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Multi-Objective Geometric Programming in
Multiple-Response Stratified Sample Surveys
with Quadratic Cost Function

Shafiullah

Absiract- In this paper, the problem of multiple-response in stratified sample surveys has been formulated as a multi-
objective geometric programming problem (MOGPP). The fuzzy programming is described for solving the formulated
MOGPP. The formulated MOGPP has been solved by Lingo software and the dual solution is obtained. Subsequently
with the help of dual solution of formulated MOGPP and the primal-dual relationship theorem the optimum allocations of
multiple-response are obtained. A numerical example is given to illustrate the procedure.

Keywords: multi-objective, geometric programming, multiple-response, fuzzy programming, primal-dual

relationship.

L. INTRODUCTION

Sampling consists of several characteristics that are to be measured on every
selected units of the sample. Such type of sampling are called “Multivariate or Multiple

Response Sampling”. Ghosh (1958) has given a note on stratified random sampling with
multiple characters. Kokan and Khan (1967) proposed an optimum allocation in
multivariate surveys and obtained an analytical solution. Ahsan and Khan (1977) have
obtained an optimum allocation in multivariate stratified random sampling using prior
information. Bethel (1985, 1989) has discussed an optimum allocation algorithm and
sample allocation for multivariate surveys. Jahan et al (1994, 2001) have discussed
generalized compromise allocation and optimum compromise allocation. Jahan and
Ahsan (1995) have obtained an optimum allocation using separable programming.
Recently many authors have worked in the field of multivariate stratified sample
surveys and obtained optimum allocations with the help of different techniques. Some of

them are: Khan et al (2003, 2008), Kozak (2006), Diaz-Garcia and Ulloa (2006, 2008),
Khan et al. (2010), Khowaja et al (2011), Ansari et al (2011), Ghufran et al (2011
Varshney et al. (2011), Khan et al. (2012), Iftekhar et al (2013), Gupta et al (2013),
Raghav et al (2014) and many others have discussed the problem of optimum
allocation in multivariate stratified sample surveys as a multi-objective programming
problem and suggested techniques for solving problems.

The engineering design problem was firstly solved by Duffin and Zener in the
early 1960s with the help of geometric programming (GP) and further extended by
Duffin, Peterson and Zener (1967). Geometric programs are not (in general) convex
optimization problems, but they can be transformed to convex problems by a change of
variables and a transformation of the objective and constraints functions. The convex
programming problems occurring in GP are generally represented by an exponential or
power function. GP is a mathematical programming technique for optimizing positive
polynomials, which are called posynomials. The degree of difficulty (DD) plays a
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significant role for solving a non-linear programming problem by GP method. If the
degree of difficulty of primal problem is zero, then unique dual feasible solution exists. If
the problem has positive degree of difficulty, then the objective function can be
maximized by finding the dual feasible region, and if there is negative degree of difficulty
then inconsistency of the dual constraints may occur. GP method was used by many

authors such as: Ahmad and Charles (1987), Jitka Dupacova (2010), Magbool et al

(2011), Ghosh and Roy (2013), Shafiullah et al/ (2013). Multi-objective geometric
programming  problem  was discussed by Ojha and Biswal (2010), Ojha and Das in
(2010) and Islam, S. (2010) in different fields. Shafiullah et a/ (2014) have discussed the
tuzzy geometric programming in multivariate stratified sample surveys in presence of non-
response with quadratic cost function.

A system with vague and ambiguous information can neither be formulated nor
solved effectively by traditional mathematics-based on optimization techniques nor
probability-based stochastic optimization approaches. However, fuzzy set theory, which
was developed by Zadeh in 1960’s and fuzzy programming techniques provide a useful
and efficient tool for modeling and optimizing such systems. Zimmermann, H. J. (1978)
has discussed fuzzy programming and linear programming. Fuzzy multi-objective
programming is given by many authors such as: Sakawa and Yano (1989, 1994),
Kanaya (2010), fuzzy non-linear programming is given by many authors such as: Tang
and Wang (1997), Tang and Richard (1998), Trappey et al. (1998), Nasseri (2008
Rehana and Mujumdar (2009), Mesbah et al. (2010), Maleki (2002), Kheirfam (2010),
Shankar et al. (2010). Nikoo et al. (2013) have described optimal water and waste-load
allocations in rivers using a fuzzy transformation technique and many others.

In this paper, we have formulated the problem of multiple-response sample
surveys as a multi-objective geometric programming problem (MOGPP). The fuzzy
programming approach has described for solving the formulated MOGPP and optimum
allocation of sample sizes are obtained. A numerical example is presented to illustrate
the procedure.

Y

In stratified sampling the population of N units is first divided into L non-
overlapping subpopulation called strata, of sizes N;,N,,..,N,,...,N_ with Z;leh:N
and the respective sample of sizes within strata are drawn to construct the estimators of
the unknown parameters which are denoted by n,,n,,..,n,,..,n_ with z;:lnh:n. The

total cost C incurred in a sample survey is a function of sample allocations
n,,h=212,---,L

The problem of determining sample sizes N,,h=12,---,L is called the problem of
allocation in stratified sampling literature. Usually, the total cost C incurred in a sample
survey is a function of sample allocations n,,h=212,---,L. The simplest form of the cost
function used in a stratified sample survey is a linear function of sample sizes n, given
as:

L
C=c,+).cn, (1)
h=1

Where ¢,,h=212,---,L denote per unit cost of measurement in the h™ stratum

and c, is the overhead cost.

If the cost of travelling between the selected units within a stratum is significant,
and then the linear cost function may not be a good approximation to the actual cost

incurred. Beardwood et al (1959) suggested that the cost of visiting the c, selected
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units in the h™ stratum may be taken as t,4/n,, h=212--- L, approximately, where t,

is the travel cost per unit in the h" stratum. This conjecture is based on the fact that

the distance between k& randomly scattered points are proportional to JK. Under the
above situation, the total cost of a stratified sample survey will be the sum of the
overhead cost, the measurement cost and the travel cost.

The total cost C which is quadratic in 4/n, is given as:

L L
C=Co+ > CoNy + D tha/ny (2)
h=1 h=1

Ignoring finite population correction (fpc) of the overall population mean
Yi; j=12---,p of the ™ characteristic. ?/jh =1/n, ZEZ Yjn 1s the sample mean from
h" stratum for  j"characteristic and y,, is the value of k" selected unit of the
sample from h"stratum for the jth characteristic k=212,---,n,;h=12,---,L; j=12,---,p
The variance will be given as:

V(y,.)- i(i——va s} 3)

b1 \ Ny

The terms in the above eqn. (3) are independent of n, and therefore it is
sufficient to minimize only

v(y Ja)=il Sh =12 (4)

Multi-objective nonlinear programming problem (MNLPP) for finding out the
optimum compromise allocation for a quadratic cost function is expressed as:

Minv(y )= > SJZ“

h=1

subject to

L L
e, + > tyyn, <C,
h=1 h=1

and n,>20, h=12---,L

sj=1:21"'!p (5)

where C, =C—c, is the cost available to meet the travel and measurement expenses,

V(Y/ja) is the sampling variance and szh,h:l,Z,---,L are the known population

variances.
[11. GEOMETRIC PROGRAMMING APPROACH

The following multi-objective nonlinear programming problem (MONLPP) the

cost function quadratic in /n, and significant travel cost are given as follows:
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Min v (;ljst )=ZL:%

h=1 ''h

Subject to

L L
D ocan, + D thy/n, <Cy,
h=1 h=1

and n, 20, h=12,---/L

j=12:+,P (6)

Similarly, the expression (6) can be expressed in the standard primal GPP with
cost functionquadratic in ,/n, where the travel cost is significant is given as follows:

Max f,, (n)
Subject  f,(n)<1  j=12...p (7)
n, >0, h=12,-,L
where f( Zd n’ nfz--n’,q=012,k
icjla]

or fo(n)= 2 d, {H”p'h} d>0,n,>0,q=012k,

iejla] Lh=
p,, -arbitrary real numbers, d, : positive and fq(n):posi nomials

WZS-2 C t
Let for simplicity a,; =——" & d, =a,=—"=—""
My Co G

The dual form of the primal GPP which is stated in (6) can be given as:

w5 0

q=0iej[q] g=1 \licj[q]
Subject » w, =1 @ 1.
IEZ[O] J=1,...,p- (8)
Z z hVVi:O (i)
goicial |

w, >0,g=01---,kand i=12,....m  (iv)

The above formulated GPP (8) can be solved in the following two -steps:

Step 1: For the Optimum value of the objective function, the objective function always
takes the form:

. Coeffi. of first term )" Coeffi. of Second term )~
C,(X) = w x "
01 02

w'sin the first constraints

y (Coeffl of last term

j (Zw sinthe first cons:tralnts)Z
Wk
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)Zw 'sin the last constraints

(ZW'S in the last constraints

The Multi-Objective objective function for our problem is:

K d )"« Tl

[T | (T 2w

a=0 icifa]| \ Wi a=1 \i<i[a]

Step 2: The equations that can be used for GPP for the weights are given below:
Z W, in the objective function= 1 (Normality condition )

iej[o]

and for each primal variable n,and 4/n, having m terms.

My
Z(wi for eachterm)x (exponent onn, and /n;, inthat term): 0 (Orthogonality condition)
i=1

and W, 20 (Positivity condition).

The above problems (8) has been solved with the help of steps (1-2) discussed in
section (3) and the corresponding solutions W is the unique solution to the dual
constraints; it will also maximize the objective function for the dual problem. Next, the
solution of the primal problem will be obtained using primal-dual relationship theorem
which is given below:

a) Primal-dual relationship theorem

If W;i is a maximizing point for dual problem (9), each optimal values of the
multi-Response model which is the minimizing points (n) for the Primal GPP’'s ()
satisfies the system of equations:

wyviw ), ieJo]
fo; (n): Wi

* ’

VL WOi

ieJ[L] ®)

where L ranges over all positive integers for which Vv, (W;i )>O.

The optimal values of the sample sizes of the problems n, can be calculated with
the help of the primal - dual relationship theorem (9).

[V. Fuzzy GEOMETRIC PROGRAMMING APPROACH
The solution procedure to solve the problem (9) consists of the following steps:

Step-1: Solve the MOGPP as a single objective problem using only one objective at a
time and ignoring the others. These solutions are known as ideal solution.

Step-2: From the results of step-1, determine the corresponding values for every
objective at each solution derived. With the values of all objectives at each ideal
solution, pay-off matrix can be formulated as follows:
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for () fe(n) - fo; () fop ()

(n) o (1%)  fu(®) o f (n) e o, (n®)
(™) f(®)  1o0) -~ f(®) o, (n®)
. - - i 3
() ) fo?) - 1 07) ()
(n(p)) : : : *I
_f01(n(p)) foz(n(p)) -foj(n(p)) fOp(n(p))

Here (n®),(n®),---,(n®),---,(n'?) are the ideal solutions of the objective
functions fy, (n®), f,(N?),---, fo, (n"y,.--, fop(n(”)).

So U =Max{fy,(n®), fp(n®), -, fo, (™)} and L; =’ (n?), j=12.... p.
U and L, be theupper andlower bondsof the | objectivefunction f, (n), j =12..., p.

Step 3: The membership function for the given problem can be define as:

0, if fy,(n)=U,
1, (10,()) = qu(?z)__iokg;) if L, <f,, ()20, j=12....p (10)
1, if fo,(n)<L,

Here U, (n) is a strictly monotonic decreasing function with respect to f;, (n)

Following figure 3.1 illustrates the graph of the membership function u; (fo J- (n))

A

H; (ij (n))

v

L (n) U, (n) fo; (n)
Figure 3.1 - Membership function for minimization variances problem

The membership functions in Eqn. (10)

ie. u,(fo;(N), =1 2,...,p,
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Therefore  the general aggregation function can be defined as

H_ (n):l‘~{ﬂl(f01(n))’/u2(foz(n))’---nup (fOp(n))}

D D
The fuzzy multi-objective formulation of the problem with cost function

quadratic in /n, and significant travel cost can be defined as:

Max u_(n)
Notes T . Lt
Subject to > o+ > " /n) <C-c, =Cy; (11)
G G
n,>0and h=12,--,L

The problem to find the optimal values of (i) for this convex-fuzzy decision based
on addition operator (like Tewari et. al (1987)).Therefore the problem (11) is reduced
according to max-addition operator as

. p U —(f,:(n
Max g (0 )= u,(fo, ()= JU (_(E( )
1= =1 i
Subjectto 3y + Y <C (12)
h=1 C0 h=1 Co
0< u (foj(n))SL
n, 20 and h=12,---,L

The problem (12) reduces to

Max i, (W )=Zp:{u - - lﬁfm_([l))}

=

j b i Tl

Subject to (13)
f,(n) <1,

n, 20 and j=12,...,p.

The problem (13) maximizes if the function Fj(n)=
values.

attain the minimum
Ui - Li

The fuzzy multi-objective formulation of the standard primal problem with cost

function quadratic in /n, and significant travel cost can be defined as:
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p
Min > F,(n)
i=0
Subject to
f,(n)<L

and n, 20, j=12,..,p.

L
where f,(n) = Zé—“n{l + Zé—“\/n_;]
h=1 “~o h=1 “~o

= The dual form of the primal GPP which is stated in (14) can be given as:

Jal
} (i)

3 « d ) |
wacn [T (&) 1] S

a=0icjfq]| \ Wi a1 \icifa]

P Subject D w; =1

Z i<[o]

= k

= 2, 2. P, W=0

Y g=0i<j[q]

i Vv| 201q=01l"',k and i=l2,...,mk
=

% the help of the primal-dual relationship theorem (9).
f V. NUMERICAL EXAMPLE
(a5

(it)

(iii)
(iv)

Frontier Research

g H N, Wh G t, th

,; Sy, S, Sy Sy,

% 1 1500 0.25 1 0.5 28 206 38 120

TE 2 1920 0.32 1 0.5 24 133 26 184

j 3 1260 0.21 1.5 1 32 48 44 173

% 4 480 0.08 1.5 1 54 37 78 92
5 840 0.14 2 1.5 67 9 76 117

(14)

Notes

(15)

The optimal values of the sample sizes of the problems N, can be calculated with

In the table below the stratum sizes, stratum weights, stratum standard
deviations, measurement costs, and the travel costs within stratum are given for four
different characteristics under study in a population stratified in five strata. The data
are mainly from Chatterjee (1968) and rest of data from Ghufran et al (2011).

Table 1 The Values of Ny,W,,c,,t,andS;, for five Strata and four characteristics

The total budget of the survey is assumed to be 1500 units with an overhead cost
B ¢,=300 units. Thus C, =C-c,=1500-300=1200 units are available for measurement
and travel within strata for approaching the selected units for measurement.

For solving MOGPP by using fuzzy programming, we shall first solve the four

sub-problems:

© 2014 Global Journals Inc. (US)



a) Sub probleml:
On substituting the table values in sub-problem 1, we have obtained the
expressions given below:

49 9. 58. 9824 45. 1584 18. 6624 87.9844

Min f,, =
oL n n, Ny n, Ng
ubject to
N otes 0.0008333n, +0.0008333n, +0.00125n,; +0.00125n,, (16)

+0.001667 ng + 0.0004167,/n, +0.0004167,/n,

+0.0008333,/n; +0.0008333,/n, +0.00125,/n; <1
and n,>0,h=12,..L

The dual of the problem (15) is obtained as:

Max v(w)) =((49/we, )" ) ((58.9824/w,, )" )x (45.1584/w,, )" )

% ((18.6624/w,, )" ) ((87.9844/wy5 )" ) {[0 0008333] J

y (0.0008333JW12 y (0.00125JW1 000125
W12 W13 Wl4

§ [0.001667j“’“ ) [0.0004167J (o 0004167le7
W15 W16

[0.0008333JW” [0.0008333JW” (0.00125}”2"

X _— X _— X X

W18 W19 W20

((Wll + W12 + Wl3 + W14 + W15 + W16 + Wl7 + W18 + W19 + WZO)A (17)

(Wll + W12 + W13 + Wl4 + W15 + WlG + W17 + W18 + W19 + WZO)); (I)
Subject to
Wo;+ W+ Woet Wy, Wye=1 (normality condition) (i)
— Wy, + Wy, +(1/2)w, =0
— W, + W, +(1/2)w,=0
— Wy + W5 +(1/2) W, =0
— Wy, +W,, +(@/2)w,=0
—Wgs + W +(1/2)W,= 0

(orthogonality condition) (iii)

Wo1:Woz Wog: Wog » Wos >0
W, Wop \Wog Wi, Wi Wig, (positivity condition) (iv)

Wiz Wag, Wig, W 5 2 0
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For orthogonality condition defined in expression 17(ii/) are evaluated with the

help of the payoff matrix which is defined below

-1 0000100O0O
0O -10000100O00O
00 -1000O0100
000 -100O0O0O10O
000O0O-1000O01

(1/2) 0 0 0 0)|w,
0 (1/2) 0 0 0w,

0 0 (1/2) 0 Of|WMis |=1-We+Wz+W,y=0
000 (U2) 0O|w,

0000 (1/2))|wg

Wi Notes

— Wy, + W, + W, =0
— Wy, + W, +W,, =0

— W, +W,, +W,= 0

— Wy +Wg +W,,= 0

Solving the above formulated dual problem (19), we have the corresponding solution as:

W,, =0.1682412, w,, =0.1845105, w,, =0.1987012, w,, =0.1281561, w,,, =0.3203910

andv(w') =1.503975.

Using the primal dual- relationship theorem (9), we have the optimal solution of
primal problem: 7.e., the optimal sample sizes are computed as follows:

fo; (n): W, V(

In expression (16), we calculate the values of n as:

f01 (n)= W;l V(W:)i )

? — 0.1682412x1.503975

1

= n, =193.6524

f01(n)= W:)3 V(W:)i )
45.1584
Ny
= n, =151.1115

=0.1987012x1.503975

f01(n): W(*)s V(W;i )

87'§844 =0.3203910x1.503975
5

= n, =182.5932

© 2014 Global Journals Inc. (US)

o)

f01(n): W;JZ V(W;i )

289524 _ 0.1845105x1.503975
n2

— n, = 2125498

f01(n): W;4 V(W;i )

180624 _ 0.1281561x1.503975
n,



The optimal values and the objective function value are given below:

n, =193.6524,n, =212.5498,n, = 151.1115, n, =96.8250, n, =182.5932;
and theobjectivevalueof theprimal problemis 1.503975.

2652.25 1811.3536 101.6064 8.7616 1.5876
- + + B

N il n, n; Ny N5
otes SQubject to
0.0008333n, +0.0008333n, +0.00125n, +0.00125n, (18)

+0.001667 ng + 0.0004167,/n, +0.0004167./n,

+0.0008333,/n; +0.0008333,/n, +0.00125,/n; <1
and n,>0 , h=12,..,L

Max v(wj,) =((2652.25/, )" Jx (1811.3536/w,, )" )< ((101.6064/we, )™ |

x((8.7616/wg, ) )¢ (1.5876/wes )" ) HMJ WHJ

= HeeT Hew= ]
o) o

{0.0008333]% (0.0008333j (o.omzsj
X _— X _— X X
W18 W19 WZO

((Wll + W12 + Wl3 + W14 + W15 + W16 + W17 + W18 + W19 + WZO)A (19)
(Wll + W12 + W13 + W14 + W15 + WlG + W17 + Wl8 + W19 + WZO)); (I)
Subject to
W+ Wopt Wogt W, +Wo=1 (normality condition) (ii)

— Wy, + Wy, + (1/2)w, =0
— W, +W,, +(1/2)w,= 0
— W3 + W5 + (1/ 2) w,g = 0 ¢ (orthogonality condition)  (iii)
—Wy, +W,, +(@/2)w,= 0
—Wos + W +(1/2)W,= 0

W017W02 ’WO3 1W04’W05 > O
W,q Wiy Wig Wiy Wi Wi, (positivity condition) (iv)

Wy Wig, W g, W5, 2 0

For orthogonality condition defined in expression 19(iii) are evaluated with the
help of the payoff matrix which is defined below
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-1 0 00
0 -1 00
00 -10
000 -1
0 00O0 -1

1/2) 0 0 0

00 (/2 0
000 (1/2)
0

OO O O

O OO O bk~
O oo + O
o o, © O
o rO O O
= OO O O

Wi, — Woy + Wy + W =0

Wiz | =4 —Wy+W,+Wg=0
Wiq — W, +W, +W,= 0
0 00 M/2))|Ws | |—wy+W: +W,=0

0

0 /2 0 O Of| Wy —Wp, +W, + W, = 0 Notes
0
0

Solving the above formulated dual problems, we have the corresponding solution as:

W,, =0.4590439, w,,, =0.3795607, W, =0.1114193, w,, =0.3320634, W, =0.01676970

andv(w ) =10.78444.

The optimal values and the objective function value are given below:

n, =535.7506,n, =442.5113,n; = 84.5596, n, =24.4661,n, = 8.77846;
and theobjectivevalueof theprimal problemis10.78444.

90.25 69.2224 85.3776 38.9376 113.2096
= + + + +

Min fy =

% n n, Ng n, Ng
Subject to

0.0008333n, +0.0008333n, +0.00125n, +0.00125n,

+0.001667 ng + 0.0004167,/n, +0.0004167,/n,

+0.0008333,/n, +0.0008333,/n, +0.00125,/n; <1
and n,=0,h=12,....L

© 2014 Global Journals Inc. (US)
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Max v(w)) =((90.25/wq, )" )x ((69.2224/m, )" )x ((85.3776/w; )™ )

<((38.9376/wy, )" )x ((113.2006 /i )™ ) [(
o 0008333 [o 00125 (o 00125
W3 Wi,
Notes [[o 001667j } [[o 0004167 J ([o 0004167 }
W15

0. 0008333] }

)
[0.0008333JW18 (o.ooossssj (o.omzs} .
X _— X _— X X )
W18 W19 W20 -
((Wll + W12 + Wl3 + Wl4 + W15 + W16 + Wl7 + W18 + W19 + WZO)A (21)
(Wll + WlZ + W13 + Wl4 + W15 + WlG + W17 + W18 + W19 + WZO)); (I)
Subject to
W, Wt Wost Wy, +Wee=1 (normality condition) (i)

- Wy, + W, +(1/2)w, =0
Wy, + W, +(1/2)w,= 0
— Wy, + Wy, + (1/2)w,g =0 ¢ (orthogonality condition) (iii)
-~ Wy, +W,, +(@/2)w,=0

— Wy + W +(1/2)w,,= 0
WOl'WOZ ’WOB ’WO4 ’ W05 > O
Wy Wp Wy W, Wi Wi, (positivity condition)  (iv)

W17 ’W18 ’ W19 ! WZO e 0

For orthogonality condition defined in expression 20(/i/) are evaluated with the
help of the payoff matrix which is defined below
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Solving the above formulated dual problems, we have the corresponding solution as:

W, =0.1826144, w,, =0.1600251, W, =0.2184575, w,, =0.1479353, W, =0.2909677
andv(w’) =2.349672.

The optimal values and the objective function value are given below:
n, =210.3318,n, =184.0990, n, = 166.3297, n, =112.0186,n, = 165.5889;
and theobjectivevalueof theprimal problemis2.349672.

_ 900 3466.8544 1310.8680 54.1696 268.3044
n n, Ng n, Ng
Subject to
0.0008333n, +0.0008333n, +0.00125n, +0.00125n,
+0.001667 ng + 0.0004167,/n, +0.0004167./n,

+0.0008333,/n; +0.0008333,/n, +0.00125,/n; <1
and n,>0 ,h=12,..,L

Min fy,

© 2014 Global Journals Inc. (US)

(22)

Notes



(900w, )" )x ((3466.8544/w,, )= )« ((1319.8689/wi, )" )

x((54.1696/w;, )" ) ((268.3044 g )= ) ([%] J

(

(

(T HeT N,
el

00008333 (o.ooossss} . (o.omzs} §
W19 W20

(Wll + W12 + W13 + W14 + W15 + W16 + W17 + WlB +W19 +W20)

MaX V(WO| )

Notes

(Wll + W12 + Wl3 + Wl4 + W15 + W16 + Wl7 + W18 + W19 + WZO))l (I)
Subject to
W+ Wt Woet Wy, +Wes=1 (normality condition) (i)
— Wy, + W, +(1/2)w, =0
- Wy, + W, +(1/2)w,,= 0
oo Wag (120 Wog =0 | onality condition) (i)
—Wy, + W, +(1/2)w,=0
— Wy + W +(1/2)w,= 0

WOl’WOZ 'W03 ’W04 ’ W05 > O
Wq Wi Wiz Wiy \Wig Wi, (positivity condition)  (iv)
W7, Wig s Wig, Wy >0

For orthogonality condition defined in expression 23(ii) are evaluated with the

help of the payoff matrix which is defined below
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Solving the above formulated dual problems, we have the corresponding solution as:

W,, =0.1807496, w,,, =0.3538838, W, =0.2688674, Wy, =0.05522913, W, =0.1412701
andv(w') = 23.86496

The optimal values and the objective function value are given below:
n, =208.6433,n, =410.5009, n; = 205.6989, n, =41.09857,n, = 79.5823;
and theobjectivevalueof theprimal problemis23.86496.

VI. CONCLUSIONS

This paper constitutes a reflective study of fuzzy programming for solving the
multi-objective geometric programming problem (MOGPP). The problem of multiple-
response in stratified sample survey has been formulated as MOGPP and the dual
solution is obtained with the help of Lingo software. The optimum allocations are
obtained with the help of primal-dual relationship theorem along with corresponding
dual solution. A numerical example is illustrated to ascertain the practical utility of the

given method in multiple-response stratified sample surveys.
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