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The instability of two fluid interface under an acceleration by an incident shock was predicted the-

instability is observed in supernova explosions, inertial confinement fusion, shock tube experiment

etc.[3, 4]. On the other hand, the Kelvin-Helmholtz instability[5] arises when two fluids are separated

by an interface across which the tangential velocity is discontinuous. Such a flow is unstable under a

sinusoidal perturbation of the interface. The Kelvin- Helmholtz instability plays an important role in

finement fusion, since Kelvin- Helmholtz instability may accelerate the growth of turbulent mixing

layer at the interface between the ablator and solid deuterium-tritium nuclear fuel. In high energy

density and astrophysical system, it has been seen that structures driven by shear flow appear on

the nonlinear stage, the interface becomes finger like structure. The structure is called a bubble if the

lighter fluid pushes across the unperturbed surface into the heavier fluid and a spike if the opposite

nonlinear structures have been studied under different physical situation using an expression near

the tip of the bubble second order in the transverse coordinate to unperturbed surface following

Layzers[9, 11] approach. In the domain of linear theory, Chandrasekhar[12] has investigated the

problem of Kelvin-Helmholtz instability taking the effect of surface tension and Mikaelian[13] has

The present article deals with the problem of the time development of the nonlinear interfacial
structure caused by combined Richtmyer-Meshkov and Kelvin-Helmholtz instability in presence of

surface tension. The dynamics of the bubble tip is investigated under the nonlinear potential flow

Author α σ : St Paul's Cathedral Mission College, 33/1, Raja Rammohan Roy Sarani, Kolkata, India. e-mail: rbanerjee.math@gmail.com

oretically by Richtmyer[1] and then Meshkov[2] confirmed experimentally Richtmyer’s prediction.

Since then, this interfacial instability has been referred to as the Richtmyer-Meshkov instability. Such

many astrophysical and experimental situations[6,7,8]. The Kelvin- Helmholtz instability and shear

flow effects in general are also of practical importance in a number of high energy density systems.

They should be considered in multi shock experiments for direct drive capsule for inertial con-

the high density spikes produced by Richtmyer-Meshkov instability.

In the linear theory, Richtmyer-Meshkov and kelvin-Helmholtz instabilities are well understood. In

takes place. The dynamics of such Richtmyer-Meshkov and kelvin-Helmholtz instabilities generated

studied the same effect on Richtmyer-Meshkov instability.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

II. Basic Hydrodynamic Model

42

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
IV

X
 I
ss
ue

  
  
  
 e

rs
io
n 

I
V

III
Y
ea

r
(

)
20

14
A

© 2014   Global Journals Inc.  (US)

Combined Richtmyer-Meshkov and Kelvin-Helmholtz instability with surface tension

model and obtained a condition for oscillatory stabilization of the interface between two fluids. A
analytic expression of the velocity of the bubble tip is also obtained for asymptotic stage.

To describe the nature of the bubble tip in presences of velocity shear and surface tension, we consider

y = 0 in

a two dimensional x−y plane. The classical combined RM and KH instability refers to the following

density and velocity profile:

ρ =





ρh : y > 0

ρl : y < 0

(1)

U =





Uh : y > 0

Ul : y < 0

(2)

Initially, the system is subjected to a sudden and very brief acceleration g(t), and the evolution of

the fluid flow and of the interface deformation is studied. As is customary in impulsive models, the

time-dependent acceleration is represented by a Dirac function, under the form:

g(t) = ∆U δ(t) (3)

where∆U is the speed change imparted to the fluids by the shock. The equation of the interface is

defined by function η, under the parabolic form:

y = η(x, t) = η0(t) + η2(t)(x− η1(t))
2 (4)

The nonlinear perturbed interface forms a bubble or spike according to η0(t) > 0, η2(t) < 0 or

η0(t) < 0, η2(t) > 0. Here, at time t, the position of the bubble tip is given by (η1(t), η0(t)) and η2(t)

gives the curvature of the tip of the bubble. In presence of streaming motion of the fluids, the tip of

the bubble moves parallel to unperturbed interface with velocity η̇1(t).

Each fluid is inviscid and incompressible and so flows irrotationally. As a result, velocity potentials

φh and φl may be constructed in upper and lower fluids, respectively Each velocity potential must

satisfy Laplace’s equation, so that

∇2φh = 0 in y > η(x, t (5)

∇2φl = 0 in y < η(x, t (6)

According to the extended Layzer model [9, 11, 14, 17, 16], the velocity potentials describing the

motion for the upper and lower fluids are given by,

φh(x, y, t) = a1(t) cos (k(x− η1(t))e
−k(y−η0(t)) + a2(t) sin (k(x− η1(t))e

−k(y−η0(t)) − xUh (7)

)

)

two incompressible, inviscid fluids separated by an initial horizontal interface situated at
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φl(x, y, t) = b0(t)y + b1(t) cos (k(x− η1(t))e
k(y−η0(t)) + b2(t) sin (k(x− η1(t))e

k(y−η0(t)) − xUl (8)

where k is the perturbed wave number.

The boundary condition that the normal velocity is continuous at the interface y = η(x, t) can
be written as

∂η

∂t
− ∂η

∂x

∂φh

∂x
= −∂φh

∂y
(9)

∂η

∂x
(
∂φh

∂x
− ∂φl

∂x
) =

∂φh

∂y
− ∂φl

∂y
(10)

The dynamical boundary condition (Bernoulli’s equation) at the interface y = η(x, t) is of the form,

(11)

The pressure boundary condition at two fluid interface including surface tension[15] is

ph − pl =
T

R
(12)

where T is surface tension and R is the radius of curvature.

Plugging the boundary condition (12) at the interface y = η(x, t) in Eq.(11), we obtain the
following equation,

ρh[−∂φh

∂t
+

1

2
(~∇φh)

2]− ρl[−∂φl

∂t
+

1

2
(~∇φl)

2] + ∆U δ(t)(ρh − ρl)y = −T

R
+ fh − fl (13)

1. Thus we can neglect the terms of O(|x− η1|i) (i ≥ 3) [14]− [17]. With this point of view,

1

R
= 2η2

(
1 + 4η2

2(x− η1)
2
)− 3

2 ≈ 2η2

(
1− 6η2

2(x− η1)
2
)

(14)

Substituting all the fluid parameters η, φh and φl in the boundary conditions (9),(10) and (13), and

equating the coefficients of (x− η1)
i,(i = 0, 1, 2), we obtain the flowing nonlinear equations

dξ1

dτ
= ξ4 (15)

dξ2

dτ
= Vh − ξ5(2ξ3 + 1)

2ξ3

(16)

dξ3

dτ
= −1

2
(6ξ3 + 1)ξ4 (17)

−ρh(l)
∂φh(l)

∂t
+ 1

2
ρh(l)(~∇φh(l))

2 + ρh(l)gy = −ph(l) + fh(l)(t)

Here we have studied the dynamics of the peak of the perturbed structure where |k(x− η1(t))| ¿
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III. Linear Approximation

kb0√
k∆U

= − 12ξ3ξ4

6ξ3 − 1
(18)

k2b1√
k∆U

=
6ξ3 + 1

6ξ3 − 1
ξ4 (19)

k2b2√
k∆U

=
(2ξ3 + 1)ξ5 − 2ξ3(Vh − Vl)

2ξ3 − 1
(20)

dξ4

dτ
=

N1(ξ3, r)

D1(ξ3, r)

ξ2
4

(6ξ3 − 1)
+

24(1 + r)ξ3
3(6ξ3 − 1)σ

D1(ξ3, r)
+

N2(ξ3, r)

D1(ξ3, r)

(6ξ2 − 1)ξ2
5

2ξ3(2ξ3 − 1)2

+
2(4ξ3 − 1)(6ξ3 − 1)

D1(ξ3, r)(2ξ3 − 1)2
[(Vh − Vl)

2ξ3 − (Vh − Vl)(2ξ3 + 1)ξ5] (21)

and

dξ5

dτ
= −(2ξ3 − 1)rξ4ξ5

2ξ3D2(ξ3, r)
+

ξ4(6ξ3 + 1)

2D2(ξ3, r)(6ξ3 − 1)(2ξ3 − 1)
[4(Vh − Vl)(4ξ3 − 1)− ξ5

ξ3

(28ξ2
3 − 4ξ3 − 1)] (22)

N1(ξ3, r) = 36(1− r)ξ2
3 + 12(4 + r)ξ3 + (7− r);

D1(ξ3, r) = 12(r − 1)ξ2
3 + 4(r − 1)ξ3 − (r

(23)
+ 1)

and

N2(ξ3, r) = 16(1− r)ξ3
3 + 12(1 + r)ξ2

3 − (1 + r);

D2(ξ3, r) = 2(1− r)ξ3 + (r + 1)

The above set of five equations (15)(17), (21) and (22) together with Eqs. (23) and(24) which define

the different functions describe the combined effect of RM and KH instability.

(24)

In this section, we establish that the usual KH instability growth rate (without surface tension and

shock) is recovered on linearization of Eqs. (15)-(17),(20) and (22). Let us consider

dη1

dt
= αhUh + αlUl (25)

where

(26)

where r = ρh

ρl
; ξ1 = kη0; ξ2 = kη1; ξ3 = η2

k
; ξ4 = ka1

∆U
; ξ5 = ka2

∆U
; τ = t(k∆U); σ = Tk

(ρh+ρl)(∆U)2
and

Vh(l) =
Uh(l)

∆U
are corresponding dimensionless quantities. The functions N1(ξ3, r), N2(ξ3, r), D1(ξ3, r)

and D2(ξ3, r) are given by

αh(l) =
ρh(l)

ρh+ρl
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Then Eq. (16) gives, after linearization,

k2a2 = 2αl(Uh − Ul)η2 (27)

Linearizing Eqs. (17), (21) and (22) we get

dη2

dt
= −1

2
k3a1 (28)

k
da1

dt
= −2αhαl(Uh − Ul)

2η2 (29)

da2

dt
= −ρh(Uh − Ul)ka1 (30)

Eliminating η2 from Eqs. (28) and (29)

d2a1

dt2
= k2αhαl(Uh − Ul)

2a1 (31)

Thus the growth rate is given by

γ(k) = k
√

αhαl(Uh − Ul)2 (32)

This result agrees with the result obtained by Chandrasekhar [12] and Mikaelian [18]. Note that

Eq.(27) connecting η2 and a2 provides the consistency condition.

IV. Result and Discussion

The growth, curvature and growth rate of the peak height of the bubble is obtained by numerical

integration of Eqs. (15), (16), (17), (21) and (22). The initial perturbed interface is assumed to

be y = η0(t = 0)cos(kx). The expansion of the cosine function gives (ξ2)initial = 0, (ξ3)initial =

−1
2
(ξ1)initial and (ξ1)initial is the arbitrary initial amplitude. If the shock incidence is oblique then

the normal component generates velocity shear and causes KH instability [18]. The shock generated

initial values of ξ4 and ξ5 are obtained from the impulsive accelerations. From the linear formula

ξ1(τ) = ξ1(0)Aτ , we set (ξ4)initial = (ξ1)initialA and (ξ5)initial = 0, where A = ρh−ρl

ρh+ρl
is the Atwood

number. The obtained numerical results are shown in figures.

The growth rate contributed in absence of velocity shear and surface tension,i.e; by normally

incident shock induced Richtmyer-Meshkov instability varies as 1
t
[15]. However in presence of veloc-

ity shear the growth rate due to combined influence of Richtmyer-Meshkov and Kelvin-Helmholtz
instability approaches finite saturation value asymptotically.

[(ξ3)asymp]bubble = −1

6
(33)

[(ξ4)asymp]bubble =

√
5

16

(
1− A

1 + A

)
(Vh − Vl)2 − 2

9

(
σ

1 + A

)
(34)

and
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V. Conclusion

VI. Conflict of Interests

[(ξ5)asymp]bubble = 0 (35)

These asymptotic values are obtained by setting dξ3
dτ

= 0, dξ4
dτ

= 0 and dξ5
dτ

= 0. Note that the above

asymptotic values exist if the surface tension is less than a critical value Tc, given by

Tc =
45

16

ρl

k
(Vh − Vl)

2(∆U)2 (36)

Here the critical value is depended on the magnitude of relative velocity shear of two fluids, and the

density of the lower fluid only. The growth (ξ1) and velocity (ξ4) of the tip is reduced if T → Tc− 0.

This feature exhibit in figure 1. Moreover, the asymptotic velocity of the bubble tip becomes large

if there is a large velocity shear or large shock strength, which produce a large velocity jump after

the shock impedance.

Figure (2) and (3) describe the nonlinear oscillation behavior of the perturbed interface. The

nonlinear oscillation occurs if T > Tc. It is clear from the figure (2) that,the amplitude and period of

oscillation of the interface decreases for large surface tension. Under this condition the self generated

oscillatory behavior also depends upon the magnitude of the relative velocity shear. Figure (3) shows

that the amplitude and period of oscillation increases with magnitude of the relative velocity.

Further, the equilibrium is attained when T = Tc, i.e,

ξ̇3 = ξ̇4 = ξ̇5 = 0 when ξ3 = −1

6
and ξ4 = ξ5 = 0

This feature shows by solid line in figure (2). Thus the combined Richtmyer-Meshkov and Kelvin-

Helmholtz instability is stabilized when T ≥ Tc.

(37)

In this article, we have studied the effect of surface tension on the interfacial structure of two fluids

nonlinear potential flow model. The analytic expressions for bubble tip growth rate at asymptotic

stage are obtained for arbitrary Atwood number and velocity shear. In absence of surface tension

the growth rate is reduced for small velocity shear and initial velocity induced by shock. Surface

tension becomes a stabilizing factor of the instability, provided it is larger than a critical value. In

this case, oscillatory behavior of motion is described by numerical integration of governing equations.

The nature of oscillations depends on both surface tension and relative velocity shear of two fluids.
On the other hand, below the critical value, surface tension dominates the growth and growth rate

of the instability. This is a theoretical work and may be helpful for experiential study of the two
fluid instability in future.

The authors declare that there is no conflict of interests regarding the publication of this paper.

transverse velocity (ξ5 ) also becomes oscillatory. On the other hand, ξ5→0 asymptotically when T < Tc

The

.

interface induced by combined action of Richtmyer-Meshkov and Kelvin-Helmholtz instability under
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ξ1, ξ2, ξ3, ξ4 and ξ5 with τ . Initial value ξ1 =0.1, ξ2 =0,

ξ3 =-0.05, ξ4 = 0.02, and ξ5 = 0 with r = 1.5, σ=2, Vh=0,Vl = 0 (line),Vh=0.4,Vl =

0.1(Dot), Vh=0.7,Vl = 0.1 (Dash),Vh=1.1,Vl = 0.1 (Dash-Dot).

Variation ofFigure 3 :
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