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Neuro-Dynamic Optimization of 
Biotechnological   Process 

Tatiana Ilkova α & Mitko Petrov σ 

Abstract- In this paper we have investigated the whey 
fermentation at the production of white brine cheese with strain 
Kluyveromyces marxianus lactis MC 5, using non-conventional 
substrate whence for receiving of unicellular protein by an 
ecological clean and wasteless technology. This process is 
used for dynamic optimisation Neuro-Dynamic Programming 
theory. With this optimization procedure the quantity product is 
increased at the end of the process, simultaneously 
fermentation time is decreased. The producing of lactose with 
using of cheese whey, which is a waste product at the 
production of white brine cheese leads to the receiving one of 
close cycle and an ecological clean and wasteless technology. 
Keywords: neuro-dynamic programming, whey 
fermentation. 

I. Introduction 

ynamic Programming (DP) is an method for 
optimization and optimal control that has applied 
to surmount these restriction. The irnteest in this 

approach is due to the fact that too many hypotheses 
are based on the analytical structure of the equations, 
system and criteria. Therefore, it is possible to develop 
algorithms for solution of the optimal control problems 
independently of the used model and optimization 
criterion. DP should be applied parameterize the optimal 
decision as a function of the system state. Unfortunately, 
from the very beginning it was apparent that an increase 
of the dimensionality of the problem, i.e. an addition of 
reservoirs, caused an exponential increase in the time 
required to find a decision. This conducts to the “curse 
of dimensionality” (Bertsekas & Tsitsiklis, 1996). 

Neuro-dynamic programming (NDP) is 
suggested as an alternative to lighten the “curse of 
dimensionality” of the DP. NDP is a contemporary 
approach of the dynamic programming methods for 
optimization and optimal control and decision making 
under uncertainty. NDP combines ideas from the scopes 
of neural networks, artificial intelligence, reinforcement 
learning cognitive science, simulation, and 
approximation theory (Driessens &. Dzeroski, 2004 ). 

Using common artificial intelligence terms, the 
methods allow the systems to “learn how to make good 
decisions by observing their own behavior and use built-
in mechanisms for improving their actions through a 
reinforcement mechanism”. In more mathematical 
meaning   “observing   their   own   behavior”  relates   to  
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simulation and “improving their actions through a 
reinforcement mechanism” relates to the iterative 
schemes for improving the quality of approximation of 
the optimal cost function, the Q-factors or the optimal 
policy. There has been a gradual realization that the 
reinforcement learning techniques can be fruitfully 
motivated and interpreted in terms of classical DP 
concepts such as the value and policy iteration, (Sutton, 
1988). 

The optimal control of this process usually 
depends on the presence of complex, non-linear 
dynamic model of the system because of this is difficult 
to realize to working-out of the problem, which is very 
important to practical realize. 

The general disadvantage in optimization and 
optimal control methods of the bioprocesses is that the 
fermentation finishing time should be fixed. When we 
want to find the optimal fermentation finishing time, 
many various fermentation finishing times should be 
assumed, for each one of them, an efficiency optimal 
control problem should be determined. This is an 
extremely demanding task in terms of calculations. 
Approach such as control parameterisation can be used 
for free-end-time tasks to obtain open loop optimal 
profiles. Another hindrance of these approach checks 
from the circumstance that they are open loop optimal, 
which signifies that each time an initial condition shifts, a 
new and different optimal control problem should be 
determined. Moreover, the resulting fixed strategies do 
not take into advantage the likely process disturbances 
(Vlachos et. all 2006), (Lewis & Derong, 2013). 

The fermentation of lactose oxidation from 
natural substratum in fermentation of Kluyveromyces 
marxianus lactis MC 5 uses non-conventional whence 
for receiving of unicellular protein. This process is not 
well studied. Therefore it does not exist a general 
mathematical model of the microbial synthesis, because 
of the extreme complexity and great variety of living 
activity of the microorganisms, although various models 
of biotechnological process and of different parts of the 
whey fermentation exist. On this cheese whey, which is 
waste product at the production of white brine cheese, 
oneself with what oneself reception one close cycle 
(Nono et. all 2006). 

The aim of this study is to develop optimal feed 
rate strategy of biotechnological process in whey 
fermentation using Neuro-dynamic control. 
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II. Mathematical Model of the Process 

Six fermentations were carried out in aerobic 
batch cultivation of Kluyveromyces lactis. A laboratory 
bioreactor ABR 02M with capacity 2 l has been used. 
The strain Kluyveromyces marxianus lactis MC5 is 
cultivated under the following conditions (Anastassiadis, 
2007): 
1. Nutrient medium with basic component – whey ultra 

filtrate with lactose concentration 44 g/l. The ultra 
filtrate is derived from whey separated in production 
of white cheese and deproteinisation by ultra 
filtration on LAB 38 DDS with membrane of the type 
GR 61 PP under the following condition: 

• T=40-43 °C; 
• input pressure 0.65 MPa; 
• out put pressure 0.60 MPa. 

 

• (NH) 4HPO 0.6%; 
• yeast's autolisate 5%; 
• yeast's extract 1%; 
• pH 5.0 - 5.2.  
2. The air flow rate QG is 60 l/l/h up to the 4th hour and 

120 l/l/h up to the end of the process under 
continuous mixing n=800 min-1. 

3. Temperature is 29 °C. 
4. Duration of the cultivation is tf=12 hours. 

The following figure describes the mass balance 
of the pressed-dough cheese and whey drink process. 

The changes of the microbiological process 
(lactose conversion in yeast's cells to protein) are 
studied during the strain growth: 

a) lactose concentration in fermentation medium in 
oxidation and assimilation of lactose by 
Kluyweromyces Marxianus lactis MC5 is determined 
by enzyme methods by UV tests (Boehringer 
Manheim, Germany, 1983); 

b) concentration of cell mass and protein contents are 
determined on the basis of the nitrogenium contents 
(Kjeltek system 1028); 

c) concentration of the dissolved oxygen in the 
fermentation medium in the process of oxidation 
and assimilation of lactose is determined by oxygen 
sensor. 

d) For the measurement of the oxygen concentration in 
the fermentation middle the oxygen sensor that is 
produced by LKB firm, is used.  

Six fermentations where carried out in aerobic 
batch cultivation of Kluyveromyces lactis. The 
experimental investigations are carried out on the 
computer controlled laboratory bioreactor 2L-M with 
magnetic coupling. 

The model of the batch processes includes the 
dependences between the concentrations of the basic 
variables of the process: cell mass concentration, 
substrate concentration and oxygen concentration in the 
liquid phase: 
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µ(S,CL)–specific grown rate of the cells, h-1; µm -

maximal rate of the cells, h-1; X–cell mass concentration, 
g/l; S–concentration of substrate, g/l; C*–mean oxygen 
concentration, g/l; CL–dissolved oxygen concentration in 
liquid phase, g/l; kla–volumetric mass transfer 
coefficient, h-1; εG–gas hold up; kS, kC, ki, Y1 and Y2–
coefficients; t–time, h. 

The initial conditions and coefficients in model 
are given as follows: 

X (0) = X0=0.2 g/l; S (0) = S0=44 g/l; CL (0) = C0=6.0x10-3 g/l; C*=C0, g/l; 

µm
 =0.89; kS=1.62; kC=3.37x10-3; kI=0.47; Y1=2.238 and Y2=3.24x10-3. 

The mass transfer coefficient kla and gas hold-up are determined by:
 

                                                 ( ) ( ) 014.0323,038,0 )/(53.0,/52 −== ndQεWVPak GGGl                                                     (2)
 

where: P–power input,  4.053 Re9.60 −= dnρP , W; V–

volume, m3;
 
ρ–liquid density, kg/m3; n–agitation speed, 

s-1; d–impeller diameter, m; Re–Reynolds number; WG–

gas velocity,

 
2/4 DπQW GG = ,

 

m/s; QG–air flow rate, 
m3/s; D–bioreactor diameter, m.

 

The model of the process (1)-(2) is used for 
optimization of batch fermentation of lactose oxidation 

from natural substratum in fermentation of the strain 
Kluyveromyces marxianus

 
lactis MC 5.

 

III.
 

Optimization
 
of Fermentation 

Process
 

For determination of the optimal control problem 
of fed-batch fermentation processes maximizing of the 
optimization criterion at the end of the process max J on 
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The ultra filtrate is used in native condition with 
lactose concentration 44 g/l. Nutrient medium consist 
of:



the used substrate S is accepted. Thus the optimization 
problem is reduced to find a profile of the control 
variable. 

The optimization criterion is accepted the value 
of the functional X (t) at the end the process (T=12) that 
means of the quantity formed biomass after 12 hour 
fermentation. 

The criterion of quality has a type: 

∫=
ft

t

dttVtXQ
0

)()(max
u

 

where: t0 – initial time, tf – final time of the fermentation. 
The objective of this work is to find the optimal feed flow 
rate (F(t)) of a fed-batch process, such as the biomass, 
that will raise the biomass at the end of the process, i.e.: 

                             
∫=
ft

t

dttVtXQ
0

)()(max
u

                      
(3)

 

A general dynamic optimization problem can be 
defined as follows: 
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Where: W is a vector of the variables that 
describe process, u - vector of control variables, k is the 
current stage. 

The objective is to maximize the combination of 
the total span and the stagewise, together with the 
terminal costs subject and the terminal constrains. 
DP includes a stagewise calculation of the cost-to-go 
function to reach the solution for the general initial state. 
The cost-to-go (10) at each stage is defined by 
(Anastassiadis, 2007):  
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1
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(5) 

Then the calculation of the cost-to-go function at 
each stage can be done as: 

  
( ) ( ) ( ){ }11 ),(),(max),(

maxmin
++≤≤

+= iiiiiiii ttWBtWfttWB
k

u
uuu    

(6)
 

Once obtained the cost-to-go function, 
represents a convenient vehicle to obtain the optimal 
solution for the general stage.  

By continuing the cost-to-go iteration of (6) until 
convergence within the procedure it can be seen that 
the infinite horizon cost-to-go function ∞B , satisfying the 
following “Bellman equation” can be obtained: 

                     ( ) ( ) ( ){ }uu
u

,,max WBWfWB +=
∞              (7) 

Unfortunately, in very few cases the problem 
can be solved through the stagewise optimization in 
order to analytically obtain a closed-form expression for 
the cost-to-go problem. The conventional numerical 
approach to the problem involves gridding the state 
space, calculating and storing the cost-to-go for each 

grid points as one marches backward from the first (or 
last) stage to the lest (first). For an invite horizon 
problem the number of iterations required for 
convergence can be very big. Such an approach is 
seldom practically feasible due to the exponential 
growth of the computation with respect to the state 
dimension. 

The traditional approach for solving the Bellman 
equation involves gridding of the state space, solving 
the optimization (10) for each grid point and performing 
the stagewise optimization until convergence is 
achieved. The comprehensive sampling of the state 
space can be avoided by identifying the relevant regions 
of the state space by simulation under judiciously 
chosen suboptimal policies (Vlachos et. al. 2006). 

The policy improvement theorem  states that a 
new policy that is greedy (a greedy policy is one whose 
current cost is the least) with respect to the cost-to-go 
function of the original policy is as good as or better 
than the original policy, so the new policy can be defined 
as follows: 

),(),(maxarg)( uWuWu
u

BfW +=  

Where ),,(arg ixuG ∈Rm+n+r is an 

improvement over the original policy and u∈Rm, W∈Rn 
and i∈Rr. 

When the new policy is as good as the original 
policy the above equation becomes the same as 
Bellman     equation (7). 

The relevant regions of the state space are 
identified by simulation of NDP control and the initial 
suboptimal cost-to-go function is calculated from the 
simulation data. In this survey a functional approximator 
is used to interpolate between this data. The 
improvement is obtained through the iteration of the 
Bellman equation. When the iteration Converge this off-
line computed cost-to-go function can be used for an 
on-line optimal control calculation for the bioreactor 
(Xiong & Zhang, 2005). 

NDP uses neural network approximations for the 
approximation of cost-to-go function. The cost-to-go 
function was not used to generate an explicit control law; 
instead, it was used in an on-line optimization to reduce 
the large (or infinite) horizon problem to a relatively short 
horizon problem. The method was found to be robust to 
approximation errors. Both deterministic (step changes 
in kinetic parameters) and stochastic problems (random 
variations in kinetic parameters and feed composition) 
were explored (Peroni et. all 2009), (Krishnamoorthy K. 
et al 2011). 

The following notations are used for description 
of the algorithm: 
B – Bellman equation;  
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 )(~ xB  -  approximated Bellman equation corresponding 
to state W; 

()i – iteration index for cost iteration loop; 
k – discrete time. 
Finally: 
 ))((~)(~ kWBkB ≡  and ( ))(),()( kkWfkf u=  

The general simulation-approximation scheme 
involves computation of the converged cost-to-go 
approximation off-line. The architecture of the scheme is 
shown in Figure 2. Step 1, Step 2, Step 3 and Step 4 
represent the “Simulation part”, and 5 and 6 the “Cost 
Approximation Part”. 

The simulation-based approach involves 
computation of the converged profit-to-go 
approximation off-line. The following steps describe the 
general procedure of NDP algorithm: 

1. Starting with a given policy (some rule for choosing 
a decision u at each possible state i), and 
approximately evaluate the cost of that policy (as a 
function of the current state) by least-squares-fitting 

a scoring function )(~ XJ j

  to the results of many 
simulated system trajectories using that policy; 

2. The solution of one-stage-ahead cost plus cost-to-
go problem, results in improvements of the cost 
values; 

3. The resulting deviation from optimality depends on a 
variety of factors, principal among which is the 

ability of the architecture )(~ XJ j

  to approximate 
accurately the cost functions of various policies; 

4. Cost-to-go function is calculated using the 
simulation data for each state visited during the 
simulation, as for each closed loop simulation 
(simulation part). 

5. A new policy is then defined by minimization of 
Bellman’s equation, where the optimal cost is 
replaced by the calculated scoring function, and the 
process repeats. This type of algorithm typically 
generates a sequence of policies that eventually 
oscillates in a neighbourhood of an optimal policy; 

6. Fit a neural network function approximator to the 
data to approximate cost-to-go function as a 
smooth function of the states; 

7. The improved costs are again fitted to a neural 
network, as described above, to obtain subsequent 
iterations )(~1 XJ , )(~ 2 XJ , and so on …, until 
convergence. 

The NDP algorithm block- scheme is shown in 
Figure 1. 

Take into consideration that when starting with a 
fairly good approximation of the cost-to-go (which has to 
be a result of using a good suboptimal policy), the cost 
iteration has to converge fairly fast – faster than the 

conventional stagewise cost-to-go calculation. 

The next values of F are examined - F=0.1, 0.2, 
…, 0.7, that can cover the possible rang of variations. 

The bioreactor was started at three different W 
(0) values for each of the parameter values around the 
low product yield steady state. 

A functional approximation relating cost-to-go 
with augmented state was obtained by the neural 
network – with five hidden nodes, six input nodes and 
two output nodes. The neural network presented a good 
fit with a mean error of 10-3 after training for 1000 epoch. 

  

Figure1: NDP algorithm. 

Improvement of the cost-to-go is obtained 
through the iterations of the Bellman equation (13). This 
method is known as a value iteration (or value iteration). 
The solution of the one-stage-ahead cost plus cost-to-
go problem, results in the improvement of the cost 
values. The improved prices were again fitted to the 
neural network, described above to obtain subsequent 
iterations )(~1 kB , )(~ 2 kB  and so on ..., until they are 
converged. Cost is said to be “converged” if the sum of 
the absolute error is less than 5% of the maximum cost. 
The cost is converged in 7 iterations for our system. 
The converged cost-to-go function from above was used 
for solving the one-stage-ahead problem. The choice for 
switch over the one-stage-ahead of the control variable 
is calculated by: 

       

( ) ( )








+= ))(,(~),(maxarg)( 6

)(
k

t
tQB

t
tQfk

k

k

k

k

k
uuu

u

     
(8)

 
Where: u is vector of control variables, k is the 

optimization stages, B is Bellman equation. 
Following this procedure, a program on 

MATLAB 8.0 has been developed and the optimal profile 
of the control variable has been obtained. 

With this procedure a program on MATLAB 8.0 
is developed and it the optimal profile of the optimal 
control variables are obtained. The time procedure is in 
1100 s. The profile is shown on Figure 2. 

The concentration of the biomass before and 
after optimization is shown in Figure 3. 

The program for optimal control is developed 
using NDP method. The results show generally an 
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increase of 13.37 % amount of biomass production after 
the dynamic optimization. This result is shown in Figure 
9. 

 

Figure 2 : Optimal profile of the feeding rate received 
with and NDP. 

Figure 3 : Concentration of the biomass before and after 
optimization 

IV. Conclusion 

A technique based on Neuro-Dynamic 
Programming approach has been developed to achieve 
an optimal feed rate profile for biomass production a 
fed-batch bioprocess. 

The approach proposed such as one methodic 
for alleviation of “curse of dimensionally” of dynamic 
programming. The results show that quality biomass is 
risen at the end of the process. Using of the method 
shows that it to be able for application in on-line optimal 
problems. 

Realization of such an optimal control approach 
combined with advanced control techniques (artificial 
neural networks with classical optimization method) in 
practice can conduct to the value and elaboration time 
reduction in the laboratory fed-batch bioprocesses, but 
not only that, as well  in elaboration time reduction 
technique for optimal control.  

The producing of lactose with using of cheese 
whey, which is a waste product at the production of 
white brine cheese leads to the receiving one of close 
cycle and an ecological clean and wasteless 
technology. 
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