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Charles J. Mode 

Abstract- As in many other areas of research in genetics, the availability of sequenced genomes in samples of 
individuals has revolutionized the study of quantitative traits, because researches have developed statistical evidence 
regarding the lo- cations of genomic regions, loci, that have been implicated with the expression of a quantitative trait or 
traits. Therefore, in cases in which it is possible to develop operational definitions of at least two alleles at each locus, 
genomic regions, it becomes possible to identify the genotype of each individual with re- spect to a set of loci that have 
been shown in other experiments to influence the expression of a quantitative trait. As will be shown in this paper, by 
knowing the genotype of each individual in a sample with respect to a set of identified loci, it is now possible to directly 
estimate effects that are measures of not only intra-allelic interactions at each locus under consideration but also 
various types of epistatic effects that are measures of interactions among alleles at different loci, governing the 
inheritance of a quantitative trait. These straight forward methods of estimation differ from those used in classical 
quantitative genetics, because such effects and corresponding variance components could be estimated indirectly, 
using analysis of variance procedures or some version of general lin- ear models that have been and are widely in 
statistical genetics. The direct method of estimation described in this paper, show promise towards shifting the working 
paradigm that has been used in classical models of the genetics of quantitative traits involving the estimation of 
variance components to a more direct approach and simpler approach. 
Keywords: genomic regions implicated with a quantitative trait, loci,locus and alleles, known genotypes, 
effects as measures of intra-allelic and epistatic interactions, direct estimates of effects, phenotypic, genetic 
and environmental variance components, partitioning the genetic variance into additive, intra-allelic interaction 
and epistatic components of variance. 
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In an interesting review paper by Stranger et al. (2010) [21], the impact of

genome wide associations studies on the genetics of complex traits is discussed in

depth. Among these complex traits are Alzheimer’s disease () and immune-

mediated diseases such as rheumatoid arthritis. For the case of , in a recent

paper Raj et al. (2012) [19] have reported that 11 regions of the human genome

are involved in susceptibility to this disease, and, moreover, there is evidence

that four of these regions form a protein network that is under natural selection.

Similarly, in paper by Rossin et al. (2011) [20], it has been found that proteins

encoded in genomic regions associated with immune-mediated disease physically

interact and this interaction may also suggest some basic biological mechanisms

underlying such diseases.
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There is also another technological development, the sequencing of entire

genomes of individuals, that may lead to a deeper understanding of the rela-

tionships of phenotypes to genotypes. Suppose, for example, that a sample

of individuals with symptoms of a disease, such as , is available and that

genome of each individual in the sample has been sequenced. Furthermore,

suppose that some quantitative measurement is made on each individual in the

sample. These measurements will vary among individuals and let  denote a

random variable characterizing this variation. Given that the genome of each

individual in the sample has been sequenced, the genotype of each individual

in the sample can, in principle, be identified with respect to the 11 loci under

consideration for the case of . It will also be supposed that at each locus at

least two alleles can be identified.

In classical quantitative genetics, the loci and alleles at each locus were

treated abstractly, because an investigator did not, in general, know the location

of the hypothesized loci in the genome of a species or the number of alleles at

each locus. However for the case of  cited above, the genotype of each

individual in the sample can be identified with respect to each of the 11 loci,

and in some cases it may be known with respect to combinations of the 11

loci or even all 11 loci. Such technological developments provide opportunities

to extend some of the ideas of classical quantitative genetics into the age of

sequenced genomes. Moreover, as will be demonstrated in subsequent sections

of this paper, when the genotype of each individual in a sample is known,

the estimation of parameters of the model may be carried out in a relatively

simple and straight forward manner based on elementary methods of statistical

estimation.

As is recognized among many who have worked in the field of quantitative

genetics, the subject known as components of variance analysis began with

the publication of a paper on correlations among relatives on the supposition of

Mendelian inheritance by R. A. Fisher (1918) [7]. In his paper, Fisher attempted

to reconcile existing biometrical theories with Mendelian genetics that led him to

describe genetic variation in terms of components of variance. During the 1950s,

other investigators published papers that were motivated by the paper by Fisher.

Among these investigators was Kempthorne (1954) [10], who introduced an

approach to components of variance analysis based on effects defined in terms of

expectations of genetics values with respect to the genotypic distribution under

the assumption that the population was in a Hardy-Weinberg equilibrium. An

alternative approach was introduced by Cockerham (1954) [5] is also of historical

interest, because it contains an extensions of Fisher’s ideas to accommodate

epistatic effects in terms of ideas depending on the concept of orthogonality. If

a reader is interested in further details and development of the ideas of Fisher

and other workers, it is suggested that the book Kempthorne (1957) [11] be

consulted, where many of the themes of statistical genetics as they existed during

the 1950s were summarized and extended.

The techniques introduced in these papers have also been applied in the

current genomic era. Examples of the ideas introduced by Cockerham have

been applied in the paper Kao et al. (2002) [9], and those of Kempthorne have

been applied and extended in the paper Mao et al. (2006) [15]. The ideas of

Kempthorne were also used and extended in the paper of Mode and Robinson

(1959) [16] as well as in unpublished lecture notes by the author written and

presented during the period 1960 to 1966. Furthermore, the roots of the ideas

presented in this paper are extensions of the some of the unpublished material

in the lecture notes complied by the author during the period 1960 to 1966.

During the years following Fisher’s seminal work, an extensive literature

on quantitative genetics has evolved. It is beyond the scope of this paper to

review this literature and in what follows a few books on the subject will be

cited. A book that has been very popular with quantitative geneticists is that
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of Falconer and MacKay (1996) [6] as well as earlier editions. Another book

of interest on quantitative genetics is that of Bulmer (1980) [4]. Both of these

books contain extensive lists of references on quantitative genetics. A more

recent book on genetics and analysis of quantitative traits is that of Lynch and

Walsh (1998) [14]. This influential tome consists of over 900 pages and contains

what seems to be the most extensive treatment of the subject of quantitative

genetics published in the 20-th century. The principal focus of this book is a

biological and evolutionary point of view along with an extensive use of applied

statistical methods. There is also an extensive list of papers on quantitative

genetics that a reader, who is interested in quantitative genetics, may wish to

peruse. The book by Liu [13] on statistical genetics focuses on statistical genetics

along with linkage, mapping and quantitative trait linkage () analysis. Two

recent books on statistical genetics are those of Laird and Lange [7] and Wu,

Ma and Casella (2010) [22].

Historically, procedures for estimating components of the genetic and envi-

ronmental variances have been based on experimental designs or observational

data involving various types of relatives. If a reader is interested in an account

of such experimental designs, it is suggested that chapter 6 of Bulmer (1980)

[4] be consulted. An in depth account of estimation procedures in various ge-

netic settings may be found in section  of the book by Lynch and Walsh

(1998) [14]. In this paper, however, it will be shown that when the genotype

of each individual in a sample is known at the  level, then it is possible to

estimate various types of genetic parameters directly, including variance com-

ponents, using elementary statistical ideas. It should also be mentioned that

the ideas presented in this paper are extensions of techniques from unpublished

notes on quantitative genetics written by the author during the period 1960 to

1966. In these notes, it was assumed that for the one locus case the population

was in a Hardy-Weinberg equilibrium, and for the case of multiple loci, it was

assumed that the population was in linkage equilibrium. In this paper, however,

these assumptions have been relaxed.

When two or more quantitative traits are under consideration several mea-

surements are taken on each individual. In this case, it is assumed that the

autosomal loci under consideration may influence the expression of alleles for

two or more traits. In classical genetics, such joint expressions of alleles for

quatitative or qualitative traits is referred to pleiotropism. In a recent paper,

Mode (2014) [17] this case has been worked out in detail.

II. The Case of One Locus with Multiple Alleles

Let A denote a finite set of alleles at some autosomal locus in a diploid

species such as man. Elements of A will be denoted by the symbols  and 

and the genotype of an individual with respect to the locus will be denoted

by ( )  where  ∈ A and  ∈ A denote, respectively, the alleles contributed
the maternal and paternal parent of the individual under consideration. As

the technology underlying the sequencing of  evolves, it seems likely that

it will be possible to distinguish the  contributed by each parent to an

offspring. More precisely, let A×A denote the Cartesian product of the set A
with itself. Then G = A×A is the set of all possible genotypes at the locus

under consideration and ( ) ∈ G for every genotype ().
One of the objectives in formulating models in quantitative genetics is to

provide a framework such that phenotypic measurements on a population of

individuals may formally be connected with the genotype of each individual.

For many decades it has been observed that phenotypic measurements among

individuals with the same genotype in a given environment may vary. But, it has

also been observed that in populations consisting of several genotypes responses

of the genotypes to a given environment may also vary. Let denote a random

variable that takes values in the set R of real numbers that constitute the
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set of possible phenotypic measurements of individuals in the population. In

general, by assumption, the numbers in the set R will depend on the genotype

of a homogeneous set of individuals.

Given a genotype ( ) ∈ G, let  ( | ( )) denote the conditional proba-
bility density function of the random variable  . Then,

 [ | ( )] =  ( ) =
R
R

 ( | ( ))  (2.1)

is the conditional expectation of the random variable  , given the genotype

( )  It will be assumed that  ( ) is finite for all genotypes ( ) ∈ G. Let
 ( ) denote the probability, frequency, that an individual chosen at random

from the population is of genotype ( )  Then, the unconditional expectation

of the random variable  is, by definition,

 =  [ ] =
P

()  ( ) [ | ( )] =P()  ( ) ( ) . (2.2)

It is assumed that  ( ) ≥ 0 for all ( ) ∈ G andP
()  ( ) = 1. (2.3)

In what follows, it will also be helpful to observe that the joint distribution of a

random genotype ( ) and the phenotypic random variable is  (( )  ) =

 ( )  ( | ( )) for all ( ) ∈ G and  ∈ R .
Next observe that the equation

 = + ( ( )− ) + ( −  ( )) (2.4)

is valid and provides a linear relationship connecting an observed phenotypic

measurements  with the expectation  a measurement of a genetic effect

expressed by the deviation ( ( )− ) and the term ( −  ( )), which may

be interpreted as a measure of deviation of the phenotypic measure  from

 ( ) due to environmental conditions. By definition, the total phenotypic

variance in the population is

 [ ] = 
h
( − )

2
i
. (2.5)

A widely used technique in quantitative genetics is to partition the total

phenotypic variance into a genotypic variance measuring the variation among

genotypes in their responses to environmental conditions and an environmen-

tal variance measuring the variation of the phenotypic measure  around the

genotypic values  ( ) for every ( ) ∈ G. From equation (24), it follows

that

( − )
2
= ( ( )− )

2
+ ( −  ( ))

2
+ 2 ( ( )− ) ( −  ( )) .

(2.6)

Therefore,


h
( − )

2 | ( )
i
= ( ( )− )

2
+ ( −  ( ))

2

+2 ( ( )− ) [( −  ( )) | ( )] . (2.7)
But,

 [( −  ( )) | ( )] = 0. (2.8)

Therefore,


h
( − )

2 | ( )
i
= ( ( )− )

2
+ ( −  ( ))

2
. (2.9)

In deriving equation (29), some well known properties of conditional expec-

tations have been used. Namely, for any function  () with domain a subset

of R, the set of real numbers, and range a subset of R, it follows from well
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known properties of conditional expectations that  [ () | ] =  (). It is

also well known that if two random variables  and  with range R are under
consideration, then  [ | ] = [ | ].
An equivalent representation of the phenotypic variance in equation (25) is

 [ ] =
P

()  ( )
h
( − )

2 | ( )
i
. (2.10)

Given (29)  it seems reasonable to define and genetic variance due to genetic

effects in the population as

 [ ] =
P

()  ( ) ( ( )− )
2
. (2.11)

Similarly, the variance due to environmental effects is, by definition,

 [ ] =
P
()  ( )[( −  ( ))

2 | ( )]. (2.12)

From equation (29) it follows, therefore, that

 [ ] =  [ ] +  [ ] . (2.13)

At this point in the development of the contents of this paper, it should

be mentioned that equation (213) is not new to quantitative genetics, but

its derivation is a departure from derivations that appeared in some papers and

books on the subject. For example, in some formulations the effects ( ( )− )

and ( −  ( )) are treated as abstract uncorrelated random variables and

sometimes it is assumed that genetic and environmental effects are indepen-

dent. But, it follows from the use of conditional expectations that these types

of assumptions are not necessary in the derivation of (213).

From equation (213), it can be seen that the total phenotypic variance may

be partitioned into two component variances; namely the genetic and environ-

mental variance. If both sides of equation (213) are divided by the phenotypic

variance, then it is easy to see that

1 =  + ,

where

 =
 []

 []

and

 =
 []

 []
. (2.14)

Some authors refer to  as a measure of the heritability of quantitative trait.

In what follows,  will be denoted by  and referred to as a measure of

heritability.

This latter ratio has been given various names by authors of books on quan-

titative genetics. For example, in the book by Falconer and Mackay (1996) [6]

on page 123 an expression similar to the ratio  is called the degree of ge-

netic determination. Other authors such as Wu et al. (2010) [22] refer to this

ratio as heritability in the broad sense and provide an example in which this

parameter may be estimated by an analysis of variance procedure based on a

designed breeding experiment, see page 178. If a reader is interested in pursuing

the subject of heritability further, it is suggested that the book by Liu (1998)

[13] be consulted, in particular see pages 34 and 35. A more in depth treatment

of the concept of heritability may be found in the book by Lynch and Walsh

(1998) [14], see pages 170 to 175 and elsewhere in that book.

Several recent papers have also been devoted to applications of the concept

of heritability. Among these papers is that of Zaitlen et al. (2013) [24], who use
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III. A Partition of the Genetic Variance Into the Additive
Intra-Allelelic Components for the Case of One 

Autosomal Locus

extended genealogies to estimate components of heritability for 23 quantitative

and dichotomous traits, using closely and distantly related relatives. In an inter-

esting paper Price et al. (2011 [11] estimated variance components using single

tissue data on cross-tissue heritability gene expression on individuals related by

descent and also unrelated individuals. In a paper by Yang et al. (2010) [23]

the heritability of human height is studied. These authors show that by con-

sidering all common  simultaneously, 45% of the phenotypic variance in

human height can be attributed to genetic variation. It should be mentioned,

however, that quantitative model or models used by these authors were not as

comprehensive as the structure that will be developed in subsequent sections of

this paper.

In a subsequent section of this paper, procedures for estimating the com-

ponents of variance just defined will be presented. It is recognized, however,

that an investigator may be interested in testing statistical hypotheses as to

whether the expectations and variances among the genotypes do indeed differ,

but a discussion of tests of hypotheses is beyond the scope of this paper, which

will be limited to a presentation of straight forward procedures for estimating

the components of variance defined above.

Before preceding to a discussion of estimation procedures, however, it is

interesting to note that, even though the rhetoric in this section was confined

to the case on one autosomal locus with multiple alleles, the formulas can be

easily extended to the case of some finite number of autosomal loci  ≥ 2

with a finite number of alleles at each locus. For let (x, y) denote the genotype

of an individual with respect to  loci, where x = (1 2 · · · ) and y =
(1 2 · · · ) denote, respectively, the alleles inherited from the maternal and

paternal parent, and suppose  (x, y) is the probability of selecting an individual

of genotype (x, y) at random in the population. Then, it is easy to show that

equation (213) also holds for some number  ≥ 2 of autosomal loci, but the
details of proving this statement will be left as an exercise of the reader.

Given that it can be shown that equation (213) holds for any number of loci

 ≥ 2, it is interesting to note that with respect to  the total phenotypic

variance may be partitioned into the genetic and environmental components for

any combination of the 11 loci that have been implicated with this disease. In

particular, it would be of interest to estimate the heritability for each of the

11 loci or in combinations of loci in order to gain some insights as to whether

heritability would increase as the number of loci under increases.

Again let  ( ) denote the probability of finding an individual of genotype

( ) a population. This probability is also known as the frequency of genotype

() in a population. In most past formulations of models in quantitative

genetics for the one locus case, it has been assumed that a population was in a

Hardy-Weinberg equilibrium and there was no mutation or selection. Mutation

and selection will not be considered in this paper, but the condition that a pop-

ulation is in a Hardy-Weinberg equilibrium will be relaxed. Let  () and  ()

and

denote, respectively, the frequencies of alleles  and  in a population. Then,

a population is in a Hardy-Weinberg equilibrium if  ( ) =  ()  () for all

genotypes ( ) ∈ G In this section, the condition that a population is in a
Hardy-Weinberg equilibrium will not be assumed, because in many populations

this assumption may not hold. It should be mentioned, however, that an inves-

tigator may wish to test whether a sample from a population passes a statistical

test or tests for a Hardy-Weinberg equilibrium.
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To relax the assumption that a population is in a Hardy-Weinberg equilib-

rium, it will be necessary to deal with conditional probabilities and expectations.

Let

 () =
P

  ( ) (3.1)

denote that marginal distribution for all maternal alleles  ∈ A in a population,
and similarly let

 () =
P

  ( ) (3.2)

denote the marginal distribution for all paternal alleles  ∈ A. Then, if  () 6= 0

 ( | ) =  ( )

 ()
(3.3)

is the conditional distribution of the alleles  ∈ A, given allele  ∈ A. Similarly,
if  () 6= 0 then

 ( | ) =  ( )

 ()
(3.4)

is the conditional distribution of alleles  ∈ A, given allele  ∈ A. The formulas
just derived may be summarized in the equation

 ( ) =  ()  ( | ) =  ()  ( | ) (3.5)

for all genotypes ( ) ∈ G.
Therefore, the conditional expectation of  ( ), given  is, by definition,

 () =
P

  ( | ) ( ) . (3.6)

Therefore, the unconditional expectation of  () is

 [ ()] =
P

  () () =
P



P
  ( ) ( ) = . (3.7)

For a justification of this equation, see equation (25). In particular, if the

population is in Hardy-Weinberg equilibrium, then  ( ) =  ()  () for all

( ) ∈ G and equation (36) becomes

 () =
P

  ( | ) ( ) =
P

  () ( ) , (3.8)

because in this case  ( | ) =  (). Thus, in formulations in which the as-

sumption that a population is in Hardy-Weinberg equilibrium is in force, (38)

is the definition of the average value of maternal allele  in a population. Simi-

larly, by using techniques similar to those used in the derivation of a formula for

 ()  it is straight forward to derive a formula for  ()  the average value for

paternal allele  in the population that is not in a Hardy-Weinberg equilibrium.

To cast the formulation in terms of an analysis of variance structure, it is

useful to define the effects of alleles  and  as the deviations

 () =  ()− 

and (3.9)

 () =  ()− .

Observe that the unconditional expectations of these deviations is  [ ()] =

 [ ()] = 0. The deviation

 ( ) =  ( )− −  ()−  () (3.10)

is a measure of interactions among the maternal and paternal alleles. In this

case, it is also easy to see that the unconditional expectation of this deviation

is  [ ( )] = 0. Alternatively, the deviations just described can be written

in the form of an analysis of the variance equation
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 ( ) = +  () +  () +  ( ) , (3.11)

which holds for all genotypes ( ) ∈ G. This equation suggests that it seems
reasonable to call the terms  () and  () the additive effects of alleles. With

the exception of , the terms on the right side of equation (311) are known

statistically as effects. For if  ( ) = 0 for all genotypes, then

 ( ) = +  () +  () (3.12)

for all ( ) ∈ G so that the effects of alleles  and  have an additive effect

on the expectation  ( ). But, if  ( ) 6= 0 for all ( )  then there are

interactions among the maternal and paternal alleles.

Having defined additive and intra-allelic interaction effects, the next step in

the formulation is to define the additive and intra-allelic interaction variances.

The additive genetic variance in the population is defined by

 () =
P

  ()
2 () +

P
  ()

2 () , (3.13)

and intra-allelic interaction, , variance is defined by

 () =
P
()  ( )

2 ( ) . (3.14)

To connect these variances with the total genetic variance in a population write

equation (311) in the form

 ( )−  =  () +  () +  ( )

and square both sides. The result is

( ( )− )2 = 2 () + 2 () + 2 ( ) + ( ) , (3.15)

where

 ( ) = 2 () () + 2 () ( ) + 2 () ( ) . (3.16)

By multiplying equation (315) by  ( ) and summing over all genotypes ( ),

it follows that

 [ ] =  () +  () +[ ( )], (3.17)

where

[ ( )] = 1 + 2 + 3. (3.18)

The explicit forms of the symbols on the right, which involve covariances, are

as follows:

1 = 2
P
()  ( ) () ()

2 = 2
P
()  ( ) () ( )

and (3.19)

3 = 2
P
()  ( ) () ( ) .

In general, [ ( )] 6= 0, but there is a case when [ ( )] = 0 Suppose
the population is in a Hardy-Weinberg equilibrium so the  ( ) =  ()  ()

for all genotypes ( ) ∈ G. Then, 1 may be written in the form

1 = 2 (
P

  () ())
³P

  () ()
´
. (3.20)

But, P
  () () = 0,

and therefore 1 = 0 Similarly, 2 may be written in the form
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2 = 2 (
P

  () ())
³P

  () ( )
´
. (3.21)

For every fixed , considerP
  () ( ) =

P
  () ( ( )− −  ()−  ())

=  ()−  ()−P  () () = 0 (3.22)

for every  ∈ A. Therefore, 2 = 0, and by a similar argument it can be shown
that 3 = 0 so that  [ ( )] = 0.

Thus, for the case a population is in a Hardy-Weinberg equilibrium at some

autosomal locus, it follows that the total genetic variance may be partitioned

into the additive and intra-allelic interaction variances. In symbols,

 [ ] =  () +  () . (3.23)

It is interesting to observe that when the genotype of each individual may be

identified, then each of the component variances on the right may be estimated

separately. But, before the age of genomics, in quantitative genetic studies, the

genotype of each individual in a population could not be identified. Under such

circumstances, experiments could be designed in such a way that components of

variance in equation (323) could be estimated from mean squares in an analysis

of variance table. It should be noted, however, the when the effects  ()   ()

and  ( ) can be estimated from the data, then all the covariances terms in

 [ ( )] could also be estimated. In such cases, one could also estimate the

term  [ ( )] in equation (317), which would be of interest in its own right

for the cases in which the population was not in a Hardy-Weinberg equilibrium

at the autosomal locus under consideration.

There is a notationally more succinct way to represent the variances and

covariances encountered in the above discussion. For each genotype ( ) ∈ G
let the

Φ ( ) =

⎛⎝  ()

 ()

 ( )

⎞⎠ (3.24)

denote a 3× 1 matrix whose elements are defined above. The transpose of this
matrix is

Φ ( ) =
¡
 ()  ()  ( )

¢
. (3.25)

Next observe that

Ψ ( ) = Φ ( )Φ ( ) (3.26)

is a 3 × 3 matrix and the element in position (1 1) is 2 (), the element in
position (1 2) is  () () and, by proceeding in this way, all nine of the element

in the matrix Ψ ( ) as squares or products of the elements in the vector

Φ ( ). Let Ψ denote the 3 × 3 genetic variance-covarince matrix for the
autosomal locus under consideration. Then,

Ψ =
P

()  ( )Ψ ( ) . (3.27)

From now on Ψ will be called the genetic covariance matrix for the au-

tosomal locus under consideration. It should be observed that the variance

components on the right of equation of equation (313) are in the principal

diagonal positions (1 1) and (2 2) of the matrix Ψ. Moreover, the sum of

all elements off the principal diagonal of this matrix is the term  [ ( )] in

(317)  Given the genetic matrix Ψ, it may be useful to compute the eigenval-

ues of this matrix as well as its principal components in addition to estimating

the components of the matrix Ψ. As will be seen in subsequent sections,

the matrix approach to computing the genetic covariance matrix described in

this section will make it possible to describe the computation of the genetic
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IV. Estimating of Parameters and Effects From Data

covariance matrix for cases in which more than one autosomal locus is under

consideration.

It can be seen from a perusal of books on statistical genetics that the ap-

proach used in this section and in subsequent sections of this paper to partition

the genetic variance into components differs from that used in some books cited

in the introduction. For example, on page 54 of the book Laird and Lange

(2011) [12] a phenotypic measurement  of a quantitative trait is represented

as a linear combination of unknown parameters with indicator functions coef-

ficients plus a random error term. Included in these terms are parameters for

the additive effects of allele as well as a codominant effect, which appears to be

related to the intra-allelic interaction term defined this section. Such models

appear to belong to the class of generalized linear models that are widely used

in numerous areas of applied statistics. In particular, in the books on statistical

genetics cited in the introduction, linear models similar to that cited in Laird

and Lange (2011) have been used. As can be seen from the derivations presented

in this section, however, the additive and interaction effects of alleles in the case

of one autosomal locus are defined in terms of conditional expectations with re-

spect to the genotypic distribution. Moreover, this scheme of using conditional

expectations in defining effects when partitioning the total genetic variance into

components will be used extensively in subsequent sections of this paper and

provides a methodology for estimating effects and corresponding variance com-

ponents directly from data. Furthermore, as will be shown subsequently, the

squared effects making up a component of variance may also be estimated di-

rectly from a data set such that the genomes of all individuals in this sample

have been sequenced.

In this section, a procedure for estimating the parameters defined in the

forgoing sections from phenotypic data will be outlined. Suppose in a sample of

individuals,  (( )) ≥ 2 individuals of genotype ( ) ∈ G are observed and

let the random variables  ( ), for  = 1 2 · · ·  ( ), denote a sample of
phenotypic measurements on the  (( )) individuals of genotype ( ) with

respect to some quantitative trait. Usually, the set of phenotypic measurements

will belong to some set R of continuous real numbers will also be supposed that
these random variable are independently and identically distributed according

to common but unknown distribution with a finite expectation and variance.

Let

 =
P

()  ( ) (4.1)

denote the total number of individuals in the sample, where the sum runs over

all genotypes ( ) ∈ G. Then, the random variable

b ( ( )) =  ( )


(4.2)

is an estimator of the frequency  ( ) of genotype ( ) in a population or

subpopulation from which a sample of individuals was drawn. It is interesting

to note that if it is assumed the that the numbers  ( ) for ( ) ∈ G are

viewed as realizations from a multinomial distribution with probabilities  ( )

for ( ) ∈ G and sample size , then  [b ( ( ))] =  ( )  =  ( ) so

that b ( ( )) is an unbiased estimator of  ( ) for all ( ) ∈ G.
Similarly, the random variable

b ( ) = 1

 ( )

P()
=1  ( ) (4.3)

is an estimator of the parameter  ( )  This estimator is conditionally un-

biased, because b[b ( ) | ( )] =  ( ) ( )  ( ) =  ( ) for all

genotypes ( ) ∈ G Therefore, the random variable
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b =P() b( ( ))b ( ) (4.4)

is an estimator of the parameter  From these definitions, it follows that the

random variable

d [ ] =
P
() b ( ) (b ( )− b)2 (4.5)

is an estimator of the genetic variance in (211) 

To estimate the environmental variance defined in (212), let

2 ( ) = 
h
( ( )−  ( ))

2 | ( )
i

(4.6)

for all genotypes ( ) ∈ G. Then

b2 ( ) = 1

 ( )− 1
P()

=1 ( ( )− b ( ))2 (4.7)

is a conditionally unbiased estimator of 2 ( ), given the genotype ( ).

Therefore, d[ ] =
P
() b ( ) b2 ( ) (4.8)

is an estimator of the environmental variance defined in (212). From (213), it

follows that an estimator of the phenotypic variance may be obtained by adding

the estimators in (45) and (48), or this variance component could be estimated

directly.

Given the estimators b ( ) for all genotypes in the sample, it would be
straight forward to derive estimators of the three effects in the column vector

Φ ( ) in (324) for all genotypes ( ) in the sample. Let bΦ ( ) denote the
estimator of the vector Φ ( ) for all genotypes under consideration. Then, let

bΨ ( ) = bΦ ( ) bΦ
( ) (4.9)

denote an estimator of the matrix Ψ ( ) in (326) for all genotypes ( ).

Given these definitions of estimators, it follows thatbΨ =
P
() b () bΨ ( ) (4.10)

is an estimator of the genetic covariance matrix defined in (327). It should also

be noted that an investigator would be free to estimate each component of the

matrix bΨ separately.

It is also possible to estimate , the measure of heritability defined in

section 2. From (213)  it follows that

d [ ] =d [ ] +d [ ] (4.11)

is an estimator of the phenotypic variance. Therefore,

b =
d [ ]d [ ]

(4.12)

is an estimator of , a measure of heritability.

At any step in the development of software to implement the ideas under

discussion, one could proceed in a number of directions. Suppose, for example,

an investigator was not inclined to estimate the matrix bΨ in (410). An

alternative approach would be that of considering a remainder estimate b

which is defined by the equation

d [ ] =d () +d () + b, (4.13)

where d () and d () are estimates of the additive and intra-allelic-
interactions variance components defined in (313) and (314)  The remainder
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term b would be a direct measure of the departure of the population from a

Hardy-Weinberg equilibrium when equation (323) is valid. Observe that b

is the sum of all elements in the matrix bΨ off the principal diagonal.

If an investigator were interested in investigating whether the off diagonal

elements in this estimator of the covariance matrix would change significantly

under the assumption that the population from which the sample was derived

was in Hardy-Weinberg equilibrium, the following procedure could be executed.

Let b () be an estimator of the marginal frequency of maternal alleles  ∈ A in
the sample, and let the marginal frequency b () be defined similarly for paternal
alleles  ∈ A in the sample. Then, the next step in a computer simulation

experiment with a goal of recomputing the estimate of the matrix bΨ, under

the assumption that the population was in a Hardy-Weinberg equilibrium, would

be that of computing the product

∗ ( ) = b () b () (4.14)

for all genotypes ( ) ∈ G in the sample. Given this trial set of genotypic

frequencies, the calculation procedures outlined above could be used to compute

an alternative estimate of the covariance matrix Ψ, symbolized by Ψ ,

under the assumption that the population was in a Hardy-Weinberg equilibrium

so that one would expect that the remainder term b would be zero.

The direct method of estimation described above has many advantages when

compared with classical methods of estimating variance components , because

the effects defined in section 3 may also be estimated directly from the data. By

way of illustrative example, the direct estimator of the conditional expectation

 () is b () =P b ( | ) b ( ) , (4.15)

where b ( | ) = b ( )b () (4.16)

for b () 6= 0. Therefore, the direct estimator of the additive effect defined in

(39) is b () = b ()− b (4.17)

for all alleles  ∈ A. A formula for the direct estimator of the effect  ()

is analogous to that of b ()  Given the estimators b () and b ()  a direct
estimator of the measure of interaction between alleles  and  defined in (310)

is b ( ) = b ( )− b− b ()− b () (4.18)

for all genotypes ( ) ∈ G.
As can be seen from (313) and (314)  the squares of the estimators of the

effects defined above would be terms in the estimators of the additive and intra-

allelic interaction components of variance so that if attention was focused only

the estimates of these variance components, an investigator may miss detecting

the largest of the squared effects which would be of interest in their own right.

It is recommended, therefore, that the squares in the setsnb2 ()  b2 () |  ∈ A  ∈ Ao (4.19)

be calculated and inspected to get an idea as to which allele produces the largest

additive effect. Similarly, it is recommended that the set of squares of measures

of interaction nb2 ( ) | ( ) ∈ Go (4.20)

also be calculated and inspected to get an idea of which genotype has the largest

measure of interaction of alleles.
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IV. The Case of Two Autosomal Loci

It should also be mentioned that it would be desirable to work out the sta-

tistical properties of the estimators defined in this section. Included in these

properties of these estimators would be consistent as sample size becomes large

and whether an estimator is unbiased. There is also a need for statistical tests

to assess whether a particular estimate of a parameter was significantly different

from zero. It is recognized that the working out of these statistical properties

would be important, but a full response to such statistical issues is beyond

the scope of this paper. In this connection, it is interesting to note that com-

puter intensive methods are now being used extensively in judging the statistical

significance as to whether some region of a genome is implicated in some quanti-

tative trait. For example, an interested reader may wish consult the papers Raj

et al. (2012) [19] and Rossin et al. (2011) [20] in which permutation tests have

been used in assessing statistical significance of hypothesized protein and other

networks. It should also be mentioned that such computer intensive methods

as jack-knifing and boot-strapping could also be used to assess the statistical

significance of an estimate of an effect or variance component.

Let A1 and A2 denote the set of alleles at locus 1 and 2, respectively.

It will be assumed that each of these sets contains at least two alleles. In a

diploid species with two sexes, such as humans, at every locus there is an allele

contributed by the female parent and another allele contributed by the male

parent. For the case of two autosomal loci, a genotype will be represented by

the symbol (1 1 2 2), where (1 2) denotes the maternal alleles at the two

loci and (1 2) are the corresponding paternal alleles. The set G all genotypes
with respect to the two loci under consideration is the product set

G = A1 ×A1 × A2 ×A2. (5.1)

To lighten the notation in what follows, let the vector z = (1 1 2 2) denote

a genotype z ∈ G, and let  (z) denote the frequency of genotype z ∈ G in the
population. For some quantitative trait or character under consideration, let the

 denote a random variable describing the phenotypic variation with respect to

some quantitative measurement among the individuals in a population. Then,

given some genotype z ∈ G, let the conditional expectation

 (z) =  [ | z] (5.2)

denote the genetic value for this genotype. Just as in the case of one locus, this

conditional expectation will play a basic role in defining measurements of the

effects of each allele as well as the interactions among the at the two loci under

consideration.

In general, one would not expect that the population under consideration

would be in linkage equilibrium; consequently, it will be necessary to define a

number of marginal and conditional distributions, that will be derived using

the set

D = { (z) | z ∈ G} (5.3)

of genotypic frequencies, which from now on will be called the genotypic dis-

tribution. For example, for allele 1 suppose we wish to derive a formula for

the conditional expectation of  (1 1 2 2), given 1 with respect to the

genotypic distribution. A first step in this derivation, would be to calculate the

marginal distribution

 (1) =
P
(122)

 (1 1 2 2) (5.4)

for all 1 ∈ A1. By definition, the conditional distribution of  (1 1 2 2),
given 1 is
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 (1 2 2 | 1) =  (1 1 2 2)

 (1)
(5.5)

for  (1) 6= 0. Let  (1) denote the conditional expectation of  (1 1 2 2),
given 1. Then, by definition

 (1) =
P
(122)

 (1 2 2 | 1) (1 1 2 2) (5.6)

for all 1 ∈ A1. The unconditional expectation of the  (z) with respect to the
genotypic distribution D, as expressed in a more succinct notation, is

 =
P

∈G  (z) (z) . (5.7)

Therefore, in analogy with the case of one allele, the additive effect of allele 1
in the population will be defined as

 (1) =  (1)−  (5.8)

for all 1 ∈ A1.
An analogous effect could be defined for each of the alleles 1 2 and 2,

by applying the methods described for defining  (1)  But, as will be demon-

strated, for the case of two autosomal loci there are many more interactions

terms that need to be defined. For example, for the case of a diploid species,

there are four positions to be considered when classifying and defining effects

and interactions among alleles. Consider, for example, the set of four alleles in

each genotype z = (1 1 2 2) ∈ G, and let S = {1 2 3 4} denote the set
of four positions that need to be considered with respect to two loci with two

alleles at each locus that were contributed by the maternal and paternal parent

respectively. To provide a framework for describing various types of interac-

tions among the alleles at the two loci under consideration, it will be helpful to

consider the class of all subsets of the four positions. Let T denote the class of
all subsets of S. Included in the class T is the empty set  as well as subsets
containing 1, 2,3 and 4 elements of the set S. As is well known from combi-

natorial analysis, the total number of sets in T is 24 = 16, and, as is also well

known from combinatorics, that the equationµ
4

0

¶
+

µ
4

1

¶
+

µ
4

2

¶
+

µ
4

3

¶
+

µ
4

4

¶
= 24 = 16 (5.9)

is valid. For  = 0 1 2 3 4, let T denote the subclass of sets in T that contain
 elements. Then, as can be seen form equation (59), each of the subclasses

T0 and T4 contain one set; namely  and S, respectively. Similarly, each of the

subclasses T1 and T3 contain 4 sets, and the subclass T2 contains 6 sets. Recall
that µ

4

2

¶
= 6. (5.10)

To describe a framework in which to quantify the ideas of intra-allelic inter-

actions and epistatic interactions among alleles at different loci, it will be helpful

to enumerate the sets in the subclasses T1, T2 and T3 in terms of elements of
the set S. For example,

T1 = ({1}  {2}  {3}  {4}) (5.11)

is the class of singletons, which are subsets that contain only one element of S.
It is this subclass of sets that was used to define the additive effects mentioned

above. The subclass T2 of sets has the explicit form

T2 = ({1 2}  {1 3}  {1 4}  {2 3}  {2 4}  {3 4}) . (5.12)

At this point recall that positions 1 and 2 in the set S are those for the two

alleles at locus 1, and positions 3 and 4 in this set are those for the two alleles

at locus 2. Therefore, the two sets of positions in subclass
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T2 = ({1 2}  {3 4}) (5.13)

will be used to define effects that measure intra-allelic interactions at the two loci

under consideration. On the other hand, the pairs of positions in the subclass

T2 = ({1 3}  {1 4}  {2 3}  {2 4}) (5.14)

represent positions from different loci. Consequently, sets in this class will form

a basis for defining effects that measure epistatic interactions among the alleles

at the two loci under consideration. The subsets in the subclass T3 are as follows

T3 = ({1 2 3}  {1 2 4}  {1 3 4}  {2 3 4}) . (5.15)

The sets in this class form a basis for defining effects that measure the effect that

an allele at one locus may affect or modify intra-allelic interactions at another

locus. For example, the two sets in the subclass

T31 = ({1 2 3}  {1 2 4}) (5.16)

would form a basis for defining an effect measuring intra-allelic interactions at

locus 1 that may affect the expression of alleles in positions 3 and 4 at locus 2.

Similarly, the sets subclass

T32 = ({1 3 4}  {2 3 4}) (5.17)

would form a basis for defining an effect measuring intra-allelic interactions at

locus 2 that may be affected by alleles at positions 1 and 2 at locus 1.

For cases in which many alleles can be recognized at each locus, it would

be necessary to develop a nomenclature to describe many types of interactions

among the alleles at the two autosomal loci under consideration as will be il-

lustrated below. In this connection, an interested reader may wish to consult

the pioneering work of Cockerham (1954) [5] that describes a nomenclature for

various epistatic effects and components of the genetic variance. For example,

effects and variance components corresponding to the sets in the class T2
would be labeled dominant for either the effects or variance components and

would be denoted by the symbol . Whereas those in the class T2 would be
labeled additive by additive effects or variance components and denoted by the

symbol . One could proceed in this way to develop a nomenclature of the 15

effects and variance components under consideration. But, this type of nomen-

clature will, however not be used in this paper and epistasis will be described

in terms of sets and effects as well as variance components.

The first step in defining these effects is to derive a formula for the conditional

expectation of a genetic value  (z), given every set  of positions such that

 ∈  =
3S

=1

T . (5.18)

To define these effects, it will be helpful to introduce a succinct notation. For

every set  of positions, let  denote the complement of this set with respect to

the set S, and let  () and  () denote subsets of alleles in  corresponding

to the positions in the sets  and , respectively. In what follows, the symbol

 ()   () will stand for the union of the positions in the two sets. Given this

notation, the marginal distribution  ( ()) is defined by

 ( ()) =
P

()  ( ()   (
)) (5.19)

for every  () ∈ G () whereG () is a subset of G containing only those alleles
corresponding to the positions in the set . Thus, in this succinct notation,

 ( () |  ()) =  ( ()   ())

 ( ())
(5.20)
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is the conditional distribution of  (), given  () for  ( ()) 6= 0. Let

 (()) denote the conditional expectation of  (), given (). Then,

 (()) =
P

()  ( (
) |  ()) ( ()   ()) (5.21)

for every  ∈ .

Given formula (521), one may proceed systematically through each of the

sets in the union  in (518) to calculate  ( ()) for every  ∈ . For example,

suppose  = {1}. Then,  ( ()) =  (1) for all 1 ∈ A1 By continuing in this
manner, all the conditional pairs of expectations, (() ())  for  = 1 2

could be computed, and formula (58) could be used to compute the four effects:

 ()   () for  = 1 2

Similarly, for every set  ∈ T2,  ( ()) would need to be calculated. Sup-
pose, for example,  = {1 2}. Then,  (1 1) would need to be calculated for
every (1 1) ∈ A1 × A1. Then, as in the case of one locus, the intra-allelic
effect  (1 1) would be defined by

 (1 1) =  (1 1)− −  (1)−  (1) . (5.22)

By continuing in this way, an effect  ( ()) could be defined for every subset

 ∈ T3. To illustrate how each of these four effects could be defined, consider
the case  = {1 2 3}  In this case,  (()) =  (1 1 2) for all (1 1 2) ∈
A1 ×A1 ×A2. Then, by definition, the effect  (1 1 2) is

 (1 1 2) =  (1 1 2)− −  (1)−  (1)−  (2)

− (1 1)−  (1 2)−  (1 2) . (5.23)

Altogether, for the subclass T3, four effects would need to be computed, using
the procedure illustrated in (523)  Note that all the effects on the right in this

equation, were defined for each subset of the set of symbols {1 1 2}  This
procedure may also be used to set down formulas for each of the three remaining

subsets in the subclass T3. Furthermore, in formulations in which more than
two loci were under consideration, the procedure (523) used to define the effects

for the case of two loci could be extended to defining effects for some number of

loci  ≥ 3. The last step in defining effects for the two loci case is to define the
effect  ( (S)) =  (1 1 2 2) for all genotypes  ∈ G. In this connection
let  ( (S)) =  () be such that the equation

 () = +
P

∈T1  ( ())+
P

∈T2  ( ())+
P

∈T3  ( ())+ () (5.24)

holds for all genotypes  ∈ G.
Having defined the set of 15 effects for the case of two autosomal loci, the

next step is that of defining components of the genetic variance. For example,

the additive genetic variance is defined by

 [ ] =
P

∈T1 D
[2 ( ())], (5.25)

where the expectation is taken with respect to the genotypic distribution D.

The intra-allelic interaction component of the genetic variance is defined by

 [ ] =
P

∈T2 D
[2 ( ())], (5.26)

and epistatic component of genetic variance with respect to two loci is defined

by

 [ ] =
P

∈T2 D
[2 ( ())] (5.27)

For the case of three alleles, the equation

1 [ ] =
P

∈T31 D
[2 ( ())],
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is the component of variance for intra-allelic interaction at the first locus that

may be modified by an alleles at the second locus. Similarly, the component of

the genetic variance for intra-allelic interaction at the second locus that may be

modified by an allele at the first locus is

2 [ ] =
P

∈T32 D
[2 ( ())]. (5.28)

Finally, the component of the genetic epistatic variance as measured by effects

 () is defined by

4 [ ] =
P

∈T4 D
[2 ( ())]. (5.29)

It should be noted that the set of components of the genetic variance was defined

arbitrarily, but a user of the ideas presented in this section may wish to adapt

another nomenclature for the set of 15 effects and components of the total

genetic variance.

An experimenter could test whether a sample of individuals whose genotypes

had been determined with respect to two autosomal loci was in linkage equilib-

rium, but in any case it would be of interest to compute the genetic covariance

matrix for the case under consideration. Let  denote any set of positions in

the union

 ∈ A =
4S

=1

F (5.30)

and let

Φ (z) = ( ( ()) |  ∈ A) (5.31)

denote a 15 × 1 vector of classes of effects. Observe that within each class of
effects corresponding to a set  there would be a collection of effects correspond-

ing the to the number of alleles at each locus. A useful ordering of the effects

in this vector would be to let the subset of singletons be the first four elements

of the vector, the 6 sets of pairs of positions would be the next 6 element in

the vector, the next four elements of the vector would be the four effects corre-

sponding to the sets of triples of positions and lastly the effect for the singleton

S would be the last 15-th effect in the column vector. As was tacitly used

in the definitions of the components of the genetic variance listed above, each

effect has the unconditional expectation

D
[(())] = 0, (5.32)

for all  ∈ A. Let,
Ψ () = Φ ()Φ ()

denote a 15 × 15 matrix of products of effects for the genotypes  ∈ G. Then,
by definition, the covariance matrix of the vector Φ () of effects is

Ψ =
P

∈G  ()Φ ()Φ
 () = D

[Ψ ()] (5.33)

As part of an analysis of data, at this point in the calculations, a data annalist

may wish to compute the eigen values and vectors of the symmetric matrix Ψ.

It would also be of interest to inspect the off-diagonal components of the matrix

Ψ to provide an assessment of the impact of effects on the components of the

genetic variance when the population is not in linkage equilibrium at the two

loci under consideration.

On the other hand, an investigator may not wish to compute and analyze

the matrix Ψ in (533) and would be content with an estimate of the fraction

 [ ] + 2 [ ] + 4 [ ]

 [ ]
, (5.34)

where  [ ] is the total genetic variance. An estimate of this ratio would

be of interest, because it would provide an investigator with some idea of the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Estimating Effects and Variance Components in Models of Quantitative Genetics in an Era of Sequenced 
Genomes

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes

© 2014   Global Journals Inc.  (US)

24

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
IV

 I
ss
ue

  
  
  
er

sio
n 

I
V

V
Ye

ar
20

14
  

 
F

)

)

VI. An Overview of the Case of Eleven Autosomal Loci

significance of the contribution of epistatic effects to the total genetic variance.

At the same time, it should be recognized that the estimate in (534) under the

assumption that the population was not in linkage equilibrium and could be

biased by negative covariance terms.

An investigator may, therefore, also wish to carry out a computer simulation

experiment under the assumption that the population or sample was in linkage

equilibrium. The first step in setting up such a computer experiment would

be that of computing the marginal allele probabilities. Let 1 (1) and 1 (1)

denote the marginal probabilities, respectively, for the maternal and paternal

alleles at locus 1, and define the marginal 2 (2) and 2 (2) for locus 2 similarly.

Then, the simulated population would be in linkage equilibrium if the genotypic

probabilities  () satisfied the equation  () = 1 (1) 1 (1) 2 (2) 2 (2) for

all genotypes  = (1 1 2 2) ∈ G. Given these assigned genotypic probabil-
ities, an investigator could carry out a computer simulation experiment under

the assumption that the sample or population was in linkage equilibrium.

Just as in the one locus case considered in section 4, it is recommended that

an investigator inspect the squares of all effects defined above for the case of

two autosomal loci. For example, the set of squares of additive effects is defined

by

E1 =
©
2 ( ()) |  ∈ T1

ª
. (5.35)

It will be tacitly be assumed that the elements in the set E1 are estimates of
effects so as to simplify the notation. For the case each locus has two alleles,

the set E1 would contain a small number of elements so that an investigator
could easily find the largest one. Similarly, the set of squared effects that are

measures of intra-allelic interactions is defined by

E2 =
©
2 ( ()) |  ∈ T2

ª
. (5.36)

Like set E1 for the case of two alleles at each of the two loci under considera-
tion, the set E2 would contain a small number of estimated squared effects

so that an investigator could easily find the largest one. By continuing this

way, set of estimated squared effects corresponding to each of the sub-classes of

effects defined above for various types of epistatsis could also be defined but the

enumeration of these sets will be left as an exercise for an interested reader.

In an interesting paper, Hemani et al. (2013) [8] an evolutionary perspective

on epistasis and the missing heritability was the focus of attention. These

authors assert that results of genome wide association studies may improved if

epistatic effects may be searched for explicitly. It is suggested that the epistatic

effects defined in this section may be also be useful in genome wide association

studies.

As mentioned in the introduction, there is an interesting and important case

in human genetics pertaining to Alzheimer’s disease () in which there is a

developing consensus that eleven autosomal regions, loci, of the human genome

have been implicated in this disease. It is suggested that an interested reader

may wish to consult the paper by Raj et al. (2012) [19] and the literature

cited therein for more details regarding these genomic regions. In studies of

patients with , quantitative measurements are often made on each patient

so that  may be viewed as a quantitative trait in humans. It is, therefore,

of interest to provide an overview of an extension of the structure for the case

of two autosomal loci developed in section 5 to the case of 11 autosomal loci.

For a diploid species such as humans, two alleles occupy each locus so that

for the case of 11 loci, there are 11× 2 = 22 positions to consider in the set
S = ( |  = 1 2 · · · 22) (6.1)

of positions. Therefore, in this case the class T of all subsets of S contains
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222 = 4 194 304 (6.2)

sets. Included in T is the empty set  so, just as for the case of two loci, no
effect will be associated with . It follows, therefore, that in theory, 222 − 1 =
4 194  303 effects could be defined for the case of 11 autosomal loci, but it is

unlikely that any investigator would attempt to estimate such a large number

of effects.

When dealing 11 or more autosomal loci, it is also important to remember

that for the case of many loci, one should keep in mind the caveat that the

number of possible genotypes under consideration may be quite large and exceed

the sample size that is available to an investigator or investigators. For the case

of 11 autosomal loci and two alleles per locus, each vector in the pair (xy)

denoting a genotype would contain 11 alleles contributed by the maternal and

paternal, respectively. Thus, if it were possible to determine parental source of

each allele, one could in principle identify four genotypes per locus. Therefore,

if 11 autosomal loci were under consideration, the number of genotypes that

could be identified would be

411 = 4 194 304. (6.3)

Observe that this is the same number as that in (62), and, moreover, it in all

likelihood exceeds the number of individuals in any sample of individual whose

genomes have been sequenced that are presently available to investigators.

Consider, for example, the case of 11 autosomal loci with two alleles at

each locus and suppose that an investigator identifies three genotypes per locus;

namely two homozygotes and one heterozygote at each locus. In such circum-

stances, an investigator may not be able to determine whether any alleles was

contributed by the maternal or paternal parent. Under this assumption that

only three genotypes can be identified per locus, it follows that the total number

of "genotypes" that could be identified with respect to 11 autosomal loci would

be

311 = 177 147. (6.4)

A number of this magnitude would in all likelihood exceed the sample size avail-

able to present day investigators, particularly if it is required that all individuals

in the sample have had their genomes sequenced. If a sample size is considerably

smaller than the number in (64), then it is recommended that an investigator

confine attention to some sub-set S1of loci and individuals in a sample such that

for each identifiable genotype (x,y), the number of individuals,  (x,y) ≥ 1, with
this genotype is sufficiently large so that one may make reliable and statistically

significant genetic inferences based on the available data.

For the case of 11 autosomal loci, a sample available to an investigator may

not be sufficiently large to accommodate the set of possible genotypes, because

the number of individuals of all genotypes may not be sufficiently large to draw

reliable statistical inferences. However, when attention is focused on a sub-set

of loci, the number of individuals for each genotype with respect to this sub-set

of loci is sufficiently large to draw reliable statistical inferences. By way of an

illustrative and hypothetical example, suppose that an investigator was able to

find a sufficient sample size for each genotype with respect to six autosomal loci

with three distinguishable genotypes at each locus. Let G denote the set of

genotypes in the sample and let  (xy) denote the number of individuals in the

sample of genotype (xy) ∈ G . For the case of six autosomal loci, the total

number of effects that may be defined is

212 − 1 = 4 095. (6.5)

It is doubtful that any investigation would have the persistence or interests

to estimate 4 095 effects, but it may be of interest to estimate only first, second
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and third order effects. It is easy to see that the number of first order or additive

effects would be µ
12

1

¶
= 12 (6.6)

and as in (511) let T1 denote the class of subsets of the set S = (1 2 · · · 12) of
positions containing one position. It is straight forward to enumerate the sets in

the class T1 For the case of 12 positions, the number of sub-set of S containing
two positions is µ

12

2

¶
= 66. (6.7)

Let T2 denote the class of sub-sets of S containing two positions. Similarly, the
number of subsets of S containing three positions isµ

12

3

¶
= 220. (6.8)

Observe that if an investor chose to follow the procedure just outlined, the total

number of effects that would need to be defined would be

12 + 66 + 220 = 298. (6.9)

Let T3 denote the class of sub-sets of S containing three positions.

It is interesting to note that the enumeration of the sets in the classes T2 and

T3 may be accomplished by using a type of recursive procedure. To describe
this recursive procedure, it is helpful if the notation is extended to include the

number of loci and positions under consideration. For example, let T
()
2 denote

a class of sub-sets of two positions taken from the sets of positions S for

 = 4 6 · · · 12 sets of positions corresponding to  = 2 3 · · · 6 loci. Then, it
follows that the containment relations

T
(4)
2 ⊂ T(6)2 ⊂ T(8)2 ⊂ T(10)2 ⊂ T(12)2 (6.10)

hold. Thus, if an investigator has enumerated the sub-sets in the class T
(4)
2 for

the case of two loci, see section 5, then to extend this enumeration to case of 3

loci and 6 positions, one could add positions 5 and 6 to the set S4 to obtain the
set S6 of position for the case of 3 loci. The next step in this recursive process

would be that to adding to T
(4)
2 those sets with two positions that include

position 5 and 6 to obtain all the sub-sets with two positions from the set S6.

By continuing in this recursive manner, the set of two positions in the class T
(12)
2

could be enumerated. It also of interest to note that the containments relations

T
(4)
3 ⊂ T(6)3 ⊂ T(8)3 ⊂ T(10)3 ⊂ T(12)3 (6.11)

for classes of sub-sets containing sets with three positions are also valid. There-

fore, the class of sets T
(12)
3 could also be enumerated by using a recursive proce-

dure. It is also highly plausible that a clever computer programmer could write

code to accomplish the enumeration of the classes of sets T
(12)
2 and T

(12)
3 .

Given the enumerated classes of sub-sets T1T2 and T3 the next step in
providing an overview of the case of six autosomal loci is that of defining an

effects for each set in the three classes of sub-sets. Briefly, the procedures used

in defining and setting up algorithms to compute them are given implicitly in

equations (519)  (520) and (521)  Let

C1 = { ( ()) |  ∈ T1} (6.12)

denote the set of first order effects. Similarly, let

C2 = { ( ()) |  ∈ T2} (6.13)
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and
C3 = { ( ()) |  ∈ T2} (6.14)

denote, respectively, the class of second and third order effects. It should be

noted that the formulas for computing the first, second and third order effects

are outlined in formulas (522) and (523) for each combination of alleles.

Just as suggested for the case of two autosomal loci in section 5, it would be

of interest to find the largest of the squares of each effects to get some idea as to

which effect contributes the most to a variance component under consideration.

An explicit form of the squares of first order effects is

D1 =
©
2 () |  ∈ Sª , (6.15)

where S = ( |  = 1 2 · · · 12)  For the sake of simplicity, suppose there are
only two alleles at each the the six loci under consideration. Under this as-

sumption, each of the 12 positions may be occupied by either of the two alleles

at each locus. Therefore, the number of squared values in the set D2 is 24. Let
D2 and D3 denote, respectively, the set of squared effects from the sets C2 and
C3. Suffice it to say that for the case of two alleles at each of the six loci,

the number of squared effects in each of the sets Dfor  = 1 2 3 could be

determined, but this exercise will be left to an interested reader.

If an investigator does not have a sufficiently large sample to work with for

the case of 6 autosomal loci, then a reduced version of the ideas just outlined
could be used to study a smaller number loci such that the number the sample

size for each genotype would be sufficiently large to draw reliable statistical

inferences. Given the ideas just outlined, a study of cases for 2, 3 or 4 loci may

be feasible if there is insufficiently data to study the case of 5 or 6 autosomal

loci. It should be noted that for the case that only three genotypes per locus

may be identified, the number of effects that an investigator could estimate

would significantly smaller than for the case that for in which four genotypes

may be identified per locus. It is beyond the scope of this paper to consider the

case of only three identifiable genotypes per locus, but the details for this case

will be worked out in subsequent papers for one or more autosomal loci.

When one considers of the union of the sets D1D2 and D3 it is easy to see
that many tests of statistical significance may need to be made if an investiga-

tor wishes to assess the statistical significance some chosen number of squared

effects. It is beyond the scope of this paper to deal with the problem of making

many statistical tests and computing measures of statistical significance, but it

is suggested that a reader may wish to consult the literature on this subject.

Included among the papers that would be interest to consult are Benjamini et

al. (1995) [1], (2001) [2] and (2005) [3].

A version of equation (524) may also set down for the case of 6 autosomal

loci under consideration and has the form

 () = +
P

∈T1  ( ()) +
P

∈T2  ( ()) +
P

∈T3  ( ()) +  ()

(6.16)

for all genotypes  ∈ G , where  () is a remainder effect. In principle, if

all the effects on the right hand side of equation have been estimated for all

genotypes  ∈ G , then the effect  () could be estimated for all genotypes 

∈ G . Given these estimates, one could then proceed to estimate the variance

component corresponding to the effect  (), by using the formula

 [ ] =
P

∈G  ()
2
 () . (6.17)

Let d [ ] denote an estimate of the genetic variance defined in equation

(211) and letd [ ] denote an estimate of the variance component in (617).

Then, the ratio d [ ]d [ ]
(6.18)
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may be used as an estimate of the fraction of the total genetic variance that is

attributable to the remainder effects  () for all genotypes  ∈ G .

When interpreting this estimate, an investigator should also be aware of

the possibility that the sample of individuals that constitute the data used to

estimate all effects and variance components may not be in linkage equilibrium

with respect to the 6 autosomal loci under consideration. In this case, it may be

worthwhile to compute a version of the genetic covariance Ψ defined in (327)

for the case of 6 loci. It can be shown that in terms of this matrix, the estimated [ ] of the genetic variance may be represented in the form

d [ ] = 1 bΨ1 , (6.19)

where 1 is column of 1,  denotes the transpose of vector or matrix and bΨ

is an estimate of Ψ. Given this matrix, all variance components associated

with equation (616) would be on the principal diagonal the the matrix Ψ.

Therefore, the trace of the matrix, the sum of the elements on the principal

diagonal of bΨ, is the sum of the variance components corresponding to the

effects in equation (616). Let [
h bΨ

i
denote an estimate of the sum of

these variance components. Then, the ratio

[
h bΨ

i
d [ ]

, (6.20)

is an estimate of the fraction of the total genetic variance that is attributable to

the variance components defined in connection with equation (616). It would

also be of interest to inspect the elements in the matrix bΨ off the principal

diagonal to make an assessment as to the affects that non-zero covariance terms

contribute to the estimate of the total genetic variance in (619).

This ratio may be interpreted as a measure of the genetic variance that is

attributable to the effects defined in connection with the construction of equa-

tion (616)  taking into account these effects may be correlated for the case the

sample of individuals is not in linkage equilibrium. If this ratio is equal to one,

then the variance components defined in connection with equation (616) are

sufficient to account for all the genetic variance in the quantitative trait under

consideration. But, if this ratio is less than one, then these components of the

genetic variance would not be sufficient to account for the total genetic vari-

ance. It is also appropriate to mention that the ratio in (620) may be computed

without computing the matrix bΨ, by computing each variance component cor-

responding to the effects in equation (616), using formulas analogous to (617).

It is recognized that an investigator who wished to apply the ideas on the

estimation of effects and variance components set forth in this paper may also

want to test some statistical hypotheses, but it is beyond the scope of this paper

to suggest various types of statistical tests of significance in addition to those

mentioned briefly above.

A word of thanks is due Dr. Towfique Raj, Division of Genetics, Brigham

and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA, who

called the author’s attention to recent papers devoted to the estimation of her-

itability of various quantitative traits in humans, which have been cited in the

paper. It should also be mentioned that a cooperative research effort involv-

ing the author and Dr. Raj’s group is also in progress, with a goal of writing

software to implement the ideas set forth in this paper, along with results not

included in this paper, and applying them in a quantitative genetic analysis of

data from samples of patients whose genomes have been sequenced.
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