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three neutron shells in searching for possible stability there It 
has been found that the even neutron nuclei 4n – 16n show 
possible stability, some of which exhibit stable excited states 
as well. 
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I. Introduction 
he production and detection of free neutron 
clusters (an entirely new form of nuclear matter) 
have been seriously studied, initially through the 

 

 Neutron nuclei heavier than 4n have been 
studied, specifically 8n in the decay of 252Cf [5] and 5-13n 
in induced fission of 235U [6]. All these efforts lasting for 
decades have set the question: Can a nucleus be made 
up of neutrons alone?

 From the theoretical point of view [7-8], it does 
not seem possible to bind 4n without destroying many 
other successful predictions by applying the same 
forces, e.g., to light nuclei. However, simulations in 
progress are used to clarify the origin of 4n by employing 
the Generator Coordinates Method and locating the 
neutrons at the vertices of a tetrahedron . 

A recent publication [9] favours the possible 
stability of 4n and

 
6n in the framework of the Isomorphic 

Shell Model (ISM). In the present work we employ the 
same model to study the possibility of stability of 
neutron nuclei in the next 1d2s shell. In order to correct 
a small numerical mistake in the results of [9], the 
present research repeats the study of 1s and 1p neutron 
nuclei. The privilege of the present approach is that 
while the model has been successfully applied 
throughout the periodic table [10-19], here the model is 
employed without any modification, constituting the 
model          unique      In      the   

 
  relevant 

 
    research. 

II. The Isomorphic Shell Model (ism) 

 The model follows the sequence of reasoning 
based     on   well    documented   quantum  mechanical  
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principles and mathematical theorems 
• The nucleus is composed of two different kinds of 

fermions (neutrons and protons). 
• The wave function describing neutrons or protons or 

both is anti-symmetric. 
• Anti-symmetric wave function of a set of particles 

(e.g.,nucleons or protons) has maximaat positions 
which are identical to those positions if the particles 
interact among eachother via a repulsive force of 
unknown nature[20]. 

• Repulsive particles on a sphere are at equilibrium 
only for specific numbers of particleswhich are 
identical to the number of vertices, or to the number 
of faces, or to the numbersof middles of edges or 
combinations of these numbers related to the 
regular or semi-regular polyhedra [21]. 

• Two kinds of repulsive particles (here, neutrons and 
protons) are at equilibrium on asphere if the 
neutrons by themselves are at equilibrium and if the 
protons by themselvesare at equilibrium, and if all 
these particles taken together are at equilibrium 
aswell [21]. 

•
 

If the number of repulsive particles is larger than
 
the 

aforementioned numbers [21], thenThe extra 
particles could be at equilibrium on a different 
sphere which does not disturb theequilibria of 
particles on other spheres [21].2

 

The first three of the aforementioned 
cornerstones of the model come directly from basic 
quantum mechanics and the other three are rigorously 
proved mathematical theorems [21]. No ad hoc 
assumption is introduced anyhere.

 
This is the 

outstanding, unique privilege of the present model.
 

By rigorous application of the above principles 
and theorems, the most probable forms of nuclear 
shells are derived for the whole periodic table of nuclei, 
i.e., up to Z=126 and N=184 [22]. If in addition the 
nucleons are considered with finite size (specifically, rp

 

= 0.860 fm and rn = 0.974 fm), then the average size of 
all shells are derived by considering packing of the 
shells assumed superimposed with a common center 
and the most symmetric relative orientation [22] 
(packing

 
means that the bags of a polyhedron come in 

contact with the bags of a previous polyhedron). Thus, 
in the ISM the most probable forms and the average 
sizes of the nuclear shells, and thus of all nuclei, are 
determined without reference to nuclear forces. 
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channel Be= Be+ n [1].Other supporting n 
experiments involve the reactions 12Be=8Be+4n [2] and 
8He=4He +4n [3]. In [4] a review is made and the far-
reaching implications of 4n are discussed.
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Thorough study of regular and quasi-regular 
polyhedra employed by the present model shows that 
the symmetries of these polyhedra identically possess 
the quantization of orbital angular momentum, of spin, 
and of total angular momentum [23], a fact which 
permits one to assign quantum states at the vertices of 
these polyhedra assumed as the average particle 
positions. Each occupied vertex configuration 
corresponds to a quantum state configuration with 
definite quantum state and energy. 

In general, the ISM is a microscopic nuclear 
structure model that incorporates into a hybrid model 
the prominent features of single-particle and collective 
approaches in conjunction with the nucleon finite size 
[24]. The model consists of two parts, namely, the 
complete quantum mechanical part [24] and the 
semiclassical part [24, 25]. 

Figure 1 stands for the shell structure for all 
nuclei up to N = Z =20 according to the ISM [12-14]. 
Thus, the first three neutron and the first three proton 
shells are shown. This is a good way to see the 
relationship between regular nuclei and possible neutron 
nuclei. Polyhedral vertices, standing for nucleon average 
positions in definite quantum states (τ, n, ℓ, mℓ, s), are 
numbered as shown. Central axes standing for the 
quantization of directions of the orbital angular 
momentum are labelled as     and pass through the 
points marked by small solid circles •. At the bottom-left 
of each block the numbering of a polyhedron proceeded 
by the letter Z (N) for protons (neutrons) is given. Over 
this the number of polyhedral vertices and the number 
of possible unoccupied vertices (holes, h) are also 
given. At the bottom-right of each block the radius of the 
polyhedron is listed. Over this the cumulative number of 
vertices of all previous polyhedra and of this polyhedron 
is also given and stands as a quantum-geometrical 
interpretation of magic numbers. Finally, at the bottom-
center of each block the distance Ρnℓm of the nucleon 
average position nℓm from the relevant axis       is given. 
The coordinates of nucleon average positions of Fig.1 
have been determined [11] and are identically employed 
in all publications thereafter {e.g., [12-14]. 

At this point it is interesting for one to observe 
from Fig. 1 that the average structures of a neutron and 
of the corresponding proton shell on the same line of 
this figure are presented by reciprocal polyhedra [26]. 
That is, the average positions of protons (neutrons) are 
at the directions through the centers of the faces of the 
corresponding neutron (proton) polyhedron, thus these 
two polyhedra possess the same rotational symmetry. 
This relative orientation makes the np distances 
systematically smaller than the nn and the pp distances. 
This situation,2even using the same r- dependent 
potential as in Eq.(1) below, leads to a much stronger 
total average np interaction. 

of Fig.1 is enough. It is important to emphasize that the 
neutron polyhedrapossess stable

 

equilibrium for 
repulsive particles possessing average positions at their

 
vertices, while proton polyhedra possess unstable 
equilibrium [21]. Thus, neutron polyhedracan exist by 
themselves, as far as their stability is concerned. Even 
their average sizes areindependent from the existence of 
proton polyhedra. Specifically, the octahedron standing 
forthe 1p neutron shell is closely packed with the 
neutron zerohedron standing for the 1s neutronshell. 
Similarly,

 

the icosahedron standing for the 1d2s 
neutronshell is closely packed with the

 

aforementioned 
octahedron.

 III.

 

Semi-classical Version of The

 

Ism

 

 

Here, we present the semiclassical part of the 
model,which has been used many times [12-14] in 
place of the quantum

 

mechanical part of themodel [24], 
in the spirit of the Ehrenfest theorem [27, 28] that for the 
average values the laws

 

of Classical Mechanics are 
valid [28].

 
In the present semiclassical treatment, we 

employ Eqs. (1-5) as the expression of thetwo-body (two 
Yukawa) potential V [16, 29], of the kinetic energy T [11], 
of the spin-orbitenergy VLS

 

[30], and of the binding 
energy (EB). Isospin term in Eq.(5) is not needed since

 
the isospin is here taken care of by the different shell 
structure (forms and sizes) betweenproton and neutron 
shells, as apparent from Fig.1.

 
(1)

 

   

(2)

 

    

(3)

 

  
(4)                        

 

      
(5)

 
•
 

Vij
 
is the potential energy between a pair of nucleons 

i, j at a distance rij.
 •

 
<T> nℓm

 
is the average kinetic energy of a nucleon 

at the quantum state n, ℓ, m and consist
 
of two 

terms. The first is due to uncertainly and the second 
to orbital motion of this nucleon.

 •
 

n, ℓ, m are the quantum numbers characterizing a 
polyhedral vertex standing for the averageposition 
of a nucleon at the quantum state n, ℓ, m.

 •
 

ℓi
 
and Si stand for the orbital angular momentum 

quantum number ℓ
 
and the intrinsic spinquantum 

number s of any nucleon i.
 •

 
M is the mass of a proton Mp

 
or of a neutron Mn,

 •
 

Rmax
 
is the outermost proton or neutron polyhedral 

radius (R) of a nucleus plus the relevantaverage 
nucleon radius rp

 
for a proton and rn

 
for a neutron 
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Apparently, if we are concerned with neutron 
nuclei alone, consideration of only theneutron polyhedra 

(i.e., Rmax is the radius of thenuclear volume in
which protons or neutrons are confined),

Vij=1.7*1017*e-31.8538rij/rij-241.193*e-1.4546rij/rij
                    

<T>nℓm=(ћ2/2M)[1/R2
max+ℓ(ℓ + 1)/ρ2

nℓm

ΣiVLiSi=λ Σi*( ћωi )2 /(h2/m)*ℓi si   

ћωi = (ћ2/M)(n+3/2)/<ri
2

                                                                                      EB.= ΣijVij - Σ<T>n  m - ΣiVLiSi  , where:

]                                       

>                                                                                       



 
 

•

 

Ρnℓm

 

is the distance of a nucleon average position at 
a quantum state (n, ℓ, m) from itsorbital angular 
momentum vector at the direction nθ

 

m

 

ℓ

 

.

 
When only binding energies (and not scattering 

properties) are required as here, just the

 

second term of 
the above two-body potential of Eq.(1) is sufficient. 
Thus, for non-scattering

properties, the parameters of the model are the 
following five: the two-size parameters Rp and Rn, the

 
two parameters from the second term of Eq.(1), and the 
one parameter, λ, from Eq.(3). With the help of these 
universal

 

(i.e., they are not adjustable and thus they 
maintain the same values for all properties in all nuclei) 
parameters all quantities Rmax,

 

Ρnℓm

 

, and

 

Ћωi, in Eqs.(1) 
– (5)

 

are obtainable by employing the coordinates of the 
nucleon average positions derived from Fig.1 [12-14] 
and are given in [11].

 IV.

 

Application to Neutron

 

Nuclei

 If only neutrons are considered, the relevant 
shell structure is derived from Fig.1 by disregarding the 
proton shell structure.

 
Application of Eqs. (1-5) for neutron nuclei leads 

to the results shown in Table 1. Specifically, in its 
columns 1-9 we give the notation of a nucleus with even 
number of neutrons, the average positions of Fig. 1 
occupied, the relevant state configuration, the quantities 
ΣVij, Σ<T> nℓm, ΣVLiSi, EB, the notations stable or unstable, 
and the average radius of each nucleus, respectively. 
From column 8 of Table 1 we see that the nuclei 4n-

 

16n 
have at least one state with positive

 

EB, a fact which 
implies that they are possible stable neutron nuclei. It is 
noticeable that several of these nuclei, besides their 
ground state, show stability for one or more excited 
states. It is of interest that when 8n is a closed shell 
nucleus its EB is negative, while if we consider 2p-2h 
(i.e., their core is 12C and not 16O) the 8n has positive EB. 
This, of course, is consistent with the structure of 16O 
where for its ground state we have 4p-4h structure [24]. 
From preliminary calculations the same

 

situation occurs 
for 18n and 20n. That is, while for these two nuclei their EB 
in Table 1 have a negative sign, after considering p-h 
structure with the next shell their EB becomes positive. 
That is, this situation implies that neutron nuclei could 
be possible even for the next 1f2p shell. Another 
interesting comment from the results of Table 1 is that 
the configurations possessing 2s states have larger 
positive EB

 

than the other configurations of the same 
nucleus without 2s states.

 Figure 2 shows the space arrangement of 
neutrons for all neutron nuclei examined and listed in 
column 1 of Table 1following the average positions Nos 
from column 2 of the table.

 

neutron nuclei of Table1 by employing identically as 
above the same equations and parameters. In addition 
this table deals with charge and point neutron – point 
proton rms radii. Here, the existence of experimental 
values for binding energies and radii and their 
impressive closeness to the present predictions give 
necessary credits to the model employed and to 
predicted possible neutron nuclei.

 

The necessary formulae for the radii are

 
       (6)

                        (7)

 Where the first is for the calculation of proton 
rms radii and the second for the estimation of neutron 
radii. The radii ri

 

are the radii Ri

 

from Fig.1. The quantity 
<r2>p is taken as 0.82

 

fm2 and presents the square of 
the average size of a proton, while the proton bag radius 
is already given above equal to 0.860 fm. In 
correspondence for the neutron we take 0.91 fm as the 
average size of a neutron, while the neutron bag radius, 
as given above, is 0.974 fm. The 5quantities 0.8fm and 
0.91fm have some minimum contribution to the radii 
only to the results of protons or neutrons rms radii of 
very light nuclei.

 
The values of neutron radii given in column 9 of 

Table 1 come as results of applying Eq.(7) above.to the 
average positions of neutrons given in column 2 for all 
nuclei of column 2 of Table 1.

 V.

 

Conclusions

 From the ten even neutron nuclei examined in 
Table 1, seven show the possibility of having at least 
one state with positive EB. From the remaining three 
nuclei of this table the 2n definitely has negative EB, while

 
the other two, namely 18n and

 

20n, from preliminary 
calculations are expected to obtain positive EB

 

through a 
p-h structure with the next 1f2p shell. From

 

the nuclei 
with positive EB, namely, 4n-16n, the

 

4n,

 

6n, and

 

16n have

 
only one state with positive EB. The nuclei 8n, 12n, and 14n 
have two states with positive EB, while the nucleus 10n 
has four states with positive EB.

 
It is noticeable that 8n and 20n, even though 

closed shell nuclei, do not exhibit positive EB. This is 
here understood as a result of the structure of 2n (i.e., 

the neutron zerohedron) which favours prolate 
structures. Thus, the states 1p1/2 and 1d3/2 with 
average positions towards the z axis, which is 
perpendicular to the neutron zerohedron, are less 
favoured. The same explanation is valid for 18n which 
also possesses 1d3/2 states in its structure.

 
It is important to emphasize that the present 

calculations have the following characteristics:
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Table 2 shows the same quantities like Table 1 
for the regular nuclei 4He and 40Ca, i.e., the nuclei with N 
= Z corresponding to the first and the last possible 

They employ the same model already successfully 
applied to many calculations of regular nuclei with 
very good results [10-16, 19, 22-25], a model based 

<r2>p =   
   

 

 
 +<r2>p-0.116 

 
  and

<r2>n =   
   

 

 
+ <r2>n,                                      

a)



 on fundamental quantum mechanics [20] and 
mathematical theorems [21] without any ad hoc 
assumption.

 

b)

 

While the two-body potential employed here [Eq.(1)] 
has been strictly derived from nuclear physics [16, 
29], it is almost identical to potentials derived from 
particle physics via chromodynamics.

 

c)

 

The radii in column 9 of the table for possible 
neutron

 

nuclei are identical to the neutron radii of 
regular nuclei with neutrons at the same quantum 
states [23].
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Table 1  :

  

Energy components and rms charge and point neutron - proton radii (in fm) of 4He and 40Ca

 

 

 

 

 

 

 

Table 2 :

  

Calculations of binding energies (in MeV) and radii (in fm) for the nuclei listed in the first column of the 
table.
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Nuc. Pos. Config. ΣV Σ<Τ> Ec ER EB.m EB,e ch<r2>1/2m ch<r2>1/2e
n<r2 >1/2-p<r2>1/2

4Ηε 1-4 (1s)4 44.6 14.2 0.5 1.7 28.2 28.3 1.71 1.68

40Ca 1-40 (1s)4(1p)12

(1d)20(2s)4
771.7 363.0 64.8 1.7 342.2 342.1 3.47 3.48 -0.29 -0.30

  

Nuc Average positions Nos. State configurations   ΣV Σ<T> ΣEs-   EB st. 
un.

Rad.

2n 1-2 (1s1/2)2 7.27 10.93 0.00 -3.66 un. 1.33

4n 1-2, 7-8 (1s1/2)2(1p3/2)2 23.13 -19.98 0.20 3.35 st. 2.11

6n 1-2, 5-8 (1s1/2)2(1p3/2)4 40.53 -36.55 0.39 4.37 st. 2.31

8n 1-2, 5-10 (1s1/2)2(1p3/2)4(1p1/2)2 50.79 -53.12 0.00 -2.33 un. 2.41

1-2, 5-8, 25, 27 (1s1/2)2(1p3/2)4(1d5/2)2 61.02 -54.60 0.58 7.00 st. 2.72

(1s1/2)2(1p3/2)4(2s1/2)2 61.02 -48,13 0.39 13.28 st. 2.72

10n 1-2, 5-10, 25, 27 (1s1/2)2(1p3/2)4(1p1/2)2(1d5/2)2 71.67 -69.77 0.19 2.09 st. 2.71

(1s1/2)2(1p3/2)4(1p1/2)2(2s1/2)2 71.67 -63.30 0.00 8.37 st. 2.71

1-2, 5-8, 25-28 (1s1/2)2(1p3/2)4(1d5/2)4 79.22 -76.87 0.77 3.12 st. 2.94

(1s1/2)2(1p3/2)4(1d5/2)2(2s1/2)2 79.22 -70.40 0.58 9.40 st. 2.94

12n 1-2, 5-10, 18, 20, 25, 27 (1s1/2)2(1p3/2)4(1p1/2)2(1d5/2)4 90.96 -92.03 0.38 -0.69 un. 2-90

(1s1/2)2(1p3/2)4(1p1/2)2(1d5/2)2(2s1/2)2 90.96 -85.56 0.19 5.59 st. 2.90

1-2, 5-8, 18, 20, 25-28 (1s1/2)2(1p3/2)4(1d5/2)6 97.32 -99.13 0.72 -1.09 un. 3.08

(1s1/2)2(1p3/2)4(1d5/2)4(2s1/2)2 97.32 -92.66 0.77 5.43 st. 3.08

14n 1-2, 5-10, 17-20, 25, 27 (1s1/2)2(1p3/2)4(1p1/2)2(1d5/2)6 110,82 -114.29 0.56 -2.91 un. 3.02

(1s1/2)2(1p3/2)4(1p1/2)2(1d5/2)4(2s1/2)2 110.82 -107.82 0.38 3.38 st. 3.02

1-2, 5-8, 17-20, 25-28 (1s1/2)2(1p3/2)4(1d5/2)6(2S1/2)2 115.99 -114,92 0.96 2.03 st. 3.17

16n 1-2, 5-10, 17-20, 25-28 (1s1/2)2(1p3/2)4(1p1/2)2(1d5/2)6(2s1/2)2 130.52                                       -130.09 0.56 0.99 st. 3.11

18n 1-2,5-10,17-20, 21,23,25-28 (1s1/2)2(1p3/2)4(1p1/2)2(1d5/2)6(2s1/2)2(1d3/2)2 150.96 -152.35 0.28 -1.11 Un 3.18

20n 1-2, 5-10, 17-28 (1s1/2)2(1p3/2)4(1p1/2)2(1d5/2)6(2s1/2)2(1d3/2)4 171.96 -174.61 0.00 -2.65 Un 3.23
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Figure 1  : Most probable forms and average sizes of the first three neutron and the first three proton shells up to 
N=Z=20

 Figure 2 : Most probable forms and average sizes of possible neutron nuclei according to Table 1 following the 
numbering of column 4. From this column we can see that the same number may correspond to more than one 
state configurations shown in column 3 of the table. The numbering of bags in this figure corresponds to the 
numbering of bags in Fig. 1. That is, it specifies the same point in space.
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