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Nomenclature :-

 

nQ

  

=

 

Volumetric flow rate

 

   

nZ

  

=

 

Impedance

 

   

rQ

  

=

 

Radial Component of Velocity

 

   

θQ

  

=

 

Transverse Component of Velocity

 

   

zQ

  

=

 

Axial Component of Velocity

 

   

P

 

=

 

Pressure

 
I.

 

Introduction

 
In a Pulsatile flow in an elastic arterial tube, the following effects on the flow 

due to the elasticity of the tube take place :-

 

i.

 

As the wall of the tube is elastic, therefore due to the deformation of the wall, 
the flow will be radial together with axial.

 

ii.

 

There is an axial variation of pressure and the shape of the curve between 
pressure and time will vary with z. Also, the pressure gradient will have a 
radial component.

 

iii.

 

The boundary conditions for continuity of shear and radial stresses in the fluid 
and the elastic material at the

 

common boundary give a coupling between fluid  
flow and elastic deformation.

 

Thurston [1] attempted to study all of the rheological properties of blood with a 
model including non-Newtonian viscosity, viscoelasticity, and thixotropy, Liepsch 'and 
Moravec [2] investigated the flow of a shear thinning blood, analog fluid in pulsatile 
flow through arterial branch model and observed large differences in velocity profiles 
relative to those measured with Newtonian fluids having the high shear rate viscosity of 
the analog fluid/ Rindt et al. [3] considered both experimentally and numerically the 
two-dimensional steady and pulsatile flow, Nazemi et al. [4] made important 
contributions to the identification of atherogenic sites. Rodkiewicz et al. [5] used several 
different non-Newtonian models for blood for simulation of blood flow in large arteries 
and they' observed that there is no effect of the yield stress of blood on either the 
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velocity profiles or the wall shear stress, Boesiger et al, [6] used magnetic resonance 
imaging (MRI) to study arterial homodynamics. Perktold et al [7] modeled the flow in 
stenotic vessels as that of an incompressible Newtonian fluid in the rigid vessels. 
Sharma and Kapur [8] made a mathematical analysis of blood flow through arteries 
using finite element method, Dutta and Tarbell [9] studied the two different rheological 
models of blood displaying shearing thinning viscosity and oscillatory flow visco-
elasticity. Lee and Libby [10] made a study of vulnerable atherosclerotic plaque 
containing a large necrotic core, and covered by this fibrous cap,  

Korenga et al [11] considered biochemical factors such as gene expression and 
albumin transport in atherogenessis and in plaque rupture, which were shown to .be 
activated by hemodynarnic factors in wall shear stress. Rachev et al [12] considered a 
model for geometric and mechanical adaptation of arteries. Rees and Thompson [13] 
studied a simple model derived from laminar boundary layer theory to investigate the 
flow of blood in arteria} stenoses up to Reynolds numbers of 1000. Tang et al [14] 
analysed triggering events, which are believed to be primarily homo-dynamic including 
cap tension, bending of torsion of the artery. Zendehbudi and Moayery [15] made a 
comparison of physiological and simple pulsatile flows through stenosed arteries. 

Berger- and Jou [16] measured wall shear stress downstream of axi-symmetric 
stenoses in the presence of hernodynamic forces acting on the plaque, which may be 
responsible for plaque rupture. Botnar et al [17] based on the correspondence between 
MRI velocity measurements and numerical simulations used two approaches to study in 
detail the role of different flow patterns for the initiation and amplification of 
atherosclerotic plaque sedimentation. Stroud et al [18] found differences in flow fields 
and in quantities such as wall shear stress among stenotic vessels with same degree of 
stenosis. Sharma et al [19] made a mathematical analysis of blood flow through arteries 
using finite element Galerkin approaches. 

In the current study, we are interested in the analysis of blood flow in elastic 
arteries. 

Basic equation are Mathematical Information  :-  

Let ( , ,r θ zq q q ) be the components of velocity in radial, transverse and axial 

directions respectively. 
Due to the assumptions, the velocity profile is given by  

( ), , ,r rq q r z t= 0,θq = ( , , )z zq q r z t= 

and   ( , , )p p r z t= 

The equation of continuity gives  

 

And the equations of motion on neglecting inertial term are given by 
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1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟

  (r. qr) + 𝜕𝜕𝑞𝑞𝑧𝑧
𝜕𝜕𝑧𝑧

  = 0                …………..(1)

ρ 𝜕𝜕𝑞𝑞𝑟𝑟
𝜕𝜕𝜕𝜕

=- 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

  + µ� 𝜕𝜕
2𝑞𝑞𝑟𝑟
𝜕𝜕𝑟𝑟2 + 𝜕𝜕2qz

𝜕𝜕𝑧𝑧2 + 1𝜕𝜕 𝑞𝑞𝑟𝑟
𝑟𝑟 𝜕𝜕𝜕𝜕

− 𝑞𝑞𝑟𝑟
𝑟𝑟2�            ……….……..(2)

and  
ρ 𝜕𝜕𝑞𝑞𝑧𝑧

𝜕𝜕𝜕𝜕
= -𝜕𝜕𝜕𝜕

𝜕𝜕𝑧𝑧
  + µ� 𝜕𝜕

2𝑞𝑞𝑧𝑧
𝜕𝜕𝑟𝑟2 + 𝜕𝜕2𝑞𝑞z

𝜕𝜕𝑟𝑟2 + 1𝜕𝜕 𝑞𝑞𝑟𝑟
𝑟𝑟 𝜕𝜕𝑟𝑟

�                     …….………..(3)



Let ( , ,r θ zu u u ) be the components of deformation vector of the material  of the wall of 

the tube and , , , ,rr rθ rz θθ θzτ τ τ τ τ  and zzτ  are the components  of the symmetric stress 

tensor. 

Here, 0θu =  and ωρ is the density of the material of the wall, G the shear 

modulus and W the negative mean of normal stress. Then the equation of elasticity are 

 

 

 

  

 

 

 

 

Above equations for ( ,0,r zu u ) become : 

  

 

And the equation of continuity becomes : 

 

 

The partial differential equations for ,r zq q and p  are the same as those for 

 and Ω   and both sets are independent Due to the coupling between fluid 

flow and elastic deformation, we have following boundary conditions :  
 
(i) From the symmetry of velocity field  
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Notes 𝜌𝜌𝑤𝑤
𝜕𝜕2𝑢𝑢r
𝜕𝜕𝜕𝜕2 =

𝜕𝜕𝜏𝜏𝑟𝑟𝑟𝑟
𝜕𝜕𝑟𝑟 + 𝜕𝜕𝜏𝜏𝑟𝑟𝑧𝑧

𝜕𝜕𝑧𝑧 + 𝜏𝜏𝑟𝑟𝑟𝑟−𝜏𝜏𝜃𝜃𝜃𝜃
𝑟𝑟 ……………………………. (4)

𝜌𝜌𝑤𝑤
𝜕𝜕2𝑢𝑢z
𝜕𝜕𝜕𝜕2 =

𝜕𝜕𝜏𝜏𝑟𝑟𝑧𝑧
𝜕𝜕𝑟𝑟 + 𝜕𝜕𝜏𝜏𝑧𝑧𝑧𝑧

𝜕𝜕𝑧𝑧 + 𝜏𝜏𝑟𝑟𝑧𝑧
𝑟𝑟 ……………………………. (5)

          𝜏𝜏𝑖𝑖𝑖𝑖 = 2𝐺𝐺 ∈𝑖𝑖𝑖𝑖 −Ω𝛿𝛿𝑖𝑖𝑖𝑖 ……………………………. (6)

           𝛿𝛿𝑖𝑖𝑖𝑖 = 1 If 𝑖𝑖 = 𝑖𝑖 and 𝛿𝛿𝑖𝑖𝑖𝑖 = 0 𝑖𝑖 ≠ 𝑖𝑖 ……………………………. (7)

∈𝑟𝑟𝑟𝑟= 𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝑟𝑟 ,  ∈𝑟𝑟𝜃𝜃= 0 =∈𝜃𝜃𝑟𝑟 ,∈𝑟𝑟𝑧𝑧= 1

2
�𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝑧𝑧

+ 𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝑟𝑟
� =∈𝑧𝑧𝑟𝑟   ……………………………. (8)

∈𝜃𝜃𝜃𝜃 = 𝜕𝜕𝑢𝑢𝜃𝜃
𝜕𝜕𝜃𝜃 = 0,  ∈𝜃𝜃𝑟𝑟= 0 =∈𝑟𝑟𝜃𝜃   ……………………………. (9)

∈𝑧𝑧𝑧𝑧= 𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝑧𝑧 ,  ∈𝑧𝑧𝜃𝜃= 0 =∈𝜃𝜃𝑧𝑧       ……………………………. (10)

𝜌𝜌𝑤𝑤
𝜕𝜕2𝑢𝑢r
𝜕𝜕𝜕𝜕2 = G �𝜕𝜕

2𝑢𝑢r
𝜕𝜕𝑟𝑟 + 1

𝑟𝑟
𝜕𝜕𝑢𝑢r
𝜕𝜕𝑟𝑟 −

𝑢𝑢𝑟𝑟
𝑟𝑟2 + 𝜕𝜕2𝑢𝑢r

𝜕𝜕𝑧𝑧2 � −
𝜕𝜕Ω
𝜕𝜕𝑟𝑟      ……………………………. (11)

𝜌𝜌𝑤𝑤
𝜕𝜕2𝑢𝑢z
𝜕𝜕𝜕𝜕2 = G �𝜕𝜕

2𝑢𝑢z
𝜕𝜕𝑟𝑟2 + 1

𝑟𝑟
𝜕𝜕𝑢𝑢z
𝜕𝜕𝑟𝑟 + 𝜕𝜕2𝑢𝑢z

𝜕𝜕𝑧𝑧2 � −
𝜕𝜕Ω
𝜕𝜕𝑧𝑧       ……………………………. (12)

𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝑟𝑟

+ 𝑢𝑢𝑟𝑟
𝑟𝑟 + 𝜕𝜕𝑢𝑢𝑧𝑧

𝜕𝜕𝑧𝑧
   = 0               …….………………..……….. (13)

𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝜕𝜕



 

(ii)     From the continuity of motion at the interface of wall of the tube, we have 
 

  

(iii)     From the continuity of the shear stress and radial stress at the inner wall, we have 
 

 

 

  

(iv) It is assumed that the outer wall is constrained radially and axially, then we have 
  

  

 If the inner wall is perturbed and the perturbations are small, then the boundary 
condition can be taken the same as that at the undisturbed inner wall. Since the outer 
wall is constrained radially and axially, therefore we can replace the boundary 
conditions by some others.

 Suppose the solutions of equations (1), (2) and (3) are of the form
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𝑞𝑞𝑟𝑟 = 0, 𝜕𝜕𝑞𝑞𝑧𝑧𝜕𝜕𝑟𝑟 = 0 at  𝑟𝑟 = 0

𝑞𝑞𝑟𝑟 = 𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝜕𝜕 , 𝑞𝑞𝑧𝑧 = 𝜕𝜕𝑢𝑢𝑧𝑧

𝜕𝜕𝜕𝜕 at  𝑟𝑟 = 𝑎𝑎 (inner radius of tube)

µ �𝜕𝜕𝑞𝑞𝑟𝑟𝜕𝜕𝑧𝑧 + 𝜕𝜕𝑞𝑞𝑧𝑧
𝜕𝜕𝑟𝑟 � = 𝐺𝐺�𝜕𝜕𝑢𝑢𝑟𝑟𝜕𝜕𝑧𝑧 + 𝜕𝜕𝑢𝑢𝑧𝑧

𝜕𝜕𝑟𝑟 � at  𝑟𝑟 = 𝑎𝑎

and –𝜕𝜕 + 2µ 𝜕𝜕𝑞𝑞𝑧𝑧𝜕𝜕𝑟𝑟 = −Ω + 2G
𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝑟𝑟                               at  𝑟𝑟 = 𝑎𝑎

𝐺𝐺 = �𝜕𝜕𝑢𝑢𝑟𝑟𝜕𝜕𝑧𝑧 + 𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝑟𝑟 � = 0 at  𝑟𝑟 = 𝑏𝑏 (outer radius)

           𝑞𝑞𝑟𝑟 = ⋃ (𝑟𝑟)𝑒𝑒−𝑖𝑖𝑦𝑦𝑛𝑛𝑧𝑧𝑒𝑒𝑖𝑖𝑛𝑛𝑖𝑖𝜕𝜕1              …….………………..……….. (14)

           𝑞𝑞𝑧𝑧 = ⋃ (𝑟𝑟)𝑒𝑒−𝑖𝑖𝑦𝑦𝑛𝑛𝑧𝑧𝑒𝑒𝑖𝑖𝑛𝑛𝑖𝑖𝜕𝜕2              …….………………..……….. (15)

and       𝑃𝑃 = 𝑃𝑃(𝑟𝑟)𝑒𝑒−𝑖𝑖𝑦𝑦𝑛𝑛𝑧𝑧𝑒𝑒𝑖𝑖𝑛𝑛𝑖𝑖𝜕𝜕            …….………………..……….. (16)

Using (14), (15) and (16), equations (1), (2) and (3) becomes  :

𝑑𝑑2𝑈𝑈1
𝑑𝑑𝑟𝑟 2 + 1

𝑟𝑟
𝑑𝑑𝑈𝑈1
𝑑𝑑𝑟𝑟

− 𝑈𝑈1
𝑟𝑟2 − 𝑦𝑦𝑛𝑛2𝑈𝑈1 −

𝜌𝜌
𝜇𝜇
𝑖𝑖𝑛𝑛𝑖𝑖𝑈𝑈1 = 1

𝜇𝜇
𝑑𝑑𝜕𝜕
𝑑𝑑𝑟𝑟

    ………………..……….. (17)

𝑑𝑑2𝑈𝑈2
𝑑𝑑𝑟𝑟 2 + 1

𝑟𝑟
𝑑𝑑𝑈𝑈2
𝑑𝑑𝑟𝑟

− 𝑦𝑦𝑛𝑛2𝑈𝑈2 −
𝜌𝜌
𝜇𝜇
𝑖𝑖𝑛𝑛𝑖𝑖𝑈𝑈2 = 1

𝜇𝜇
(−𝑖𝑖𝑦𝑦𝑟𝑟)𝑃𝑃    …….……………….. (18)

and −𝑖𝑖𝑈𝑈2𝑦𝑦𝑛𝑛 + 𝑑𝑑𝑈𝑈1
𝑑𝑑𝑟𝑟 + 𝑈𝑈1

𝑟𝑟 = 0        …….………………..……….. (19)

Let us take 
𝑖𝑖𝑛𝑛𝑖𝑖
𝑣𝑣

+ 𝑦𝑦𝑛𝑛2 = 𝐾𝐾𝑛𝑛2(𝑣𝑣 = 𝜇𝜇
𝜌𝜌

), So that the equations (17), (18) and (19) 

reduce to
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𝑑𝑑2𝑈𝑈1
𝑑𝑑𝑟𝑟 2 + 1

𝑟𝑟
𝑑𝑑𝑈𝑈1
𝑑𝑑𝑟𝑟

− �𝐾𝐾𝑛𝑛2 + 1
𝑟𝑟
� 𝑈𝑈1 = 1

𝜇𝜇
𝑑𝑑𝜕𝜕
𝑑𝑑𝑟𝑟

                 …….………………..……….. (20)

𝑑𝑑2𝑈𝑈2
𝑑𝑑𝑟𝑟 2 + 1

𝑟𝑟
𝑑𝑑𝑈𝑈2
𝑑𝑑𝑟𝑟

− 𝐾𝐾𝑛𝑛2𝑈𝑈2 = − 𝑖𝑖𝑦𝑦𝑛𝑛
𝜇𝜇
𝜕𝜕            …….………………..……….. (21)

and 
𝑑𝑑
𝑑𝑑𝑟𝑟

(𝑟𝑟𝑈𝑈1) = 𝑖𝑖𝑦𝑦𝑛𝑛𝑟𝑟𝑈𝑈2       …….………………..……….. (22)

Since the expressions 

�
𝑋𝑋 = 𝐴𝐴1𝐽𝐽1 �𝑖𝑖𝑦𝑦𝑛𝑛𝑟𝑟� + 𝐴𝐴2𝐽𝐽1 �𝑖𝑖𝑘𝑘𝑛𝑛𝑟𝑟�

and 𝑌𝑌 = 𝐵𝐵1𝐽𝐽0 �𝑖𝑖𝑦𝑦𝑛𝑛𝑟𝑟� + 𝐵𝐵2𝐽𝐽0 �𝑖𝑖𝑘𝑘𝑛𝑛𝑟𝑟�
�                           ………………………..…….. (23)

    
are the solutions  of the respective equations

�

𝑑𝑑2𝑋𝑋
𝑑𝑑𝑟𝑟2 + 1

𝑟𝑟
𝑑𝑑𝑋𝑋
𝑑𝑑𝑟𝑟 − �𝐾𝐾𝑛𝑛2 + 1

𝑟𝑟2�𝑋𝑋 = −𝑖𝑖𝑛𝑛𝑖𝑖𝑣𝑣 𝐴𝐴1𝐽𝐽1 �𝑖𝑖𝑦𝑦𝑛𝑛𝑟𝑟�

and
𝑑𝑑2𝑌𝑌
𝑑𝑑𝑟𝑟2 + 1

𝑟𝑟
𝑑𝑑𝑌𝑌
𝑑𝑑𝑟𝑟 −𝐾𝐾𝑛𝑛

2𝑌𝑌 = −𝑖𝑖𝑛𝑛𝑖𝑖𝑣𝑣 𝐵𝐵1𝐽𝐽1 �𝑖𝑖𝑦𝑦𝑛𝑛𝑟𝑟� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

    …………..……….. (24)

with the help of the equations (17) – (24), we get

�

𝑈𝑈1(𝑟𝑟) =−𝑖𝑖�𝐶𝐶1𝑌𝑌𝑛𝑛𝐽𝐽1 �𝑖𝑖𝑦𝑦𝑛𝑛𝑟𝑟� +𝐶𝐶2𝑌𝑌𝑛𝑛𝐽𝐽1�𝑖𝑖𝑘𝑘𝑛𝑛𝑟𝑟��

𝑈𝑈2(𝑟𝑟) =−𝑖𝑖�𝐶𝐶1𝑌𝑌𝑛𝑛𝐽𝐽0 �𝑖𝑖𝑦𝑦𝑛𝑛𝑟𝑟� +𝐶𝐶2𝑌𝑌𝑛𝑛𝐽𝐽0�𝑖𝑖𝑘𝑘𝑛𝑛𝑟𝑟��

and 𝑃𝑃(𝑟𝑟) =−𝐶𝐶1𝑖𝑖𝑛𝑛𝑖𝑖𝜌𝜌𝐽𝐽0 �𝑖𝑖𝑦𝑦𝑛𝑛𝑟𝑟� ⎠

⎟
⎟
⎟
⎞   ………………..……….. (25)

Where 𝐶𝐶1 and 𝐶𝐶2  are arbitrary constants
Putting these values in (14), (15) and (16), we get general solutions as 

�
𝑞𝑞𝑟𝑟=−∑ 𝑖𝑖[𝐶𝐶1𝑌𝑌𝑛𝑛 𝐽𝐽1(𝑖𝑖𝑦𝑦𝑛𝑛 𝑟𝑟)+𝐶𝐶2𝑌𝑌𝑛𝑛 𝐽𝐽1(𝑖𝑖𝑘𝑘𝑛𝑛 𝑟𝑟)]𝑒𝑒𝑖𝑖𝑛𝑛𝑖𝑖𝜕𝜕 −𝑖𝑖𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛
𝑞𝑞𝑧𝑧=−∑ 𝑖𝑖[𝐶𝐶1𝑌𝑌𝑛𝑛 𝐽𝐽0(𝑖𝑖𝑦𝑦𝑛𝑛 𝑟𝑟)+𝐶𝐶2𝑌𝑌𝑛𝑛 𝐽𝐽0(𝑖𝑖𝑘𝑘𝑛𝑛 𝑟𝑟)]𝑒𝑒𝑖𝑖𝑛𝑛𝑖𝑖𝜕𝜕 −𝑖𝑖𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛

and 𝑃𝑃=−∑ 𝐶𝐶1𝑖𝑖𝑛𝑛𝑖𝑖𝜌𝜌 𝐽𝐽0(𝑖𝑖𝑦𝑦𝑛𝑛 𝑟𝑟)𝑒𝑒𝑖𝑖𝑛𝑛𝑖𝑖𝜕𝜕 −𝑖𝑖𝑦𝑦𝑛𝑛 𝑧𝑧𝑛𝑛

� ….. (26)

Let 𝑄𝑄𝑛𝑛 be the volumetric flow rate for the n-th harmonic, then

𝑄𝑄𝑛𝑛 = ∫ 2𝜋𝜋𝑟𝑟𝑞𝑞𝑧𝑧𝑑𝑑𝑟𝑟
𝑎𝑎

0

…..



  

 

  

  

The solution  for  and W are similar to (26), but these solutions will 

have four more arbitrary constants. The boundary conditions (i) is trivially satisfied by 
(26). The other six boundary conditions give six equations to determine the  six 

constants. These six equations  is equivalent to an equation to find ny  of the form 

 

Where , 
2a ωρ
μ

,  
b
a

, 
2

2
ωρ υ

Ga
 and 

ω

ρ
ρ

 are all dimensionless parameters. 

II. Numerical Results and Discussion 

In order to see the effects of various parameters on volumetric flow rate, impedance etc., 
the following values of the parameters are taken: 
   a  =  1.0, 0.2, 0.3, 0.4, 0.5 (in cm) 
   ρ    = 1.05 gm/cm3 

   µ  =  0.04gm/cm-sec 
   ω   =  8 rad./sec. 

1st set for J1 ( )niy a  and J2 ( )nik a  are respectively  

 {.7, .5, .4, .1, .2},  {.6, .6, .3, .2, .3} 

IInd set of values for J1 ( )niy a  and J2 ( )nik a  are respectively  

 {.3, .1, .2, .3, .4}  {0, .6, .7, .5, .1} 

IIIrd set of values for J1 ( )niy a  and J2 ( )nik a  are  

J1

 ( )niy a  
J2

 ( )nik a  

i. .68, .48, .43, .15, 
.21 

ii. .61, .45, .42, .17, 
.25 

iii. .7, .5, .4, .1, .2
 

i. .59, .61, .32, .25, .33
 

ii. .58, .63, .31, .30, .35
 

iii. .6, .6, .3 .2, .3
 

 

It has been observed that: 

On changing the set of values for J1 ( )niy a  and J2 ( )nik a  arbitrarily within the range -

.7 to +.7, the graphs show maximum deflections in the value of nQ  when artery radius 
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= −2𝜋𝜋𝑎𝑎[𝐶𝐶1𝐽𝐽1(𝑖𝑖𝑦𝑦𝑛𝑛𝑎𝑎) + 𝐶𝐶2𝐽𝐽2(𝑖𝑖𝑘𝑘𝑛𝑛𝑎𝑎)] 𝑒𝑒𝑖𝑖𝑛𝑛𝑖𝑖𝜕𝜕−𝑖𝑖𝑦𝑦𝑛𝑛𝑧𝑧 …….………………..……….. (27)

�∴∫ 𝑟𝑟𝐽𝐽0
𝑎𝑎

0 (𝑟𝑟)𝑑𝑑𝑟𝑟 = 𝑎𝑎𝐽𝐽1(𝑎𝑎)�

If nZ be the impedance of n-th harmonic, then

𝑍𝑍𝑛𝑛 = −𝑖𝑖𝑛𝑛𝑖𝑖𝜌𝜌 [𝑖𝑖𝑦𝑦𝑛𝑛𝑎𝑎𝐽𝐽𝑛𝑛 �𝑖𝑖𝑦𝑦𝑛𝑛𝑎𝑎�]𝐶𝐶1
2𝜋𝜋𝑎𝑎2[𝐶𝐶1𝐽𝐽1�𝑖𝑖𝑦𝑦𝑛𝑛𝑎𝑎�𝐶𝐶2𝐽𝐽1(𝑖𝑖𝑘𝑘𝑛𝑛𝑎𝑎)]

…….………………..……….. (28)

𝜕𝜕𝑢𝑢𝑟𝑟
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝜕𝜕

𝑎𝑎𝑦𝑦
𝑛𝑛 = 𝑓𝑓�𝑎𝑎

2𝑖𝑖𝜌𝜌
𝜇𝜇 , 𝑏𝑏

𝑎𝑎 ,𝜌𝜌𝑤𝑤𝑣𝑣
2

𝐺𝐺𝑎𝑎2
𝜌𝜌
𝜌𝜌𝑤𝑤

�

µ 



= .4 but if ‘a’ lies between 0.2cm to 0.3 cm, the value of nQ  becomes constant for 1st 

set of values but for 2nd set of values, the value of nQ  in creases uniformly upto a 

=0.3cm (fig, (i)).  

In figure (ii), it is observed that for value of ‘a’ between .3a cm=  to .5 a cm= , the value of 

nQ  increase as the value of ‘n’ increases from 3n =  to 4n =  i.e. Z4 has more value of 

impedance that Z3.     

In fig (iii), if the difference in the value of J1 ( )niy a or J2 ( )nik a  for three sets of values are 

small, then it has been observed that nQ   is directly proportional to the value of ‘a’. 
 

 
 

 
 

Fig :

 

Variation of       with    for two different sets of values of            and   

 

1( )nJ iy a

1( )nJ iy a

1( )nJ iy a

1st Set for                 and

2nd Set for                 and

a

2 ( )nJ ik a

2 ( )nJ ik a

2 ( )nJ ik a

nQ

nQ
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