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Abstract-

 

The world of finance works better through logistics and there are more to a risk measurement and hedging 
than being coherent. Thus, several predictable assumptions hast been made in other to make risk calculation and 
hedging

 

tractable which both Value-at-risk (VaR) and Conditional tail expectation (CTE or CVAR) ignore useful 
information on target . The question is can the classical law of iterated logarithm(LIL)be centralized for risky and 
contingent hedging capacities? Here we find the imposition of the law of iterated logarithm (LIL) constraint unique and 
complete, hence continuous for the QUEST as it utilizes information in the whole distribution, curbs rate of returns on 
target, provides incentives for risk management and raises challenges of performances and cost.

 

 

I.

 

Introduction

 

Asset-liability management is a means of managing the risk that can arise from

 

the changes inthe relationship between assets and liabilities. In cases such as in portfolio 
containing option as well as credit portfolio (i.e wealth distributions that are highly 
skewed), it is reasonable to consider asymmetric risk measures since individualsare 
typically loss averse.Value-at-risk (VaR) and tail conditionalexpectation (TCE) have 
also emerged in recent years as standard tools for measuring andcontrolling the risk of 
trading portfolios. In some dynamical settings however, the limits of TCEcan be 
transformed into the limits ofVaR and conversely even though TCE is more 
preferableto VaRsince it is coherent and VaR is not.Werecently discovered in literature 
that the law of the iterated logarithm (LIL) obeys these coherencies.

 

The law of the iterated logarithm(LIL) is one of the most important results on 
the asymptoticbehaviour of finite-dimensional standard Brownian motion (Dvoretzky 
and Erdos, 1951). Its classical laws as fundamental limit theorems in probability theory 
plays an important role in the development of probability theory and its application.

 

The original statement of LIL obtained by (Khinchine 1924) is for a class of Bernoulli 

random variables. Kolmogorov(1929) and Hartman-Winter (1941) extended Khinchine’s 
result to large class of independent random variables. Levy (1937)

 

extendedKhinchine’s 
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Notes Optimal Hedging Strategy of Asset Returns 
on Target in Finance Logistics using the Law 

of Iterated Logarithm (Lil) Measure



result to martingales, an important class of dependent random variables. Strassen(1964) 

extended Hartman-wintner’s result to large classes of functional random variable. After 
that the research activity of LIL has enjoyed a rich classical period and a modern 
resurgence (Stout, 1974).To extend the LIL, a lot of fairly neat methods have been 
found (De Acosta, 1983). However, the key in the proofs of LIL is the additivity of the 
probabilities and expectations. In practice, such additivity assumption is not feasible in 
many areas of application because the uncertainty phenomenon cannot be modeled 
using additive probabilities or probability expectations. As an alternative to the 
traditional expectations or probability, capacities or non-linear probabilities                 
/expectations have been studies in many fields such as statistics, finance and economics. 
In statistics, capacities have been applied in robust statistics (Huber 1981), under the 
assumption of two alternating capacity (Huber and strassen, 1973). Financial risk 
management is vital to the survival of financial institutions and the stability of the 
financial system. A fundamental task in risk management is to measure the riskentailed 
by a decision, such as the choice of a portfolio (Osu et al., 2013). Recently, 
thesubstitution of variance as a risk measure in the standard Markowitz (1952) mean-
varianceproblem has been emphasized, because it makes no distinction between positive 
and negativedeviations from the mean. Variance is a good measure of risk only for 
distributions thatare (approximately) symmetric around the mean such as the normal 
distribution or moregenerally, elliptical distributions (Frey and Embrechts, 2006).In 
capital requirement Logistics is the single most powerful force on risk management in 
finance. Because it is the intersection of the virtual and physical world of finance that 
allows one to keep up to date information of where everything and anything are or is 
going at a particular moment (Achi etal, 2013). Money can be invested and produce 
more money. However, investing money involves different level of risks depending on 
the choice of the investment and a high rate or value of money at risk bring about high 
target of positive expected returns. (Gerber 1979).The LIL assumption can be 
represented as the assumption of an expected rate of returns on high target, that is the 

best guess estimate of tomorrow’s return level. Since there is no relevant information 
available at time t that could help forecast returns at time t + 1. It is well known in 
finance that an important framework is calculating the price of uncertainty option 
claim.  

The objective of this work is to investigate if the classical law of iterated 
logarithm can be centralized for the contingent hedging capacities which depends on its 
completeness and uniqueness and to show how one should calculate returns of high 
diversified portfolio to maximize the capital growth in returns by measuring the risk 
involved to know the future returns on target. 

II. Frame work of Lil Hedging Pricing Capacity (Result) 

Consider a sequence of independent and identically distributed (iid) random 

variable 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛with 𝐸𝐸(𝑋𝑋𝑛𝑛) = 0,𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑛𝑛) = 𝜎𝜎2,𝜎𝜎 > 0. Then  

𝑃𝑃 �log𝑛𝑛→∞ 𝑠𝑠𝑠𝑠𝑠𝑠
𝑆𝑆𝑛𝑛

(2𝜎𝜎2 log 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )
1
2

= 1� = 1 .      (2.1)
 

This implies that with probability one and for    

 

lim𝑛𝑛→∞ 𝑠𝑠𝑠𝑠𝑠𝑠
𝑆𝑆𝑛𝑛

(2𝜎𝜎2 log 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )
1
2

= 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞ 𝑠𝑠𝑠𝑠𝑠𝑠
𝑍𝑍𝑛𝑛

(2 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )
1
2
,     (2.2)
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then𝑍𝑍𝑛𝑛 > (𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜)
1
2 for infinitely many 𝑛𝑛 if 𝑐𝑐 < 2, but for only finitely 

many 𝑛𝑛 if 𝑐𝑐 > 2. 
Put in another way, let {𝑋𝑋𝑛𝑛 ,𝑛𝑛 ∈ 𝑊𝑊} be a sequence of iid random variable 

on a probability space {𝛺𝛺,𝔉𝔉,𝑃𝑃}, let 𝑆𝑆𝑛𝑛 =  𝑋𝑋1 + 𝑋𝑋2 + ⋯ and set 𝑍𝑍𝑛𝑛 = 𝑆𝑆𝑛𝑛−𝜇𝜇𝜇𝜇

𝜎𝜎𝑛𝑛
1
2

 (where 𝜇𝜇 

is the expectation and 𝜎𝜎 is the standard deviation). Then we define the law of 
iterated logarithm for a stationary independent process thus:  

𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞ 𝑠𝑠𝑠𝑠𝑠𝑠
𝑍𝑍𝑛𝑛

(2 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )
1
2

= 1.                  (2.3) 

Similarly with probability one, 

𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛→∞ 𝑠𝑠𝑠𝑠𝑠𝑠
𝑍𝑍𝑛𝑛

(2 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 )
1
2

= −1.             (2.4) 

Since a supremum expectation (super hedge) of LIL is sublinear it is continuous, 
hence complete (unique) which makes it have a hedging pricing capacity. 
A good hedging pricing capacity model according to Artzner etal, (1997) must be 
complete, if it is sublinear and continuous. Completeness implies Uniqueness and 
continuous implies completeness.  

Given a set P of multiple prior probability measure on (Ω , 𝑓𝑓), let X be the set of 

random variable on (Ω ,𝑓𝑓), where Ω = sample space and 𝑓𝑓 is the increasing sequence of 

Ω. For any ξ Є X, we define a pair of maximum (super hedge) and minimum 

(subhedge) expectation as (𝔼𝔼,Є)by  (Peng 2006-2009): 

𝐸𝐸 (𝜉𝜉) = 𝑆𝑆𝑆𝑆𝑆𝑆
𝑄𝑄∈𝑃𝑃

𝐸𝐸𝑄𝑄(𝜉𝜉)  ⇒  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝                (2,5)
 

𝐸𝐸 (𝜉𝜉) = 𝐼𝐼𝐼𝐼𝐼𝐼
𝑄𝑄∈𝑃𝑃

𝐸𝐸𝑄𝑄(𝜉𝜉)  ⇒
 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 
ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,              (2.6)

 

where

 
𝐸𝐸𝑃𝑃(. )

 

denotes the classical expectation under probability measure P.

 

Let 

𝜉𝜉 = 𝐼𝐼𝐴𝐴for

 

𝐴𝐴 ∈ 𝑓𝑓, immediately, a pair of (𝑉𝑉,𝑣𝑣)
 

of capacities is given by

 

𝑉𝑉(𝐴𝐴) ∶= sup𝑝𝑝∈𝑃𝑃 𝑃𝑃(𝐴𝐴), 𝑣𝑣(𝐴𝐴) ∶= 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝∈𝑃𝑃 𝑃𝑃(𝐴𝐴), ∀𝐴𝐴 ∈ 𝑓𝑓. 
According to Peng(2007)𝐸𝐸

 

is called sub-linear expectation in the sense that A 

functional𝐸𝐸
 

on 𝑋𝑋
 
⟶ (−∞, + ∞)

 

is called a sub-linear expectation, if it satisfies the 

following properties for all x, y Є
 

X. (coherent properties) 

 

1. Monotonicity:    𝑥𝑥 > 𝑦𝑦implies 𝐸𝐸(𝑥𝑥)  ≥ 𝐸𝐸(𝑦𝑦). 
2. Constant preserving:     𝐸𝐸(𝑐𝑐)  =  𝐶𝐶

 
∀

 
𝐶𝐶

 
Є

 
𝑅𝑅. 

3. Sub-addivity:       𝐸𝐸[𝑥𝑥 + 𝑦𝑦]  ≤
 
𝐸𝐸(𝑥𝑥)  +  𝐸𝐸(𝑦𝑦)

 

hedging property.

 

4. Positive homogeneity:    𝐸𝐸(𝜆𝜆𝑥𝑥)  =  𝜆𝜆
 
𝐸𝐸(𝑥𝑥),∀𝜆𝜆 ≥ 0. 

Note: A sublinear expectation is a supremum expectation (Cheng, 2009).

 

Remark 

 

If a market is complete and self financing, then there exist a neutral probability 

measure P such that the pricing of any discounted  contingent claim ξ
 

in this market is 

given by 𝔼𝔼 (ξ) then by LIL 𝜇𝜇 =  𝐸𝐸𝑝𝑝 (ξ)
 
𝑎𝑎𝑎𝑎𝑎𝑎

 
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

 
σ2 =  𝐸𝐸𝑝𝑝 [(ξ −

 
μ)2]

 

with probability 
one.

 

𝜇𝜇 =  lim𝑛𝑛→

 

∞
1
𝑛𝑛
𝑆𝑆𝑛𝑛 ,   𝜎𝜎 =  lim𝑛𝑛→∞ 𝑆𝑆𝑆𝑆𝑆𝑆(2𝑛𝑛 log log𝑛𝑛)−

1
2|𝑆𝑆𝑛𝑛 −

 
𝑛𝑛𝑛𝑛|where𝑆𝑆𝑛𝑛

 

is the sum of 

the first n of a sample (𝑋𝑋𝑖𝑖)
 

with mean 𝜇𝜇
 
and

 
variance

 
σ2.
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Note; Everysublinear expectation is a supremum expectation /continuous expectation. 
The question is can the classical supremum/ superhedge expectation of LIL be 

centralized for contingent hedging pricing capacity?  By the definition, a pricing hedging 
capacity is c alled continuous capacity if it  satisfies the  following desirable axioms or 
properties.(Wasserman and Kadane 1990). 

Given a set function 𝑃𝑃: 𝑓𝑓 ⟶ [0,1] then it is a continuous capacity if it satisfies 
the following: 

1. Stability property: the system or function is stable if  

2. 𝑃𝑃(𝜙𝜙)  =  0,𝑃𝑃(Ω)  =  1; 
3. If there exist any positive even bounded continuous function P(x) where x ЄR, 

thenfor every 𝑎𝑎, 𝑏𝑏 Є 𝑅𝑅.𝑃𝑃(𝐴𝐴) ≤ 𝑃𝑃(𝐵𝐵) whenever 𝐴𝐴 ⊂ 𝐵𝐵 and 𝐴𝐴,𝐵𝐵 Є𝑓𝑓the function P(x) 
is a self-financing value which completely determines the distribution x and also 
has a mathematical properties of the (2,1,3 and 4)(very important property of 
completeness). 

4. 𝑃𝑃(𝐴𝐴𝑛𝑛) ↑ 𝑃𝑃(𝐴𝐴), 𝑖𝑖𝑖𝑖 𝐴𝐴𝑛𝑛 ↑ 𝐴𝐴, ↑⇒Superhedging (Supremum expectation)  

5. 𝑃𝑃(𝐴𝐴𝑛𝑛) ↓ 𝑃𝑃(𝐴𝐴), 𝑖𝑖𝑖𝑖 𝐴𝐴𝑛𝑛 ↓ 𝐴𝐴,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐴𝐴𝑛𝑛 ,𝐴𝐴Єf ↓⇒ Subhedging . 

III. The Model 

Assuming 𝑃𝑃(ξ)  to be the risk neutral asset, that is the self financing value.If the 

simple European security 𝑉𝑉𝑏𝑏  is hedgeble then for any positive bounded continuous 

function, there assume a portfolio process whose self-financing value process 𝑃𝑃(ξ) of LIL 

supremum expectation that satisfies the continuous capacity property 𝑃𝑃(ξ)  ≤
Vb (x) 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑋𝑋𝑖𝑖is adapted at time 𝑡𝑡for  Vb (x). if the result is satisfied, then it is complete 
and also a martingale. 

a) Lemma 

Suppose 𝜉𝜉 is distributed to 𝐺𝐺 normal 𝑁𝑁�0; �𝜎𝜎2 ,𝜎𝜎2�����, where 0 < 𝜎𝜎 ≤ 𝜎𝜎� < ∞. Let 𝜙𝜙 

be a bounded continuous function. Furthermore, if 𝜙𝜙 is a positively even function, then 

for any 𝑏𝑏𝑏𝑏𝑏𝑏 

𝑒𝑒−
𝑏𝑏2

2𝜎𝜎2� 𝜖𝜖[𝜙𝜙(𝜉𝜉)] ≤∈ [𝜙𝜙(𝜉𝜉 − 𝑏𝑏)] .                              (3.1) 
(see Chen and Hu, 2013 for prove). 

It has been shown by Mao(1997) that if 𝑋𝑋 is the solution of the d- dimensional equation 

𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑓𝑓(𝑋𝑋(𝑡𝑡), 𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑔𝑔(𝑋𝑋(𝑡𝑡), 𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡), 𝑡𝑡 ≥ 0,            (3.2) 

and if there exist positive real numbers 𝜌𝜌,𝑘𝑘 such that for all 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑  and 𝑡𝑡 ≥ 0, 

𝑥𝑥𝑇𝑇𝑓𝑓(𝑥𝑥, 𝑡𝑡) ≤ 𝜌𝜌, and ‖𝑔𝑔(𝑥𝑥, 𝑡𝑡)‖, then; 

lim𝑡𝑡→∞ sup |𝑋𝑋(𝑡𝑡)|
�2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

≤ 𝑘𝑘√𝑒𝑒,     𝑎𝑎. 𝑠𝑠.                       (3.3)

 

Appleby and Wu (2008) had shown also that for 𝑋𝑋

 

a unique continuous adapted 

process which obeys (3.2). Let  𝐴𝐴 ∶= {𝜔𝜔: lim𝑡𝑡→∞ 𝑋𝑋(𝑡𝑡,𝜔𝜔) = ∞}. If 

 

lim𝑥𝑥→∞ 𝑥𝑥𝑥𝑥(𝑥𝑥) = 𝐿𝐿∞ ;𝑔𝑔(𝑥𝑥) = 𝜎𝜎, 𝑥𝑥 ∈ 𝑅𝑅,                                      

 

where 𝜎𝜎 ≠ 0and 𝐿𝐿∞ > 𝜎𝜎2

2
, then 𝑃𝑃[𝐴𝐴] > 0

 

and 𝑋𝑋

 

satisfies  for super hedge;

 

lim𝑡𝑡→∞ sup |𝑋𝑋(𝑡𝑡)|
�2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

=  |𝜎𝜎|, 𝑎𝑎. 𝑠𝑠.𝑜𝑜𝑜𝑜

 

𝐴𝐴, (3.5) and for sub hedge;
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                 (3.4)



lim𝑡𝑡→∞ sup
𝑙𝑙𝑙𝑙𝑙𝑙 𝑋𝑋 (𝑡𝑡)

√𝑡𝑡
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

= −  1
2𝐿𝐿∞
𝜎𝜎2 −1

, 𝑎𝑎. 𝑠𝑠. 𝑜𝑜𝑜𝑜 𝐴𝐴 (3.6) 

Theorem 1 
If 𝑋𝑋 (the capital allocation to the individual risk with 𝑋𝑋 = 𝑋𝑋1 + 𝑋𝑋2 + ⋯𝑋𝑋𝑛𝑛 , where 

𝑋𝑋1 + 𝑋𝑋2, … ,𝑋𝑋𝑛𝑛  are copies of 𝑋𝑋) obeys (3.2) and if the exist positive real numbers𝜌𝜌 and𝐶𝐶2 

such that for 𝑘𝑘𝑘𝑘𝐾𝐾𝑑𝑑
 and 𝑡𝑡 ≥ 0 ,𝑥𝑥𝑥𝑥(𝑥𝑥, 𝑡𝑡) = 𝑃𝑃 and ‖𝑔𝑔(𝑥𝑥, 𝑡𝑡)‖, ≤ 𝐶𝐶2𝐾𝐾 (where ‖∙‖𝑜𝑜𝑜𝑜  denotes 

the operator norm), then and if in addition 𝜓𝜓(𝑡𝑡) = (2 log 𝑡𝑡 + 𝐶𝐶𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙 2𝑡𝑡)
1

2� ,−𝐶𝐶2 = 1
1−𝑐𝑐 

and 

𝑛𝑛 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2. Then 

𝐸𝐸(𝜉𝜉) = 𝑃𝑃(𝐹𝐹𝑛𝑛) = 1
1−𝑐𝑐

(𝑙𝑙𝑙𝑙𝑙𝑙2)
1−𝑐𝑐

4 �𝑐𝑐 > 1 ∶= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑐𝑐 < 1 ∶=    𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�       (3.7) 

Proof; 
Following the method variation of Brownian motion result (Osu, 2003) define the event 

𝐹𝐹𝑛𝑛 = �𝑤𝑤: 𝑆𝑆(ℎ𝑛𝑛) < ℎ𝑛𝑛−1
1 2⁄ 𝜙𝜙(1/ℎ𝑛𝑛−1)� ,                       (3.8) 

where ℎ𝑛𝑛 = 𝑒𝑒−𝑛𝑛𝑛𝑛 , and 0 < 𝜌𝜌 < 1
2
. 

Then the event 
�𝑆𝑆𝑖𝑖(ℎ𝑛𝑛) < ℎ𝑛𝑛−1

1 2⁄ 𝜓𝜓(1/ℎ𝑛𝑛−1)�,                           (3.9) 
for the independent and identically distributed (iid) random variables 

𝑆𝑆𝑖𝑖(ℎ𝑛𝑛) = sup𝑅𝑅 �𝑋𝑋; 𝑡𝑡, 𝑡𝑡 + ℎ), 𝑖𝑖 = 0, 1, … , �
1

2ℎ𝑛𝑛
� ;� 

are independent and have equal probabilities. 
Moreover since 

𝐹𝐹𝑛𝑛 ⊆ � �𝑆𝑆𝑖𝑖(ℎ𝑛𝑛) < ℎ𝑛𝑛−1
1 2⁄ 𝜓𝜓 �

1
ℎ𝑛𝑛−1

��
[1 2ℎ𝑛𝑛⁄ ]

𝑖𝑖=0
 

then 

𝑃𝑃(𝐹𝐹𝑛𝑛) ≤ �𝑃𝑃 �𝑆𝑆0(ℎ𝑛𝑛) < ℎ𝑛𝑛−1
1 2⁄ 𝜓𝜓 � 1

ℎ𝑛𝑛−1
���

[1 2ℎ𝑛𝑛⁄ ]
             (3.10) 

By Kochen and Stone (1964),  and the scaling property, we have 

�𝑆𝑆0(ℎ𝑛𝑛) < ℎ𝑛𝑛−1
1 2⁄ 𝜓𝜓 � 1

ℎ𝑛𝑛−1
�� = 𝑃𝑃 �𝑆𝑆(1) < ℎ𝑛𝑛

−1 2⁄ ℎ𝑛𝑛−1
1 2⁄ 𝜓𝜓 � 1

ℎ𝑛𝑛−1
�� ≤ 1 − 𝐶𝐶0𝜆𝜆𝑛𝑛𝑒𝑒−𝜆𝜆𝑛𝑛

2 2⁄
,      (3.11) 

where 𝜆𝜆𝑛𝑛 = �ℎ𝑛𝑛−1
ℎ𝑛𝑛

�
1
2 𝜓𝜓� 1

ℎ𝑛𝑛−1
�. 

Hence 

𝑃𝑃(𝐹𝐹𝑛𝑛) ≤ �1 − 𝐶𝐶0𝜆𝜆𝑛𝑛𝑒𝑒−𝜆𝜆
2 2⁄ �

[1 2ℎ𝑛𝑛⁄ ]
= (1 − 𝑢𝑢)𝑁𝑁 ,           (3.12) 

say, where 𝑢𝑢 − 𝐶𝐶0𝜆𝜆𝑛𝑛𝑒𝑒−𝜆𝜆
2 2⁄

 and 𝑁𝑁 = [1 2ℎ𝑛𝑛⁄ ]. Andbecause log(1 − 𝑢𝑢) < −𝑢𝑢, then  

(1 − 𝑢𝑢)𝑁𝑁 = 𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙 (1−𝑢𝑢)𝑁𝑁 = 𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
 (1−𝑢𝑢) < 𝑒𝑒−𝑁𝑁𝑁𝑁 .               (3.13) 

But 

𝜆𝜆𝑛𝑛2 = �
ℎ𝑛𝑛−1

ℎ𝑛𝑛
� �2 𝑙𝑙𝑙𝑙𝑙𝑙

1
ℎ𝑛𝑛−1

+ 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙2
1

ℎ𝑛𝑛−1
� 

= �
𝑒𝑒(𝑛𝑛−1)𝑝𝑝

𝑒𝑒−𝑛𝑛𝑝𝑝
� �2 log𝑒𝑒(𝑛𝑛−1)𝑝𝑝 + 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙

 
2𝑒𝑒(𝑛𝑛−1)𝑝𝑝 �
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= {1 + 0(𝑛𝑛𝜌𝜌−1)} �2𝑛𝑛𝜌𝜌 �1 + 0(𝑛𝑛−1) + 𝐶𝐶𝜌𝜌 (𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛 + 0(𝑛𝑛−1)�� 

   = 2𝑛𝑛𝜌𝜌 + 𝐶𝐶𝜌𝜌 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛 + 0(𝑛𝑛2𝜌𝜌−1) 

   = 2𝑛𝑛𝜌𝜌 + 𝐶𝐶𝜌𝜌 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛 + 0(1)since 𝜌𝜌 < 1
2
.                   (3.14) 

Therefore 𝜆𝜆𝑛𝑛~𝐶𝐶1𝑛𝑛1 2𝜌𝜌⁄  and 

𝑁𝑁𝑁𝑁~ 1
𝑒𝑒
𝑒𝑒𝑛𝑛𝑛𝑛 ∙ 𝐶𝐶0𝐶𝐶1𝑛𝑛

1
2𝜌𝜌 exp �−𝑛𝑛𝜌𝜌 − 1

2
𝐶𝐶𝜌𝜌 log𝑛𝑛 + 0(1)� = 𝐶𝐶2𝑛𝑛𝛿𝛿 , 

where 

𝛿𝛿 = 1
2

(1− 𝐶𝐶)𝜌𝜌 > 0if 𝐶𝐶 < 1 .       (3.15) 

Therefore 

𝐸𝐸(𝜉𝜉) = 𝑃𝑃(𝐹𝐹𝑛𝑛) < 𝑒𝑒−𝐶𝐶2𝑛𝑛𝛿𝛿 .       (3.16) 

for large 𝑛𝑛, so that ∑ 𝑃𝑃(𝐹𝐹𝑛𝑛) < ∞∞
𝑛𝑛=1 , and, by Ugbebor (1980),𝐹𝐹𝑛𝑛 happens only 

finitely often. 

Using equation (3.15), we have (for𝜌𝜌 = 1
2
) equation (3.7) as required. 

IV. Application 
We refer to equation (3.7) as the LIL measure. All investment involve some 

element of risk, but we are predicting a measure that will help attain a high target on 
expected returns on a risky portfolio by raising performances and cost. Banks meet their 
target by focusing on the high rate of returns. Hence LIL measure focus on the high rate 
of returns, because higher target implies higher investment which also implies high 
expected returns on target. Hence raises challenges of performance which value at risk 
and conditional value at risk ignore. 

Banks expected returns are the risk free rate of capital plus a market premium.  
That is risk free rate + a market premium;   

𝐸𝐸(𝐵𝐵) = R(x )  +   M(x ) ,            (4.1) 

and risk free rate  equals solvency capital minus capital requirement for the risk. 

Capital requirement is the capital required in respect of a random variable (risk) with 
the view to avoiding insolvency or shortfall. The reason of solvency is to make sure that 
the bank have the financial means to meet its future obligation, to pay the present and 
future claims related to the policy holders and regulators.In order to avoid insolvency 
over the specific horizon at some given level of risk tolerance they should hold asset of 
value that is enough or small enough. Solvency capital requirement for the risk = Assets 

– Liabilities  

A(x ) −   L(x ) = 𝑆𝑆(𝑥𝑥)                (4.2) 

At least for values greater than the relevant 𝑉𝑉𝑉𝑉𝑉𝑉 with probability function 𝑓𝑓(𝑦𝑦) 
then 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 for the normal distribution is shown to be; 

CVARα = 𝜎𝜎
1 − 𝛼𝛼

+  𝜇𝜇ϕ �Qα− μ
σ

�.            (4.3) 

For two and three parameter Weibull, Osu and Ogwo (2012) had shown that 

CVaRα  = 𝑥𝑥
1 – 𝛼𝛼

𝑒𝑒−Qα ,              (4.4) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝛼𝛼  = 𝑒𝑒−Qα

�1 – 𝛼𝛼�
,               (4.5) 

respectively. Equation (4.3) implies that CVAR is a little bigger than VAR and it 
can be adjusted for by adding an inverse of a decay constant (Klygman, 2004).
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V. Emperical Example 

Calculate the CVAR of 1 million portfolio on a 100 basis point per day standard 

deviation, suppose that the daily returns are normally distributed with 𝜇𝜇 = 0 on a 100 
basis point per day. 

Solution 

Using (4.3), we have CVA𝑅𝑅5% = 20 + 16450 = 16470. 

Expected returns = 1m – 16470 = 983530 meaning that there is 5% chance that 
the daily loss on 1m portfolio is equal or exceed only 16470 and a 95% chance that it 

will worth 983530 or more tomorrow. 𝐶𝐶𝐶𝐶𝑎𝑎R1% =  ϕ0.99 = 2.326 ∴  2.326
100

=
0.02326 X 1m =23260 which is𝑉𝑉𝑉𝑉𝑉𝑉_(1%)   on 1m portfolio.Hence, 1m – 23260 = 976740 

is the expected returns. Which means that there is 1% chance that the daily loss on 1m 
portfolio  is equal or exceed only 23260 and 99% chance of being worth 976740 or more 
tomorrow. 

Expected returns = 1m – 23360 = 976640. Which means that there is 1% chance 
that the daily loss on 1m portfolio is equal or exceed only 23360 and 99% chance of 
being worth 976640 or more tomorrow. 

Using (3.7), we have the expected returns 20m—(-5128205.12) =25128205.12 

VI. Conclusion 

It shows that the classical LIL can be centralized for hedging pricing capacity as 
the supremum/sublinear expectation is continuous in the interval [0,1]. Hence 
investigating  LIL for capacities shows that the supremum limit points of it lie with 
probability capacity one between the lower and upper standard bound and also satisfies 
the desirable axioms under the hedging pricing continuous capacity. Here laws of 
iterated logarithm (LIL) has been represented as the assumption of an ERR on a target 

of high diversified portfolio in bank’s capital requirements as it utilizes information on 
the whole distribution, have a continuous hedging capacity, hence complete and unique. 
Which CVAR ignores useful information on. The measure on ERR curbs rates of 
returns on target, provides incentives for risk managers by raising challenges of 
performances and cost.  Making it an optimal computational method to increase 

performances in hedging and banks attaining their targets on focus as it’s application is 
a measure of a multifractal returns on banks portfolios. 
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