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Fish Growth Evaluation using a One Step
Numerical Algorithm for a Sustainable
Development in the Third World Nations

Enoch, O. O. * & Ajenifuja, O. A.°

Absiracl- We examined fishery as a supplementary source of
protein for bridging the gaps created by the birds 'saga in
meeting the need for protein in less developed countries. A
one step algorithm is proposed, implemented on von
Bertalanffy and on seasonal growth models for the evaluation
of the desired enhancement in fish growth. Precautionary
measure is presented against the use of poultry wastes as a
component commonly used in the formulation of fishery feeds.
The one-step method gives an enhanced projection in fish
growth and also predicts the appropriate proportion of all
other constant parameters that will be needed.

Keywords: fish growth, one-step method, bird,
convergence,' consistency and stability.

I. [NTRODUCTION

he recent pandemic on avian-influenza has
Tbrought about a great challenge to a major source

of protein supply, since poultry birds have served
as means of protein provider over the decades. The gap
created by this pandemic must be bridged by sourcing
for protein from other sources like fishery, etc. Our
concern is that if fishery would serve as an alternative
source of protein, what considerable input must we give
into it? And at what rate must some constant conditions
and variable conditions be observed and maintained for
the gap in protein need to be quickly and remarkably
bridged at an optimal economic state?

[I. ONE-STEP METHODS BASED ON NON-
LINEAR POLYNOMIAL INTERPOLANT

In this paper, we shall examine the initial value
problem of the form;

y'(x) = (x,y),y(@) =y, x€[ably€R 1)

Here we present some one-step methods for
the solution of equation (1).

This type of construction was first reported in
Fatunla (1976). The resulting method is particularly well
ution. For our construction, Firstly, we assume that over
the interval {x;, x;,1}, the theoretical solution, y(x), to the
initial value problem (1) is given by the non-polynomial;
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fG) = aje* +x? 2

Where a, is an undetermined co-efficient. Let us
consider the non-polynomial interpolant at the points
x=x.and x =x,_,; and also take the numerical
estimate to the theoretical solution y(x;) to bey,. We
shall by this assumptions have;

flx) = are™ +xf 3)

Lety(x,) = f,(x;, y;). For us to be able to
determine the undetermined co-efficient a,, we are to
impose the assumptions that the non-linear polynomial
interpolant (4) coincides with y, and (3) coincides with
Y.—1 and y, is a numerical estimate to the theoretical
solution y(x,,) and f, = f(x,, y,) with the mesh-point
defined by x, =a+nh, n=0,1,2,3,..

I1I.  CONSTRAINTS

The interpolating function must coincide with
the theoretical solution at x =x, andx = x,,4, for
n = 0.This condition implies that

f(x) =y, =a.e*t + xtz (5)
and

f(Xe41) = Yeg1 = a1 + xt2+1 (6)

We also require that the first and the second
derivatives of the Interpolating function respectively
coincide with the differential equation as well as its first
and second derivatives with respect to x atx = x,,
where £ denotes the ith total derivatives off (x, y) with
respect to x

f(l) = f(xe, o) = f (7)
and

fO @ =y = £V ®)
Differentiating (3) with respect to x, we have

f(l)(xt) =a.e* +2x, = f; )
and

fP@) = arert +2= £V (10)
Solving for a, from equation (10), we have
ae*t +2 = ft(l)
ae*t+2= ft(l) -2
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a =
From (6) and (5), we have
fCei1) = f(x) =Yy —ye
This implies that
Yer1 = Ve = are™trl —age*t + xt g — xf
= a;(e*t+1 —e) + (¥} — xF) (13)
Recall that;
x,=a+th t=0,1,23, (14)
and
Xpp=a+(@+1Dh=>a+th+h=>x+h
therefore
Xpp=a+(@E+1Dh=>a+th+h>x +h,
and
x21 = (x; +h)? = (x, + ) (x, + h)
= x? + 2x,h + h?
Let us put (11) and (16) into (13) to obtain
@

_Jt

YVe+1 = Ve =

pe (e¥t+1 — e*t) + (x? + 2x,h + h? — x?

@D
_ Nt

Ve+1 — Ve =

(e¥t+1 — e*t) 4+ (2x.h + h?)

ext

Thus the above numerical scheme can be
written in the form

Vor = Yo +[ 10 = 20" - +h(2x +h) (17)

Equation (17) is a one-step method that can be
used to solve equation of the form (1) .Equation (17) can
be regarded as a numerical integration scheme which is
particularly well suited to initial value problems
havingoscillatory and exponential solutions and it was
first reported and implemented in Fatunla (1976).

IV. PROVE OF CONVERGENCE FOR THE NEW
SCHEME

According to Henrici (1962): we define any
algorithm for solving a differential equation in which the

approximation y,,, to the X,,, solution at the X, can
be calculated if only X, Y, and h are known as a ONE-

STEP METHOD. We proceed to establish that our
numerical algorithms are one step methods. From

F(x)=ae" +x°; the
generated is given by

Yer = Yo + (.Y =2)(€" 1) + h(2x, +h),

numerical  integrator

© 2014 Global Journals Inc. (US)

If we expand eh, we shall have
e" = z@ —1-h+h?/2-h%/3+...  (18)
r=0 r

This implies

Vor = ¥+ (Y =2(x=h+h?12-h*/34+..-1) +h(2x, +h) (19)

Vor = Vo + (£2 =2)(-h+h?12-h%/3+..) +h(2x, +h) (20)
Yo = Y +D(F Y =2 (=h+h?/2-h*/3+..) +h(2x, +h) (21)

Let A =(=1+h?/2-h*/3+..) and B =(2x, +h),
We shall have, y,,, = Y, + h[(f,") —2)A+ B]

This is the convergence of the first scheme;

Voo = Y M (EE = 20c-14DS-1713e.)+ (21 +h} (22

which can be written asy,, =Y, +h(f," —2A+B),
we have been able to write it in the form

Yor = Yo +ho(x, y:h), for which he(x,y;h)=
(f¥ -2A+B).

V. DEFINITION: HENRICI (1962)

We define any algorithm for solving a differential
equation in which the approximation y,., to the solution
at the point X;,; can be calculated, if only X, Y, and h are
known, as a ONE-STEP METHOD. It is a common

practice to write the functional dependence, Y, ,;, on the
quantities X, Y; and h in the form.

Y=Y t h(D(Xt’ Yir h.

VI. CONVERGENCE

THEOREM 1: Given a differential equation of the
formy" = f (x, y), y@) =& let f (x, y) be defined and
continuous for all points (x, y) in the region Dom, defined
by a< x <y, - ™, < y < & a and b finite, and let there
exist a constant 1 such that for every x, y*, y with (x, y)
and (x, y*) both in Dom

[ fy)-f(y)Lly-y | (23)
and £ is any given number, there exist a unique solution
y(x) of the initial value problem. The inequality (23) is
known as a Lipschitz condition and the constant L as a
Lipschitz constant. This condition can be regarded as
being intermediate between differentiability and
continuity, in the sense that if F(x, y) in Dom, this implies
that F(x, y) satisfies a Lipschitz condition with respect to
y for all (x, y) in Dom. (Fatunla, 1988; Lambert, 1973a;
and Ibijola, 1998). By the mean value theorem, F(X, y)



possessing a continuous derivative with respect to y for
all (x, y) in Dom, will imply that;

o (X Y) .
f(x,y)=f(x,y) =222y v,
x,y)-f(x,y) Y (Yy-y) (9

it follow that (24) can now be satisfied if we choose

L= prthen'

Yea = Yo + D{AfY —2A+ B}
H(%, Y h) = AL, ) —2A+B
px. YN =AY . ~2A+B
Hence
B0 =400, YR =AY . -1, )-2A+2A-B+B (25)
P05 YR =06 Y ) = Al f((xt),yf) B f(g),yt)) (26)

Ietyt be defined as a point in the interior of the interval

whose endpoints are y and y*, by applying the mean
value, we have;

af .
M e G Y ()
f(xt‘y:) (ee,ye) — dy, (yt yt) 27)
letL; = sup ((;T“) Substitute (27) into (26)
t
™
* (x¢ . ¥y) *
(e, yiih) —d(xe,ye;h) = A # Yt( ) _Yt)
t
(O) )
— Xt Vit
= Asup —-—- (28)
(xt , ?t)s Dom
o, yish) —d(x ¥ 5 h) = AL (yy — Vi) (29)

Taking the absolute value of both sides of (29), we have
lpCxe, ¥i5h) — P,y s WISIAL lyf — vl

[pCx, yi3h) —dp(xe,ye s WIS Ly — vl (30)

VII.  NUMERICAL EXPERIMENTS

a) Von Bertalanffy fish growth

The differential equation presented below is the
model on the von Bertalanffy fish growth; dy/dx =
ay?/3 — By, y(0) = 2 and its theoretical solution is given
asy = 1/(a/B + Ae F*/2)2 where y = y(x) is the weight
of the fish, a and B are positive constants. We determine
and illustrate the predicted growth of a fish, using the
new numerical methods.

() H=.0l:a=95Rl=5p8=2

This is the Numerical Result on Model for von
Bertalanffy Fish Growth

X(T) Y(X(T)) FY(T+1)  TFENUME
0.000000  2.000000  1.979900 0.020100
0.010000  2.019090  1.997950 0.021141
0.020000  2.038363  2.015636 0.022727
0.030000  2.057818  2.032856 0.024962
0.040000  2.077457  2.049607 0.027850
0.050000  2.097282  2.065888 0.031394
0.060000  2.117294  2.081698 0.035595
0.070000  2.137493  2.097036 0.040457
0.080000  2.157881 2.111901 0.045981
0.090000  2.178460  2.126292 0.052168
0.100000  2.199231 2.140212 0.059019

For convergence y (0) must be equal to B:
convergency is guaranteed for 0.001<h<0.01.
(i) H= .01 a=.901:Y = R1*Y(T)~3/2-R2*Y(T), Y(0)
=22R1=72.8=4
This is the Numerical Result on Model for von
Bertalanffy Fish Growth

X(T) Y(X(T)) Y(T+1) Truncation Error
0.000000  4.000000  3.979900 0.020100
0.010000 4.036202 4.012372 0.023830
0.020000 4.072731  4.044457 0.028274
0.030000 4.109586  4.076072 0.033514
0.040000 4.146769 4.107234 0.039535
0.050000 4.184280  4.137961 0.046319
0.060000 4.222121  4.168275 0.053846
0.070000 4.260292  4.198195 0.062098
0.080000 4.298794  4.227743 0.071051
0.090000 4.337628  4.256942 0.080686
0.100000 4.376794  4.285816 0.090978

For convergence y(0) must be equal to B:
convergency is guaranteed for 0.001<h<0.01.
(i) H=.001:a = .8: Y = R1*Y(T) 3/2-R2*Y(T), Y(0)
22R1=72.8=14
This is the Numerical Result on Model for von
Bertalanffy Fish Growth

X(T) Y (X(T)) Y(T+1) Truncation Error
0.000000  4.000000  3.997999 0.002001
0.010000  4.003201  4.000559 0.031569
0.020000  4.006405 4.003116 0.061397
0.030000 4.009612  4.005669 0.091485
0.040000 4.012821  4.008217 0.121834
0.050000 4.016032 4.010762 0.152445
0.060000 4.019246  4.013302 0.183318
0.070000 4.022463  4.015838 0.214452
0.080000 4.025682  4.018370 0.245849
0.090000  4.028904  4.020898 0.277507
0.100000 4.032128  4.023422 0.309427

For convergence y(0) must be equal to B:
convergency is guaranteed for 0.001 <h<0.01
(iv) H=.001: a = .9:Y' = R1*Y(T) 3/2-R2*Y(T), Y(0) =
22R1=72.8=2
This is the Numerical Result on Model for von
Bertalanffy Fish Growth
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X(T) Y(X(T)) Y(T+1) Truncation Error
0.000000  2.000000 1.997999 0.002001
0.010000  2.001801 1.999619 0.002182
0.020000  2.003603  2.001237 0.002367
0.030000  2.005407  2.002851 0.002557
0.040000  2.007213  2.004461 0.002752
0.050000  2.009020  2.006068 0.002952
0.060000 2.010829  2.007672 0.003157
0.070000  2.012640  2.009272 0.003368
0.080000  2.014452  2.010869 0.003583
0.090000 2.016266  2.012462 0.003803
0.100000  2.018081 2.014052 0.004029

For convergence y(0) must be equal to B:
convergency is guaranteed for 0.001<h<0.01.

b) Seasonal Growth

The model on seasonal growth is given by
dy/dx = r xcosi{wx),y(0) =2 where r and w are
constants. In this work, we illustrate the behavior of the
numerical solution of this equation. The theoretical
solution is y = Ke”sinwx)/w

() H=01:r=95:R1=5W=2
This is the Numerical Result on Model for
Seasonal Growth

X(T) Y(X(T)) Y(T+1) Truncation Error
0.000000  2.000000  1.980000 0.020000
0.010000  2.019090  1.998250 0.020841
0.020000 2.038363 2.016236 0.022127
0.030000 2.057818  2.033956 0.023862
0.040000 2.077457  2.051407 0.026050
0.050000 2.097282 2.068588 0.028693
0.060000 2.117294  2.085498 0.031795
0.070000 2.137493 2.102136 0.035357
0.080000 2.157881  2.118500 0.039381
0.090000 2.178460 2.134592 0.043868
0.100000  2.199231  2.150412 0.048819

For convergence y(0) must be equal to w:

convergency is guaranteed for 0.001<h<0.01.

(i) H=.01:r=.98:Y = gycosxy(0) = 3: R1 = 5: W
=3
This is the Numerical
Seasonal Growth

Result on Model for

X(T) Y (X(T)) Y(T+1) Truncation Error
0.000000  3.000000  2.980000 -0.288753
0.010000  3.029544  3.009012 -0.291186
0.020000  3.059379  3.037595 -0.292856
0.030000 3.089506 3.065744 -0.293754
0.040000 3.119927  3.093454 -0.293875
0.050000 3.150645 3.120721 -0.293209
0.060000 3.181661 3.147542 -0.291753
0.070000 3.212978 3.173913 -0.289501
0.080000 3.244598  3.199832 -0.286447
0.090000 3.276522  3.225298 -0.282590
0.100000 3.308753  3.250311 -0.277925

For convergence y(0) must be equal to w:
convergency is guaranteed for 0.001<h<0.01 and
9<r<1.0.
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(i)  H=.001:r=.89R1=5W=2

This is the Numerical Result on Model for
Seasonal Growth
X(T) Y(X(T)) Y(T+1) Truncation Error

0.000000  2.000000 2.002002 -0.002002
0.010000 2.001781 2.003588 -0.001807
0.020000  2.003563 2.005172 -0.001609
0.030000  2.005347 2.006754 -0.001407
0.040000 2.007133 2.008334 -0.001201
0.050000  2.008920 2.009911 -0.000991
0.060000 2.010709 2.011486 -0.000777
0.070000 2.012499 2.013059 -0.000560
0.080000 2.014291 2.014629 -0.000338
0.090000 2.016084 2.016197 -0.000113
0.100000 2.017879 2.017764 -0.000116

For convergence y(0) must be equal to w:

convergency is guaranteed for 0.001<h<0.01 and

9<r<1.0.
(iv) H=.001:r=89:R1=5W=2

This is the Numerical Result on Model for
Seasonal Growth
X(T) Y(X(T)) Y(T+1)  Truncation Error
0.000000  1.000000 0.998000 0.002000
0.010000  1.001001  0.999002 0.001998
0.020000  1.002002  1.000002 0.002000
0.030000  1.003005 1.001000 0.002005
0.040000  1.004008 1.001996 0.002012
0.050000  1.005013 1.002990 0.002022
0.060000 1.006018 1.003982 0.002036
0.070000  1.007025 1.004972 0.002052
0.080000  1.008032 1.005960 0.002072
0.090000  1.009041 1.006946 0.002094
0.100000  1.010050 1.007930 0.002120

For convergence y (0) must be equal to w:
convergency is guaranteed for 0.001<h<0.01.

V) H=.01:r = 95:R1 = 5:W =1

This is the Numerical Result on Model for
Seasonal Growth
X(T) Y (X(T)) Y(T+1) Truncation Error
0.000000  1.000000 0.980000 0.020000
0.010000  1.009545 0.989225 0.020321
0.020000 1.019181 1.998318 0.020864
0.030000  1.028909 1.007278 0.021631
0.040000 1.038729 1.016103 0.022625
0.050000 1.048641 1.024794 0.023847
0.060000 1.058647 1.033349 0.025298
0.070000 1.068746 1.041768 0.026979
0.080000 1.078941 1.050050 0.028891
0.090000  1.089230 1.058196 0.031034
0.100000  1.099615 1.066206 0.033410

For convergence y(0) must be equal to w:
convergency is guaranteed for 0.001<h<0.01.

VIII. DATA INTERPRETATION AND CONCLUSION

This presents to us that the fishes grow in sizes,
with H being the interval of feed input and r, R1 and w
being the aeration, rate of picking and feed quality.



These days it is not scientifically right to use poultry
waste in the composition of feed in fishery since this
could further enhance the spread of avian-influenza
through fish to men. Economically, if the figures
presented above are measured in hundreds, the growth
rate will favour the third world countries and help in
increasing the quantity of fish supply in these countries.

This will also serve as a means of bridging the gaps in

protein deficiency created by the bird flu saga in the less

developing nations.
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