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u (0, z) = uo z €N

The system (P) is under homogeneous Dirichlet boundary conditions in a convex smooth
bounded domain © € R" with smooth boundary T' (€ H? (Nandu, € H? (2) Based on Galerkin's
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uniqueness of a global solution for the system (P) is determined. Moreover we show that the
unique solution is positive.
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Weak Solution in Keller Segel Model

C. Messikh ¢, A. Guesmia® & S. Saadi®

Abstract- This paper deals with the global existence, uniqueness and boundedness of the weak solution for the
chemotaxis system (P) defined as

uy — Au~+div (uVe) =0 (t,z) ERT x Q

—Ac+71c=0 x e}
u=0, c= r (P)

u(0,z) = uo ASRY)

The system (P) is under homogeneous Dirichlet boundary conditions in a convex smooth bounded domain
Q € R with smooth boundary T' (€ H3(Tanduo € H? (©2) Based on Galerkin’s method, Lax-Milgran’s Theorem
and maximum principle, a prove of the existence and uniqueness of a global solution for the system (P) is determi-

ned. Moreover we show that the unique solution is positive.
Keywords and Phrases: chemotaxis, global existence, boundedness, positive solution.

l. [NTRODUCTION

Chemotaxis is an important means for cellular communication. It is the in-
fluence of chemical substances in the environment on the movement of mobile
species. This can lead to strictly oriented movement or to partially oriented and
partially tumbling movement. The movement towards a higher concentration
of the chemical substance is called positive chemotaxis whereas the movement
towards regions of lower chemical concentration is called negative chemotactical
movement.

The classical chemotaxis model — the so-called Keller—Segel model — sys-
tem defined in (0.1) was first introduced by Paltak [11] (1953), E. Keller and L.
Segel [9] (1970)

ur — V (aVu) + V (xuVe) =0 (t,z) € RT x R4

acg — Ac+T1e+ fu=0 x € RY (0.1)
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where u(t,x) denotes the density of bacteria in the position z € R? and
at time ¢, ¢ the concentration of chemical signal substance, a > 0 the relax-
ation time, the parameter y the sensitivity of cells to the chemoattractant and
a,T, [ are given smooth functions. As it can be seen, when « # 0 the model is
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called Parabolic-Parabolic while it is an Elliptic-Parabolic model when a = 0.
This modelling is very simple, it exhibits a profound mathematical structure
and mostly only dimension 2 is understood, especially chemotactic collapse.
The proposed model has been extensively studied in the last few years (see
([7]-[8],[12],[13]) for a recent survey articles).

The Parabolic-Parabolic model has been investigated by many authers (see
for examples Refs [8] and [13]), I. Fatkullin [10] had developed numerical method
( a composite particle-grid ) with adaptive time stepping which allows us to R £
resolve and propagates singular solutions when with Neumann boundary condi- €
tion.

The Elliptic-Parabolic model has been investigated by many authers (see for
examples Refs [3] and [4]). This model have been carried out where the main
concern is whether the solution of model is bounded or blow-up. It has been
proved that the solution strongly depends on the spatial dimension. It does
not occur in one-dimensional problems, and it occurs conditionally in higher
dimensional situations. More precisley, see [2] in case higher dimensions (n > 3),
if the norm of initial condition ug is small in space L% (R"), then there are global

weak solutions and if ([ xQuo)d_Q < C'lluo|l71 (gnywith C' is small ,then there
is blow up in a finite time 7. But in two dimension, (see [5]), if [|uol|f: gz
< 87# , there are smooth solutions, and if [[uo| 11 g2y > 87“, there is creation of
a singular measure (blow-up) in finite time.

In this paper we demonstrate the global existence and uniqueness of weak
positive solution for the elliptic-parabolic model’s problem defined as

ur — Au + div (uVe) =0 (t,z) e RT x Q

(P) u(0,2) = ugp x €
—Ac+71c=0 €
(PQ){ c=yg r

Where u(t, z) is a function denotes the density of bacteria in the position
reQcR?or R? Qisabounded convex domain with smooth boundary T, ¢
denotes the concentration of chemical signal that stimulates the bacteria. The
parameter T is a time constant and it is expressed on the one hand the movement
of bacteria (representing a random distribution side and a deterministic drift in
the direction of high concentrations) and secondly the diffusion degradation of
c.

To simplify the solution of the system (P), a decomposition of (P) into two
subsystems (P1) and (P3) are adopted. Lax-Milgram’s Theorem is very impor-
tant theorem which we help us to demonstrate the existence and uniqueness of
a weak solution for the system (Ps). However this theorem can not be applied
directly because it is a nonhomogenous system. For this raison an adopta-
tion of Trace Theorem is used to simplify the system (Ps), and together with
Galerking method we can demonstrate the existence and uniquness of a weak
solution for the system (P;). Therefore we have the existence and uniquness for
the problem (P). Moreover we show that the solution is positive. The follow-
ing initial-boundary conditions on ug and g assumptions are used to prove the
proposed solution of (P)

"10£-08¢ (100%) 9z "W\ [ddy APy "Surpmoidiono jo uonyuasdrd yyim
[opot sTxejOWDID dljoqered B I0] 90UYSTXd [R(O[Y) ‘Iojured *3 ‘Uo[IH "I, [8]

H, ge Lz (D)
H, ge L3 (D)
Hs ug € L2 (Q)
Hy ug > 0 and g > 0.
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If the hypothesis H; is satisfies and using the theorem of trace, one can find
a lifting of this trace which we denote R(g) € Hg (©). Thus by definition it
verifies v, (R (g)) = ¢g. Now looking for ¢ having the form ¢ = ¢+ R (g) reduces
the problem (P3) to ¢.

(ﬁ) —Ac+7¢—AR(g9) +7R(9) =0 inz e
2 c=0 on I’

Definition 1 We say (u,¢) € L? (0,T; H§ () xHj () withu, € L* (0,T; H (Q))

is a weak solution of the problem (P) if and only if
(u,v) + B (u,v,t) =0 (0.2)

a(cq,t)=1(q) (0.3)

where
B (u,v,t) = [, (VuVv + VeVuw 4+ Teuw) da

a(cq) = [, (VeVq+ req) dx
Hq) == Jo (VR(9) Vg +TR(9) q) d

for all (v,q) € (H§ (Q))z, 0<t<T,and
u(0,2) = ug € L (Q) (0.4)

Remark 2 Note that u € C ([0,T];L* () as u € L? (0,T; H} () and u; €
L?(0,T; H (Q)). Then equality (0.4) makes sense.

[1. EXISTENCE OF WEAK SOLUTION OF THE PROBLEM (P)

In this section, use the Theorem of Lax- Milgran to study the existence and
uniqueness of weak solution of problem (Ps), which its variational formulat is
given by equation (0.3) and use the method of Galerking to study the existence
and uniqueness of weak solution of problem (P;), which its variational formulat
is given by equation (0.2). So we have the existence and uniqueness of weak
solution of problem (P).

a) Existence of weak solution of the problem (P2)

Theorem 3 If the hypothesis H; holds. Then the problem (Ps) has only one
solution ¢ € H' (Q) for any q € H* (Q).

By applying the Theorem of Lax-Milgran, the solution ¢ of the problem (0.3)
exists and it is unique. So (P2) has unique solution.

Remark 4 FElliptic regularity Theorem remains valid provided that the bound-
ary condition g 1s in the space L3 (T') which is the image by the operator trace
space H? (2).

Remark 5 [6] If c € H? (Q) and (c is a solution of problem (Ps) ) this implies
that c € WH4(Q) (H? () — Wh1(Q) for 1 < q < 2%).

Using the Maximum Principle one can show that the solution of the problem

(P2) is positive as follows. Multiplying the first equation of (P2) by ¢ € H{ (2),
we obtain other variational formulat for problem (P3)

(153) /Q (VeVg + Teq)dx = 0.
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Proposition 6 [1] Ifg € L2 () andc € H' (Q)NC (Q) then the problem (Pj)

have a positive solution c.
Proof. As I is smooth enough and g € L? (I') then ¢ € H2 (Q). And as  C R2

or R3, by embedding of Sobolev spaces ( H? (ﬁ) — C (ﬁ)) this implies that
ceC(Q). Ifc=g>0onT, then ¢~ =min(c,0) € H} (). So, we have

/Qcc_dx = /Q(c_)zdx

/Vchfdz = /(V07)2d:c,
Q Q

Since the support of functions ¢~ and ¢* = max (¢, 0) is set A(z) = {z/u (z) = 0}.
This implies that Vu = 0 on A(z). As ¢ = ¢ + ¢, thus we have

Notes

0= / (Ver) 47 () da > min (17) e 2
Finally, we find ¢~ = 0.

b) Existence of a weak solution of the problem (P1)

Before proving the existence and uniqueness of weak solution of problem (Py),
we need the following lemma

Lemma 7 i) For all v € H} (Q) then B(.,.,t) is continuous in HE (Q) x
H} (), there exists a constant positive C such that

|B (u,v,1)| < C HU”HI(Q) ||'U||H1(Q) (1.1)

ii) For any u € H} () and Hy is hold. Then there exists a constant positive 3
such that

2
B ”uHHé(Q) <B (uvu7 t)

Proof. i) We use the Cauchy-Shwarz inequality and ¢ € H? (Q) — L7 (Q) for

any q € [1, % [ with n = 2 or n = 3, we obtain i) as follows
B(u,v,t) < ||Vl p2q) IVl 20) + 1Vl Lagoy 1ull 2y VIl e q)
+7 llell zagay 1wl 22y 101 Laga)
<

Cllull gy ol o

ii) Making use of —Ac + 7¢ = 0 the expression of B (u,u,t) becomes

B (u,u,t) = /(Vu)2 + %Vzﬁ + Teu’dr

/(Vu)2 + <Tc - A;) u?dz

1
/(Vu)2 + 570u2d:ﬂ > ||Vu||2LQ(Q) .
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Finally, by Poincarre inequality yields

2
B (uvuvt) > ||u||Hé(Q) :

To demonstrate the existence of weak solution of (Py) via the method of
Galerking, we assume wy, = wy, () are smooth functions verifying
{wi}re, is an orthogonal basis of Hy (Q) (1.2)

and
{wy}72, is an orthonormal basis of L* (). (1.3)

Consider a positive integer m. We will look for a function u,, : [0 T] — H{ (Q)
of the form

U (t) 1= zm: d® (t) wy (1.4)

k=1
which satisfies
dy, (0) = (uo, wi) (1.5)
and
(ul,, wi) + B (U, wg,t) =0, 0<t<Tand k=1,..,m (1.6)

where 1/ = u, and here (.,.) denotes the scalar product in L? (£2).

Theorem 8 (construction of the approzimate solution) For each integer m,
there exists a unique function u,, of the form (1.4) satisfying (1.5) and (1.6).

Proof. Assuming u,, has the structure (1.4). Substituting (1.4) into (1.5) and
using (1.3) we obtained

dp(t)+> dh,B(w,wi,t) =0 0<t<T and k=1,..,m (1.7)
=1

According to standard existence theory for ordinary differential equations, there
exists a unique absolutely continuous functions d,, (t) = (d}n, d,, ..., dﬂ) satis-

fying (1.5) and (1.7). So u,, of the form (1.4) satisfies (1.5) and (1.6) for all
tel0T].

c) Energy estimates

We propose now to send m to infinity and show a subsequence of our solutions
Uy, of the approximation problems (1.5) and (1.6) converges to a weak solution
of (Py). For this we will need some uniform estimates.

Theorem 9 (Energy estimates) [6]. There exists a constant C, depending only
on Q, T and ¢, such that
max w2 q) + HumHLz(o,T; Q) T [l 2075 5-1(0)) < C [uoll 2

0<t<T
(1.8)
form=1,2, ...

Proof. 1. Multiplying equation (1.6) by d¥, (¢), summing for k = 1,...,m, and
then recalling (1.4) we find

(D Um) + B (U, U, t) =0 (1.9)

© 2014 Global Journals Inc. (US)
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for all 0 <t < T. From Lemma 7, there exists constant 8 > 0 such that

2
B HumHHé(Q) < B(um’umvt) (110)
for all 0 <t < T. Consequently (1.10) yields the inequality
d 2 2
pr (||um||L2(Q)) + Blltmlzgy ) <0 forall0<t <T. (1.11)
This implies that
2 2 2
[umllz2 () < lltm (0)I22(q) < lluollpzq) forall0 <t <T. (112)
So we have
Olg%XT ||um||L2(Q) = ||u0||L2(Q)' (1.13)

2. Integrate inequality (1.11) from 0 to 7" and we employ the inequality (1.13)
to find

T
2 2 2
oz, ey = | Nom gy 6 < C ol
0

3. Fix any v € H} (Q), with ”v”?ié(ﬂ) < 1, and write v = v! + v?, where

v! € span (wk)ﬁjln, and (vi,wy) =0 (k=1,...,m). We use (1.6), we deduce
for all 0 <t < T that

(uly, ") + B (tm,v',t) =0.
Then (1.4) implies

!/
m?

(1, 0) = (y,0) = (s ") = =B (um, 01, 1),
consequently

(s V)| < C lltim | 13 () -

2
@ < ||”HH3(Q) < 1. Thus

Since ||ful||i,1
0
1wl =10y < C lumll 3 0 -

and therefore
2 T 2 T 2 2
o0 s = [ Wloscor @6 < C [ Nl e < C ol

d) Existence and uniqueness

Next we pass to limits as m — oo, to build a weak solution of our initial
boundary-value problem (P;).

Theorem 10 (Existence of weak solution). Under hypothesis Hy and Hg, there
exists a weak solution of (Py).

Proof. 1. According to the energy estimates (1.8), we see that the sequence
{um}o_, is bounded in L? (0,T; H} () and {ul,}on_, is bounded in

L? (0, T;H™ 1 (Q)) Consequently there exists a subsequence which is also noted

by {umtoe_; and a functionw € L? (0,T; H} (), withw' € L? (0,T; H~' (2)), such
that

Uy — U weakly in L* (0,T; Hy () (1.14)
u, — u  weaklyin L* (0,T;H " (Q)).

2. Neat fix an integer N and choose a function v € C* (O,T; H} (Q)) having
the form

N
v(t)=>_ d"(t)wy (1.15)
k=1

© 2014 Global Journals Inc. (US)
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where {dk}fj:l are given smooth functions. We choose m > N, multiply equa-
tion (1.6) by d* (t), sum for k =1,...,N, and then integrate with respect to t to
find

T
0

We recall (1.14) to find upon passing to weak limits that
T
/ (u',v) + B (u,v,t)dt =0 Yo € L* (0,T; Hy () . (1.17)
0

As functions of the form (1.15) are dense in L* (0,T; Hg (Q2)). Hence in partic-
ular

(W', v) + B (u,v,t)dt =0 Vv € HY (Q) and ¥Vt € [0 T], (1.18)

and from Remark 2 we have u € C' (O,T; L? (Q)) .
3. In order to prove u (0) = ug, we first note from (1.17) that

/0 —(u,v') + B (u,v,t)dt = (u(0),v(0)) (1.19)

for each v € C* (0,T; H} () with v(T) = 0. Similary, from (1.16) we deduce

T
/0 — (U, V") + B (tm, v, t) dt = (um, (0),v(0)). (1.20)

We use again (1.14), we obtain

T
/ — ) + B (w0, 8) dt = (uo, v (0)), (1.21)
0
since Uy, (0) — ug in L? (Q). Comparing (1.19) and (1.21), we conclude u (0) =
Uug -

Theorem 11 (Uniqueness of weak solutions ) A weak solution of (P1) is unique.
Proof. We suppose there exists two weak solution u; and us. We put

U:uQ—ul

then U is also a solution of (Py)with Uy = (ug —u1) (0) = 0. Setting v =U in
identity (1.18) we have
d (1

From Lemma 7 we have B (U,U,t) > 3 ||U||§I&(U) >0, so & (% ||UH2LQ(U)) <o,
then integrate with respect to t to find

2 2
U2 0y < I1UollL2(0) = 0,

thus U = 0.
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e) Global solution of problem (P)

Our main results in this paper are stated as follows.

Theorem 12 i) if ¢ > ¢y > 0. Then la solution (u,c) of problem (P) is global
it) if ¢ > ¢o > 0. Then la solution (u,c) of problem (P) is global. Further-
more there exists 7o > 0 such that ||ul| . < e ™ |Jug 2 -

Proof. We put
1
E(t) = 7/ u?dx (1.22)
Q

We derivate the equation (1.22) and we use firsts equations of (P1) and (P2) to
find

i) We have
dE
E = —B(U,U7t) < O,
therefore
E(t) < E(0)
ii) We have
dE

dt

This implies that
E(t) < E(0)e ™"

Proposition 13 [1] Letug € L? () andu € C ([0,T]; L? (Q))NL? (0,T; H} () is

the unique weak solution of (Py). If ug >0 in Q, then u > 0 in ]0,T[ x Q.
Proof. If up > 0 on T'. Therefore u~ = min (u,0) € L? (]0,T[; H} (). A
reasoning similar to the Proposition 6, we obtain for all0 <t <T

1d

3 ; (u*)zdz +/QB (u*,u*,t) dx = 0.
Using the Lemma 7 and integrating with respect to T from 0 to t, we get

%/Q(U_)zdx-i-ﬂ/o [t () 177 0y ds < %/Q(u_ (0))*dz = 0.

Since u~ (0) = (ug)” =0. Sou™ =0.
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