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Abstract- In this work, we study fixed point theorems for cyclic contractions in dislocated metric spaces. Our results, 
extension, improve and generalize some recent results in the literature.

dislocated metric spaces, fixed point, d-convergent, d-cyclic contraction.

P.Hitzler et.al.[1] have introduced “the notion of dislocated metric space”. Recently, Kirk
et.al. [4] have introduced “the notion of cyclic contraction and prove fixed point theorems 
on this contraction”. Later on many authors have proved fixed point theorems on cyclic 
contractions in dislocated metric spaces (see, [3], [5]). In this paper, we obtain, fixed 
point theorems for cyclic contractions in dislocated metric spaces which improve,extends
and generalises results of [3].

The following definitions are needful to prove main results. 
Definition 1.1 [1]. Let X be a non empty set and let d: X × X → [0, ∞) be a function 
called a distance function .Consider the following conditions:
(i)  d (x ,x) = 0 , for all x∈X.
( ii )  d(x, y)  = 0 then x = y, for all x,y ∈ X.
(iii) d(x, y) = d(y,x) , for all x,y ∈ X.
(iv) d(x,y) ≤ d(x,z) + d(z,y) , for all x,y,z ∈ X.
If d satisfies (i) to (iv), then it is called metric. If it satisfies (ii) to (iv), then d is 
called dislocated metric (or simply d-metric). 

Definition 1.2 [1]. A sequence {xn } in a d-metric space(X,d)  converges with respect 
to d , if there exists a point x ∈ X such that d(xn, x) converges to 0 as n →∞.

Proposition 1.1 [1]. Limits in d-metric spaces are unique.

Definition 1.3[1]. A sequence {xn } in a d-metric space(X,d)  is called a Cauchy 
sequence , if  for each ε > 0  there exists n0 ∈N such that for all m,n ≥ n0 ,  we have 
d(xm,, xn) < ε .
Proposition 1.2[1]. Every convergent sequence in d-metric spaces is a Cauchy 
sequence.
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Definition 1.4[1].   A function f: X → X in a d-metric space is called a contraction if 
there exists 0≤λ <1 such that d(fx, fy ) ≤ λ d(x, y) for all x,y ∈ X.
Definition 1.5[4].  Let A and B be two non empty subsets of a metric space (X, d) 
and T: A ∪ B → A ∪ B, T is called a cyclic map if T (A) ⊆ B and  T (B) ⊆ A.
Definition 1.6[4].  Let A and B be two non empty  subsets of a metric space (X,d) 
and a cyclic map T: A ∪ B → A ∪ B is said to be a cyclic a cyclic contraction if 
there exists k∈(0,1) such that d(Tx, Ty ) ≤ λ d(x, y) for all x∈A  and x∈B .

    In this section, we prove fixed point thoerems for cyclic contractions in dislocated 
metric spaces. Our results improve, extends and generalises the results of [3]. 

Theorem 2.1 .  Let (X, d) be a complete dislocated metric space. Let A and B be two non 
empty closed subsets of X and  f : A∪B → A∪B be such that 

d( fx,fy) ≤ α[d(fx, x) + d(fy, y) +d(fy, x)+d(y, fx)] , where α∈ [0, 1/6).

Then f has a unique fixed point in A∩B.

Proof:  Let {fn }⊆X, {f2n }⊆A and {f2n-1 }⊆B. Fix x∈A. By above definition there 
exists α∈ [0, 1/6) such that 

d(f 2x, fx) ≤ α [d(f 2x, fx) + d(fx, x) + d(fx, fx) + d(x, f 2x)],

d(f 2x, fx) ≤ α [d(f 2x, fx) + d(fx, x) + d(fx,x)  + d(x, fx) + d(x,fx)+d(fx, f 2x)],

                 ≤ α [2d(f 2x, fx) + 4d(fx, x)],

(1-2α) d(f 2x, fx)≤ 4αd(fx, x)
                          
d(f 2x, fx) ≤ 4α / 1-2α  d(fx,x).

II. Main Results

Put k = 4α / 1-2α  < 1.       
d(f 2x, fx)≤ kd(fx, x).

By induction we have, 

d(f n+1x , f nx )≤ kn d(fx, x).
More generally, for m > n we have, 

d(fm x, fnx )≤ d(fm x, fm-1x )+ d(fm-1 x, fm-2x )+… +d(fn+1 x, fnx )

                   
≤ (km-1 x +km-2x +…+ kn x)d(fx,x)

                  
= kn (1+k+ k2  +…+ km-n-1 )d(fx,x).                    

Since, k<1 so as m,n → ∞ we have kn (1+k+ k2  +…+ km-n-1 ) → 0.        
Hence, d(fm x, fnx )→ 0.
Therefore, {fnx} is a Cauchy sequence. Since (X,d) is complete, so {fnx}

converges to some point z∈X.
Since, {f2n }⊆A and and {f2n-1 }⊆B so z∈A∩B.   
We claim that fz = z. 

d(fz,z) = d (fz, f2n  x)

[3] G
eorge R

eny, R
.R

ajgopalan and S.V
inayagam

, C
yclic contractions and fixed points   

       in dislocated m
etric spaces, Int. J. M

ath.Anal, 7(9),(2013),403-411.
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                        ≤ α [d(fz, z) + d(f2nx , f2n-1x) + d(f2nx , z)+ d( f2n-1x, fz)]   .

Letting, as n → ∞  we get that,

           d(fz, z) ≤ α [d(fz, z) + d(z , z) + d(z, z)+ d(z, z)]  

                       ≤ α [d(fz, z) + 3d(z ,z)]
                       ≤ α [d(fz, z) + 3d(z , fz)+ 3d(fz , z)]   

                      ≤ 7αd(fz, z) ,    since α∈[0, 1/6). 
           (1-7α) d(fz, z) ≤ 0.
Implies ,  d(fz, z) = 0.
Hence, fz = z.
Uniqueness, let   u and v be two fixed points of f  that is,  fu = u and fv = v. Then,

d(u,v) = d(fu,fv) ≤ α [d(fu,u) + d(fv,v) +d(fv,u)+d(v,fu)]
                           ≤ α [d(u,u) + d(v,v) +d(v,u)+d(v,u)]
                           ≤ α [d(u,v) + d(u,v)+ d(u,v)+d(u,v) +d(v,u)+d(v,u)]
                           ≤ 6α d(u,v).

Implies, (1-6α) d(u,v)≤0. Since, α∈ [0, 1/6). 
We have, d(u,v) = 0. Implies, u = v.
Therefore, f   has a unique fixed point in A ∩B..

Example 2.1. Let  X = R,  A= [-1, 0], B = [0, 1]. Define d(x, y) =│x - y│+ 4│x│+ 4│y│
Then d is the dislocated metric.Define f : A∪B → A∪B , by fx = -x/6  , then f is a 
cyclic mapping. For any two points in A and B, the contractive condition is satisfied  and 
0 is the unique fixed point of the function f.

Theorem 2.2. Let (X, d) be a complete dislocated metric space. Let A and B be two non 
empty closed subsets of X and f : A∪B → A∪B be a cyclic mapping satisfying    

( i).  there exists a number k∈ [0,1/2).
(ii) . d(fx,fy) ≤ max { d(x,y), d(x,fx), d(y,fy), d(x, fy), d(y,fx)} 

for all x∈A and  y∈B  then f has a unique fixed point in A ∩B.
Proof: Let {fn }⊆X, {f2n }⊆Aand {f2n-1 }⊆B. Fix x∈A If fn x = fn+1x   for some n, 
then fn+1x = fn+2x   then {fn x} converges to some z∈X. So suppose fn x ≠ fn+1x .  Now by 
using above contractive condition of the theorem, we have 

d(f2x, fx) ≤ k max{d(fx,x),d(fx, f2x), d(x, fx), d(fx,fx), d(x, f2x)}

               
=  k max{d(fx, x), d(fx,fx), d(x, f2x)}

               ≤ k max{d(fx,x),d(fx, x)+ d(fx, x), d(x,fx)+ d(fx, f2x)}
               ≤ k  max {d (fx,x) , 2 d(fx, x)}
       ≤ k d (fx,x) or 2k d(fx, x)
                ≤ 2k d (fx,x)

  ≤ hd ( fx, x) where, h = 2k.

Now by induction we have, 
d(f2x, fx) ≤ hnx d(fx,x).

Following the same process as in the above theorem we show that {fn x} is a cauchy 
sequence. Since (X,d) is complete, so {fn x} converges to some point z∈X. Since
{f2n }⊆A and {f2n-1 }⊆B   so z ∈A∩B.   We claim that fz = z.

d(fz,f2nx) ≤ k max{d(z, f2-1x), d(fz,z), d(f2n  x,   f2n-1x), d(z, f2nx),d(f2n x,z) }.
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Letting, as n → ∞, we have 
d (fz, z) ≤ k max { d(z,z),d(fz, z), d(z, z), d(z, z)}
              ≤ k d(fz,z), which is a contradiction.

Hence, d(fz,z) = 0.
⇒     fz = z.

Therefore, f  has a fixed point.      

Uniqueness, Let us assume that there exists  fixed points u and  v, that is fu = u and 
fv = v. 

d(fu, fv) ≤ k max { d(u,v), d(u,fu), d(v,fv), d(u,fv),d(v,fu)}
              ≤ k max { d(u,v), d(u, u), d(v,v), d(u,v),d(v,u)}
              =  k max { d(u,v), d(u, u), d(v,v), }
              ≤ k  d(u,v) or k d(u, u) or k d(v,v)
(1-k) d(u,v) ≤ 0 or (1-2k) d(u,v) ≤ 0.

This implies that,  u = v. 
Therefore, f has a unique fixed point in A ∩ B. 
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