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Abstract- In our paper, we have established criterion of W-Eventual Stability for impulsive differential systems with
variable moments of impulses by using piecewise continuous auxiliary functions which are analogous to Lyapunov's
functions. The work of Bainov, Kulev and Soliman has been extended. An example has been given to support the
theoretical result. In the example, the zero solution is not stable in the sense of Lyapunov but it is uniformly eventually
stable. Moreover a weight function ¥ is also associated with state vectors.
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I. INTRODUCTION

Many evolution processes are characterized by the fact that at certain moments
of time they experience a change of state abruptly. These processes are subject to short
term perturbations of negligible duration in comparison with the duration of the
process. Consequently, it is natural to assume that these perturbations act
instantaneously, that is: in the form of impulses. It is known for example that many
biological phenomenon involving thresholds, bursting rhythm models in medicine and
biology, optimal control models in economics, pharmacokinetics and frequency
modulated systems, do exhibit impulsive effects. Impulsive differential equations are
adequate mathematical models for description of evolution processes characterized by
the combination of a continuous and jumps change of their states. For the description
of the continuous change of such processes ordinary differential equations are used,
while the moments and the magnitude of the change by jumps are given by the jump
conditions. According to the way in which the moments of the change by jumps are
determined, IDE are classified into two categories: Equations with fixed moments of
impulsive effect and equations with unfixed (variable) moments of impulsive effect. The
solutions of IDE with variable impulsive moments are piecewise continuous functions
but unlike the solutions of the systems with fixed moments of impulse effect, different
solutions of these IDE have different points of discontinuity. This leads to number of
difficulties in the investigation of IDS with variable impulsive moments. That is why
these systems have been an object of numerous investigations.

Moreover, when the trivial solution of the system does not exist, we may still
have stability eventually, which generalizes Lyapunov Stability. For example, for the
practical point of view, if a ship remains in an upright position, it is called stable.
However, since the environmental forces acting on it as well as ship’s disposition w.r.t.
sea will change in time, the determination of a safe minimum amount of stability i.e.
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stability criterion becomes necessary. If one follows the intuitive concept of stability, it
is natural to think that if the amplitude of the ship in every perceived combinations of
ship- environment conditions, remain smaller than a pre-determined safe value, the ship
should be considered stable, The mathematical counterparts of this definition are
eventual stability and boundedness. For the problems arisen in this situations, to be
solved a new notion of eventual stability is introduced by V. Lakshmikantham, S. Leela,
A. A. Martynyuk.

The problem of ¥ - stability for the systems of ordinary differential equations
has been studied by many authors e. g. J. Morchalo [4] introduced the notion of ¥ -
stability, W - uniform stability and ¥ - asymptotic stability of trivial solution of non
linear system x’ = £ (¢ x) . He has considered ¥ as scalar continuous function. Aurel

Diamandescu [2] and [3] has introduced ¥ -stability by taking ¥ as diagonal matrix.

In [6], the criteria of eventual stability are established for impulsive differential
systems with fixed moments of impulses by using piecewise Lyapunov functions by
Zhang Yu. In [5], Soliman extended the notion of eventual stability to impulsive
differential systems with variable moments.

In our paper we have established criterion of W-Eventual Stability for impulsive
differential systems with variable moments of impulses by using piecewise continuous

auxiliary functions which are analogous to Lyapunov’s functions. The paper is organized
as follows: In section 2, some preliminary notes and definitions which will be used

throughout the paper are introduced. In section 3, two theorems for W - Eventual

Stability and ¥ -Uniform Eventual Stability are proved. One example has been given in
support of our theoretical results. Conclusion is given in Section 4.

[1. PRELIMINARY NOTES AND DEFINITIONS

Let R" denote n -dimensional Euclidean space with norm Il. |l

Let R3 be the s - dimensional Euclidean space with a suitable norm Il. Il. Let R" = [0, o)
and RS ={xeR":[x|<H}.

Consider the system of differential equations with impulses

X=fE0+9EY), t#h(xy)  Ax=AC)+B(Y), t=7(xy)
y =h(t,xy), t£7(Xy) Ay=Gi(xy), t=7(xy)

(2.1)
Where xeR",yeR™, f:R"xR} ->R", g: R"xR} »>R™ h: R" xR} xR} -»R™
ARY SR BRT 5>R™ G R xRT 5R™, 7 :Ry xR >R

AX| t=r(x,y) = X(t+0)—x(t-0), AY| t=r(x,y) =Y(t+0)—y(t-0).

Letto e R", %R}, YoeRY Let Xt to, X Yo). Y(t. to, X0, Yo) be the solution of the system
2.1), satisfying the initial conditions X(to +0, tg X Yo) =%o. ¥(to +0, to, Xo, Yo) =Yo The solution
x(t), y(t))of the system (2.1) are piecewise continuous functions with points of
discontinuities of the first type in which they are left continuous, i.e. at the moment ¢,
when the integral curve of the solution (x(¢), y{¢)) meets the hypersurface.

op ={(t,xy) eR" xR xRY: t=7 (x, )}
The following relations are satisfied:
Xt —0)=x(t), x(tj +0)=x(tj)+A (x(tj))+B (y(ti))
y(ti —0)=x(t), y(ti+0)=y(tj)+G (x(t), y())
Let z(x,y)=0for(xy) e R} xR].

© 2014 Global Journals Inc. (US)
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Following [1], we define the sets G ={(t.:xy) eR" xR} xRY: 51 (xy) <t <5 (x )} -

Let ¥ : B (0, ©) be a continuous finite function such that (¢, )= ¥,
Definitionl. Let the sets K & K, be defined as

K= {WGC(R+,R+)Z strictly increasing and w(0)=0},
Ky = {¢€C(R+1 R+) : increasing and ¢(s) <sfor s>0}

Re £ We use the classes v, of piecewise continuous functions which are analogue to Lyapunov
functions.

Definition2. We say that the function V:R"xR] xR} — R" belongs to the class v, if the

Definition3 The set {(X y)e Ri xR :x=0andy = 0} of the system (2.1) is said to be
1. Eventually stable if for all £>0 for all tyeR" there exists r=17(e)>0 and 5=5(tg,&)>0

for all (x,yp)eRY xR such that |x|+]yo|<s implies |x(t to, %o, Yo)|+[¥(t.to. Xo. Yo)| <&
t>tg 27(€)

2. Uniformly eventually stable if 6 =0 (¢ ) i.e. d is independent of to.

Frontier

3. ¥ - eventually stable if for all e>Q for all t;eR’, there exists t=t(€) >0 and
5 =05 (to, €) > Ofor all (%, Yo)eR xR such that [FQxXO)]+] P y(t)||<e for [¥oxo| +] PoYol<d
and t >ty >z(e).

4. ¥ - uniformly eventually stable if for all >0, for all tyeR", there exists 1=t (€) >0

and §=5()>0 for all (x,yo)eRf} xR} such that [ O)x)]+] ¥M)y(t) <& for|[Eoxo|+| ¥oyo| <5
and t>tg=7(e) .

Definition 4. We say that conditions (A) hold if the following are satisfied:

(A1) The functions f(t.X) . gt.y) and h(t,xy) are continuous in their definition domains, O
f(t,00=9g(t,00=0 and h(t,0,0)=0for teR".

(A2) The functions A¢ B: and C¢ are continuous in their definition domains and
A =B(0)=C (0,0)=0

Global Journal of Science

o following conditions hold: =
i 1. The function V' is continuous in Uj1G and is locally Lipschitzian with respect to x rj
E and y in each of the sets G, 3
z 2. V(t,0,0)=0for t € R". .
g 3. For each i =1,2,3.................. and for any point (to, Xo, Yo)€0t , there exist the finite 3
ﬁ limits =
# V(tp-0%.%)=  Lim  V(txy)
® (t. % y)—(t0.%0. Y0) =
E (t,x, ¥)eGi -
= =
= V(to+0,%, Yo) = Lim V(t,xy) 5
@ (t, %, y)=>(t0,%0, Y0) 4
S (t, %, ¥)€Gj 1 .
E and the equality V(tp—0,%0,Y0) = V(tp,%:Yo) holds. >f
:% 4. For any point (¢, x, y)eo, the following inequality holds: _§
@ >
2 V(E+0x+AC)+B (¥), y+G (x y) V(L X Y). 22
IS, ' .
é Let Vevy. For(t,x, y)e 2,G Following [1], we define 5
=, g
2! ' . 1 2
< \/(2.1)(tlx! y):IS-LrQSJpg[\/(t'FS,X‘FS(f(t,X)+g(t,y)), y+Sh(th! y))—V(t,X, y)] 2
e
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the direct method of Lyapunov, Bull Austral. Math. Soc., 38(1988), 113-123.
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(A3) xeR[j and yeR[ then | xy+A(X)+B(Y)[<|X| and|y+C(x,y) [ <[v].

(A4) The functions 1t/ (x, y) are continuous and for ( x, y ) € fx { , the following
relations hold:

0<71 (X Y)<To (X, Y) <eerrererreens < t'—_i)mTi (%)= uniformly in Rj xR} and

ninfmri+1(x,y)— sup 7 (Xy) 260>0, i=12.....
R R R <Rl

(A5) For each point (to, %o, Yo)eR™ xR xRy the solution x(t,ty, %o, Yo), Y(t.to, %, Yo) is unique
and defined in (tg,).
(A6) The integral curve of each of the solutions of system (2.1) meets each of the hyper

surfaces{c:} at most once.

[1I.  MAIN RESULTS
In this section, we extend the work of Kulev and Bainov [1] and A. A. Soliman

[5] and established W - eventually stability and ¥ - uniformly eventually stability for
impulsive differential system with variable moments.

Theorem 1. Assume that

(H1) Conditions (A) holds.

(H2) There exists functions VeV, aeK such that a(|| ¥ ) x| + PO y®|) <Vt x y),

(t,x,y) eR" xR xR} where ¥ is a function defined in section 2.
(H3) Ve txy)<p@wvtxy)for t,xy)€Gi=123 ., the functions p,w:R" >R"
are locally integrable.

(H4) There exists a no. L > 0 such that W((tx y)|<L:(txy) eR" xR} xRY andto[ |p(s)| ds< oo
Then the set {(X y)e Rl xR :x=0and Y=0} is ¥ - eventually stable set of the system (2.1).

Proof: Let €>0 be given and let the number 7 =7(¢)>0 be chosen so that for t>z(¢)

[ d3<% (This is possible because of condition (H4)) (3.1)
t

Let to=7(¢) From property 4 of definition 2 , it follows that there exists a number
d(tg,€)>0 such that for

[¥o%o+ ¥oyol<d(t0.©), Vlto+0%,0)< 22 62)
From (H3), (H4) and (3.2), we get
t t t
[ V2. (s:x(s), y(s))ds< [ p(o)w(v(s,x(s),y(s)))ds< .[|p(s)”w(v(s,x(s),y(s)))‘ds
' o o
L - a(e) _ale)
<L[|p(s)ds <L[|p(s)|ds<L—=>=——~ for txt, (3.3)
o o oL 2

Without loss of generality, Let 7k <t<7ki41

t o, o, k+ 7, to,
Now  [Vi21)(sX(9), y(s)) ds< Il Vi2.1) (8, X(s), y(9)) ds + 'Zz [ Vo (s x(s),y(9)ds+ | Viag)(sX(s),y(9)ds
t o i=2rjq i

K+
=V (71, X(71), Y(71)) -V (tg + 0, X(to), y(to)) + _ZZ{V(Tj X(Tp), Y(@i)-V(zj1+0X(zj_1+0), ¥(rj 1 + 0))}
j=

© 2014 Global Journals Inc. (US)



V(6 X(M), Y([O) -V (7t +0, X741 +0), (71 +0))

—V(Tb X(r1), ¥(z1)) -V (to +0, X(to), ¥(to))+V (12, X(z2), Y(72)) - V(71 +0,X(7y +0), y(7; +0))
+V(73,X(73), Y(73)) = V(9 +0,X(r9+0), Y(77 +0)) +.eoovrvrrvrrrrrvvrrrrrrrirrevrerrnnennnnn

V(s X(@), YTt ) =V (-1 0. X(71 41 +0), V(e 11+ 0)
+V(tX(1), ¥(0) -V (741 +0,X(7ge11 +0), Y(7ye1140))
2V(t,x(t), y(1) -V (to+0, X(to), y(to))

From (H2), (3.1), (3.2) and (3.3
Notes (H2), (3.1), (3.2) and (3.3)

to,
a(|¥ O x| +[¥OYO) V(X y)< V(tg +0, X(to), Y(to)) + ] Va1 (8. X(9), y(8)) ds<
to

-
@+@=a(s)for t>tg=17(s) 2
2 2 g
Thus for all >0, for all tyeR", there exists 7=7(¢)>0 and §=5(to ¢) >0 for all (%, Yo)eRY xR} ~
such that [F®X®)+] ¥®)Y®) | <& for [Foxo| +]| Foyol|<s and t=tg =z(c)

Hence the set {(X y)e Ry xR :x=0andy= 0} is ¥ - eventually stable set of the system (2.1).

Theorem 2. Assume that (H1) and (H3) of Theorem 1 holds. Moreover suppose that
(H5) Let There exists functions vevy,abek, ¢k, such that

a(| e ) x@)| + L) y®[) SV (E %, y) <b([¥ ) x@®)]| + [P E)y®|) : t, %, y) eR" xR xR}

(H6) For all keN,(xy)eRj xRy, V(5i, X(7i¢)) + A (X) +B; (), Y(7i0) + Ce (%, ) < GV (75 +0, X(z), Y(7ic)

Issue VI Version I

¢ (1) ds

)
(H7) There exists a constant 4 >0 such that [ [P(9ds<A and f ws >A
k-1 u

Then the set {(x y)e R} xR} :x=0and y:O} is ¥ - uniformly eventually stable set of the
system (2.1).

Proof: Let >0 and choose 5(€)>0, r=1(¢)>0 such that & <b ™ (g(e))) for to=7(e).

In the following, we prove that for all (Xo,yo)(XQ yo)eRﬂ xR,

Research ( F) Volume XIV

¥ 0%+ | ¥oYo| <& implies [¥(t)x®)]+] ¥®)y(t) [<e& for t=ty>z(e).

Frontier

Let to €(tma,7m) i-€. Gy, for some meN
We first prove that V(t,x,y)<¢ *(b(5)) for t, <t <y, (3.4)

Clearly V(t, o, Yo) < b([¥o%o| + ] ¥oyol) < b(8) < ¢7*(b(5))
Now for te(ty,7y) if (3.1) does not hold, then there exists t €(ty,7y) such that

V(t,x(1), y(1))> ¢~ H(b(5)) > b(8) =V (19, %, Yo)
From the continuity of V(t,x y)in (rp1,7m) and hence in (to J there is an s_Le(to j such that

Global Journal of Science

V(s x(s1).¥(s1)=¢1B(5) (3.5)
V(tx(t), y(t)> 42(b(5)): 5 <t <t o
V(tx(t),y(1))< g7 (b(5)) 1o <t<s
and also there exists an spe(tg.s) such that
V(s2,X(s2), Y($2)) = b(6) (3.6)

© 2014 Global Journals Inc. (US)
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V(t,x(t),yt))=b(s):sp <t<g
Therefore we integrate (H3) between [sz S_J

2 Vi (LX(t), ¥(t))
s WV (t,x(t), y(1)))

EECINCY <9.IJ'_. (t)ct < " (1)t <A 57)
——<[p(t)dt< | p(t)dt< :
V(s2.X(2).¥(s2)) W) 9 m1 Notes

On the other hand from the inequalities (3.5), (3.6) and condition (H7)

di< ] p(t
2

V(sLX(s)¥(2)) g _¢_1(b(5)) du _ .

V(o)) MW bs) W)

which contradicts the inequality (3.7). Therefore our assumption was wrong and hence
(3.4) holds.
From condition (H6)

V (710, X(7m), Y(7m)) =V (71, X(7m) + A (X) + By (), Y(zm) + G (X, Y)) <@V (7, X(7m), Y(7m)
<p(¢(0(5)) <b() (3.8)
Next we prove that V(t,x, y)s¢_1(b(5)) for rm<t<rma

If inequality (3.9) does not hold good, there exists /r\e(rm, Tmy) such that
V(XY > 672 (B(6))> B(8)2 V(e X(em). Y(em) [using (3.8)]
From the continuity of V(t,x,y)in (rm,7m:1) there is an rle(rm./t\) such that
V(r2.X(12). ¥(r2))= 47" (b(5))
V(tx(t), y(t))> 4 L(b(6)): <t <r (3.10)
V(tx(t), y(t))<g 7 (b(5)): r <t<n
and also there exists an rpe(ry,,1) such that
V(rz,X(rz),y(rz)): b(&) (3.11)
V(tx(t), y(t))z b(8):rp<t<n

Then we integrate the inequality (H3) in [rz rl] as done before and get contradiction.
Hence (3.9) holds.

Thus we see that v(t,x,y)<¢™(b(5)) in G123 and hence in UG, (3.12)
Also as shown in (3.8), V(zm,X(rm), Y(zm) <b(8):M=123cccccrrccrrrren (3.13)

As b(5)< ¢7(b(5)), it follows by (3.4), (3.12) and (3.13) that

V(t,x(t), y(t) <¢7 (b(5))<a(e)
therefore by condition (H5),

a([r ) x®)] +[|¥OY®)]) <V(t.xy) <a(e) for all t=tg=7(e).

© 2014 Global Journals Inc. (US)



Thus we see that |[W(t)x(®)|+]| ¥ (®)y(t) |[<e whenever |¥oxo|+|¥oYo|<s for t=tg=7(e).
Hence the set {(x y)e R} xR :x=0and y=0} is ¥ - uniformly eventually stable set of the
system (2.1).

Example
Consider the system

N X=ADXC-TO)+BOYO  t#g  X(5)=a @)+ Y(w) )
otes y = DY), t2g y(@)=r y()
Where 0<r(t) <r,xe RyeRA(t), B(t), D(t)eC(R+,R) and such that |A(t)<a,|B(t) < B.[D(t)<¥
Let us further assume that x(s)<x(t) for t—r <s<t.
Let () @ >0,8>0% >0 and a+T>y (i) 3a?+p2%<2 (i) f2+y%<a?

log(3a2 + ?)+log2
(2a+p)

Let us further define the following functions

(lV) Tk —Tk-1<—

2 2
¢(s)=(3a—;'8)s,w(s)=s, pt)=[2z+/4] . ¥(t)=Max e, abeK such that
t>tg
t2 2

t 1
t)= ,b(t)= ==(x°+y?)e0
a(t) 260 (t) = and V(t,x,y) 2(x +y‘)e

V(txy) e (XX' + yy') =e O A)xX(t—r (1) +B(t)y(t)]+ yO[D() y(®)]}
< OH(OLax(®) + AYO]+ YOIy YOI} =€ OLarx® (1) Bx(t) y(t)+ 7y (1)
<e0[ax? (1) +Ax(t) y(t)+ ay? ()] <€ O{ax® (t)+y? (t)]+ﬂ[>< (O)+y? (O

Therefore

eto(2—2a+ﬂ)[x2 (t)+y* (1)l = p(t)wz POV (%)

Thus (H3) holds. Let

Y(t)=Max et =0
t>tg

(v (0 X(O)]+|¥O YO = ae™ x(0)]+ |0 v = alle 0| (x0]+ y))

& 20 (O] +ly®D)? _e O (x +y®]* +2x0]lyw)

4e7'0 B 4 -

& 0 (x| +|y® + X0 +[yo*) _ e (xmf +yo[*)
4 2

Also b(w(®) X+ @) yO)) =b(([e”|[x0]+/e 0|y = be 0 (xv] +|y®)]|)

e 2 ((x(®)] +|y()|) Je" Qx(t)\2 +\y(t)\2)
2e™ B 2e™

Thus (H5) holds. Now
V(zi, X(z) + At (¥) + By (1Y), Y(Tk)+Ct(X Y)) V(z, X(zg ), Y(zK))

=V(r.a x(r )+ 8 y(@ ), v Y(Tk))——[(a (7 )+ By (7))? +7 Y2 (7]

© 2014 Global Journals Inc. (US)
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e 2, 2 5 s 2 5

S la @A @2 B XY@+ Y @)
o, . Co

S e @)’ Y @)ra A1 @)+ @)

gt 2 e'0 392+ 2

=7(a' +a‘ﬁ')[x2(rk)+y2(rk>1s7( ;

e, 2
=¢(7[X (ri) + Y (@)D =gV (7, X(zx), V(7))

)X (7)) + Y2 ()]

Thus (H6) holds.

Again, if we choose A=-log

2 ‘2
M> O

Tk Tk
[ |p@)|ds= | (2a+p)ds=(2a+p)(ry —7_1)
k-1 k-1

2 a2
<[-log(Ba’?+ ?)+10g2] = —log X +B"_
Also for any >0,
2u 2u
1 2. 2
¢ (1) Ba“+p7) 2., 52
[ 95 oo | d—sds:[logs]/(f"" P ):Iog%—logy
p WS u S Ba“+B7)
2 2
=log—7>——~ :—Iog(sa S )=A
Ba*+p7) 2

Thus all the conditions of Theorem 2 hold and hence the set {(x y)e R} xR :x=0and y=0}
is ¥ — uniformly eventually stable set of the system (*).

IV. CONCLUSION

In [5], no example has been given in support of the results and in example given

in [6], zero solution being equilibrium, implies Lyapunov stability and thus difference
between Lyapunov stability and Eventual stability has not been shown. But in the
example given above, the zero solution is not stable in the sense of Lyapunov as it is

not equilibrium but it is uniformly eventually stable. Moreover a weight function ¥ is
also associated with state vectors.

Thus our result shows that the system may not be stable in the sense of

Lyapunov even then it can be eventually stable.
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