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  The rising sun function was used as a tool in the proof of the 

famous Lebesgue’s theorem on the differentiability of a real valued monotone 

function without using the theory of integration [3].  In this paper, some 

properties of the rising sun function are presented and an operator on the space of 

all bounded real functions defined on a closed and bounded interval [ , ]a b  is 

introduced and its properties are investigated. 

              In what follows X , and  stand for a topological space, the real line 

and the set of all positive integers respectively.  Also  stands for the Banach 

space of all bounded real functions defined on a closed and bounded interval 

[ , ]a b  where  ,a b ∈ and a b<  under the supremum norm.   

1.1 Definition [6]:  The rising sun function of a function f ∈ is defined by  

                                   { }( ) sup ( ) /f x f y x y b= ≤ ≤ . 

1.2 Definition:  For f ∈  we define the following.  

{ }

{ }

{ }

( ) ( ) sup ( ) /

( ) ( ) inf ( ) /

( ) ( ) inf ( ) /

i f x f y a y x

ii f x f y x y b

iii f x f y a y x

= ≤ ≤

= ≤ ≤

= ≤ ≤

II. Preliminaries
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On Some Properties of the Rising Sun Function

1.3 Definition [5]:  A function :f X → is said to be semi-continuous at a point 

p X∈  if for every 0ε >  and every neighborhood U of p  in X there exists a non-

empty open set W U⊂  such that ( ) ( )f x f p x Wε− < ∀ ∈ .  We say that a 

function f  is semi-continuous on X  if it is semi-continuous at every point of X .  

1.4 Definition [6]:  A function :f X →  is said to be lower semicontinuous ( )lsc at a 

point x X∈  if for every 0ε >  there exists a neighborhood U of x such that           

                                   ( ) ( )f y f x y Uε− > − ∀ ∈ .   

We say that a function f  is lsc  on X   if it is lsc  at every point of X .  

1.5 Definition [6]:  A function :f X →  is said to be upper semicontinuous ( )usc  at 

a point x X∈  if for every 0ε >  there exists a neighborhood G  of x such that 

                                    ( ) ( )f y f x y Gε− < ∀ ∈ .    

We say that a function f  is usc on X  if it is usc at every point of X .  

1.6 Definition [4]:  A function :f X →  is said to be lower semi-quasicontinuous 

( )lsqc  at a point x X∈  if for every 0ε >  and every neighborhood U of x there 

exists a non-empty open set W U⊂  such that ( ) ( )f y f x y Wε− > − ∀ ∈ . 

We say that a function f  is lsqc on X  if it is lsqc  at every point of X .  

1.7 Definition [4]:  A function :f X → is said to be upper semi-quasicontinuous 

( )usqc at a point x X∈  if for every 0ε >  and every neighborhood U of x there 

exists a non-empty open set W U⊂  such that ( ) ( )f y f x y Wε− < ∀ ∈ . 

We say that a function f  is usqc on X  if it is usqc at every point of X .  

1.8 Definition [5]:  A function :f X →  is said to be cliquish at a point x X∈  if for 

every 0ε >  and every neighborhood U of x there exists a non-empty open set 

W U⊂  such that ( ) ( ) ,f y f z y z Wε− < ∀ ∈

We say that a function f  is cliquish on X  if it is cliquish at every point of X .  

1.9 Definition:   Let :[ , ]f a b → .  We define ( ) ( )f a f a− =  and ( ) ( )f b f b+ = . 

We say that  exists at [ , )p a b∈  and we write , where 

L∈  if for every  there exists a  such that 

( ) ( , ) [ , ]f x L x p p a bε δ− < ∀ ∈ + ⊂ . Similarly for ( , ]p a b∈  we write 

( )f p+ ( )f p L+ =

0ε > 0δ >
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∈  if for every  there exists a  such that 

( ) ( , ) [ , ]f x l x p p a bε δ− < ∀ ∈ − ⊂ .

1.10 Definition:  A function :[ , ]f a b →  is said to be quasicontinuous at a     

        point [ , ]p a b∈  if ( )f p+  and ( )f p−  exist. 

1.11 Definition: A function :[ , ]f a b →  is said to be symmetrically continuous   

        at a point [ , ]x a b∈  if [ ]
0

lim ( ) ( ) 0
h

f x h f x h
→

+ − − = .

1.12 Definition: A function :[ , ]f a b →  is Darboux continuous if for all    

       , [ , ]p q a b∈  and for each c  between ( )f p  and ( )f q  there is an x  between     

       p  and q  such that ( )f x c= .  

1.13 Definition[2]:  An operator P on a linear space L is said to be sublinear if       
        ( ) ( ) ( ) ( ) ,i P x y P x p y x y+ ≤ + ∀ ∈ L  and ( ) ( ) ( )ii P x P xλ λ=  for any    

         positive real number λ  and every x ∈ L. 

In this section the relations between the rising sun function and its    

analogues that are introduced are presented in the following propositions. 

2.1 Proposition: For f ∈ , ( ) ( )a f f= − −  and ( ) ( )b f f= − − . 

2.2 Proposition: For f ∈ , ( ) ( ) ( ) ( )a f f b f f= =    

                                         ( ) ( )( ) ( )c f f d f f= =                                                 

2.3 Proposition: For f ∈   and [ , ]x a b∈ ,                                             

( )( ) ( ) ( )i f x f a=         ( )( ) ( ) ( )ii f x f b=           ( )( ) ( ) ( )iii f x f x=

( )( ) ( ) ( )iv f x f b=   ( )( ) ( ) ( )v f x f x=        ( )( ) ( ) ( )vi f x f a=

( )( ) ( ) ( )vii f x f b=       ( )( ) ( ) ( )viii f x f x=      ( )( ) ( ) ( )ix f x f a=

( )( ) ( ) ( )x f x f x=      ( )( ) ( ) ( )xi f x f a=      ( )( ) ( ) ( )xii f x f b=     

2.4 Remark: In view of the previous propositions it is enough to investigate the 

properties of the rising sun function and the properties of f , f and f follow 

analogously. 

( )f p l− = 0ε > 0δ >

III. Relations among , ,f f f fand
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On Some Properties of the Rising Sun Function

3.1 proposition: For f ∈ , f  is the smallest decreasing function dominating f

More precisely,                                                                   

( ) ( ) ( ) [ , ]a f x f x x a b≥ ∀ ∈                                                                                      

( )b f   is decreasing on [ , ]a b                                                                                                  

( )c  If g  satisfies ( )a  and ( )b  above, then ( ) ( ) [ , ]f x g x x a b≤ ∀ ∈ . 

3.2 Proposition: For f ∈ , f   is the smallest increasing function dominating

f .  More precisely,       ( ) ( ) ( ) [ , ]a f x f x x a b≥ ∀ ∈                                                             

                                ( )b f  is increasing on [ , ]a b                                                   

( )c  If g  satisfies ( )a  and ( )b  above, then   ( ) ( ) [ , ]f x g x x a b≤ ∀ ∈ . 

3.3 Proposition: For f ∈ ,                                                                                        

( )a f  is the largest increasing function such that ( ) ( ) [ , ]f x f x x a b≤ ∀ ∈

( )b f  is the largest decreasing function such that ( ) ( ) [ , ]f x f x x a b≤ ∀ ∈

4.1 Definition: Define :T →   by Tf f= .  We call this operator T , the 

rising sun operator on . 

4.2 Proposition: The rising sun operator T  is sublinear on .  More precisely,     

( ) ( ) ,a T f g Tf Tg f g+ ≤ + ∀ ∈                                                      

( ) ( )b T f Tfλ λ= for every real number 0λ >  and every f ∈
.                          

Proof:  Let ,f g ∈  and [ , ]x a b∈ .                                                                                     

( )a   For [ , ]y x b∈ , ( )( ) ( ) ( ) ( ) ( ) ( )( )f g y f y g y f x g x f g x+ = + ≤ + = +

( )( ) ( )( ) [ , ]f g y f g x y x b+ ≤ + ∀ ∈

( ) ( ) ( )( ) [ , ]f g x f g x x a b+ ≤ + ∀ ∈                                                           

Hence ( ) ,T f g Tf Tg f g+ ≤ + ∀ ∈ .

( )b   Suppose that λ  is a positive real number and f ∈ .                                                  

Then { }( ) ( ) sup ( )( ) /f x f y x y bλ λ= ≤ ≤                                                                             

                          { }sup ( ) /f y x y bλ= ≤ ≤

                          ( )f xλ=

IV. Characterisations of and , ,f f f f

V. The Rising Sun Operator

T f Tfλ λ= .                                            
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4.3 Remark: From the following example, it is clear that  ( )T f g Tf Tg+ ≠ + . 

4.4 Example: Define :[0,1]f →  and :[0,1]g →  by ( )f x x=  and 

( ) 1 [0,1]g x x x= − ∀ ∈     ( )( ) 1 [0,1]f g x x+ = ∀ ∈.                                       

Then ( ) ( ) 1f g x+ =  and ( )( ) 2 [0,1]f g x x x+ = − ∀ ∈ .                                         

Hence            ( )T f g Tf Tg+ ≠ + . 

4.5 Proposition: For f ∈  and k ∈ , ( )T f k Tf k+ = + .    

4.6 Proposition:  For ,f g ∈ , ( )a f g Tf Tg≤ ≤    ( ) ( )b T f g Tf tg∨ = ∨   

where { }( )( ) max ( ), ( )f g x f x g x∨ = .   

4.7 Proposition: If { }/fα α ∈Δ  is a collection of functions in  and if 

{ }sup /f fα α
α

α
∈Δ
∨ = ∈ Δ  exists in   then ( ) ( )T f T fα α

α α∈Δ ∈Δ
∨ = ∨ .     

4.8 Remark: From the following example it can be observed that

( )T f g Tf Tg∧ ≠ ∧ , where { }( )( ) min ( ), ( )f g x f x g x∧ = . 

4.9 Example: Define :[0,1]f →  and :[0,1]g →  by                                 

1
1 2 0

2( )
1

2 1 1
2

x if x
f x

x if x

− ≤ ≤

=

− ≤ ≤

         and      

1
2 0

2( )
1

2 2 1
2

x if x
g x

x if x

≤ ≤

=

− + ≤ ≤                                

Then ( ) 1 [0,1]f x x= ∀ ∈   and  

1
1 0

2( )
1

2 2 1
2

if x
g x

x if x

≤ ≤

=

− + ≤ ≤

                           

( )( ) ( ) [0,1]f g x g x x∧ = ∀ ∈ .                                                  
                   

Also 

1
2 0

4
1 1

2 1
4 4( )( )
1 3

2 1
2 4
3

2 2 1
4

x if x

x if x
f g x

x if x

x if x

≤ ≤

− + ≤ ≤

∧ =

− ≤ ≤

− + ≤ ≤
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On Some Properties of the Rising Sun Function

1 3
0

2 4( ) ( )
3

2 2 1
4

if x
f g x

x if x

≤ ≤

∧ =

− + ≤ ≤

                                                            

Hence ( ) ( ) ( )( )f g x f g x∧ ≠ ∧ . 

4.10 Proposition: T  is continuous on .                                                                   

Proof:  Let nf ∈   for n∈  and nf f→  uniformly on [ , ]a b .  Then f ∈ .  

Let 0ε >  be given.  Then there exists a positive integer N  such that 

( ) ( ) [ , ]nn N f x f x x a bε≥ − < ∀ ∈                          

          ( ) ( ) [ , ]nf x f x x a bε ε− < − < ∀ ∈        

          ( ) ( ) ( ) [ , ]nf x f x f x x a bε ε− < < + ∀ ∈ .                                                                    

Let [ , ]x a b∈   and choose [ , ]y x b∈ .  Then [ , ]y a b∈ .

( ) ( ) ( )nf y f y f y n Nε ε− < < + ∀ ≥

( ) ( ) ( )nn N f y f y f xε ε≥ < + ≤ +                            

          ( ) ( ) [ , ]nf y f x y x bε< + ∀ ∈                                                    

          ( ) ( ) ( )nf x f x ε≤ + .                                                                                  

Similarly ( ) ( ) ( )nf x f xε− < .                                                                                                     

Hence ( ) ( ) ( )nf x f x n Nε− ≤ ∀ ≥   and  for every [ , ]x a b∈ .                                                

Hence ( )nf f→  uniformly on [ , ]a b .                                                                     

Hence nf f→ in nTf Tf→  in .                                                  

              

T  is continuous on .    

4.11Proposition:  ( )a nT f f f= ∀ ∈    and for every n∈                             

                         ( )b  For f ∈ , the cycle of T  is the set { },f f .  

4.12 Proposition: If f ∈  and f  is monotonically decreasing then f  is a fixed   

        point  of  T . 

4.13 Remark: The set of all fixed points of T is the set of all monotonically  

        decreasing functions on [ , ]a b .  Let F  denote the set of all fixed points of T    

        Then { } { }/ / is decreasingF f Tf f f f= ∈ = = ∈ . 
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        closed in . 

4.15 Proposition: Fix  F∈ .  Let { }* /F f Tf= ∈ = .   

        Then (a)  *F  is closed in .   

                 (b)  *( , )F ≤  is a ∨ − semilattice under the  relation ≤  defined on *F  by    

                                      ( ) ( ) [ , ]f g f x g x x a b≤ ⇔ ≤ ∀ ∈    

4.16 Proposition: The operator T  is bounded.  More precisely,                      

                     

                            (i)  Tf f f≤ ∀ ∈       and     (ii)    1T =

5.1 Proposition:  Let f ∈ .  If f  is usc  at a point [ , ]x a b∈  then so                      

is Tf f= .                                                                                                               

Proof: Let 0ε >  be given and [ , ]x a b∈ .  Since f  is usc  at [ , ]x a b∈ , there 

exists a 0δ >  such that ( ) ( ) ( , ) [ , ]f t f x t x x a b Uε δ δ− < ∀ ∈ − + = .

( ) ( ) ( )f x f x f t t Uε ε+ ≥ + > ∀ ∈                                 

( ) ( )f x f t t Uε+ > ∀ ∈                                                    
                                    

Suppose that x y< .                                               

( ) ( ) ( ) ( )f x f x f y f yε+ > ≥ ≥                                                 

( ) ( )f x f yε+ > .                                                  

                                                   

If x t<  and [ , ]y t b∈ x y<                                                         

                                        
( ) ( )

( ) ( )

f x f y

f x f t

ε

ε

+ >

+ ≥
                                                  

      Suppose that t x≤ . Then [ , ]y t b t y x∈ ≤ ≤   or x y b< < .   

    If t y x≤ ≤  then y U∈   ( ) ( )f x f yε+ > ( ) ( )f x f tε+ > .   

       If x y b< ≤  then ( ) ( )f x f tε+ > . Hence ( ) ( )f x f t t Uε+ > ∀ ∈ . 

      f  is usc  at x . 

5.2 Proposition: Let f ∈ .  If f  is lsc  at a point [ , ]x a b∈  then so                          

is Tf f= .   

VI. Invariant Properties

4.14 Proposition: The set F  of all fixed points of the rising sun operator T  is   
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Proof: Let 0ε >  be given and [ , ]x a b∈ .  Since f  is lsc  at [ , ]x a b∈ , there    

exists a 1 0δ >  such that 1 1( ) ( ) ( , ) [ , ]
2

f t f x t x x a b U
ε

δ δ
−

− > ∀ ∈ − + =

( ) ( ) ( )
2 2

f t f t f x t U
ε ε

+ ≥ + > ∀ ∈

( ) ( )
2

f t f x t U
ε

+ > ∀ ∈

   Since ( )
2

f x
ε

−  is not an upper bound of the set { }( ) /f y x y b≤ ≤ , there        

   exists a point [ , ]y x b∈  such that ( ) ( )
2

f y f x
ε

> − . 

   If y x=  then ( ) ( ) ( )
2 2

f t f x f x t U
ε ε

+ > > − ∀ ∈

  ( ) ( )f t f x t Uε+ > ∀ ∈ . 

y x≠ . If x z y< <  then ( ) ( ) ( ) ( )
2

f z f y f y f x
ε

≥ ≥ > −

  ( ) ( ) ( )
2

f z f x f x
ε

ε> − > − .   

   If z x≤  then ( ) ( ) ( )f z f x f x ε≥ > − .   

  Choose 0δ >  such that a x x x yδ δ≤ − < < + ≤ . 

  Then ( ) ( ) ( , ) [ , ]f z f x z x x a bε δ δ> − ∀ ∈ − + .  Hence f  is lsc  at x .  

5.3 Corollary:  Let f ∈ .  If f  is continuous  at a point [ , ]x a b∈ , then                 

Tf f=  is continuous at x .   

5.4 Proposition: For any f ∈ , Tf f=  is lsqc  at every ( , ]x a b∈ .  

      Proof: Let f ∈  and ( , ]x a b∈ .  Let 0ε >  be given and let U  be a          

neighborhood of x  in [ , ]a b .  Then there exists a 0δ >  such that    

( , ) [ , ]x x a b Uδ δ− + ⊂ . Choose ( , ) [ , ]W x x a bδ= − .   

W  is a non-empty open subset of U . 

   y W x y xδ∈ − < <

    
( ) ( )

( ) ( ) ( )

f y f x

f y f y f xε

≥

+ > ≥
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               Hence ( ) ( )f y f x y Wε+ > ∀ ∈ . 

      Thus for every 0ε >  and every neighborhood U  of x  there exists a non-   

      empty open set W U⊂  such that ( ) ( )f y f x y Wε+ > ∀ ∈ . 

5.5 Proposition: Let f ∈ .  If  :[ , ]f a b →  is lsqc at the point a  then 

Tf f=  is lsqc  at a .                                                                                                                       

Proof: Let f ∈  and 0ε >  be given.  Let U  be a neighborhood of  a  in 

[ , ]a b .  Since f  is lsqc  at a , there exists a non-empty open set W U⊂  such 

that ( ) ( )f t f x t Wε− > − ∀ ∈ .  

( ) ( ) ( )f t f t f a t Wε≥ > − ∀ ∈

( ) ( )f t f a t Wε> − ∀ ∈ .   

Since ( )f a ε−  is not an upper bound of { }( ) /f y a y b≤ ≤ , there exists a 

point [ , ]y a b∈  such that ( ) ( )f a f yε− < .   

If y a=  then ( ) ( ) ( )f t f a f a t Wε ε+ > > − ∀ ∈ .   

Suppose that y a≠ . 

Since a U∈  and U  is open in [ , ]a b , there exists a 1 0δ >  such that 

1[ , )a a Uδ+ ⊂ .  Choose 2 0δ >  such that 2a a yδ< + < . 

Put { }1 2min ,δ δ δ=  and 1 ( , )W a a δ= + .  Clearly, 1W  is a non-empty open set 

such that 1W U⊂ .   

Then 1z W z y∈ <

                    ( ) ( ) ( ) ( )f z f y f y f a ε≥ ≥ > −

Hence 1( ) ( )f z f a z Wε+ > ∀ ∈

f  is lsqc at a . 

5.6 Proposition: Let f ∈ .  Then                                                                              

( )a f  is usqc at every [ , )x a b∈ .  

( )b  If :[ , ]f a b →  is usqc  at b then so is f . 

5.7 Proposition [5]: Let :[ , ]f a b →  and [ , ]p a b∈ .  If ( )f p+  exists then f  is 

cliquish at p . 
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5.8 Corollary: For any f ∈ ,  Tf f=  is cliquish on [ , ]a b . 

5.9 Proposition: For any f ∈ , Tf f=  is quasicontinuous on [ , ]a b . 

6.1 Symmetric continuity: It is not necessary that the rising sun function of a 

symmetrically continuous function is symmetrically continuous.  For 

example, define :[ 1,1]f − →  by                                                  

2 0
( )

0 0

x if x
f x

if x

≠
=

=
  

Then 
2 1 0

( )
1 0 1

x if x
f x

if x

− ≤ ≤
=

< ≤

Clearly f  is symmetrically continuous on [ 1,1]− , but f  is not.  

6.2  Semi-continuity: The semi-continuity of  f  need not imply the semi-

continuity of f  as is evident from the following example.                                

Define :[ 1,1]f − →  by                                              

          
2

0 0

( ) ( 1)2 0 1

1 1 0

x

if x

f x x if x

x if x

−

=

= + < ≤

+ − ≤ <

   

Then  
1 1 0

( ) 1
0 1

2

if x
f x

if x

− ≤ ≤

=
< ≤

Clearly f  is semi-continuous on [ 1,1]− .  But f  is not semi-continuous                 

at 0x = . 

6.3 Darboux continuity: It is not necessary that the rising sun function of a 

Darboux continuous function is Darboux continuous.  The function 

:[ 1,1]f − →  defined in the above example is Dourbox continuous on[ 1,1]−

but its rising sun function is not Dourbox continuous. 

6.4 Differentiability: The rising sun function of a differentiable function is not 

necessarily differentiable as can be observed from the following example.  

VII. ariant PropertiesV
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Define  :[0,1]f →  by                                   

2

2

2

2 2
0

5 5

6 8 2 4
( )

5 25 5 5

9 4 4
1

5 5 5

x
x if x

x
f x x if x

x
x if x

+ − ≤ ≤

= − − − ≤ ≤

+ − − ≤ ≤

   

Then    

1 1
0

5 5
1 9

( )
5 10( )

1 2 9

10 5 10
9

( ) 1
10

if x

f x if x
f x

if x

f x if x

≤ ≤

≤ ≤

=

≤ ≤

≤ ≤

Clearly f  is differentiable at 0.3732a = , but f  is not differentiable at this 

point. 

6.5 Pointwise Convergence: If { }nf  converges pointwise to f  on [ , ]a b , it is not 

necessary that { }nTf  converges to Tf  as can be seen from the following 

example.  Define :[0,1]nf →  by  

1
1 /

( )
1

0 /
n

if x n
n

f x

if x n
n

∈ ∈

=

∉ ∈

Then { }nf  converges pointwise to 0.  

But  
1 0

( ) ( )
0 0 1n

if x
f x

if x

=
=

< ≤
   does not converge to 0. 
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