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[. [NTRODUCTION

The instability of two fluid interface under an acceleration by an incident shock was predicted the-
oretically by Richtmyer[1] and then Meshkov|[2] confirmed experimentally Richtmyer’s prediction.
Since then, this interfacial instability has been referred to as the Richtmyer-Meshkov instability. Such
instability is observed in supernova explosions, inertial confinement fusion, shock tube experiment
etc.[3, 4]. On the other hand, the Kelvin-Helmholtz instability[5] arises when two fluids are separated
by an interface across which the tangential velocity is discontinuous. Such a flow is unstable under a
sinusoidal perturbation of the interface. The Kelvin- Helmholtz instability plays an important role in
many astrophysical and experimental situations[6,7,8]. The Kelvin- Helmholtz instability and shear
flow effects in general are also of practical importance in a number of high energy density systems.

They should be considered in multi shock experiments for direct drive capsule for inertial con-
finement fusion, since Kelvin- Helmholtz instability may accelerate the growth of turbulent mixing
layer at the interface between the ablator and solid deuterium-tritium nuclear fuel. In high energy

density and astrophysical system, it has been seen that structures driven by shear flow appear on
the high density spikes produced by Richtmyer-Meshkov instability.

In the linear theory, Richtmyer-Meshkov and kelvin-Helmholtz instabilities are well understood. In
the nonlinear stage, the interface becomes finger like structure. The structure is called a bubble if the
lighter fluid pushes across the unperturbed surface into the heavier fluid and a spike if the opposite
takes place. The dynamics of such Richtmyer-Meshkov and kelvin-Helmholtz instabilities generated
nonlinear structures have been studied under different physical situation using an expression near
the tip of the bubble second order in the transverse coordinate to unperturbed surface following
Layzers[9, 11| approach. In the domain of linear theory, Chandrasekhar[12] has investigated the
problem of Kelvin-Helmholtz instability taking the effect of surface tension and Mikaelian[13] has
studied the same effect on Richtmyer-Meshkov instability.

The present article deals with the problem of the time development of the nonlinear interfacial
structure caused by combined Richtmyer-Meshkov and Kelvin-Helmholtz instability in presence of
surface tension. The dynamics of the bubble tip is investigated under the nonlinear potential flow
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model and obtained a condition for oscillatory stabilization of the interface between two fluids. A
analytic expression of the velocity of the bubble tip is also obtained for asymptotic stage.

[1. Basic HYDRODYNAMIC MODEL

To describe the nature of the bubble tip in presences of velocity shear and surface tension, we consider
two incompressible, inviscid fluids separated by an initial horizontal interface situated at ¥y = 0 in
a two dimensional = —y plane. The classical combined RM and KH instability refers to the following

density and velocity profile:

pn 1y >0

p= (1)
p 1y <0
U, :y>0

U= (2)
U, 2y<0

Initially, the system is subjected to a sudden and very brief acceleration ¢(t), and the evolution of
the fluid flow and of the interface deformation is studied. As is customary in impulsive models, the
time-dependent acceleration is represented by a Dirac function, under the form:

g(t) = AU 6(1) (3)

whereAU is the speed change imparted to the fluids by the shock. The equation of the interface is
defined by function 7, under the parabolic form:

y =n(x,t) = no(t) + na(t)(x — m(t))? (4)

The nonlinear perturbed interface forms a bubble or spike according to 79(¢) > 0, n2(t) < 0 or

no(t) < 0, m2(t) > 0. Here, at time ¢, the position of the bubble tip is given by (n;(t),n0(t)) and na(t)

gives the curvature of the tip of the bubble. In presence of streaming motion of the fluids, the tip of
the bubble moves parallel to unperturbed interface with velocity 7j; (t).

Each fluid is inviscid and incompressible and so flows irrotationally. As a result, velocity potentials

¢n and ¢; may be constructed in upper and lower fluids, respectively Each velocity potential must
satisfy Laplace’s equation, so that

V¢ =0iny > n(x,t) (5)

V¢ =0iny < n(x,t) (6)

According to the extended Layzer model [9, 11, 14, 17, 16], the velocity potentials describing the

motion for the upper and lower fluids are given by,

on(x,y,t) = a1 (t) cos (k(z —m (t))e’k(y’”‘)(t)) + as(t) sin (k(z — (t))e’k(y’m’(t)) —zU, (7)
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d1(z,y,t) = bo(t)y + by (t) cos (k(x — 0y (£)e*@=0®) L by () sin (k(z — ny ()" @) — 2, (8)

where k is the perturbed wave number.

The boundary condition that the normal velocity is continuous at the interface y = n(z,t) can
be written as

On  Ondd, ¢y

ot Oxr dr Oy

on Obn  Odr, _ Opn  Ogy
2\ 9r o) = By ay (10)

(9)

The dynamical boundary condition (Bernoulli’s equation) at the interface y = n(z,t) is of the form,
¢ =
—on 5 + 3000 (VOr)* + P9y = —pray + fay (1) (11)

The pressure boundary condition at two fluid interface including surface tension[15] is

T

Ph—P=p (12)

where T is surface tension and R is the radius of curvature.

Plugging the boundary condition (12) at the interface y = n(x,t) in Eq.(11), we obtain the
following equation,

=02 1 (Fn) — pl 4 L(Fo)+ AU S(0)on— )y = — 15+~ f (13)

Here we have studied the dynamics of the peak of the perturbed structure where |k(x — n1(t))] <

1. Thus we can neglect the terms of O(|z — ny|) (i > 3) [14] — [17]. With this point of view,

_3
2

l = 21, <1 + 4773(:70 — 771)2) R 212 (1 - 6773@ - 771)2) (14)

R

Substituting all the fluid parameters 7, ¢, and ¢; in the boundary conditions (9),(10) and (13), and

equating the coefficients of (z — n;)%,(i = 0,1,2), we obtain the flowing nonlinear equations

S

=g, (15)
dé&> ., &(265+1)

ar T ey (16)
d 1

j: = — (66 + 1t (17)

© 2014 Global Journals Inc. (US)

Global Journal of Science Frontier Research (A) Volume XIV Issue III Version [ E Year 2014



Global Journal of Science Frontier Research (A ) Volume XIV Issue III Version I E Year 2014

kb 12858

kAU 68 —1 (18)
b 66+ 1
VEAD 66 1% (19)
Kby (265 +1)& — 265(Vi — W)
EAU 263 — 1 (20)
dés _ Ni(&,r) & L 24(1 +7)€3(6&; — o n No(&,7) (68 — 1)E
dr D1(€37 ) (683 — 1) D (&3,7) Dy (&3,7) 263(283 — 1)?
2(463 — 1)(663 — 1)
Dy (9.7 (265 — 172 (Vi = V)25 — (Vi — W) (285 + 1)&5 (21)
and
d&s (26 — Dr&és £4(6&5 + 1) 5 _
T T TR DGr) T 2Dy (66 — 1)(2g 1) (VT VI = 1) =86 — a6 = 1] (22)
where r = b5 & = kno; & = km; & = 7 & = o & = X2 7 = t(kAU); 0 = W and

Vi) = UAhg) are corresponding dimensionless quantities. The functions Ny (&3, 7), No(&3,7), D1(&5,7)

and Do (&3,7) are given by

Ni(&3,7) = 36(1 —7)&2 +12(4 4+ 7)& + (T —71);

(23)
Dy(&,7) =12(r — D& +4(r — )& — (r + 1)
and
No(&3,7) = 16(1 — r)&5 +12(1 +7)&5 — (1 +7);
Dy(&3,7) =2(1 —7)& + (r+1) (24)

The above set of five equations (15)(17), (21) and (22) together with Eqs. (23) and(24) which define
the different functions describe the combined effect of RM and KH instability.

[11. LINEAR APPROXIMATION

In this section, we establish that the usual KH instability growth rate (without surface tension and

shock) is recovered on linearization of Egs. (15)-(17),(20) and (22). Let us consider

d
/il = apU + U (25)
dt
where
anp = i (26)
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Then Eq. (16) gives, after linearization,
k:2a2 = QQZ(Uh — Ul)ng (27)

Linearizing Eqs. (17), (21) and (22) we get

dns L3

Tk 28
o a (28)

kE = —20éhOzl(Uh - Ul) T2 (29)
da

d—tz = _ph(Uh — Ul)kal (30)

Eliminating 7y from Egs. (28) and (29)

d2&1 9 2

W =k Oéh()zl(Uh - Ul) ay (31)
Thus the growth rate is given by

(k) = kyJanau(Uy, — Uy)? (32)

This result agrees with the result obtained by Chandrasekhar [12] and Mikaelian [18]. Note that
Eq.(27) connecting 7, and as provides the consistency condition.

V. RESULT AND DISCUSSION

The growth, curvature and growth rate of the peak height of the bubble is obtained by numerical
integration of Eqs. (15), (16), (17), (21) and (22). The initial perturbed interface is assumed to
be y = no(t = 0)cos(kx). The expansion of the cosine function gives (&2)initiar = 0, (£3)initiat =
—%(gl)im-tm, and (&1)initiar 1S the arbitrary initial amplitude. If the shock incidence is oblique then
the normal component generates velocity shear and causes KH instability [18]. The shock generated
initial values of £ and &5 are obtained from the impulsive accelerations. From the linear formula

&(1) = &(0)AT, we set (&a)initiat = (§1)initiarA and (&5)initiar = 0, where A = % is the Atwood

number. The obtained numerical results are shown in figures.
The growth rate contributed in absence of velocity shear and surface tension,i.e; by normally

incident shock induced Richtmyer-Meshkov instability varies as %[15]. However in presence of veloc-

ity shear the growth rate due to combined influence of Richtmyer-Meshkov and Kelvin-Helmholtz
instability approaches finite saturation value asymptotically.

[(£3) asymp|bubble = —é (33)
[(€4) asympbubbie = \/156 G;i) (Vo = Vi)? = 3 (1 jA) (34)

and
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[(€5) asymplbubbie = 0 (35)

These asymptotic values are obtained by setting % =0, % =0 and % = 0. Note that the above

asymptotic values exist if the surface tension is less than a critical value T,, given by

45 pi
T 16k
Here the critical value is depended on the magnitude of relative velocity shear of two fluids, and the
density of the lower fluid only. The growth (£;) and velocity (&) of the tip is reduced if T'— T, — 0.
This feature exhibit in figure 1. Moreover, the asymptotic velocity of the bubble tip becomes large

T. (Vi — V)X(AU)? (36)

if there is a large velocity shear or large shock strength, which produce a large velocity jump after
the shock impedance.

Figure (2) and (3) describe the nonlinear oscillation behavior of the perturbed interface. The
nonlinear oscillation occurs if 7' > T.. It is clear from the figure (2) that,the amplitude and period of
oscillation of the interface decreases for large surface tension. Under this condition the self generated
transverse velocity (&5) also becomes oscillatory. On the other hand, &5 —0 asymptotically when 7" < T

The oscillatory behavior also depends upon the magnitude of the relative velocity shear. Figure (3) shows
that the amplitude and period of oscillation increases with magnitude of the relative velocity.

Further, the equilibrium is attained when T' =T, i.e,
. . . 1
§3:§4:£5:Owhen§3:—6and§4:£5:() (37)

This feature shows by solid line in figure (2). Thus the combined Richtmyer-Meshkov and Kelvin-
Helmholtz instability is stabilized when T' > T..

V. CONCLUSION

In this article, we have studied the effect of surface tension on the interfacial structure of two fluids
interface induced by combined action of Richtmyer-Meshkov and Kelvin-Helmholtz instability under
nonlinear potential flow model. The analytic expressions for bubble tip growth rate at asymptotic
stage are obtained for arbitrary Atwood number and velocity shear. In absence of surface tension
the growth rate is reduced for small velocity shear and initial velocity induced by shock. Surface

tension becomes a stabilizing factor of the instability, provided it is larger than a critical value. In
this case, oscillatory behavior of motion is described by numerical integration of governing equations.

The nature of oscillations depends on both surface tension and relative velocity shear of two fluids.
On the other hand, below the critical value, surface tension dominates the growth and growth rate

of the instability. This is a theoretical work and may be helpful for experiential study of the two
fluid instability in future.
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