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I. Introduction 

Many evolution processes are characterized by the fact that at certain moments 
of time they experience a change of state abruptly. These processes are subject to short 
term perturbations of negligible duration in comparison with the duration of the 
process. Consequently, it is natural to assume that these perturbations act 
instantaneously, that is: in the form of impulses. It is known for example that many 
biological phenomenon involving thresholds, bursting rhythm models in medicine and 
biology, optimal control models in economics, pharmacokinetics and frequency 
modulated systems, do exhibit impulsive effects. Impulsive differential equations are 
adequate mathematical models for description of evolution processes characterized by 
the combination of a continuous and jumps change of their states. For the description 
of the continuous change of such processes ordinary differential equations are used, 
while the moments and the magnitude of the change by jumps are given by the jump 
conditions. According to the way in which the moments of the change by jumps are 
determined, IDE are classified into two categories: Equations with fixed moments of 
impulsive effect and equations with unfixed (variable) moments of impulsive effect. The 
solutions of IDE with variable impulsive moments are piecewise continuous functions 
but unlike the solutions of the systems with fixed moments of impulse effect, different 
solutions of these IDE have different points of discontinuity. This leads to number of 
difficulties in the investigation of IDS with variable impulsive moments. That is why 
these systems have been an object of numerous investigations. 

Moreover, when the trivial solution of the system does not exist, we may still 
have stability eventually, which generalizes Lyapunov Stability. For example, for the 
practical point of view, if a ship remains in an upright position, it is called stable. 
However, since the environmental forces acting on it as well as ship's disposition w.r.t. 
sea  will  change  in  time, the determination of a safe minimum amount of stability i.e.  
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stability criterion becomes necessary. If one follows the intuitive concept of stability, it 
is natural to think  that if the amplitude of the ship in every perceived combinations of 
ship- environment conditions,  remain smaller than a  pre-determined safe value, the ship 
should be considered stable, The  mathematical counterparts of this definition are 
eventual stability and boundedness. For the problems  arisen in this situations, to be 
solved a new notion of eventual stability is introduced by V.  Lakshmikantham, S. Leela, 
A. A. Martynyuk.  

The problem of Ψ - stability for the systems of ordinary differential equations 

has been studied by many  authors e. g. J. Morchalo [4] introduced the notion of Ψ - 

stability, Ψ - uniform stability and Ψ - asymptotic stability of trivial solution of non 

linear system x' =  f (t, x) . He has considered Ψ  as scalar  continuous function. Aurel 

Diamandescu [2] and [3] has introduced Ψ -stability by taking Ψ  as diagonal  matrix.  
In [6], the criteria of eventual stability are established for impulsive differential 

systems with fixed  moments of impulses by using piecewise Lyapunov functions by 
Zhang Yu. In [5], Soliman extended the  notion of eventual stability to impulsive 
differential systems with variable moments.  

In our paper we have established criterion of Ψ-Eventual Stability for impulsive 
differential systems with  variable moments of impulses by using piecewise continuous 
auxiliary functions which are analogous to Lyapunov’s functions. The paper is organized 
as follows: In section 2, some preliminary notes and  definitions which will be used 

throughout the paper are introduced. In section 3, two theorems for Ψ - Eventual 

Stability and Ψ -Uniform Eventual Stability are proved. One example has been given in 
support of our theoretical results. Conclusion is given in Section 4.  

II.  Preliminary notes and Definitions 

Let  Rn  denote n -dimensional Euclidean space with norm ‖.  ‖  

Let     be the s -  dimensional Euclidean space with a  suitable norm ‖. ‖.  Let  Rn =  [0,  ∞) 
and   

Consider the system of differential equations with impulses  
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Following [1], we define the sets 

Let Ψ : R+ (0, ∞) be a continuous finite function such that Ψ(t0 )= Ψ0 
Definition1. Let the sets K & K1 be defined as 

  
   

We use the classes ν0

 

of piecewise continuous functions which are analogue to Lyapunov 
functions.

 

Definition2.

 

We say that the function                         

 

belongs to the class ν0

 

if the 
following

 

conditions hold:

 

1.

 

The function V is continuous in      

 

and is locally Lipschitzian with respect to x 
and y in

 

each of the sets Gi

 

2.

 

V(t,0,0)=0 for

 

t ∈

 

R+.

 

3.

 

For each i =1,2,3..................

 

and for any point (t0, x0, y0)∈σt

 

, there exist the finite

 

limits

 

 

 

 

 

 

 

 

4. For any point (t, x, y)∈σi the following inequality holds: 

 

 
Let                           Following [1], we define 

 

 

Definition3 The set                                     of the system (2.1) is said to be 

1. Eventually stable if for all        for all         there exists              and              
for all                    such that                    implies 

 

2. Uniformly eventually stable if δ =δ (ε ) i.e. δ is independent of t0. 

3. Ψ - eventually stable if for all ε > 0,  for all         there exists τ =τ (∈) > 0 and 

δ = δ (t0, ε) > 0 for all                         such that                          for               
and 

4. Ψ - uniformly eventually stable if for all         for all          there exists τ =τ (∈) > 0 
and               for all                    such that                           for                 
and 

Definition 4. We say that conditions (A) hold if the following are satisfied: 

(A1) The functions                      and            are continuous in their definition domains,

                        

(A2) The functions At, Bt and Ct are continuous in their definition domains and 
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(A4) The functions τi

 

(x, y) are continuous and for ( x,

 

y

 

)        

 

, the following 
relations hold:

 
 
 

 
 
 
 
 
 
 (A5) For each point                                   the solution                                      is 

and
 

defined in
  (A6) The integral curve of each of the solutions of system (2.1) meets each of the hyper 

surfaces{σi}
 

at most once.
 

III.
 

Main Results
 In this section, we extend the work of Kulev and Bainov [1] and A. A. Soliman 

[5] and established Ψ
 

-
 

eventually stability and Ψ
 

-
 

uniformly eventually stability for 
impulsive differential system with variable

 
moments.

 Theorem 1.
 

Assume that
 (H1) Conditions (A) holds.

 (H2) There exists functions                 
 
such that                                              

 where Ψ
 

is a function defined in section 2.
 (H3)                                                                   the functions                    

  are
 

locally integrable.
 (H4) There exists a no. L >

 
0 such that

 Then the set                                           is Ψ -
 

eventually stable set of the system (2.1).
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Proof: Let        be given and let the number                   be chosen so that for 

                                       

(This is possible because of condition (H4))

Let            From property 4 of definition 2 , it follows that there exists a number

such that for  

From (H3), (H4) and (3.2), we get

Without loss of generality, Let
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2 2t

a a
L p ds L

L

 

   for  0t t                                                                 (3.3)                        
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From (H2), (3.1), (3.2) and (3.3)

Thus for all         , for all       there exists             and                 for all

                 

such that                          for                     and

Hence the set
                                     

is Ψ - eventually stable set of the system (2.1).

Theorem 2. Assume that (H1) and (H3) of Theorem 1 holds. Moreover suppose that
(H5) Let There exists functions                                               such that 

(H6) For all

(t, ( ), (t)) ( 0, ( 0), ( 0))k l k l k lV x t y V x y                   

1 1 1 0 0 0 2 2 2 1 1 1

3 3 3 2 2 2

1

( , ( ), ( )) (t 0, (t ), (t )) ( , ( ), ( )) ( 0, ( 0), ( 0))
( , ( ), ( )) ( 0, ( 0), ( 0)) ..........................................
( , ( ), ( )) ( 0k l k l k l k l

V x y V x y V x y V x y
V x y V x y
V x y V
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0 0 0
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2 2
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a
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  , : 0 0n m
H Hx y R R x and y      

0 1, , ,V a b K K   

( ( ) ( ) ( ) ( ) ) ( , , ) ( ( ) ( ) ( ) ( ) ) : ( , , ) n m
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(H7) There exists a constant A > 0 such that                    and 

Then the set                               is Ψ - uniformly eventually stable set of the 
system (2.1).

1

(s)
k

k

p ds A


 



( )

(s)

ds
A
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  , : 0 0n m
H Hx y R R x and y   

Proof: Let                and choose               such that                     

In the following, we prove that for all

We first prove that

Clearly

Now for                                         if (3.1) does not hold, then there exists            such that

From the continuity of                            and hence in                        there is an          such that

and also there exists an                     such that

0  ( ) 0   , ( ) 0   
1( (a( )))b   for 0 ( )t   .

 0 0 0, 0( , ) n m
H Hx y x y R R  , 

0 0 0 0x y     implies ( ) ( ) ( ) ( )t x t t y t     for  0 ( )t t    .

0 1( , )m mt   i.e. Gm m NLet for some

  1( , , )V t x y b  for  0 mt t                                                                                (3.4)

  1
0 0 0 0 0 0 0( , , ) ( ) b( )V t x y b x y b       

 0 , mt t   0 , mt t 




1
0 0 0( , ( ), ( )) (b( )) b( ) ( , , )V t x t y t V t x y  

  
  

( , , )V t x y in 1( , )m m  0 ,t t
 

 
 

1 0 ,s t t
 

 
 

      1
1 1 1, , ( )V s x s y s b                                                                                               (3.5)

       
       

1
1

1
0 1

, , :

, , :

V t x t y t b s t t

V t x t y t b t t s

 

 






  

  

(t , )2 0 1s s

 2 2 2(s , (s ), (s ))V x y b                                                                                                      (3.6)
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Therefore we integrate (H3) between

On the other hand from the inequalities (3.5), (3.6) and condition (H7)

2, 1s s 
 

    

     
 

'
1 1(2.1)

2 2

, ,

, ,

s s

s s

V t x t y t
dt p t dt

w V t x t y t
 

    

    
   

, ,1 1 1 1

, ,2 2 2 2 1

A
( )

V s x s y s s m

V s x s y s s m

du
p t dt p t dt

w u



 

                                (3.7)

  
    

    

 

  1, ,1 1 1

, ,2 2 2
( ) ( )

V s x s y s b

bV s x s y s

du du
A

w u w u

 





  

which contradicts the inequality (3.7). Therefore our assumption was wrong and hence 
(3.4) holds.
From condition (H6)

Next we prove that

If inequality (3.9) does not hold good, there exists         such that

                                                              [using (3.8)]

( , ( ), y( )) ( , ( ) A (x) (y), ( ) (x, y)) ( ( , ( ), y( ))m m m m m t t m t m m mV x V x B y C V x                     

1( (b( )) b( )                                                                                                               (3.8)             

  1( , , )V t x y b  1m mt        for

1( , )m mr  




    1( , ( ), ( ))V r x r y r b b  
  

   ( , ( ), ( ))m m mV x y  

(t , (t ), (t )) b( ) : s s2 1V x y t  

From the continuity of                      there is an                           such that

and also there exists an                           such that

Then we integrate the inequality (H3) in            as done before and get contradiction. 
Hence (3.9) holds.
Thus we see that                            and hence in
Also as shown in (3.8),

therefore by condition (H5),

( , , )V t x y in 1( , )m m   1 ( , )mr t




       1
2 2 2, ,V r x r y r b 

       1
1, , : rV t x t y t b t r 


                                                                                  (3.10)

       1
1, , : mV t x t y t b t r    

2 1( , )mr r

      2 2 2, ,V r x r y r b                                                                                                  (3.11)

       2 1, , :V t x t y t b r t r  

2, 1r r 
 

  1( , , )V t x y b  :1,2,3....................iG iG                        (3.12)in

 ( , ( ), ( ) : 1,2,3....................m m mV x y b m                                                            (3.13)

   1( )b b  

       1, , ( )V t x t y t b a   

As , it follows by (3.4), (3.12) and (3.13) that

( ( ) ( ) ( ) ( ) ) ( , , ) ( )a t x t t y t V t x y a      0 ( )t t    .for all

Notes
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2014   Global Journals Inc.  (US)

6

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
IV

 I
ss
ue

  
  
  
er

sio
n 

I
V

V
I

Ye
ar

20
14

  
 

F
)

)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ψ -Eventual Stability of Differential Systems with Impulses

Thus we see that                         whenever

Hence the set                                is - uniformly eventually stable set of the 
system (2.1).

Example
Consider the system

Where                       and such that

Let us further assume that

Let us further define the following functions

( ) ( ) ( ) ( )t x t t y t     0 0 0 0x y     for 0 ( )t t    .

  , : 0 0n m
H Hx y R R x and y      Ψ

' ' '

' '
( ) ( ( )) ( ) ( ) ( ) ( ) ( )
( ) ( ), ( ) ( )

i k k k

i k k

x A t x t r t B t y t t x x y
y D t y t t y y

     

   




     

  
                                       (*)

       '0 ( ) , , , , , ,r t r x R y R A t B t D t C R R                , ,A t B t D t    

   x s x t for 't r s t   .

(i) ' ' '0, 0, 0     T   (ii) '2 '23 2   (iii) '2 '2 '2   

(iv) 
'2 '2

1
log(3 ) log 2

(2 )k k
 

 
 


 

 


Let and

 
'2 '2(3 )

2
s s

 



 ,  w s s , ( ) [2 ]p t    , 

0

( ) Max t

t t
t e



  , ,a b K

2 2

0 0
( ) , ( )

4e 2et t

t t
a t b t

 
  2 2 01

( , , ) ( ) e
2

tV t x y x y 
 

such that

and

Therefore  ' ' '0 0( , , ) e e { ( ) ( ( )) ( ) ( ) ] ( )[ ( ) ( )]}t tV t x y xx yy A t x t r t B t y t y t D t y t 
     

       2 20 0e { ( )[ ( ) ( )] ( )[ ( )]} e [ ]t tx t x t y t y t y t x t x t y t y t      
     

               2 2 2 2 2 20 0e [ ] e { [ ] [ ]}
2

t tx t x t y t y t x t y t x t y t


    
      

     
   

    
2 20

2 2 [ ]e (2 )
[ ] , ,

2 2

t x t y t
x t y t p t p t w V t x y

  
  

Thus (H3) holds. Let

Thus (H5) holds. Now

0

0

( ) Max e tt

t t
t e 



  

0 0 0( ( ) ( ) ( ) ( ) ) ( e ( ) e ( ) ) ( e ( ( ) ( ) ))t t ta t x t t y t a x t y t a x t y t  
      

2 22 20 0

0
2 2 2 2 2 20 0

e ( ( ) ( ) )) e ( ( ) ( ) 2 ( ) ( ) )

44e
e ( ( ) ( ) ( ) ( ) ) e ( ( ) ( ) )

( , , )
4 2

t t

t

t t

x t y t x t y t x t y t

x t y t x t y t x t y t
V t x y

 



 

  
  

   
 

0 0 0( ( ) ( ) ( ) ( ) ) ( ( e ( ) e ( ) )) (e ( ( ) ( ) ))t t tb t x t t y t b x t y t b x t y t  
      

   
),,(

2

)()(

2

)()(
0

0

0

0
2222

yxtV
e

tytxe

e

tytxe
t

t

t

t















Also

   
0 2' ' ' ' ' 2 ' 2

( , ( ) A (x) B , ( ) C , ) ( , ( ), ( ))

e
( , ( ) ( ), ( ) ) [( ( ) ( )) ( ) ]

2

k k t t k t k k k
t

k k k k k k k

V x y y x y V x y

V x y y x y y
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Ψ -Eventual Stability of Differential Systems with Impulses

Thus (H6) holds.

Again, if we choose

Also for any

Thus all the conditions of Theorem 2 hold and hence the set 

                

is   uniformly eventually stable set of the system (*).

IV Conclusion

'2 '23
log 0

2
A

 
 

1
1 1

'2 '2
'2 '2

(s) (2 ) (2 ) ( )

3
[ log(3 ) log 2] log

k k
k k

k k

p ds ds

A

 

 

     

 
 



 

     


      

0  , 

2
2'2 '21 (3 )( ) '2 '2(3 )

'2 '2

2
[log ] log log

(s) (3 )

ds ds
ds ds s

w s




  
 


 




 

 
    



'2 '2

'2 '2

2 (3 )
log log

2(3 )
A

 

 


  



  , : 0 0n m
H Hx y R R x and y      

Ψ 

0 2 2 2' 2 ' 2 ' ' ' 2

0 2 2' 2 ' 2

e
[ ( ) ( ) 2 ( ) ( ) ( ) ]

2
e

{ ( ) ( )
2

t

k k k k k

t

k k

x y x y y

x y

         

   





   

  ' ' 2 2

'2 '20 02' ' ' 2 2 2 2

0
2 2

[ ( ) ( )]}

e e 3
( )[ ( ) ( )] ( )[ ( ) ( )]

2 2 2
e

( [ ( ) ( )]) ( ( , ( ), ( )))
2

k k

t t

k k k k

t

k k k k k

x y

x y x y

x y V x y
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