thermoelastic • 1, 2, 4, 16, 18, 19

Global Journal of Science Frontier Research

Visit us on the Web at www.GlobalJournals.org | www.JournalofScience.org or email us at helpdesk@globaljournals.org

[^0]: Author a : Department of Mathematics, Kurukshetra University, Kurukshetra, Haryana, India-136119.
 E-mail : rajneesh kuk@rediffmail.com
 Author ρ o : Department of Mathematics, Deenbandhu Chhotu Ram University of Science and Technology, Sonipat, Haryana, India131001. E-mail : dahiya_krishan@rediffmail.com

 Author σ : Department of Mathematics, N.C. College of Engineering, Israna, Panipat, Haryana, India-132107.
 E-mail : ravendranautiyal@yahoo.co.in

[^1]: Author $\alpha \sigma \rho$: Department of Mathematics, University of Ilorin. E-mail : asidowu@gmail.com
 Author ω : Department of Mathematics, Kaduna State University.

[^2]: Author a : University of Lomé - Togo Department of Mathematics PO Box 1515 Lomé, Togo. E-mail : zakari. djibibe@gmail.com
 Author σ : University of Lomé - Togo Department of Mathematics PO Box 1515 Lomé, Togo. E-mail : tkokou09@yahoo.fr

[^3]: Author a : Univ. F. ABBAS de Sétif, Algeria. E-mail : mermathsb@hotmail.com
 Author σ : Univ. F. ABBAS de Sétif, Algeria.
 Author p : Univ. K. M. de Ouargla, Algeria March 6, 2013.

[^4]: Author : Department of Mathematics, S. V.G.M. Government Degree College, Kalyandurg, Anantapur-District, Andhra Pradesh, India. E-mail : nari.prabhu@gmail.com

[^5]: Author a : P.D.M College of Engineering, Bahadurgarh, Haryana, India. E-mail : vsludn@gmail.com
 Author σ : Delhi Institute of Technology, Management and Research, Ballabhgarh, Haryana, India.

[^6]: Author : Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie delllinformazione Via Claudio 21, 80125, Napoli, ITALY. E-mail : laura.celentano@unina.it

[^7]: Author a : P.D.M College of Engineering, Bahadurgarh, Haryana, India. E-mails : sludn@yahoo.com, vsludn@gmail.com Author σ : International Scientific Research and Welfare Organization, New Delhi, India. E-mail : mpchaudhary_2000@yahoo.com

