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Abstract-  Assuming that a particle follows the discrete 
Bernoulli process with a step size proportional to one over 
twice its mass and that the vacuum is made up of particles 
with the reduced Planck mass, one can derive both Newton’s 
Law of Gravitation and Coulomb’s Law of Electric Force using 
slightly different parameters of the process. Two classes of 
experiments, which could affirm the hypothesis, would indicate 
a preferred reference frame. 
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I. Introduction 

f one assumes that the information in the Universe is 
finite, one should conclude that space-time is discrete 
because not enough information exists to describe a 

variable or an observable to a continuous value.  Haller 
[1] gives reasons why one would believe that the 
information in a system with finite energy and finite time 
is finite. 

We must also understand the length scale of the 
discrete step size of a particle and that of the gravity 
field before we can make a viable theory.  Haller [2] 
shows that the step size of a particle is equal to one over 
twice the particle mass and that of the vacuum is one 
over twice the reduced Planck mass. 

With this we can derive an understanding of 
how gravity and electricity work; how they are similar and 
how they are different. 

Work is still needed to fully integrate this derived 
stochastic process with relativity, however clues are left 
which indicates that the probability a particle steps to the 
left or steps to the right, is a feedback between the 
particle’s state and the curvature of space. 

II. Bernoulli Process 

Introducing the Bernoulli process as reviewed 
by Chandrasakhar and Reif [3,4], we see a stochastic 
process where the result of a sample of a uniform 
distribution between zero and one is compared against 
the process parameter 𝛽𝛽. If the sample is less than 𝛽𝛽, 
the particle steps to the right, otherwise it steps to the 
left.The time between steps is quantized to δt and the 
length of the steps is also quantized to  𝛿𝛿𝛿𝛿.  
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The process can be expanded to 3+1 
dimensions but for the purposes here we will forgo 
relativistic effects of the +1 time dimension and further 
align the particles on the x axis so we can focus on only 
the 1 spatial dimension. 

a) Step size of a particle 
Building on analysis by Kubo on the fluctuation 

dissipation theorem [5], we formalize the 2 time 
constants for a diffusing free particle: the collision time, 
δt and the relaxation time, 𝜏𝜏 . When the relaxation time is 
equal to the thermal time , 𝜏𝜏 = ℏ 2𝑘𝑘𝐵𝐵𝑇𝑇⁄ ,  the diffusion 
constant becomes, 𝐷𝐷 = ℏ 2𝑚𝑚⁄ , [1,2,5-7] and the spatial 
variance is (∆𝛿𝛿(𝑡𝑡))2 = 2𝐷𝐷𝑡𝑡 = ℏ𝑡𝑡 𝑚𝑚⁄ . 

To derive the step size,𝛿𝛿𝑡𝑡 , (or the collision time) 
we can look at the variance.  The contribution to the 
spatial variance is balanced between drift and diffusion; 
when the probability parameter is ½ the variance is, 

(∆𝛿𝛿(𝐾𝐾))2 = 𝛿𝛿𝛿𝛿2𝐾𝐾 + (∆𝑣𝑣𝐾𝐾)2(𝛿𝛿𝑡𝑡𝐾𝐾)2 

Here 𝛿𝛿𝛿𝛿 is the spatial step size, K is the number of 
steps  𝑡𝑡 = 𝐾𝐾 ∙ 𝛿𝛿𝑡𝑡 is the duration of the process and 
(∆𝑣𝑣𝐾𝐾)2 is the variance in velocity after K steps.  From 
Dirac, we know that 𝛿𝛿𝛿𝛿 = 𝑐𝑐 ∙ 𝛿𝛿𝑡𝑡 [8] which allows us to 
calculate (∆𝑣𝑣𝐾𝐾)2.   

When 𝐾𝐾 is large, the average variance of the sum 
of 𝐾𝐾 samples of a distribution is equal to the variance of 
the individual sample divided by 𝐾𝐾  [9]. 

(∆𝑣𝑣𝐾𝐾)2 =
(∆𝑣𝑣1)2

𝐾𝐾
=

1
2 �
𝛿𝛿𝛿𝛿
𝛿𝛿𝑡𝑡�

2
+ 1

2 �
−𝛿𝛿𝛿𝛿
𝛿𝛿𝑡𝑡 �

2

𝐾𝐾
=
𝑐𝑐2

𝐾𝐾
 

Equating (∆𝛿𝛿(𝑡𝑡))2  and (∆𝛿𝛿(𝐾𝐾))2  which ℏ𝑡𝑡 𝑚𝑚⁄ =
2𝛿𝛿𝛿𝛿2𝐾𝐾, results in, 

𝛿𝛿𝑡𝑡 =
ℏ

2𝑚𝑚𝑐𝑐2 

Thus when the relaxation time is equal to one over twice 
the temperature  𝜏𝜏 = ℏ 2𝑘𝑘𝐵𝐵𝑇𝑇⁄ , the collision time is one 
over twice the energy 𝛿𝛿𝑡𝑡 = ℏ/2𝑚𝑚𝑐𝑐2, and visa versa. 

b) Gravitational scale 
I will not go into the detailed theory of dark 

particles as a tradeoff of simplicity overdeep insight, yet 
one can find that analysis here [2]. 

The gist is that the vacuum is made up of 
particles with the reduced Planck mass 

𝑚𝑚𝑝𝑝 = � ℏ𝑐𝑐
8𝜋𝜋𝜋𝜋
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A number of special conditions arise at this 
value of mass.  One of these is that the quantum step, 
𝛿𝛿𝛿𝛿 = ℏ 2𝑚𝑚𝑐𝑐⁄ , is equal to a circle’s circumference with 
the Schwarzschild radius.   

ℓ𝑝𝑝 = 2𝜋𝜋𝑅𝑅𝑆𝑆 =
4𝜋𝜋𝜋𝜋𝑚𝑚𝑝𝑝

𝑐𝑐2 = 𝛿𝛿𝛿𝛿 =
ℏ

2𝑚𝑚𝑝𝑝𝑐𝑐
 

c)
 

Electrical scale
 

The step size, or scale of the electric field, of a 
particle can be derived with the help of an old idea; 
namely electromagnetic

 
mass[10,11].  

 

Consider the electromagnetic energy, 𝐸𝐸𝑒𝑒𝑚𝑚 , 
equal to the mass energy of the particle,

 

𝑚𝑚𝑐𝑐2 = 𝐸𝐸𝑒𝑒𝑚𝑚
 

To find
 
𝐸𝐸𝑒𝑒𝑚𝑚 , we add the electrostatic energy,𝐸𝐸𝑒𝑒𝑒𝑒 , 

to the Poincaré stresses, 𝐸𝐸𝑝𝑝𝑒𝑒 = 𝐸𝐸𝑒𝑒𝑒𝑒/3,we get the total 
electromagnetic energy, 𝐸𝐸𝑒𝑒𝑚𝑚 [10],

 
or

 

𝑚𝑚𝑐𝑐2 = 4𝐸𝐸𝑒𝑒𝑒𝑒/3 = 4𝐸𝐸𝑝𝑝𝑒𝑒
 

We can solve for 𝑟𝑟𝑒𝑒
 
byusing an ansatz, such that 

the resulting 𝑟𝑟𝑒𝑒
 
gives the correct form for Coulomb’s 

Law.  Note that appendix A gives further reason why this 
ansatz is reasonable.

 

The ansatz is that the Poincaré
 

stresses are 
equal 

 
to 

 
the 

 
electrostatic

  
energy 

 
of 

 
a

  
spherical 

 
shell

 

of   total   charge
   

equal  
 
to   the

   
minimum  

 
quantum 

 

charge,
 
𝑞𝑞𝑒𝑒/3.

 

𝐸𝐸𝑝𝑝𝑒𝑒 =
(𝑞𝑞𝑒𝑒/3)2

2(4𝜋𝜋𝜀𝜀0)𝑟𝑟𝑒𝑒

 

Or, 
 

𝑟𝑟𝑒𝑒 =
2𝑞𝑞𝑒𝑒2

9(4𝜋𝜋𝜀𝜀0)𝑚𝑚𝑐𝑐2

 

However the length we are interested in is, 
the wavelength that fits around a sphere of this radius, 
(just like ℓ𝑝𝑝 = 2𝜋𝜋𝑅𝑅𝑆𝑆)

 
thus

 

ℓ𝑒𝑒 = 2𝜋𝜋𝑟𝑟𝑒𝑒 =
𝑞𝑞𝑒𝑒2

9𝜀𝜀0𝑚𝑚𝑐𝑐2

 

III.
 

Force
 
as a

 
Stochastic

 
Process

 

a)
 

Velocity as a probability
 

Going back to the Bernoulli process of motion 
we can see a relationship between the average velocity 
and the probability parameter, β.  

 

𝛿𝛿(𝐾𝐾)������� = (2𝛽𝛽 − 1)𝛿𝛿𝛿𝛿𝐾𝐾

 

Where

  

𝛿𝛿𝛿𝛿𝐾𝐾 = 𝑐𝑐𝛿𝛿𝑡𝑡𝐾𝐾 = 𝑐𝑐𝑡𝑡.

 

We know from above 
the relaxation time is 𝜏𝜏 = ℏ 2𝑘𝑘𝐵𝐵𝑇𝑇

 

⁄

 

and is representative 
of how long the process stays coherent.  In other words, 
τ

 

is the time over which the particle forgets its state.  
Thus we can define the moving average velocity as

 

�̅�𝑣 =
𝛿𝛿 �𝐾𝐾 = 𝜏𝜏

𝛿𝛿𝑡𝑡�
��������������

𝜏𝜏
= 𝑐𝑐(2𝛽𝛽 − 1) 

Or, 

𝛽𝛽 =
𝛿𝛿 �𝐾𝐾 = 𝜏𝜏

𝛿𝛿𝑡𝑡�
��������������

2𝑐𝑐𝜏𝜏
+

1
2

 

Note that the instantaneous velocity is one of 
the two velocity Eigen values, ±c, however  ∈[-c,c]; 
which is mathematically nice since 𝛽𝛽 ∈ [0,1]. 

b) Resistive Force – an aside 
In the derivation of dark particles [2], one finds a 

resistive force for dark particles that we need to briefly 
consider here as it adjusts our expression for β.  The 
force can be derived a few ways and has the simple 
expression   𝐹𝐹 = −𝑚𝑚𝛿𝛿/𝜏𝜏2.   Haller  shows   that   when   
this    force    is    in    play,    it     contributes   to   β   an    
amount   𝛽𝛽 = −𝛿𝛿/4𝑐𝑐𝜏𝜏 + 1/2 [2]. 
Thus our expression for β for dark particles becomes, 

𝛽𝛽 −
1
2

=
𝛿𝛿 �𝐾𝐾 = 𝜏𝜏

𝛿𝛿𝑡𝑡�
��������������

2𝑐𝑐𝜏𝜏
−
𝛿𝛿 �𝐾𝐾 = 𝜏𝜏

𝛿𝛿𝑡𝑡�
��������������

4𝑐𝑐𝜏𝜏
=
𝛿𝛿 �𝐾𝐾 = 𝜏𝜏

𝛿𝛿𝑡𝑡�
��������������

4𝑐𝑐𝜏𝜏
 

c)
 

β changing due to a force 
 

With this definition of v
 
̅
 
we can consider how v

 
̅

and β
 
(through feedback) are a function of time and thus 

also a function of space as  it moves.
 

As stated above we will limit ourselves to non-
relativistic particles, thus we have the relationship 
between the force on a particle of mass 

 
𝑚𝑚1

 
and β

 

𝐹𝐹 =
𝑑𝑑𝑝𝑝
𝑑𝑑𝑡𝑡

= 𝑚𝑚1
𝑑𝑑�̅�𝑣
𝑑𝑑𝑡𝑡

= 2𝑐𝑐𝑚𝑚1
𝑑𝑑𝛽𝛽
𝑑𝑑𝑡𝑡

 

d)
 

Stocastic process
 

Now imagine the force between two particles.  
For the sake of simplicity (since we assume Newton’s 
third law), we will consider only the force on particle 1 
due to interaction with particle 2.  Again for simplicity we 
take   particle

 
1 at the origin

 
and particle

 
2

 
on  the

 
x axis 

at R.
 

Particle 2, like particle 1, follows the Bernoulli 
process.  As such it accelerates between its two velocity 
Eigen values, ±c.  As it accelerates at each step, it     

𝑑𝑑𝑡𝑡 = Φ
ℏ

2𝑚𝑚2𝑐𝑐2

 

Where Φ
 
is the probability the emitted radiation 

from particle 2 is in the direction of particle 1 and 
captured (and processed).

 

Since the direction of the radiation wave vector is 
random and uniformly distributed across solid angle,Φ,

 

is the cross section of particle 1, σ, divided by the 
surface area of a sphere, A, with a radius equal to the 
distance between particle 1 and particle 2, R.
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A

)

)

v ̅

ℓ𝑒, 

radiated energy 𝛿𝑡2. Thus  𝑑𝑡 = Φ𝛿𝑡2, or



Φ =
σ
𝐴𝐴

=
σ

4π𝑅𝑅2 

Putting this together we have, 

𝐹𝐹 =
4𝑚𝑚1𝑚𝑚2σ𝑐𝑐3𝑑𝑑𝛽𝛽

4𝜋𝜋𝑅𝑅2ℏ
 

e) Findingd β 
Now if particle 1 captures the emitted radiation 

the effect is to change the probability parameter 𝛽𝛽, by 
artificially (outside the Bernoulli process) stepping the 
particle towards or away from the direction of the 
radiation a distance  𝜁𝜁.   

If particle 1 artificially steps the distance 𝜁𝜁, then 
the difference in average displacement (to first order in 
low velocity) between the artificial step and no artificial 
step is 𝜁𝜁. 

𝛿𝛿 �
𝜏𝜏
𝛿𝛿𝑡𝑡
�

��������
𝑒𝑒𝛿𝛿𝑡𝑡𝑟𝑟𝑒𝑒  𝑒𝑒𝑡𝑡𝑒𝑒𝑝𝑝

− 𝛿𝛿 �
𝜏𝜏
𝛿𝛿𝑡𝑡
�

��������
𝑛𝑛𝑛𝑛  𝑒𝑒𝛿𝛿𝑡𝑡𝑟𝑟𝑒𝑒  𝑒𝑒𝑡𝑡𝑒𝑒𝑝𝑝

= 𝜁𝜁 

IV. Gravity 

Using our result above for the quantization of 
the gravity scale, we have the artificial step size,𝜁𝜁, equal 
to the quantum step size of the dark particle, or 

𝜁𝜁 = ℓ𝑝𝑝𝒌𝒌� 

Where 𝒌𝒌� is in either the positive or negative 
direction   of  the  vector  pointing  from  particle 1 to   
particle 2. 

Using our expression for 𝛽𝛽 for dark particles 
from section 3.2, we find  

𝑑𝑑𝛽𝛽 =
𝜁𝜁

4𝑐𝑐𝜏𝜏
=

ℓ𝑝𝑝
4𝑐𝑐𝜏𝜏

𝒌𝒌� 

To find the cross section, σ, of dark particles Haller uses 
a modified Langevin equation that accounts for the 
resistive force mentioned in section 3.1 [2]. Or, 

σ = (Δ𝛿𝛿)𝑝𝑝2 =
ℏ2

2𝑚𝑚𝑝𝑝𝑘𝑘𝐵𝐵𝑇𝑇
 

Plugging these in and reducing we have, 

𝐹𝐹 =
𝜋𝜋𝑚𝑚1𝑚𝑚2

𝑅𝑅2 𝒌𝒌� 

We learn through empirical evidence that the artificial 
step of particle 1, 𝜁𝜁,is always in the direction towards 
particle 2, 𝒌𝒌�  = −𝑹𝑹�, thus we derive Newton’s Law of 
Gravity, 

𝐹𝐹 =
−𝜋𝜋𝑚𝑚1𝑚𝑚2

𝑅𝑅2 𝑹𝑹� 

V. Electricity 

Using our result above for the quantization of 
the electric scale, we have the artificial step size,𝜁𝜁, equal 
to the circumference, ℓ𝑒𝑒 , of a sphere of radius, 𝑟𝑟𝑒𝑒 . 

𝜁𝜁 = ℓ𝑒𝑒𝒌𝒌� =
𝑞𝑞𝑒𝑒2

9𝜀𝜀0𝑚𝑚2𝑐𝑐2 𝒌𝒌� 

Using our original expression for β from section 3.1, 

𝑑𝑑𝛽𝛽 =
𝜁𝜁

2𝑐𝑐𝜏𝜏
 

However this is not the whole picture as we 
must account for the charge of either particle 1 or 
particle 2 being a multiple ofthe minimum quantum 
charge, 𝑞𝑞𝑒𝑒/3.  If |𝑞𝑞2|/(𝑞𝑞𝑒𝑒/3) is greater than one, then the 
frequency of interaction, 1/𝑑𝑑𝑡𝑡, will go up by this amount 
since there are more charged particles which are 
radiating.  Thus 

1
𝑑𝑑𝑡𝑡

→
3|𝑞𝑞2|
𝑞𝑞𝑒𝑒

1
𝑑𝑑𝑡𝑡

 

Also if |𝑞𝑞1|/(𝑞𝑞𝑒𝑒/3) is greater than one, thenζwill 
go up by this amount. It is as if the massive charged 
particle is a Turing Machine [12] that executes the 
following computer code: 

for   i = 1 to  (3|𝑞𝑞1|/𝑞𝑞𝑒𝑒) 

                 𝛽𝛽 = 𝛽𝛽 + 𝜁𝜁
2𝑐𝑐𝜏𝜏

𝒌𝒌� 

The cross section will be similar to σ from section 
4, in that σ equals the spatial variance.  However in this 
case the resistive force is not in play, thus (Δ𝛿𝛿)𝑚𝑚1

2  
reduces to the common expression [10]. 

σ = (Δ𝛿𝛿)𝑚𝑚1
2 =

ℏ2

4𝑚𝑚1𝑘𝑘𝐵𝐵𝑇𝑇
 

Plugging these in and reducing we have, 

𝐹𝐹 =
|𝑞𝑞1||𝑞𝑞2|
4𝜋𝜋𝜀𝜀0𝑅𝑅2 𝒌𝒌� 

Again through empirical evidence 

𝒌𝒌�  =
𝑞𝑞1

|𝑞𝑞1|
𝑞𝑞2

|𝑞𝑞2|𝑹𝑹
� 

We thus returnCoulomb’s Law, 

𝐹𝐹 =
𝑞𝑞1𝑞𝑞2

4𝜋𝜋𝜀𝜀0𝑅𝑅2 𝑹𝑹� 

VI. Discussion 

Since most experiments require many data 
points to find the signal of interest, we are in the realm of 
the weak law of large numbers; which means the mean 
(or measurements) approaches the expectation (or 
calculation) of the underlying continuous theory.   

However if we look at the individual 
measurement we might be able to identify tell tale signs 
of particles being more stochastic in Nature.     

Another way to find evidence of this stochastic 
description of motion and of force is to change the 
notion of evidence away from the average value to the 
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value of the variance.  One example comes in the 
nuances of an attempt to make this theory conform to 
special relativity. 

Sparing the reader more details, the gist can be 
found by looking at the quantum step size , 𝛿𝛿𝑡𝑡. If we 
consider δt proportional to the inverse of the relativistic 
energy and not the rest mass [13], we have 

𝛿𝛿𝑡𝑡𝛾𝛾 =
ℏ

2𝛾𝛾𝑚𝑚0𝑐𝑐2 

Where  

1
𝛾𝛾

= �1 − �
𝑣𝑣
𝑐𝑐
�

2
 

Now looking at the variance of the displacement 
which contracts with relative velocity we have from the 
continuous solution  

(∆𝛿𝛿(𝑡𝑡))2 =
2𝐷𝐷𝑡𝑡
𝛾𝛾2 = 2𝐷𝐷𝑡𝑡 �1 − �

𝑣𝑣
𝑐𝑐
�

2
� 

From the stochastic solution when 𝛽𝛽 ≠ 1
2
 we have 

(∆𝛿𝛿(𝐾𝐾))2 = 4𝛽𝛽(1 − 𝛽𝛽)(𝛿𝛿𝛿𝛿2𝐾𝐾 + (∆𝑣𝑣𝐾𝐾)2(𝛿𝛿𝑡𝑡𝐾𝐾)2)
= 4𝛽𝛽(1 − 𝛽𝛽)2𝐷𝐷𝑡𝑡 

Plugging in our relationship �̅�𝑣 = 𝑐𝑐(2𝛽𝛽 − 1)  

(∆𝛿𝛿(𝐾𝐾))2 = 2𝐷𝐷𝑡𝑡 �1 − �
�̅�𝑣
𝑐𝑐
�

2
� 

At first one might claim success and equate 
(∆𝛿𝛿(𝐾𝐾))2 with (∆𝛿𝛿(𝑡𝑡))2 . However at second glance 
there are two problems wrong with this.  First we used, 
𝛿𝛿𝑡𝑡 not 𝛿𝛿𝑡𝑡𝛾𝛾 .  Plugging in for 𝛿𝛿𝑡𝑡𝛾𝛾  

(∆𝛿𝛿(𝐾𝐾))2 = 2𝐷𝐷𝑡𝑡 �1 − �
𝑣𝑣
𝑐𝑐
�

2
��1 − �

�̅�𝑣
𝑐𝑐
�

2
� 

We now have two factors, �1 − �𝑣𝑣�
𝑐𝑐
�

2
� and 

�1 − �𝑣𝑣
𝑐𝑐
�

2
�.We know the later is related to the 

contraction of space due to special relativity.  However 
the former has a different origin. 

We can see this origin by looking at the second 
problem, which is that β is the probability the particle 
steps to the right.  A sample of this process will have the 
particle step to the left or step to the right.  This 
distinction is absolute and does not dependent on 
reference frame. 

The conclusion is that a preferred reference 
frame exists and �̅�𝑣 = 𝑐𝑐(2𝛽𝛽 − 1) is the velocity of the 
particle in the preferred frame.  One might find more 
background on what this preferred frame looks like from 
Lorenz’s ether theory [11]. 

a) Experiment 
I propose two classes of experiments. One 

class is to measure the variance of diffusion and look for 

the additional factor of �1 − �𝑣𝑣�
𝑐𝑐
�

2
�.  The other class is to 

determine the direction of a particle’s discrete step.   
i. Variance 

Two experiments within this class are to 
measure the variance of a particle 1) at rest in the 
laboratory frame, or 2) highly relativistic. 

The first will require very high precision.  A good 
guess for the preferred reference frame is that of the 
cosmic microwave background which moves at 0.001𝑐𝑐 

relative to Earth.  Thus �1 − �𝑣𝑣�
𝑐𝑐
�

2
�~0.999999 and any 

experiment would need to be more accurate than this. 
Another experiment (which is more complicated 

to conduct but with a bigger signal) is measuring the 
variance of displacement of a relativistic particle.  

If the theory proposed here is true, a 
measurement of (∆𝛿𝛿(𝑡𝑡))2 of a relativistic particle will be 

(∆𝛿𝛿(𝑡𝑡))2 = 2𝐷𝐷𝑡𝑡 �1 − �
𝑣𝑣
𝑐𝑐
�

2
��1 − �

�̅�𝑣
𝑐𝑐
�

2
� 

At high 𝑣𝑣 one has �̅�𝑣~𝑣𝑣, or  

(∆𝛿𝛿(𝑡𝑡))2~2𝐷𝐷𝑡𝑡 �1 − �
𝑣𝑣
𝑐𝑐
�

2
�

2

 

As 𝑣𝑣 approaches c this will be a big difference 
between accepted theories.  However Nature is not so 
easy to give away her secrets; there is also another 
source of variance from the Fourier diffusion [2], which 
grows proportional to the square of  𝑡𝑡.  

ii. Discrete step 
The other class of experiments is to determine if 

a particle steps to the left or steps to the right and with 
what probability.   

One should start with two particles at rest a 
distance 𝐿𝐿 apart.  One (denoted the laboratory) will have 
a heavy mass and be on the left; the other (denoted the 
test particle) will have a mass much much lighter than 
the laboratory and be to the right.  In this case, the 
laboratory will look like it has a more continuous 
trajectory and have smaller variance.   

After the quantum step of the test particle, 𝛿𝛿𝑡𝑡, 
the laboratory will drift in the perfered reference frame 
the amount  �̅�𝑣𝛿𝛿𝑡𝑡.  The test particle after one step will be 
displaced from the laboratory either a) 𝐿𝐿 + 𝑐𝑐𝛿𝛿𝑡𝑡 − �̅�𝑣𝛿𝛿𝑡𝑡 or 
b) 𝐿𝐿 − 𝑐𝑐𝛿𝛿𝑡𝑡 − �̅�𝑣𝛿𝛿𝑡𝑡. 

The distinction between a) and b), should be 
observable at cold temperatures.  Note that over many 
steps the displacement will be  

𝛽𝛽(𝐿𝐿 + 𝑐𝑐𝛿𝛿𝑡𝑡 − �̅�𝑣𝛿𝛿𝑡𝑡) + (1 − 𝛽𝛽)(𝐿𝐿 − 𝑐𝑐𝛿𝛿𝑡𝑡 − �̅�𝑣𝛿𝛿𝑡𝑡) 
                                             = 𝐿𝐿 + 𝑐𝑐(2𝛽𝛽 − 1)𝛿𝛿𝑡𝑡 − �̅�𝑣𝛿𝛿𝑡𝑡 = 𝐿𝐿 

The trick will be to measure the individual step 
not the average. If 𝐾𝐾𝛿𝛿   is the number of times out of 𝐾𝐾 
that the particle steps to the right, then the unbiased 
estimator of 𝛽𝛽𝛿𝛿  is𝐾𝐾𝛿𝛿/𝐾𝐾. 
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Poincaré stresses are also known as rubber 
bands that hold the electron together [10].  They might 
be just that.   

If we look at the electrostatic energy of an 
elementary unit of charge, 𝐸𝐸𝑒𝑒𝑒𝑒  

𝐸𝐸𝑒𝑒𝑒𝑒 =
𝑞𝑞𝑒𝑒2

2(4𝜋𝜋𝜀𝜀0)𝑟𝑟𝑒𝑒𝑒𝑒
 

And consider the relationship in section 2.4, 

𝑚𝑚𝑐𝑐2 = 4𝐸𝐸𝑒𝑒𝑒𝑒/3 = 4𝐸𝐸𝑝𝑝𝑒𝑒  

One can see that  𝑟𝑟𝑒𝑒𝑒𝑒 = 3𝑟𝑟𝑒𝑒 . If is the length 
of a wave that fits the boundary conditions around a 
quantum of charge 𝑞𝑞𝑒𝑒/3, then three wavelengths places 
end to end would fit the boundary condition around an 
electron or elementary unit of charge.   

I interpret this as saying that three quantum 
charges fit together to wrap themselves around the 
electron or elementary charge to hold it together.  
Perhaps all mass is electrical! 
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