

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: F MATHEMATICS AND DECISION SCIENCES Volume 14 Issue 2 Version 1.0 Year 2014 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896

On Some Properties of the Rising Sun Function

By Vajha Srinivasa Kumar

Abstract- This paper studies a few interesting properties of the rising sun function of a bounded real function defined on a closed and bounded interval on the real line. An operator on the space of all bounded real functions defined on a closed and bounded interval is introduced and its properties are investigated.

Keywords: rising sun function, semi-continuity, darboux continuity, lower (upper) semicontinuity, lower (upper) semi-quasicontinuity, symmetric continuity, cliquishness, quasicontinuity, differentiability.

GJSFR-F Classification : AMS : 26AXX, 26A48, 26A15, 49JXX

Strictly as per the compliance and regulations of :

© 2014. Vajha Srinivasa Kumar. This is a research/review paper, distributed under the terms of the Creative Commons Attribution. Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 $R_{\rm ef}$

Riesz, F. And B.Sz. Nagy, Functional Analysis, Frederick Ungar Publishing Co.,

New York, 1995.

ë

On Some Properties of the Rising Sun Function

Vajha Srinivasa Kumar

Abstract- This paper studies a few interesting properties of the rising sun function of a bounded real function defined on a closed and bounded interval on the real line. An operator on the space of all bounded real functions defined on a closed and bounded interval is introduced and its properties are investigated.

Keywords : rising sun function, semi-continuity, darboux continuity, lower (upper) semicontinuity, lower (upper) semi-quasicontinuity, symmetric continuity, cliquishness, quasicontinuity, differentiability.

I. INTRODUCTION

The rising sun function was used as a tool in the proof of the famous Lebesgue's theorem on the differentiability of a real valued monotone function without using the theory of integration [3]. In this paper, some properties of the rising sun function are presented and an operator on the space of all bounded real functions defined on a closed and bounded interval [a,b] is introduced and its properties are investigated.

In what follows X, \mathbb{R} and \mathbb{N} stand for a topological space, the real line and the set of all positive integers respectively. Also \mathcal{B} stands for the Banach space of all bounded real functions defined on a closed and bounded interval [a,b] where $a,b \in \mathbb{R}$ and a < b under the supremum norm.

II. Preliminaries

1.1 Definition [6]: The rising sun function of a function $f \in \mathcal{B}$ is defined by

$$f_{\odot}(x) = \sup \left\{ f(y) \, / \, x \le y \le b \right\}.$$

1.2 Definition: For $f \in \mathcal{B}$ we define the following.

(i)
$$_{\odot} f(x) = \sup \{ f(y) / a \le y \le x \}$$

(ii) $f^{\odot}(x) = \inf \{ f(y) / x \le y \le b \}$
(iii) $^{\odot} f(x) = \inf \{ f(y) / a \le y \le x \}$

Author: Assistant Professor, Department of Mathematics, JNTUH College of Engineering, JNTU, Kukatpally, Hyderabad – 500085, A.P, India. e-mail: srinu_vajha@yahoo.co.in

- 1.3 Definition [5]: A function f: X → R is said to be semi-continuous at a point p∈ X if for every ε>0 and every neighborhood U of p in X there exists a non-empty open set W⊂U such that |f(x)-f(p)| < ε ∀ x∈ W. We say that a function f is semi-continuous on X if it is semi-continuous at every point of X.
 1.4 Definition [6]: A function f: X → R is said to be lower semicontinuous (lsc) at a
 - point $x \in X$ if for every $\mathcal{E} > 0$ there exists a neighborhood U of x such that

$$f(y) - f(x) > -\mathcal{E} \quad \forall \ y \in U .$$

We say that a function f is lsc on X if it is lsc at every point of X.

1.5 Definition [6]: A function $f: X \to \mathbb{R}$ is said to be upper semicontinuous (*usc*) at a point $x \in X$ if for every $\varepsilon > 0$ there exists a neighborhood G of x such that

 $f(y) - f(x) < \mathcal{E} \quad \forall y \in G.$

We say that a function f is usc on X if it is usc at every point of X.

- **1.6 Definition [4]:** A function $f: X \to \mathbb{R}$ is said to be lower semi-quasicontinuous (lsqc) at a point $x \in X$ if for every $\varepsilon > 0$ and every neighborhood U of x there exists a non-empty open set $W \subset U$ such that $f(y) f(x) > -\varepsilon \forall y \in W$. We say that a function f is lsqc on X if it is lsqc at every point of X.
- **1.7 Definition [4]:** A function $f: X \to \mathbb{R}$ is said to be upper semi-quasicontinuous (usqc) at a point $x \in X$ if for every $\varepsilon > 0$ and every neighborhood U of x there exists a non-empty open set $W \subset U$ such that $f(y) f(x) < \varepsilon \forall y \in W$.

We say that a function f is usqc on X if it is usqc at every point of X.

1.8 Definition [5]: A function f: X → R is said to be cliquish at a point x∈ X if for every ε>0 and every neighborhood U of x there exists a non-empty open set W⊂U such that |f(y)-f(z)| < ε ∀ y, z∈ W

We say that a function f is cliquish on X if it is cliquish at every point of X.

1.9 Definition: Let $f:[a,b] \to \mathbb{R}$. We define f(a-) = f(a) and f(b+) = f(b).

We say that f(p+) exists at $p \in [a,b)$ and we write f(p+) = L, where

 $L \in \mathbb{R}$ if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

 $|f(x) - L| < \varepsilon \quad \forall x \in (p, p + \delta) \subset [a, b]$. Similarly for $p \in (a, b]$ we write

Notes

 $f(p-) = l \in \mathbb{R}$ if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

 $|f(x)-l| < \varepsilon \quad \forall x \in (p-\delta, p) \subset [a,b].$

- **1.10 Definition:** A function $f : [a,b] \to \mathbb{R}$ is said to be quasicontinuous at a point $p \in [a,b]$ if f(p+) and f(p-) exist.
- **1.11 Definition:** A function $f:[a,b] \to \mathbb{R}$ is said to be symmetrically continuous at a point $x \in [a,b]$ if $\lim_{h \to 0} [f(x+h) f(x-h)] = 0$.
- **1.12 Definition:** A function $f : [a,b] \to \mathbb{R}$ is Darboux continuous if for all $p,q \in [a,b]$ and for each c between f(p) and f(q) there is an x between p and q such that f(x) = c.
- **1.13 Definition[2]:** An operator *P* on a linear space L is said to be sublinear if (*i*) $P(x+y) \le P(x) + p(y) \quad \forall x, y \in L \text{ and } (ii) \quad P(\lambda x) = \lambda P(x) \text{ for any}$ positive real number λ and every $x \in L$.

III. Relations among $f_{\odot}, {}_{\odot}f, f^{\circ}$ and ${}^{\circ}f$

In this section the relations between the rising sun function and its analogues that are introduced are presented in the following propositions.

- **2.1 Proposition:** For $f \in \mathcal{B}$, (a) $f^{\circ} = -(-f)_{\circ}$ and (b) $\circ f = -_{\circ}(-f)$.
- **2.2 Proposition:** For $f \in \mathcal{B}$, (a) $(f_{\odot})_{\odot} = f_{\odot}$ (b) $_{\odot}(_{\odot}f) = _{\odot}f$ (c) $(f^{\circ})^{\circ} = f^{\circ}$ (d) $^{\circ}(_{\circ}f) = _{\circ}f$
- **2.3 Proposition:** For $f \in \mathcal{B}$ and $x \in [a,b]$,
 - $(i) _{\circ} (f_{\circ})(x) = f_{\circ}(a) \qquad (ii) (f_{\circ})^{\circ}(x) = f_{\circ}(b) \qquad (iii) ^{\circ} (f_{\circ})(x) = f_{\circ}(x)$ $(iv) (_{\circ}f)_{\circ}(x) = _{\circ}f(b) (v) (_{\circ}f)^{\circ}(x) = _{\circ}f(x) \qquad (vi) ^{\circ} (_{\circ}f)(x) = _{\circ}f(a)$ $(vii) (f^{\circ})_{\circ}(x) = f^{\circ}(b) \qquad (viii) _{\circ} (f^{\circ})(x) = f^{\circ}(x) \qquad (ix) ^{\circ} (f^{\circ})(x) = f^{\circ}(a)$ $(x) (^{\circ}f)_{\circ}(x) = ^{\circ}f(x) \qquad (xi) _{\circ} (^{\circ}f)(x) = ^{\circ}f(a) \qquad (xii) (^{\circ}f)^{\circ}(x) = ^{\circ}f(b)$
- **2.4 Remark:** In view of the previous propositions it is enough to investigate the properties of the rising sun function and the properties of $_{\odot}f$, f^{\odot} and $^{\odot}f$ follow analogously.

N_{otes}

IV. Characterisations of $f_{\odot}, {}_{\odot}f, f^{\circ}$ and ${}^{\circ}f$

3.1 proposition: For $f \in \mathcal{B}$, f_{\odot} is the smallest decreasing function dominating f

More precisely,

Year 2014

Global [ournal of Science Frontier Research (F) Volume XIV Issue II Version I

- (a) $f_{\odot}(x) \ge f(x) \quad \forall x \in [a,b]$
- (b) f_{\odot} is decreasing on [a,b]
- (c) If g satisfies (a) and (b) above, then $f_{\odot}(x) \le g(x) \quad \forall x \in [a,b]$.

3.2 Proposition: For $f \in \mathcal{B}$, $_{\odot}f$ is the smallest increasing function dominating

f. More precisely, (a) $_{\odot}f(x) \ge f(x) \forall x \in [a,b]$

(b) $_{\odot}f$ is increasing on [a,b]

(c) If g satisfies (a) and (b) above, then $_{\odot}f(x) \le g(x) \quad \forall x \in [a,b].$

3.3 Proposition: For $f \in \mathcal{B}$,

- (a) f° is the largest increasing function such that $f^{\circ}(x) \le f(x) \quad \forall x \in [a,b]$
- (b) $^{\circ}f$ is the largest decreasing function such that $^{\circ}f(x) \le f(x) \quad \forall x \in [a,b]$

V. THE RISING SUN OPERATOR

4.1 Definition: Define $T: \mathcal{B} \to \mathcal{B}$ by $Tf = f_{\odot}$. We call this operator T, the rising sun operator on \mathcal{B} .

- **4.2 Proposition:** The rising sun operator T is sublinear on \mathcal{B} . More precisely,
 - $(a) T(f+g) \leq Tf + Tg \ \forall \ f,g \in \mathcal{B}$
 - (b) $T(\lambda f) = \lambda T f$ for every real number $\lambda > 0$ and every $f \in \mathcal{B}$.

Proof: Let $f, g \in \mathcal{B}$ and $x \in [a, b]$.

(a) For $y \in [x,b]$, $(f+g)(y) = f(y) + g(y) \le f_{\odot}(x) + g_{\odot}(x) = (f_{\odot} + g_{\odot})(x)$

$$\Rightarrow (f+g)(y) \le (f_{\odot} + g_{\odot})(x) \ \forall \ y \in [x,b]$$
$$\Rightarrow (f+g)_{\odot}(x) \le (f_{\odot} + g_{\odot})(x) \ \forall \ x \in [a,b]$$

Hence $T(f+g) \leq Tf + Tg \quad \forall f, g \in \mathcal{B}$.

(b) Suppose that λ is a positive real number and $f \in \mathcal{B}$

Then

$$\begin{aligned} (\lambda f)_{\odot}(x) &= \sup \{ (\lambda f)(y) / x \le y \le b \} \\ &= \lambda \sup \{ f(y) / x \le y \le b \} \\ &= \lambda f_{\odot}(x) \\ T \ \lambda f \ &= \lambda T f. \end{aligned}$$

4.3 Remark: From the following example, it is clear that $T(f+g) \neq Tf + Tg$.

4.4 Example: Define $f:[0,1] \to \mathbb{R}$ and $g:[0,1] \to \mathbb{R}$ by f(x) = x and

$$g(x) = 1 - x \quad \forall x \in [0, 1] \quad \Rightarrow (f + g)(x) = 1. \forall x \in [0, 1]$$

Then

$$(f+g)_{\odot}(x) = 1$$
 and $(f_{\odot} + g_{\odot})(x) = 2 - x \quad \forall x \in [0,1]$

 N_{otes}

Hence $T(f+g) \neq Tf + Tg$.

- **4.5 Proposition:** For $f \in \mathcal{B}$ and $k \in \mathbb{R}$, T(f+k) = Tf + k.
- **4.6 Proposition:** For $f, g \in \mathcal{B}$, (a) $f \le g \Rightarrow Tf \le Tg$ (b) $T(f \lor g) = Tf \lor tg$ where $(f \lor g)(x) = \max\{f(x), g(x)\}.$
- **4.7 Proposition:** If $\{f_{\alpha} \mid \alpha \in \Delta\}$ is a collection of functions in \mathcal{B} and if

$$\bigvee_{\alpha \in \Delta} f_{\alpha} = \sup \{ f_{\alpha} \mid \alpha \in \Delta \} \text{ exists in } \mathcal{B} \text{ then } T\Big(\bigvee_{\alpha \in \Delta} f_{\alpha}\Big) = \bigvee_{\alpha \in \Delta} T(f_{\alpha}).$$

4.8 Remark: From the following example it can be observed that

$$T(f \wedge g) \neq Tf \wedge Tg$$
, where $(f \wedge g)(x) = \min\{f(x), g(x)\}$.

4.9 Example: Define $f:[0,1] \to \mathbb{R}$ and $g:[0,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1 - 2x & \text{if } 0 \le x \le \frac{1}{2} \\ 2x - 1 & \text{if } \frac{1}{2} \le x \le 1 \end{cases} \quad \text{and} \quad g(x) = \begin{cases} 2x & \text{if } 0 \le x \le \frac{1}{2} \\ -2x + 2 & \text{if } \frac{1}{2} \le x \le 1 \end{cases}$$

Then
$$f_{\odot}(x) = 1 \ \forall \ x \in [0,1]$$
 and $g_{\odot}(x) = \begin{cases} 1 & \text{if } 0 \le x \le \frac{1}{2} \\ -2x+2 & \text{if } \frac{1}{2} \le x \le 1 \end{cases}$

$$\Rightarrow (f_{\odot} \land g_{\odot})(x) = g_{\odot}(x) \ \forall \ x \in [0,1]$$

Also
$$(f \land g)(x) = \begin{cases} 2x & \text{if } 0 \le x \le \frac{1}{4} \\ -2x+1 & \text{if } \frac{1}{4} \le x \le \frac{1}{4} \\ 2x-1 & \text{if } \frac{1}{2} \le x \le \frac{3}{4} \\ -2x+2 & \text{if } \frac{3}{4} \le x \le 1 \end{cases}$$

$$\Rightarrow (f \land g)_{\odot}(x) = \begin{cases} \frac{1}{2} & \text{if } 0 \le x \le \frac{3}{4} \\ -2x+2 & \text{if } \frac{3}{4} \le x \le 1 \end{cases}$$

Hence $(f \wedge g)_{\odot}(x) \neq (f_{\odot} \wedge g_{\odot})(x)$.

4.10 Proposition: T is continuous on \mathcal{B} .

Proof: Let $f_n \in \mathcal{B}$ for $n \in \mathbb{N}$ and $f_n \to f$ uniformly on [a,b]. Then $f \in \mathcal{B}$.

Let $\varepsilon > 0$ be given. Then there exists a positive integer N such that

$$\begin{split} n \geq N \Rightarrow \left| f_n(x) - f(x) \right| &< \mathcal{E} \ \forall \ x \in [a, b] \\ \Rightarrow -\mathcal{E} < f_n(x) - f(x) < \mathcal{E} \ \forall \ x \in [a, b] \\ \Rightarrow f(x) - \mathcal{E} < f_n(x) < f(x) + \mathcal{E} \ \forall \ x \in [a, b]. \end{split}$$

Let $x \in [a,b]$ and choose $y \in [x,b]$. Then $y \in [a,b]$.

$$\Rightarrow f(y) - \varepsilon < f_n(y) < f(y) + \varepsilon \quad \forall n \ge N$$
$$n \ge N \Rightarrow f_n(y) < f(y) + \varepsilon \le f_{\odot}(x) + \varepsilon$$
$$\Rightarrow f_n(y) < f_{\odot}(x) + \varepsilon \quad \forall y \in [x, b]$$

 $\Rightarrow (f_n)_{\odot}(x) \le f_{\odot}(x) + \mathcal{E}.$

Similarly $f_{\odot}(x) - \mathcal{E} < (f_n)_{\odot}(x)$.

Hence $|(f_n)_{\odot}(x) - f_{\odot}(x)| \le \varepsilon \quad \forall n \ge N$ and for every $x \in [a,b]$.

Hence $(f_n)_{\odot} \to f_{\odot}$ uniformly on [a,b].

Hence $f_n \to f$ in $\mathscr{B} \Longrightarrow Tf_n \to Tf$ in \mathscr{B} .

 \Rightarrow *T* is continuous on \mathscr{B} .

4.11Proposition: (a) $T^n f = f_{\odot} \quad \forall f \in \mathcal{B}$ and for every $n \in \mathbb{N}$

(b) For $f \in \mathcal{B}$, the cycle of T is the set $\{f, f_{\odot}\}$.

- **4.12 Proposition:** If $f \in \mathcal{B}$ and f is monotonically decreasing then f is a fixed point of T.
- **4.13 Remark:** The set of all fixed points of T is the set of all monotonically decreasing functions on [a,b]. Let F denote the set of all fixed points of T

Then $F = \{ f \in \mathcal{B} / Tf = f \} = \{ f \in \mathcal{B} / f \text{ is decreasing} \}.$

Notes

- **4.14 Proposition:** The set F of all fixed points of the rising sun operator T is closed in \mathcal{B} .
- **4.15 Proposition:** Fix $f \in F$. Let $F^* = \{f \in \mathcal{B} / Tf = f\}$.
 - Then (a) F^* is closed in \mathcal{B} .

(b) (F^*, \leq) is a \vee -semilattice under the relation \leq defined on F^* by

 $f \leq g \iff f(x) \leq g(x) \ \forall x \in [a,b]$

4.16 Proposition: The operator *T* is bounded. More precisely,

(i) $||Tf|| \le ||f|| \forall f \in \mathcal{B}$ and (ii) ||T|| = 1

VI. INVARIANT PROPERTIES

5.1 Proposition: Let $f \in \mathcal{B}$. If f is usc at a point $x \in [a,b]$ then so

is $Tf = f_{\odot}$.

Notes

Proof: Let $\varepsilon > 0$ be given and $x \in [a,b]$. Since f is usc at $x \in [a,b]$, there exists a $\delta > 0$ such that $f(t) - f(x) < \varepsilon \quad \forall t \in (x - \delta, x + \delta) \cap [a,b] = U$.

$$\Rightarrow f_{\odot}(x) + \mathcal{E} \geq f(x) + \mathcal{E} > f(t) \ \forall t \in U$$

$$\Rightarrow f_{\odot}(x) + \mathcal{E} > f(t) \ \forall t \in U$$

Suppose that x < y.

$$\Rightarrow f_{\odot}(x) + \varepsilon > f_{\odot}(x) \ge f_{\odot}(y) \ge f(y)$$
$$\Rightarrow f_{\odot}(x) + \varepsilon > f(y).$$

If x < t and $y \in [t, b] \Rightarrow x < y$

$$\Rightarrow f_{\odot}(x) + \mathcal{E} > f(y)$$
$$\Rightarrow f_{\odot}(x) + \mathcal{E} \ge f_{\odot}(t)$$

Suppose that $t \le x$. Then $y \in [t,b] \Rightarrow t \le y \le x$ or x < y < b.

If $t \le y \le x$ then $y \in U \implies f_{\odot}(x) + \mathcal{E} > f(y) \implies f_{\odot}(x) + \mathcal{E} > f_{\odot}(t)$.

If $x < y \le b$ then $f_{\odot}(x) + \varepsilon > f_{\odot}(t)$. Hence $f_{\odot}(x) + \varepsilon > f_{\odot}(t) \quad \forall t \in U$.

 $\Rightarrow f_{\odot}$ is usc at x.

5.2 Proposition: Let $f \in \mathcal{B}$. If f is *lsc* at a point $x \in [a,b]$ then so

is
$$Tf = f_{\odot}$$
.

Proof: Let $\varepsilon > 0$ be given and $x \in [a,b]$. Since f is lsc at $x \in [a,b]$, there

exists a $\delta_1 > 0$ such that $f(t) - f(x) > \frac{-\varepsilon}{2} \quad \forall t \in (x - \delta_1, x + \delta_1) \cap [a, b] = U$ $\Rightarrow f_0(t) + \frac{\varepsilon}{2} \ge f(t) + \frac{\varepsilon}{2} > f(x) \quad \forall t \in U$ $\Rightarrow f_0(t) + \frac{\varepsilon}{2} > f(x) \quad \forall t \in U$

Since $f_{\odot}(x) - \frac{\varepsilon}{2}$ is not an upper bound of the set $\{f(y) | x \le y \le b\}$, there

exists a point $y \in [x,b]$ such that $f(y) > f_{\odot}(x) - \frac{\varepsilon}{2}$.

If
$$y = x$$
 then $f_{\odot}(t) + \frac{\varepsilon}{2} > f(x) > f_{\odot}(x) - \frac{\varepsilon}{2} \quad \forall t \in U$
$$\Rightarrow f_{\odot}(t) + \varepsilon > f_{\odot}(x) \quad \forall t \in U.$$

 $y \neq x$. If x < z < y then $f_{\odot}(z) \ge f_{\odot}(y) \ge f(y) > f_{\odot}(x) - \frac{\varepsilon}{2}$

$$\Rightarrow f_{\odot}(z) > f_{\odot}(x) - \frac{\varepsilon}{2} > f_{\odot}(x) - \varepsilon \,.$$

If $z \le x$ then $f_{\odot}(z) \ge f_{\odot}(x) > f_{\odot}(x) - \mathcal{E}$.

Choose $\delta > 0$ such that $a \le x - \delta < x < x + \delta \le y$.

Then $f_{\odot}(z) > f_{\odot}(x) - \mathcal{E} \quad \forall z \in (x - \delta, x + \delta) \cap [a, b]$. Hence f_{\odot} is *lsc* at x.

5.3 Corollary: Let $f \in \mathcal{B}$. If f is continuous at a point $x \in [a,b]$, then

 $Tf = f_{\odot}$ is continuous at x.

5.4 Proposition: For any $f \in \mathcal{B}$, $Tf = f_{\odot}$ is lsqc at every $x \in (a,b]$.

Proof: Let $f \in \mathcal{B}$ and $x \in (a,b]$. Let $\varepsilon > 0$ be given and let U be a neighborhood of x in [a,b]. Then there exists a $\delta > 0$ such that $(x-\delta, x+\delta) \cap [a,b] \subset U$. Choose $W = (x-\delta, x) \cap [a,b]$.

W is a non-empty open subset of U.

$$y \in W \Longrightarrow x - \delta < y < x$$
$$\Rightarrow f_{\odot}(y) \ge f_{\odot}(x)$$
$$\Rightarrow f_{\odot}(y) + \varepsilon > f_{\odot}(y) \ge f_{\odot}(x)$$

Notes

Hence $f_{\odot}(y) + \mathcal{E} > f_{\odot}(x) \quad \forall y \in W$.

Thus for every $\varepsilon > 0$ and every neighborhood U of x there exists a nonempty open set $W \subset U$ such that $f_{\odot}(y) + \varepsilon > f_{\odot}(x) \quad \forall y \in W$.

5.5 Proposition: Let $f \in \mathcal{B}$. If $f:[a,b] \to \mathbb{R}$ is *lsqc* at the point *a* then

 $Tf = f_{\odot}$ is *lsqc* at *a*.

Proof: Let $f \in \mathcal{B}$ and $\varepsilon > 0$ be given. Let U be a neighborhood of a in [a,b]. Since f is lsqc at a, there exists a non-empty open set $W \subset U$ such that $f(t) - f(x) > -\varepsilon \quad \forall t \in W$.

$$\Rightarrow f_{\odot}(t) \ge f(t) > f(a) - \mathcal{E} \ \forall t \in W$$
$$\Rightarrow f_{\odot}(t) > f(a) - \mathcal{E} \ \forall t \in W.$$

Since $f_{\odot}(a) - \varepsilon$ is not an upper bound of $\{f(y) | a \le y \le b\}$, there exists a point $y \in [a,b]$ such that $f_{\odot}(a) - \varepsilon < f(y)$.

If y = a then $f_{\odot}(t) + \mathcal{E} > f(a) > f_{\odot}(a) - \mathcal{E} \quad \forall t \in W$.

Suppose that $y \neq a$.

Since $a \in U$ and U is open in [a,b], there exists a $\delta_1 > 0$ such that

 $[a, a + \delta_1) \subset U$. Choose $\delta_2 > 0$ such that $a < a + \delta_2 < y$.

Put $\delta = \min{\{\delta_1, \delta_2\}}$ and $W_1 = (a, a + \delta)$. Clearly, W_1 is a non-empty open set such that $W_1 \subset U$.

Then $z \in W_1 \Longrightarrow z < y$

$$\Rightarrow f_{\odot}(z) \ge f_{\odot}(y) \ge f(y) > f_{\odot}(a) - \mathcal{E}$$

Hence $f_{\odot}(z) + \mathcal{E} > f_{\odot}(a) \forall z \in W_1$

 $\Rightarrow f_{\odot}$ is *lsqc* at *a*.

5.6 Proposition: Let $f \in \mathcal{B}$. Then

(a) f_{\odot} is usqc at every $x \in [a,b)$.

(b) If $f:[a,b] \to \mathbb{R}$ is useque at b then so is f_{\odot} .

 N_{otes}

^{5.7} Proposition [5]: Let $f:[a,b] \to \mathbb{R}$ and $p \in [a,b]$. If f(p+) exists then f is cliquish at p.

- **5.8 Corollary:** For any $f \in \mathcal{B}$, $Tf = f_{\odot}$ is cliquish on [a,b].
- **5.9 Proposition:** For any $f \in \mathcal{B}$, $Tf = f_{\odot}$ is quasicontinuous on [a,b].

VII. VARIANT PROPERTIES

6.1 Symmetric continuity: It is not necessary that the rising sun function of a symmetrically continuous function is symmetrically continuous. For example, define $f:[-1,1] \rightarrow \mathbb{R}$ by

$$f(x) = \begin{cases} x^2 & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Then

Clearly f is symmetrically continuous on [-1,1], but f_{\odot} is not.

 $f_{\odot}(x) = \begin{cases} x^2 & \text{if } -1 \le x \le 0\\ 1 & \text{if } 0 < x \le 1 \end{cases}$

6.2 Semi-continuity: The semi-continuity of f need not imply the semi-continuity of f_{\odot} as is evident from the following example.

Define $f:[-1,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{if } x = 0\\ (x+1)2^{\frac{-2}{x}} & \text{if } 0 < x \le 1\\ x+1 & \text{if } -1 \le x < 0 \end{cases}$$

Then

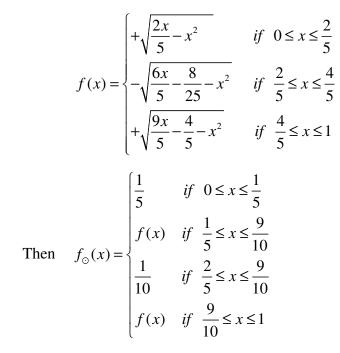
 $f_{\odot}(x) = \begin{cases} 1 & if -1 \le x \le 0 \\ \frac{1}{2} & if 0 < x \le 1 \end{cases}$

Clearly f is semi-continuous on [-1,1]. But f_{\odot} is not semi-continuous at x=0.

- 6.3 Darboux continuity: It is not necessary that the rising sun function of a Darboux continuous function is Darboux continuous. The function
 f:[-1,1] → ℝ defined in the above example is Dourbox continuous on[-1,1]
 but its rising sun function is not Dourbox continuous.
- **6.4 Differentiability:** The rising sun function of a differentiable function is not necessarily differentiable as can be observed from the following example.

Define $f:[0,1] \to \mathbb{R}$ by

Notes



Clearly f is differentiable at a = 0.3732, but f_{\odot} is not differentiable at this point.

6.5 Pointwise Convergence: If $\{f_n\}$ converges pointwise to f on [a,b], it is not necessary that $\{Tf_n\}$ converges to Tf as can be seen from the following example. Define $f_n : [0,1] \to \mathbb{R}$ by

$$f_n(x) = \begin{cases} 1 & \text{if } x \in \left\{\frac{1}{n} / n \in \mathbb{N}\right\} \\ 0 & \text{if } x \notin \left\{\frac{1}{n} / n \in \mathbb{N}\right\} \end{cases}$$

Then $\{f_n\}$ converges pointwise to 0.

But $(f_n)_{\odot}(x) = \begin{cases} 1 & if \quad x = 0 \\ 0 & if \quad 0 < x \le 1 \end{cases}$ does not converge to 0.

References Références Referencias

- Bruckner, A. M., Differentiation of Real functions, Lecture Notes in Mathematics 659, Springer-Verlag, New York-Heidelberg - Berlin, 1978.
- Kreyszig, E., Introductory Functional Analysis with Applications, John Willey and Sons, New York, 1978.

- Riesz, F. And B.Sz. Nagy, *Functional Analysis*, Frederick Ungar Publishing Co., New York, 1995.
- 4. Srinivasa kumar, V. On Lower and Upper Semi-Quasicontinuous, Functions, International Journal of Mathematical Archive, Vol-3(6), pp-2249-2257, 2012.
- Srinivasa kumar, V. On Some Properties of Cliquish Functions, International Journal of Mathematical Archive, Vol-3(7), pp-2777-2783, 2012.
- 6. Van Rooij, A. C. M. and Schikhof, W. H., A second Course on Real *functions*, Cambridge University Press, Cambridge, 1982.