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Theory of Shubnikov-De Haas and Quantum
Hall Oscillations in Graphene under Bias and 

Gate Voltages
Shigeji Fujita α & Akira Suzuki σ

Abstract- Magnetic oscillations in graphene under gate and 
bias voltages, measured by Tan et al. [Phys. Rev. B84, 115429 
(2011)] are analyzed theoretically. The Shubnikov - de Haas 
(SdH) oscillations occur at the lower fields while the Quantum 
Hall (QH) oscillations occur at the higher fields. Both SdH and 
QH oscillations have the same periods: , where  is the 
Fermi energy and  the cyclotron frequency. Since the 
phases are different by π/2, transitions between the maxima 
and the minima occur at some magnetic field strength. A 
quantum statistical theory of the SdH oscillations is developed. 
A distinctive feature of two dimensional (2D) magnetic 
oscillations is the absence of the background. That is, the 
envelopes of the oscillations approach zero with zero-slope 
central line. The amplitude of the SdH oscillations decreases 
like , where M ∗ is the 
magnetotransport mass of the field-dressed electron distinct 
from the cyclotron mass m∗

 

of the electron. A theory of the 
QHE is developed in terms of the composite (c)-bosons and 
c-fermions. The half integer  QHE  in graphene  at  filling  factor 

arises from the Bose-
Einstein condensation of the c-bosons formed by the phonon 
exchange between a pair of like-charge c-fermions with two 
fluxons. The QH states are bound and stabilized with a 
superconducting energy gap. They are more difficult to 
destroy than the SdH states. The temperature dependence of 
the magnetic resistance between 2 K and 50 K is interpreted, 
using the population change of phonons (scatterers). 

Keywords: Shubnikov-de Haas (SdH) oscillation, quantum 
Hall (QH) oscillation, 2D magnetic oscillation,  composite 
(c-) fermion, c-boson, fluxon, Cooper pair (pairon), 
magnetotransport mass, cyclotron mass. 

I. Introduction 

n 2011 Tan et al. [1] discovered a phase inversion of 
the magnetic oscillations in graphene under the gate 
voltage  = −40 V at 2.0 K. At lower fields (       2 T) 

the magnetic resistance  has a negligible 
dependence on dc bias while  at higher fields show 
temperature - dependent damping oscillations. Their data 
are shown in Fig. 1. The original authors  considered the  

Shubnikov-de Haas (SdH) oscillations only. It is more 
natural to interpret the data in terms of the SdH 
oscillations at lower fields and the quantum Hall (QH) 
oscillations at higher fields. The SdH oscillations 
originates in the sinusoidal oscillations within the drop in 
the Fermi distribution function of electrons (see Fig. 2). 
At low temperatures and low fields, 
where the Fermi energy  is much greater than the the 
cyclotron frequency  , the SdH oscillations 
are visible. The dc bias negligibly affects the Fermi 
energy , and hence the resistance remains flat. A 
distinctive feature of 2D magnetic oscillations is the 
absence of the background. That is, the envelopes of 
the oscillations approach zero with a zero-slope central 
line. This feature is clearly seen in Fig. 1. Fujita and 
Suzuki described this feature in their book [2]. For 
completeness their theory is outlined in Appendix A. A 
theory of the SdH oscillations in 2D is given in Section II. 
Following Fujita and Okamura [3], we develop a 
quantum statistical theory of the QHE in terms of 
composite particles (boson, fermion) in Section III. A 
discussion is given in Section IV. 
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Figure 1 :

 

(Color online) (a) The magnetic resistance 

 

measured at the gate voltage 

 

and the 
temperature T    2.0 K at various bias-induced currents. (b) The differential magnetic

 

resistance . The inversion is 
marked by vertical dash lines (after Tan et al.

 

[1]).

 
 
 
 
 
 
 
 
 Figure 2

 

:

 

Numerous oscillations in             within the width of 

 

generates SdH oscillations.

 
II.

 

Shubnikov-De

 

Haas

 

Oscillations

 Oscillations in magnetoresistance (MR), similar 
to the de Haas-van Alphen (dHvA) oscillations

 

in the 
magnetic susceptibility, were first observed by 
Shubnikov and de Haas in

 

1930 [4]. These oscillations 
are often called the SdH oscillations. The susceptibility 
is an

 

equilibrium property and can therefore be 
calculated by standard statistical mechanical

 

methods. 

The MR is a non-equilibrium property, and its treatment 
requires a kinetic theory.

 

The magnetic oscillations in 
both cases arise from the periodically varying density of

 

states for the electrons subjected to magnetic fields. We 
shall see that the observation of the

 

oscillations gives a 
direct measurement of the magnetotransport mass

 

. 
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The observation also gives the quantitative information 
on the cyclotron mass  .

Theory of Shubnikov-de Haas and quantum Hall oscillations in graphene under bias and gate voltages

Wosc

M∗

m∗

∼

−df/dε



 
  

Let us take a system of electrons moving in a 
plane. Applying a magnetic field  

 

perpendicular to the 
plane, each electron will be in the Landau state with the 
energy :

 
 
 
 The degeneracy of the Landau level (LL) is given by

 
 
 
 

 

The weaker is the field, the more LL’s, 
separated by , are occupied by the electrons. In this 
Landau state the electron can be viewed as circulating 
around the guiding center. The radius of circulation  

 for the Landau ground state is about 250 A  at a 
field  = 1.0 T (tesla). If we now apply a weak electric 
field , then the guiding center jumps and generates a 
current.  

Let us first consider the case with no magnetic 
field. We assume a uniform distribution of impurities with 
the density . Solving the Boltzmann equation, we 
obtain the conductivity: 

 
                                                                                   

(3)

 
where   electron  density,  and  is the 
dependent relaxation  rate:  
 
 
 
                                                                                                                             

 (4)

 
where  = scattering angle and = scattering 
cross-section, and the Fermi distribution function: 
 
 
                                                                                      

(5)
 

with    and  = chemical potential, is 
normalized such that 
 
 
 
                                                             

 (6)

 
where the factor 2 is due to the spin degeneracy. We 
introduce the density of states,  such that 
 
 
 
                                                                                     

 ( 7)

 
We can then rewrite Eq.(3) as 
 
 
 
                                                                                      

(8)

 
The Fermi distribution function  drops 

steeply near   at low temperatures: 
 
 
 

(9)

 The density of states, , is a slowly varying 
function of the energy . For a 2D free electron

 
system, 

the density of states is independent of the energy . 
Then the Dirac delta-function

 
replacement formula

 
 
 

(10)
 

can be used. Assuming this formula, using 

 
 

 (11)

 

and comparing Eq. (3) and Eq. (8), we obtain 
 
 
 
 

(12)

 
for the relaxation time  . The temperature dependence 
of  is introduced through the Fermi distribution function 

( ). 

Next we consider the case with a magnetic field. 
A classical electron spirals around the applied static 
magnetic field . The guiding center motion generates 
an electric current. The spiraling state has a lower 
energy than the straight line motion state since the 
current runs in a diamagnetic manner. 

Following Onsager [5], we assume that the 
magnetic field magnitude  is quantized such that 
 
 
 (13)

 

where  is  the  number  of  elementary  fluxes 

(fluxons). Following Jain [6], we introduce field-dressed 
(attached) electrons, which can move straight in all 
directions (isotropically) in the absence of an electric 
field. The dressed electron by assumption has a charge 
magnitude   and a magnetotransport mass  distinct 
from the cyclotron mass . Applying kinetic theory to 
the motion of the dressed electrons, we shall obtain the 
conductivity formula 
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ε =

(
NL+

1

2

)
�ωc , ωc≡ eB

m∗ (1)

eBA

2π�
, A = sample area. (2)

�ωc

l≡
(�/eB)1/2

nI

σ =
e2

m∗nτ =
2e2

m∗(2π�)2

∫
d2p

ε

Γ

(
−df

dε

)
, ε =

p2

2m∗ ,

Γ (ε) = nI

∫
dΩ

( p

m∗

)
I(p, θ)(1− cos θ) ,

θ

f(ε) ≡ 1

eβ(ε−µ) + 1

β ≡ (kBT )
−1

n =
2

(2π�)2

∫
d2p f(ε) ,

D(ε),

2

(2π�)2

∫
d2p · · · =

∫
dεD(ε) · · · .

σ =
e2

m∗

∫ ∞

0

dεD(ε)
ε

Γ

(
−df

dε

)
.

f (ε
ε = µ

kBT � εF .

D ε

)

)(

− df

dε
= δ(ε− µ

∫ ∞

0

dεD(ε) ε

(
−df

dε

)
=

∫ ∞

0

dεD(ε) f(ε) ,

τ =

∫ ∞

0

dεD(ε)
1

Γ (ε)
f(ε

B = nφΦ0 , nφ ≡ Nφ

A
, Φ0 =

e

�
,
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ε

, NL= 0,1,2, ... .

˚
B

energy ( )-Γ ε

I(p, θ)

ε
ε

)

)

τ
τ

f ε

Nφ

M∗e
m∗

n =

µ

B

E

B

B



                                            (14) 

We introduce : 

  (15) 

The kinetic energy is 

 (16) 

After simple calculations, we obtain 

  (17) 

We can now represent quantum states by the quasi-
phase space elements . The Hamiltonian  
in Eq. (16) does not depend on the position (      ). 
Assuming large 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure
 
3

 
:
 
The 2D Landau states are represented by the circular shells in the space.

normalization lengths , we can then 
represent the Landau states by the

 
concentric shells in 

the -space (see Fig. 3), having the statistical weight
 

(18) 

with the energy separation 
Equations (18) confirm that

 
the LL degeneracy is  

as stated in Eq. (2).
 

 

 

 

                                                                                     (19)

 
The Boltzmann equation for a homogeneous stationary 
system is

 

                                                                                                                                                                                  (20)
 

where 
 

is the angle of deflection, that is, the angle  
between

   
the   initial 

 
and 

 
final 

 
kinetic

 
  momenta 

 
 

. In the actual experimental condition the magnetic 
force term can be

 
neglected. Assuming this condition, 

we obtain the same Boltzmann equation as that for a
 

field-free system. Hence, we obtain the conductivity 
formula (14) (with

 
m∗

 
being replaced

 
by M∗).

 

As the field B
 
is raised, the separation 

 

becomes greater and the quantum states are
 
bunched 

together. The density of states should contain an 
oscillatory part:

 (21)

 

where 

 

is a phase. Since

 (22)

 

 

the phase 

 

will be dropped hereafter. Physically, the 
sinusoidal variations in Eq. (21) arise

 

as follows. From 

the Heisenberg uncertainty principle and the Pauli 
exclusion principle, the

 

Fermi energy 

 

remains 
approximately constant as the field varies. The density 
of states

 

is high when 

 

matches

 

the  -th level, while it 
is small when 

 

falls between neighboring

 

LL’s.

  

If the density of states, , oscillates violently 
in the drop of the Fermi distribution

 

function 

 

, one  cannot  use the delta- function 
replacement formula in

 

Eq. (10). The use of Eq. (10) is 
limited to the case in which the integrand is a smooth

 

function near 

 

. The width of  is of the order 
. The critical temperature 

 

below which the 
oscillations can be observed is 

 

. Below the 
critical temperature,             , we may proceed as follows. 
Let us consider the integral

 
 
 

. (23)
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σ = e2nτ/M∗ .
kinetic momenta

Πx ≡ px + eAx , Πy ≡ py + eAy .

HK =
1

2M∗ (Π
2
x +Π2

y ) ≡
1

2M∗Π
2 .

dxdΠxdydΠy ≡ dxdpxdydpy .

xdΠxdydΠy.d H

ΠxΠy

Lx, Ly), A = LxLy(

ΠxΠy

2πLxLy

(2π�)2
Π∆Π =

A

2π�
ωcm

∗ =
eAB

2π�

�ωc= ∆(Π 2/2m∗) =Π∆Π/m∗

eBA/(2π�

2

(2π�)2

∫
d2Π ϕ(Πx, Πy, t) =

N

A
= n .

e(E + v ×B) · ∂ϕ
∂Π

=

∫
dΩ

Π

M∗ nI I(Π, θ) [ϕ(Π
′)− ϕ(Π)] ,

θ

Π , Π ′( )

�ωc

sin

(
2πε′

�ωc
+ φ0

)
, ε′ =

Π ′2

2m∗ ,

εF/�ωc � 1 (weak field) ,

φ0

φ0

εF

εF
εF

D(ε)
f(ε)≡

[eβ(ε−µ) + 1]−1

ε = µ |df/dε|
kBT Tc

kBTc ∼ �ωc

I =

∫ ∞

0

dε f(ε) sin

(
2πε

�ωc

)
ε ≡ Π2

2M∗ .
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x, y

NL

B

Π

-

)

T < Tc

Let us introduce a distribution function in 
the -space normalized such that

ϕ(Π , t)
ΠxΠy

.



  
 

(24) 

 
Here we used 

 (25)

 
which follows from the fact that the Fermi momentum 

 is the same for both dressed and
 
undressed electrons. 

The mathematical steps going from Eq. (23) to Eq. (24) 
are given in

 
Appendix B.

 In summary, (i) the SdH oscillation period is 
. This arises from the bunching

 
of the quantum 

states. (ii) The amplitude of the oscillations exponentially 
decreases like

 
. Thus, if the 

“decay rate” 
 
defined through

 

 (26) 

 
is measured carefully, the magnetotransport mass 

 can be obtained  through 
  

This 
finding is important. For example, the relaxation rate 
can now be

 
obtained through the conductivity formula 

(14) with the measured magnetoconductivity.
 All electrons, not just those excited electrons 

near the Fermi surface, are subject to the
 

-f ield. Hence, 
the carrier density   appearing in Eq. (14) is the total

 density of the dressed
 
electrons. This n

 
also appears in 

the Hall resistivity expression:
 

 (27) 

where the Hall effect condition drift
 

velocity, was used.
 

In the cyclotron
 

motion
 

the electron with the 
cyclotron mass 

 
circulates around the

 
magnetic field. 

The guiding center
 
(dressed electron) moves with the 

magnetotransport mass , whence this 
 

appears 
 

in the hyperbolicsine term in Eq. (24).
 

In 1952 Dingle [7] developed a theory of the 
dHvA oscillations. He proposed to explain

 
the envelope 

behavior in terms of a Dingle temperature     such that 
the exponential decay

 
factor be

 

= constant.   (28)

 

  

 
 

  
 

 
 

 

 
 

The SdH oscillations are a fermionic 
phenomenon while the QH oscillations are a bosonic

 

one with a superconducting energy gap, which will be 
discussed in the following section.

 

III.
 

Fractinal
 
Quantum

 
Hall

 
Effect

 

The fractional QHE can be treated in terms of 
composite (c-) particles (boson, fermion).

 
The c-boson 

(c-fermion), each containing an electron and an odd 
(even) number of fluxons,

 
were introduced by Zhang et 

al.
 
[8] and Jain [6] for the description of the fractional 

QHE
 
(Fermi liquid).

 

There is a remarkable similarity between the 
QHE and

 
the High-Temperature Superconductivity

 

(HTSC), both occurring in
 
two-dimensional (2D) systems 

as pointed out by
 
Laughlin [9]. We regard the 
 as the causes of both QHE and

 

HTSC. Starting with a reasonable Hamiltonian, we 
calculate everything, using quantum

 
statistical method.

 

The countability concept of the fluxons, known 
as the flux quantization:

 

 (29) 

where 
 
= fluxon number (integer) and h = Planck 

constant, is originally due to Onsager
 
[5]. The magnetic 

(electric) field is an axial (polar) vector and the 
associated fluxon

 
(photon) is a half-spin fermion

 
(full-

spin boson). The magnetic (electric) flux line cannot
 

(can) terminate at a sink, which supports the fermionic 
(bosonic) nature of the fluxon (photon).

 
No half-spin 

fermion can annihilate itself because of angular 
momentum conservation.

 
The electron spin originates in 

the relativistic quantum equation (Dirac’s theory of 
electron)

 
[10]. The discrete (two) quantum numbers (

= ±1)
 
cannot change in the continuous

 
limit, and hence 

the spin must be conserved. The countability and 
statistics of the fluxon

 
are fundamental particle 

properties. We postulate that the fluxon is a half-spin 
fermion

 
with zero mass and zero charge. Fluxons are 

similar to neutrinos. The fluxon (neutrino)
 

occurs in 
electron (nucleon) dynamics. Hence fluxon and neutrino 
are regarded as distinct

 
from each other.

 

The Center-of-Mass (CM) of any
 

c-particle 
moves as a fermion or a boson. The eigenvalues

 
of the 

CM momentum are limited to 0 or 1 (unlimited) if it 
contains an odd (even)

 
number of elementary fermions. 

This rule is known as the Ehrenfest-Oppenheimer-
Bethe’s

 
(EOB’s) rule      . Hence the CM motion of the 

composite containing an electron and   fluxons
 

is 
bosonic (fermonic) if    is odd (even). The system of c-
bosons condenses below some

 
critical temperature 

 

For temperatures satisfying 1, we obtain
 straightforwardly

βε=ε/kBT�

I = πkBT
cos(2πεF/�ωc)

sinh(2π2M∗kBT/�eB)
.

M∗µ(T = 0) = m∗εF =
1

2
p2F ,

εF/�ωc

[sinh(2π2M∗kBT/�eB)]−1

sinh

(
δ

B

)
≡ sinh

(
2π2M∗kBT

�eB

)

e�δ/(2π2kBT).M∗=

ρH ≡ EH

j
=
vdB

envd
=
B

en
,
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EH = vdB, vd

Hence, the cyclotron frequency   is given by . 

exp

[−λ(T + TD)

B

]

Nφ

σz

B =
Nφ

A

h

e
≡ nφ

h

e
,
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δ

M∗

τ−1

E
n

m∗
ωc eB/m∗

M∗ M∗

TD

, λ

Q
Q

Tc

directly

Instead of the Dingle temperature, we introduced the 
magnetotransport mass to explain the envelope 
behavior. The susceptibility  is an equilibrium property, 
and hence, can be calculated without considering the 
relaxation mechanism. In our theory, the envelope of the 
oscillations is obtained by taking the average of the 

impurities come into play. The validity of our theory may 
be checked by varying the impurity density. Our theory 
predicts little change in the clearly defined envelope.

sinusoidal density of states with the Fermi distribution of 
the dressed electrons. There is no place where the 

M∗

phonon 
exchange attraction

[11]

=

χ
χ

p
F



and exhibits a superconducting state while the system 
of c-fermions shows a Fermi liquid behavior. 

A longitudinal phonon, acoustic or optical, 
generates a density wave, which affects the electron 
(fluxon) motion through the charge displacement 
(current). The exchange of a phonon between electrons 
and fluxons can generate an attractive transition, see 
below. 

Bardeen, Cooper and Schrieffer (BCS) [12] 
assumed the existence of Cooper pairs [13] in a 
superconductor, and wrote down a Hamiltonian 
containing the “electron” and “hole” kinetic energies and 
the pairing interaction Hamiltonian with the phonon 
variables eliminated. We start with a BCS-like 
Hamiltonian       for the QHE[3]: 

 
 
 
 
 
 

 
 
 
 
 
 

 (30)

 
where 
 
 

                                                                                                                                                                

(31)

 
is the number operator for the “electrons” (1) [“holes” (2), 
fluxon (3)] at momentum    and spin   with the energy 

  , with annihilation  (creation)  operators 
satisfying the Fermi anti-commutation rules:  
 

 (32) 

The fluxon number operator   is represented by  
  with  satisfying the anticommutation rules: 

 (33) 

The phonon exchange attraction can create 
electron-fluxon composites. We call the conduction-

electron composite with an odd (even) number of 
fluxons c-boson (c-fermion). The electron (hole)-type c-
particles carry negative (positive) charge. The pair 
operators  in Eq. (30) are defined by 

 (34)
 

 

 (35)

 

 
 ,       is  the pairing strength, 

 in electron-type  c-fermion  states. 
change of a phonon generates a 

 hole-type  c-fermion states, represented by 
  . The phonon  exx change can

 
 also  pair  create

 (pair-annihilate) electron (hole) -type c - boson 
and   the   effects  of  these processes    are

 

    represented   by 

 

The Cooper pair is formed from two “electrons” 
(or “holes”). Likewise the c-bosons may

 

be formed by 
the phonon-exchange attraction from c-fermions and 
fluxons. If the density of

 

the c-bosons is high enough, 
then the c-bosons will be Bose-Einstein (BE)-condensed 
and

 

exhibit a superconductivity.

 

To treat superconductivity we may modify the 
pair operators in Eq. (34) as

 

 

(36) 

Then, the pairing interaction terms in Eq. (30) 
are formally identical with those in the

 
generalized BCS 

Hamiltonian [3]. If we
 
assume that only zero momentum 

Cooper pairs
 

(  = 0) are generated, then the 
Hamiltonian      in Eq. (30) is reduced to the original BCS

 

Hamiltonian, ref. [12], Eq. (2.14).
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H=
∑
k

′ ∑
s

ε
(1)
k n

(1)
ks +

∑
k

′ ∑
s

ε
(2)
k n

(2)
ks +

∑
k

′ ∑
s

ε
(3)
k n

(3)
ks

−
∑
q

′∑
k

′∑
k′

′ ∑
s

v0

[
B

(1)†
k′q sB

(1)
kq s + B

(1)†
k′q sB

(2)†
kq s + B

(2)
k′q sB

(1)
kq s + B

(2)
k′q sB

(2)†
kq s

]
,

n
(j)
ks = c

(j)†
ks c

(j)
ks

{c(i)ks, c
(j)†
k′s′} ≡ c

(i)
ksc

(j)†
k′s′ + c

(j)†
k′s′c

(i)
ks = δk,k′δs,s′δi,j , {c(i)ks, c

(j)
k′s′} = 0 .

n
(3)
ks

a†ksaks a (a†)

{aks, a†k′s′} = δk,k′δs,s′ , {aks, ak′s′} = 0 .

B
(1)†
kq,s ≡ c

(1)†
k+q/2,sa

†
−k+q/2,−s , B

(2)
kq,s ≡ a−k+q/2,−sc

(2)
k+q/2,s .

ε
(j)
k c (c†)

0 < ε
(j)
ks < �ωD , ωD = the Debye frequency.

−v0B(1)†
k′q sB

(1)
kq s, v0≡ |VqV ′

q|
(�ω0A)

−1

−v0B(2)†
k′q s

B
(2)†
kq s

−v0B(1)†
k′q sB

(2)†
kq s

(
−v0B(1)

kq sB
(2)
kq s

)
.

B
(1)†
kq,s ≡ c

(1)†
k+q/2,sc

(1)†
−k+q/2,−s , B

(2)
kq,s ≡ c

(2)
−k+q/2,−sc

(2)
k+q/2,s .
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H

-

q
H

The prime on the summation in Eq. (30) means the 
restriction:

The pairing interaction terms in Eq. (30) conserve the 
charge. The  term where 

k s

generates a transition 
Similarly, the ex−

transition between 

pairs,   

B



We first consider the integer QHE. We choose a 
conduction electron and a fluxon for the pair. The c-
bosons, having the linear dispersion relation:

 (37)
 

 

can move in all directions in the plane with the constant 
speed (2  . A brief derivation of Eq. (37) is given in 
Appendix C. The supercurrent is generated by ∓c-
bosons monochromatically condensed at the 
momentum , running along the sample length. The 
supercurrent density (magnitude) , calculated by the 

rule:  = (carrier charge  )×(carrier density )× (drift 
velocity  ), is given by 

(38) 

 

The Hall field (magnitude)  equals . The magnetic
flux is quantized:  

 (39) 

 
where 

   
is the fluxon density. Hence the Hall 

resistivity 
 
is given by

 (40) 

 

Here  we assumed  that  the  c -fermion  has  a 
charge magnitude   . For the integer QHE,    

, thus we obtain , the correct plateau value 
observed for the principal   

The supercurrent generated by equal numbers 
of ∓c-bosons condensed monochromatically is neutral. 
This is reflected in our calculations in Eq. (40). In the 
calculation  we used the unaveraged  drift  velocity 

                            which  is significant. 
Only  the  unaveraged  drift  velocity  cancels 

 exactly  from  numerator/  denominator,  leading   to  an 
exceedingly accurate plateau value. 

We now extend our theory to include elementary 
fermions (electron, fluxon) as members of the c-fermion 
set. We can then treat the QHE and the HTSC in a 
unified manner by using the same Hamiltonian     . 

We assume that any c-fermion has the effective 
charge  equal to the electron charge (magnitude)    : 

                       
for any

 
c-fermion.                       (41)

 

After studying the low-field QH states of c-
we obtain  

                                                                                   
  (42)

 

for the density of the c-fermions with  .   fluxons, where 
 is the electron density. All fermionic QH states 

(points) lie on the classical-Hall-effect straight line 
passing the origin with a constant slope when  is 
plotted as a function of . The density   is 
proportional to the magnetic field   . As the magnetic 
field is raised, the separation between the LL becomes 

 
 

 

 (43)

 

We take the case of   = 3. The c-boson 
containing an electron and three fluxons can be

 

formed 
from a c-fermion with two fluxons and a fluxon. If the c-
bosons are BE-condensed,

 

then the supercurrent 
density j

 

is given by Eq. (38). Hence we obtain

 

, (44)

 

 

where we used Eqs. (41) and (43).

 

The principal fractional QHE occurs at 

  

where the Hall resistivity value is 

 

as shown in Eq. 
(44). A set of weaker QHE occur on the lower field side 
at

 

 

(45)
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ε(j) = w0 +
2

π
v(j)p ,

/π)v
(j)
F

j ≡ e∗n0vd = e∗n0
2

π

∣∣∣v(1)F − v
(2)
F

∣∣∣ .
vdB

B = nφΦ0 , Φ0 ≡ e/h ,

nφ≡

ρH ≡ EH

j
=

vdB

e∗n0vd
=

1

e∗n0
nφ

(
h

e

)
= h/e2 .

e∗ = e,nφ=
n0 ρH = h/e2

QHE at ν = 1.

/π)|v(1)F − v
(2)
F |(2

vd

n
(Q)
φ = ne/Q, Q = 2, 4, · · · ,

ne

σH
n
(Q)
φ

n
(Q)
φ = ne/Q , Q = 1, 2, · · · ,

ρH ≡ EH

j
=

vdB

e∗n0vd
=

nφ

e∗n0

(
h

e

)
=

1

3

h

e2
,

ν= 1/3,
h/(3e2)

ν =
1

3
,
2

3
, · · · .

greater. The higher-  c-fermion is more difficult to form 
energetically. This condition is unlikely to depend on the 
statistics of the c-particles. Hence Eq. (42) should be
valid for all integers, odd or even.
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j

j e∗ n0
vd

Nφ/A

e

H
e∗ e

e∗ = e

Q

B

Q

B−1

 difference 
out

,

p

EH

ρH

fermions, 

Q

The QHE behavior at for any   is 
similar. We illustrate it by taking integer QHE with 

The field magnitude becomes smaller with 
increasing . The    degeneracy is proportional to , 

 must be considered. First consider the 
case    = 2. Without the phonon-exchange attraction the 
electrons occupy the lowest two LL’s with spin. See Fig. 
4 (a). The electrons at each level form c-bosons. 

ν=P/Q Q
ν=P

(= 1, 2,· · ·).
P LL B
P LL’sand hence 

P



 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 : The electrons which fill up the lowest two LL’s, shown in (a) form the QH state at  = 2 in (b) after the 
phonon-exchange attraction and the BEC of the c-bosons.

In the superconducting state the supercondensate occupy 
the monochromatically condensed state, which is 
separated by the superconducting gap  from the 
continuum states (band) as shown in the right-hand 
figure in Fig. 4 (b). The temperature-dependent energy 
gap  is defined in terms of the BCS energy 
parameter . A brief discussion of  is given in 
Appendix D. The c-boson density n0 at each LL is one-
half the c-boson density at  = 1, which is equal to the 
electron density  fixed for the sample. Extending the 
theory to a general integer, we have 

(46) 

 
The critical temperature 

 
for the condensed c-

 which is derived in Appendix     , is  given by  

(47) 

 
and the gap energy 

 
are smaller for higher , making 

the plateau width
 

(a measure of  smaller in 
agreement with experiments. The c-bosons have lower 
energies than the

 
conduction electrons. Hence at the 

extreme low temperatures the supercurrent due to the
 condensed c-bosons dominates the normal current due 

to the conduction electrons and non-condensed
 

c-
bosons, giving rise to the dip in .

 The main advantages of the c-particles theory are:
 •

 
Laughlin’s idea of fractional charges of the 
elementary excitations [14] are not required.

 •
 

The c-particles theory indicates that the strength of 
the QHE is greater at ν

 
=

 
1/3, 1/5, · · ·

 
in the 

descending order than at ν
 

=
 

1 as seen in the 
experiments [15].

 •
 

The half -integer QHE for graphene can be 
described simply, which will be discussed

 
in Section 

IV(a).
 

IV.
 

Discussion
 

a)
 

Half-integer QHE
 The QHE in graphene is observed at filling factor

 

 (48)

 

 

 
  We assume that any c-fermion has the effective 

charge 
 
     for any c-fermion. After

 
studying the 

weak-field fermionic QH states we obtain
 

 (49)

 for the density of the c-fermions with 
 

fluxons. We 
calculate the Hall conductivity 

 
and

 
obtain

 

 

(50)

 
b)

 

The SdH Oscillations

 
The QHE states with integers = 1, 2, · · · are 

generated on the weaker field side. Their

 

strength 
decreases with increasing . Thus, we have obtained 
the rule (48) within the

 

framework of the c-particles 
theory. The period of the sinusoidal oscillations is

 for SdH oscillations.         (51)

 The numerous oscillations in the density of 
states within the width of 

 

generate

 

SdH 
oscillations, see Fig. 2. This is caused by c-fermions 
with two fluxons in the low fields.

 

The c-fermions are 
bound and stable. The cyclotron mass 

 

and the 
magnetotransport

 

mass 
 

are introduced for the 
cyclotron motion and the guiding-center (c-fermion) 
motion,

 

respectively. Careful analysis of the data can 
yield the values of 

 

and .
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εg

εg(T )
εg(T )

ne

n0 = ne/P .

Tc

Tc = 1.24 �vFk
−1
B n

1/2
0 , n0 ≡ N0/A ,

εg
εg )

ν =
2P + 1

2
, P = 0, ±1, ±2, · · · .

ρH

n
(Q)
φ = ne/Q

σH

σH ≡ ρ−1
H =

j

EH
=

2en0vd
vdnφΦ0

=
2e2

h
.

εF
�ωc

|−df/dε|

c) The QH Oscillations
The c-boson in graphene is formed by the 

phonon exchange from a pair of like charge c-fermions. 

Theory of Shubnikov-de Haas and quantum Hall oscillations in graphene under bias and gate voltages

P

ρ

e∗ = e

Q

P

P

m∗
M∗

M∗m∗

bosons,

The half-integer QHE arises from the BEC of the c-
bosons formed by the phonon exchange between a pair 
of like-charge (simplest) c-fermions with two fluxons. 
This can be seen by calculating the Hall resistivity as 
follows:

E

∆

ν

ν



   

 

When ± c-bosons are generated abundantly in the 
system, they undergo a BE

 

condensation and generate 
a superconducting state with an energy gap .

 

The 
signature

 

of the BE condensation is zero resistance, see 
Fig. 1, 

 

= 10. The superconducting state

 

with the 
energy gap is very stable. The rise in 

 

and on 
both sides are of an Arhenius

 

exponential type. The 
period of the sinusoidal oscillations

 

are

 
for QH oscillations.          (52)

 

 

   2. 

  
d) The Gate Field Effect

 

 

 
The data by Tan et al., ref. 1, Fig. 3, are 

reproduced in Fig. 5. If the bias voltage is

 

applied, then 
“holes” will be generated at the boundary surface and 

move. Only “holes” are induced on the metallic surface. 
The “hole” currents are normal and obey Ohm’s law. 
Thus, the currents in A at K are 
proportional to the bias voltages. 

e) The Temperatures-dependent Relaxation Rate 
Tan et al. [1] investigated the temperature 

dependence of the magnetic resistance between 2 and 
50 K, at  = −40 V,      = 3.16 × 1012cm 2 . Their data, 
ref. 1, Fig. 3 are reproduced in Fig. 5. They interpreted 
their data, shown in Fig. 5 in terms of the elevated 
electron temperature. A more natural interpretation is the 
phonon population change. The surface “holes” are 
scattered by phonons populated following Planck’s 
distribution function: 

(53) 

where 
 
is the phonon speed and 

 
the momentum 

magnitude. The high-temperature limit
 

 
(54)

 

generates
 

(55)
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 : (Color online) Temperature dependence of the magnetic resistance  measured at  = −40 V and zero 
bias (after Tan et al. [1]). 

for the relaxation rate   , which is proportional to the 
phonon population f. 

The highlights of the present work are: 
• There are no backgrounds for both SdH and QHE 

oscillations, confirming that graphene is a 2D 
system. 

• For both SdH and QH oscillations the periods of the 
sinusoidal oscillation are the same:  

• The SdH states are described by c-fermions with 
even numbers of fluxons. The c fermions are in the 
negative-energy (bound) states relative to the Fermi 
energy.

 
•

 

The QH states are described by BE-condensed c-
bosons with odd numbers of fluxons.

 

These c-
bosons are in the negative-energy states and are

 
more stable with the

 

superconducting energy gaps 
.

 
•

 

The envelope of the SdH oscillations decreases like 

 

with the

 

magnetotransport 
mass 

 

distinct from the cyclotron mass 

 

when 
plotted as a

 

function of . The envelope grows.
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εg

Rxx rxx

εF
�ωc

f(�sp) =
1

eβ�sp − 1
, β ≡ (kBT )

−1 ,

f ∝ T , T → ∞

γ ≡ τ−1 ∝ f ∝ T

Rxx

εF/�ωc.
π2M∗kBT/�eB)]−1

• The envelope of the QH oscillations also grows and 
ends with the principal QHE at = ±1/2. The half-

µ Vg =−40 V, T= 2 0.

Theory of Shubnikov-de Haas and quantum Hall oscillations in graphene under bias and gate voltages

π/

Vg n

ps

γ≡ τ−1

εg

M∗ m∗
B−1

ν

Thus, the SdH and QH periods match with each other, 
see Eqs. (A11) and (B4). But the phases are different by 

This causes transitions between the oscillation 
maxima and minima.

Graphene and carbon nanotubes are often 
subjected to the so-called gate voltage in experiments. 
The gate voltage polarizes the conductor and the 
surface charges (“electrons”,“holes”) are induced. An 
explanation is given in Appendix F.

Vg

-

[sinh(2

ν

-



  
  

integer QH plateaus arise from the BEC of the c-
bosons formed,

 

each from a pair of like-charge c-
fermions with two fluxons.

 
•

 

The full set of half - integer QHE is given by 

 

= (2 
+ 1)/2,    = 0, 1, 2, · · ·.

 

The

 

weaker QHE occurs on 
the smaller field magnitude side. The strength 
(width) decreases

 

with increasing .

 
V.

 

Appendix

  

: Magnetic

 

Oscillations

 

in

 

2d

 
The statistical weight 

 

is the total number of 
states having energies less than ε

 

=

 

This 

 

is given by

 (A1)
 

 

 
where Θ(x) is the Heaviside step function:

 
 

(A2)
 

We introduce the dimensionless variable   
and rewrite 

 
as

 
 
 

 

 (A3)
 

We assume a high Fermi degeneracy such that
 

 

  

 

(A4)

 

The  sum  in  Eq. (A3)   can   be   computed   by   using 
Poisson’s summation formula:[16]

 
 

 

We write the sum in Eq. (A3) as

 

, (A6)

 

(A7)

 

 

Note  that ) is  periodic  in    and  can 
therefore be expanded in a Fourier series. After

 

the 
Fourier expansion, we set   = 0

 

and obtain Eq. (A6). By 
taking the real part ( ) of

 

Eq. (A6)

 

and using Eq. (A5),

 

we obtain

 

, 

(A8)

where we used 

 

  

1 and neglected   against . 
The integral in the first term

 

in Eq. (A8) yields . The 
integral in the second term is

 (A9)

 

Thus, we obtain

 

. (A10)

 

Using Eqs. (A3) and (A10), we obtain

 

 
 
 
 
 

(A11)
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W (
NL +

1
2

)
�ωc

W

W =
LxLy

(2π�)2
2πΠ∆Π · 2

∞∑
NL

Θ

[
ε−

(
NL +

1

2

)
�ωc

]
,

Θ(x) =



1 if x > 0 ,

0 if x < 0 .

ε∗ ≡ 2πε/�ωcW

W(ε) = C (�ωc) 2

∞∑
NL=0

Θ(ε∗ − (2NL + 1)π) , C ≡ 2πm∗A(2π�)−2 .

µ 	 εF � �ωc .

(A5)

∞∑
n=−∞

f(2πn) =
1

2π

∞∑
n=−∞

∫ ∞

−∞
dτ f(τ)e−inτ .

2

∞∑
n=0

Θ(ε− (2n+ 1)π) = Θ(ε− π) + ψ(ε; 0)

ψ(ε; x) ≡
∞∑

n=−∞
Θ(ε− π − 2π|n+ x|) .

ψ(ε; x

Re{Eq. (A6)} =
1

π

∫ ∞

0

dτΘ(ε − τ) +
2

π

∞∑
ν=1

(−1)ν
∫ ∞

0

dτΘ(ε− τ) cos ντ ,

ε≡2πε/�ωc�

∫ ∞

0

dτ Θ(ε− τ) cos ντ =
1

ν
sin νε .

Re{Eq. (A5)} =
1

π
ε+

2

π

∞∑
ν=1

(−1)ν

ν
sin νε .

W(E) = W0 +Wosc

= C(�ωc)
( ε
π

)
+ C�ωc

2

π

∞∑
ν=1

(−1)ν

ν
sin

(
2πνε

�ωc

)
.

Re
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ν P
P

P

x

x

π ε
ε

A

The -independent term is the statistical weight for 
the system with no fields. The term generates 

magnetic oscillations. There is no term proportional to 
, generating the Landau diamagnetism.

W0 Wosc

B
B2



 

 

(B2)

 

Using sin(A + B) = sin

 

A

 

cos

 

B + cos

 

A

 

sin

 

B and

 

 

we obtain from Eq. (23)

 

 

 

 

(B4)

 

for 

 

VII.

 

Appendix

 

 
: Derivation

 

of

 

Eq. (37)

 

The phonon exchange attraction is in action for 
any pair of electrons near the Fermi

 

surface. In general 
the bound pair has a net momentum, and hence, it 
moves. Such a pair

 

is called a moving pairon. The 
energy 

 

of a moving pairon for 2D case can be 
obtained

 

from the Cooper equation [13]:

 

 

(C1)

 

 
 

 

 
    

 
 

  

Eq. (C1) can be solved as follows. We assume 
that the energy 

 

is negative: 

 

Then,

 

 

Rearranging   the   terms   in   Eq. (C1)  and  dividing 
by 

 

, we

 

obtain

 

(C2)

 

where

 

(C3)

 

which is k-independent. Introducing Eq. (C2) in Eq. (C1), 
and dropping the common factor   , we obtain

 

 

(C4)

 

We now assume a free-electron model. The 
Fermi surface is a circle of the radius (momentum)
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 (B1)

We introduce a new variable and 
 lower limit to and obtain

∫ ∞

0

dε
df

dε

∫ ε

0

dε′ sin
(
2πε′

�ωc

)
=

∫ ∞

0

dε sin

(
2πε

�ωc

)
f(ε) ≡ I .

ζ=β(ε − µ
−∞ (βµ → ∞),∫ ∞

0

dε · · · 1

eβ(ε−µ) + 1
= β−1

∫ ∞

−µβ

dζ · · · 1

eζ + 1

→ β−1

∫ ∞

−∞
dζ · · · 1

eζ + 1
.

∫ ∞

−∞
dζ eiαζ

1

eζ + 1
=

π

i sinh πα
,

I =

∫ ∞

0

dε f(ε) sin

(
2πε

�ωc

)

= πkBT
cos(2πεF/�ωc)

sinh(2π2M∗kBT/�eB)

εF � kBT .

wqa(k, q {ε(|k + q/2|) + ε(| − k + q/2|)}a(k, q)− v0
(2π�)2

∫ ′
d2k′ a(k′, q),

wq wq < 0.

ε(|k + q/2|) + ε(| − k + q/2|)− wq > 0 .

ε(|k + q/2|) + ε(| − k + q/2|)− wq

C(q) ≡ v0
(2π�)2

∫ ′
d2k′ a(k′, q) ,

1 =
v0

(2π�)2

∫ ′ d2k

ε(|k + q/2|) + ε(| − k + q/2|) + |wq| .

kF ≡ (2m1εF)
1/2 , (C5)

where represents the effective mass of an electron. 
The energy is given byε(|k|)

ε(|k|) ≡ εk =
k2 − k2F
2m1

. (C6)
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VI. Appendix : Proof of Eq. (24)

We consider the integral:

(B3)

wq

a(k, q) = C(q)/{ε(|k+ q/2|) + ε(| − k + q/2|)− wq} ,

C(q )

m1

extend 
 the 

)

B

C

)

The prime on the -integral means the restriction on the 
integration domain arising from the phonon exchange 
attraction, see below. We note that the net momentum  
is a constant of motion, which arises from the fact that 
the phonon exchange is an internal process, and hence 
cannot change the net momentum. The pair wave
functions are coupled with respect to the other 
variable    , meaning that the exact (or energy -eigenstate) 

pairon wavefunctions are superpositions of the pair 
wavefunctions 

q

k′

a(k, q)
k

a(k, q).



by
 (C8)

where is given by

(C9)

After   performing  the  integration  and   taking  the 
small -   and small -(            ) limits, we obtain

(C10)

where is given by

 (C11)

VIII.

 

Appendix : Temperature
Dependent Energy Gap

The c-bosons can be bound by the interaction 
Hamiltonian − . The   fundamental c-

where is the reduced wave function for the stationary 
fc-bosons; we neglected the fluxon energy. We obtain 
after simple calculations

 (D2)

where is the density of states per spin at . 
Note that the binding energy does not depend on 
the “electron” mass. Hence, the ±fc-bosons have the 
same energy .

At 0 K only stationary fc-bosons are generated. 
The ground state energy of the system of fc-bosons 
is

where is the − (or +) fc-boson number.
At a finite there are moving (non-condensed) 

fc-bosons, whose energies are obtained from [13]
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 (C7)

We  may  choose  the - axis  along as  shown   in 
Fig. 6. The  - integral can then be expressed

Figure 6 : The range of the interaction variables is limited to a circular shell of thickness 

The prime on the - integral in Eq.  (C4)  means  the
restriction:

0 < ε(|k + q/2|), ε(| − k + q/2|) < �ωD .

k, θ

(2π�)2

v0
= 2

∫ π
2

0

dθ

∫ kF+kD− 1
2
q cos θ

kF+
1
2
q cos θ

kdk

|wq|+ 2εk + (4m1)−1q2
,

kD ≡ m1�ωDk
−1
F .

kD/kF

wq = w0 +
2

π
vFq ,

v0B
(j)†
k′q B

(j)
kq

condensation (BEC) below the critical temperature . 
The fc-bosons are condensed at a momentum along the 
sample length. Above , they can move in all directions 
in the plane with the Fermi speed .   The ground 

w0 =
−�ωD

exp {1/(v0D0)} − 1
< 0 ,

)

w0

W0 = 2N0w0 , (D3)

w
(j)
q

 (D1)

state energy can be calculated by solving the 
Cooper-like equation [13]:

w0Ψ(k) = εkΨ(k)− v0
(2π�)2

∫ ′
d2k′Ψ(k′) ,

w0 =
−2�ωD

exp{2/v0D(0)} − 1
.

w(j)
q Ψ(k, q) = ε

(j)
|k+q|Ψ(k, q)− v0

(2π�)2

∫ ′
d2k′Ψ(k′, q) . (D4)

 (D5)w(j)
q = w0 +

2

π
v
(j)
F |q| ,

where is the Fermi speed. The energy 
depends linearly on the momentum magnitude   .
v
(j)
F ≡ (2εF/mj)

1/2

w
(j)
q

v
(j)
F

w0

Theory of Shubnikov-de Haas and quantum Hall oscillations in graphene under bias and gate voltages

k

kD

q

w0

Tc

Tc

Ψ

D0≡ D(εF εF
|w0|

W0

N0

T

q

k q

For small   , we obtainq

z

kD

bosons (fc-bosons) can undergo a Bose-Einstein 

As expected, the zero-momentum pairon has the lowest 
energy. The excitation energy is continuous with 
energy gap. The energy increases with 
momentum for small . This behavior arises 
from the fact that the density-of-states is strongly 
reduced by increasing momentum and dominates the 

increase of the kinetic energy. The linear dispersion 
relation means that a Cooper pair (pairon) moves like a 
massless particle with a common speed . This 
relation plays a vital role in the BE condensation of 
pairons.

no
wq linearly

q (= |q|) q

q
q2

(2/π)vF

D
εg(T )



where replaced in Eq. (D4). We obtain

 (D10)

where is determined from

. (D11)

The energy difference

(D12)

represents the -dependent energy gap between the 
moving and stationary fc-bosons. The energy is 
negative. Otherwise, the fc-boson should break up. This 
limits to be less than . The energy gap is 

at 0 K. It declines to zero as the temperature
approaches .

IX.

 

Appendix E: Proof of Eq. (d6)

The BEC occurs when the chemical potential μ
vanishes at a finite . The critical temperature can be 
determined from

(E1)
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Note  that  the  gap depends  on    .  At there is
 condensate, and hence vanishes.

The moving fc-boson below with the 
condensate  background  has the  energy        , obtained

 (D9)

made in a sample of constricted geometry. The plateau 
width should vanish at  = 0.

    

Let us take GaAs/AlGaAs. We assume = 
0.067 , = electron mass. For the electron density
1011 cm−2, we have = 1.36 × 106 cm s−1. Not all 
electrons are bound with fluxons since the simultaneous 
generations of ± fc-bosons is required. If we assume

= 1010 cm−2, we obtain = 1.29 K, which is 
reasonable. The precise measurement of may be 

n= (2π�)−2

∫
d2p [eβcε − 1]−1, βc ≡ (kBTc)

−1.

w̃0(T )− w0 ≡ εg(T ) >

w̃0(T )

1 = D0v0

∫
�ωD

0

dε

|w̃0|+ (ε2 +∆2)1/2
.

w̃(j)
q = w̃0 +

2

π
v
(j)
F |q| = w0 + εg +

2

π
v
(j)
F q ,

E(j) ε(j)

w̃(j)
q Ψ(k, q) = E

(j)
|k+q|Ψ(k, q)− v0

(2π�)2

∫ ′
d2k′Ψ(k′, q) ,

 (D8)

where c is the boson speed, and n the density. The brief 
derivation of Eq. (D6) is given in Appendix E. 
Substituting in Eq. (D6), we obtain

(D7)

The  interboson   distance calculated 
from this equation is 1.24 . The boson size 
calculated from Eq. (D7), using the uncertainty relation 

and is

kBTc = 1.24 �vFn
1/2
0 , n0 ≡ N0/A .

c = (2/π)vF

�vF/(kBTc

qmaxr0∼� |w0| ∼ kBTc r0= (2/π)�vF(kBTc)
−1

which is a few times smaller than R0. Thus the bosons

do not overlap in space, and the free boson model is 
justified.

In   the     presence     of    the   BE-condensate 
below the    unfluxed   electron    carries  the

energy  , where the quasielectron 

energy gap is the solution of

E
(j)
k =

(
ε
(j)2
k +∆2

)1/2

1 = v0D0

∫
�ωD

0

dε
1

(ε2 +∆2)1/2

{
1 + exp[−β(ε2 +∆2)1/2]

}−1

, β ≡ (kBT )
−1 .

A similar behavior also holds for graphene. The 
experimental electron density is 3.16 ×1012 cm−2 and
the Fermi velocity = 1.1×106 m/s. The critical 
temperature is expected to be much above 300 K. 
The temperature 50 K can be regarded as a very low 
temperature relative to . Hence the QH state has an 
Arrhenius-decay type exponential stability factor:

where is the zero- temperature energy gap.

exp[−εg(T = 0)/kBT (D13)

εg(T=0)

vF

After expanding the integrand in powers of and 
using , we obtain

 (E2)

yielding formula (D6).

e−βcε

ε = cp

n = 1.654 (2π)−1(kBTc/�c)
2 ,

X. Appendix F:  The  Gate Field

Let us take a rectangular metallic plate and 
place it under an external electric field , see Fig. 7. 
When the upper and lower sides are parallel to the field 

, then the remaining two sides surfaces are polarized 
so as to reduce the total electric field energy. If the plate 
is rotated, then all side surfaces are polarized.

Let us now look at the electric field effect in -
space. Assume a free electron system which has a 
spherical Fermi surface at zero field. Upon the application 
of a static fielfd , the Fermi surface will be shifted 
towards the right by , where is the mean free 
time and the effective mass, as shown in Fig. 8. 
There   is   a   steady   current   since   the   sphere   is  off

qEτ/m∗

w̃q

εg |w0| εg(T)|w0|

vF
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) r0

,,

m∗
me me

n0 Tc
Tc

T c εgsince

Tc

∆

∆ TcT
no ∆

Tc
w̃q

0

T

Tc

Tc

Tc

] ,

T Tc

k

The system of free massless bosons undergoes 
a BEC in 2D at the critical temperature [2]:

kBTc = 1.945 �cn1/2 , (D6)

R0 ≡ 1/
√
n0

.

from

Effect

m∗
τ

E

E

E
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Figure 8 : The Fermi surface is shifted by due to the electric field      . eEτ/m∗

Figure 7 : The surface charges are induced in the conductor under an external electric field .

Theory of Shubnikov-de Haas and quantum Hall oscillations in graphene under bias and gate voltages

E

E

from  the  center  O. We may assume that the ionic 
lattice is stationary. Then, there is an unbalanced charge 
distribution as shown, where we assume q = −e < 0 . 

This effect will appear only on the surface of the metal. 
We used the fermionic nature of electrons.
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