Global JOURNAL

OF SCIENCE FRONTIER RESEARCH: F

Mathematics and Decision Sciences

Implied Cost Method
Optimal Hedging Strategy

Vertex Semientire Block Highlights

Discovering Thoughts, Inventing Future

Global Journal of Science Frontier Research: F mathematics \& Decision Sciences

Global Journal of Science Frontier Research: F Mathematics \& Decision Sciences

Volume 14 ISSUE 1 (VER. 1.0)
© Global Journal of Science Frontier Research. 2014.

All rights reserved.
This is a special issue published in version 1.0 of "Global Journal of Science Frontier Research." By Global Journals Inc.

All articles are open access articles distributed under "Global Journal of Science Frontier Research"

Reading License, which permits restricted use. Entire contents are copyright by of "Global Journal of Science Frontier Research" unless otherwise noted on specific articles.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without written permission.

The opinions and statements made in this book are those of the authors concerned. Ultraculture has not verified and neither confirms nor denies any of the foregoing and no warranty or fitness is implied.

Engage with the contents herein at your own risk.

The use of this journal, and the terms and conditions for our providing information, is governed by our Disclaimer, Terms and Conditions and Privacy Policy given on our website http://globaljournals.us/terms-and-condition/ menu-id-1463/

By referring / using / reading / any type of association / referencing this journal, this signifies and you acknowledge that you have read them and that you accept and will be bound by the terms thereof.

All information, journals, this journal, activities undertaken, materials, services and our website, terms and conditions, privacy policy, and this journal is subject to change anytime without any prior notice.

Incorporation No.: 0423089
License No.: 42125/022010/1186
Registration No.: 430374 Import-Export Code: 1109007027 Employer Identification Number (EIN): USA Tax ID: 98-0673427

Global Journals Inc.

(A Delaware USA Incorporation with "Good Standing"; Reg. Number: 0423089) Sponsors: Open Association of Research Society Open Scientific Standards

Publisher's Headquarters office

Global Journals Headquarters

301st Edgewater Place Suite, 100 Edgewater Dr.-Pl, Wakefield MASSACHUSETTS, Pin: 01880, United States of America
USA Toll Free: +001-888-839-7392
USA Toll Free Fax: +001-888-839-7392

Offset Typesetting

Global Journals Incorporated 2nd, Lansdowne, Lansdowne Rd., Croydon-Surrey, Pin: CR9 2ER, United Kingdom

Packaging \& Continental Dispatching

Global Journals

E-3130 Sudama Nagar, Near Gopur Square, Indore, M.P., Pin:452009, India

Find a correspondence nodal officer near you
To find nodal officer of your country, please email us at local@globaljournals.org
eContacts

Press Inquiries: press@globaljournals.org Investor Inquiries: investors@globaljournals.org Technical Support: technology@globaljournals.org Media \& Releases: media@globaljournals.org

Pricing (Including by Air Parcel Charges):

For Authors:

22 USD (B/W) \& 50 USD (Color)
Yearly Subscription (Personal \& Institutional):
200 USD (B/W) \& 250 USD (Color)

John A. Hamilton,"Drew" Jr., Ph.D., Professor, Management Computer Science and Software Engineering
Director, Information Assurance Laboratory
Auburn University

Dr. Henry Hexmoor

IEEE senior member since 2004
Ph.D. Computer Science, University at
Buffalo
Department of Computer Science
Southern Illinois University at Carbondale

Dr. Osman Balci, Professor

Department of Computer Science Virginia Tech, Virginia University Ph.D.and M.S.Syracuse University, Syracuse, New York
M.S. and B.S. Bogazici University, Istanbul, Turkey

Yogita Bajpai

M.Sc. (Computer Science), FICCT
U.S.A.Email:
yogita@computerresearch.org

Dr. T. David A. Forbes

Associate Professor and Range Nutritionist
Ph.D. Edinburgh University - Animal
Nutrition
M.S. Aberdeen University - Animal Nutrition
B.A. University of Dublin- Zoology

Dr. Wenying Feng

Professor, Department of Computing \&
Information Systems
Department of Mathematics
Trent University, Peterborough,
ON Canada K9J 7B8

Dr. Thomas Wischgoll

Computer Science and Engineering,
Wright State University, Dayton, Ohio
B.S., M.S., Ph.D.
(University of Kaiserslautern)

Dr. Abdurrahman Arslanyilmaz

Computer Science \& Information Systems
Department
Youngstown State University
Ph.D., Texas A\&M University
University of Missouri, Columbia
Gazi University, Turkey

Dr. Xiaohong He

Professor of International Business
University of Quinnipiac
BS, Jilin Institute of Technology; MA, MS, PhD,. (University of Texas-Dallas)

Burcin Becerik-Gerber

University of Southern California
Ph.D. in Civil Engineering
DDes from Harvard University
M.S. from University of California, Berkeley \& Istanbul University

Dr. Bart Lambrecht

Director of Research in Accounting and FinanceProfessor of Finance Lancaster University Management School BA (Antwerp); MPhil, MA, PhD (Cambridge)

Dr. Carlos García Pont

Associate Professor of Marketing
IESE Business School, University of
Navarra
Doctor of Philosophy (Management),
Massachusetts Institute of Technology
(MIT)
Master in Business Administration, IESE, University of Navarra
Degree in Industrial Engineering, Universitat Politècnica de Catalunya

Dr. Fotini Labropulu
Mathematics - Luther College
University of ReginaPh.D., M.Sc. in
Mathematics
B.A. (Honors) in Mathematics University of Windso

Dr. Lynn Lim

Reader in Business and Marketing Roehampton University, London BCom, PGDip, MBA (Distinction), PhD, FHEA

Dr. Mihaly Mezei

ASSOCIATE PROFESSOR
Department of Structural and Chemical
Biology, Mount Sinai School of Medical Center
Ph.D., Etvs Lornd University
Postdoctoral Training,
New York University

Dr. Söhnke M. Bartram

Department of Accounting and
FinanceLancaster University Management
SchoolPh.D. (WHU Koblenz)
MBA/BBA (University of Saarbrücken)

Dr. Miguel Angel Ariño

Professor of Decision Sciences
IESE Business School
Barcelona, Spain (Universidad de Navarra)
CEIBS (China Europe International Business School).
Beijing, Shanghai and Shenzhen
Ph.D. in Mathematics
University of Barcelona
BA in Mathematics (Licenciatura)
University of Barcelona

Philip G. Moscoso

Technology and Operations Management IESE Business School, University of Navarra
Ph.D in Industrial Engineering and Management, ETH Zurich
M.Sc. in Chemical Engineering, ETH Zurich

Dr. Sanjay Dixit, M.D.
Director, EP Laboratories, Philadelphia VA
Medical Center
Cardiovascular Medicine - Cardiac
Arrhythmia
Univ of Penn School of Medicine

Dr. Han-Xiang Deng

MD., Ph.D

Associate Professor and Research
Department Division of Neuromuscular

Medicine

Davee Department of Neurology and Clinical
NeuroscienceNorthwestern University
Feinberg School of Medicine

Dr. Pina C. Sanelli

Associate Professor of Public Health
Weill Cornell Medical College
Associate Attending Radiologist
NewYork-Presbyterian Hospital
MRI, MRA, CT, and CTA
Neuroradiology and Diagnostic
Radiology
M.D., State University of New York at

Buffalo,School of Medicine and Biomedical Sciences

Dr. Roberto Sanchez

Associate Professor
Department of Structural and Chemical Biology
Mount Sinai School of Medicine Ph.D., The Rockefeller University

Dr. Wen-Yih Sun

Professor of Earth and Atmospheric
SciencesPurdue University Director
National Center for Typhoon and
Flooding Research, Taiwan
University Chair Professor
Department of Atmospheric Sciences, National Central University, Chung-Li, TaiwanUniversity Chair Professor Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan.Ph.D., MS The University of Chicago, Geophysical Sciences
BS National Taiwan University, Atmospheric Sciences
Associate Professor of Radiology

Dr. Michael R. Rudnick
M.D., FACP

Associate Professor of Medicine
Chief, Renal Electrolyte and
Hypertension Division (PMC)
Penn Medicine, University of
Pennsylvania
Presbyterian Medical Center, Philadelphia
Nephrology and Internal Medicine Certified by the American Board of Internal Medicine

Dr. Bassey Benjamin Esu

B.Sc. Marketing; MBA Marketing; Ph.D Marketing
Lecturer, Department of Marketing, University of Calabar Tourism Consultant, Cross River State Tourism Development Department Co-ordinator, Sustainable Tourism Initiative, Calabar, Nigeria

Dr. Aziz M. Barbar, Ph.D.

IEEE Senior Member
Chairperson, Department of Computer
Science
AUST - American University of Science \& Technology
Alfred Naccash Avenue - Ashrafieh

President Editor (HON.)

Dr. George Perry, (Neuroscientist)

Dean and Professor, College of Sciences
Denham Harman Research Award (American Aging Association)
ISI Highly Cited Researcher, Iberoamerican Molecular Biology Organization
AAAS Fellow, Correspondent Member of Spanish Royal Academy of Sciences
University of Texas at San Antonio
Postdoctoral Fellow (Department of Cell Biology)
Baylor College of Medicine
Houston, Texas, United States

Chief AUTHOR (HON.)

Dr. R.K. Dixit
M.Sc., Ph.D., FICCT

Chief Author, India
Email: authorind@computerresearch.org

DEAN \& EDITOR-IN-CHIEF (HON.)

Vivek Dubey(HON.)

MS (Industrial Engineering),
MS (Mechanical Engineering)
University of Wisconsin, FICCT
Editor-in-Chief, USA
editorusa@computerresearch.org
Sangita Dixit
M.Sc., FICCT

Dean \& Chancellor (Asia Pacific)
deanind@computerresearch.org

Suyash Dixit

(B.E., Computer Science Engineering), FICCTT President, Web Administration and
Development, CEO at IOSRD
COO at GAOR \& OSS

Er. Suyog Dixit

(M. Tech), BE (HONS. in CSE), FICCT

SAP Certified Consultant
CEO at IOSRD, GAOR \& OSS
Technical Dean, Global Journals Inc. (US)
Website: www.suyogdixit.com
Email:suyog@suyogdixit.com

Pritesh Rajvaidya

(MS) Computer Science Department
California State University
BE (Computer Science), FICCT
Technical Dean, USA
Email: pritesh@computerresearch.org
Luis Galárraga
J!Research Project Leader
Saarbrücken, Germany

Contents of the Volume

i. Copyright Notice
ii. Editorial Board Members
iii. Chief Author and Dean
iv. Table of Contents
v. From the Chief Editor's Desk
vi. Research and Review Papers

1. Vertex Semientire Block Graph. 1-4
2. Implied Cost Method (ICM): An Alternative Approach to Find the Feasible Solution of Transportation Problem. 5-13
3. The Nature of Points in Countable Boolean Lattice Measures. 15-20
4. Optimal Hedging Strategy of Asset Returns on Target in Finance Logistics using the Law of Iterated Logarithm (Lil) Measure. 21-29
5. Computation of a Summation Formula. 31-45
6. On the Valuation Credit Risk Via Reduced-Form Approach. 47-59
7. An Wonderful Summation Formula. 61-77
8. Parallel surfaces satisfying the properties of Ruled surfaces in Minkowski 3space. 79-95
9. Construction of a Mixed Quadrature Rule using Three Different Well-Known Quadrature Rules. 97-103
10. Noiseless Coding Theorems Connected with Tuteja and Bhaker's 'useful' Inaccuracy Measure. 105-112
11. Analysis of Pulsatile Flow in Elastic Artery. 113-122
vii. Auxiliary Memberships
viii. Process of Submission of Research Paper
ix. Preferred Author Guidelines
x. Index

Global Journal of Science Frontier Research: F MATHEMATICS AND DECISION SCIENCES
Volume 14 Issue 1 Version 1.0 Year 2014
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Vertex Semientire Block Graph

By Venkanagouda M Goudar \& Rajanna N E
Sri Siddhartha Institute of Technology, India

Abstract- In this communications, the concept of the vertex semientire block graph is introduced. We present characterization of graphs whose vertex semientire block graph is planar, outerplanar and minimally non-outerplanar. Also we establish a characterization of graphs whose vertex semientire block graph is Eulerian.

Keywords: inner vertex number, line graph, outerplanar, vertex semientire graph.
GJSFR-F Classification : MSC 2010: 05C76

Strictly as per the compliance and regulations of :

Vertex Semientire Block Graph

Venkanagouda M Goudar ${ }^{\alpha}$ \& Rajanna NE ${ }^{\sigma}$

Abstract- In this communications, the concept of the vertex semientire block graph is introduced. We present
characterization of graphs whose vertex semientire block graph is planar, outerplanar and minimally non-outerplanar.
Also we establish a characterization of graphs whose vertex semientire block graph is Eulerian.
Keywords: inner vertex number, line graph, outerplanar, vertex semientire graph.

I. INTRODUCTION

By graph, we mean a finite, undirected graph without loops or multiple edges. We refer the terminology of [5].

The inner vertex number $i(G)$ of a planar graph G is the minimum number of vertices not belonging to the boundary of the exterior region in any embedding of G in the plane. A graph G is said to be minimally non-outerplanar if $i(G)=1$.

A new concept of a graph valued functions called the pathos vertex semientire graph $\mathrm{Pe}_{\mathrm{v}}(\mathrm{G})$ of a plane graph G was introduced [6] and is defined as the graph whose vertex set is $V(T) b_{i} r$ and the two vertices are adjacent if and only if they are adjacent vertices, vertices lie on the path of pathos and vertices lie on the regions. Since the system of pathos for a tree is not unique, the corresponding vertex semientire block graph is also not unique.

Blockdegree is the number of vertices lies on a block. Blockpath is a path in which each edge in a path becomes a block. Degree of a region is the number of vertices lies on a region.

Now we define the vertex semientire block graph. The vertex semientire block graph denoted by $e_{v b}(G)$ is the graph whose vertex set is $V(T) b_{i} r$ and the two vertices are adjacent if and only if they are adjacent vertices, vertices lie on the blocks and vertices lie on the regions.

II. Preliminaries

We need the following results to prove further results.
Theorem 1 [Ref 4]. If G be a connected plane graph then $\mathbf{e}_{\mathrm{v}}(\mathrm{G})$ is planar if and only if G is a tree.

Theorem 2 [Ref 3]. Every maximal outerplanar graph G with p vertices has 2 p 3 edges.

[^0]
iII. Vertex Semientire Block Graph

We start with a preliminary result.
Remark 1. For any graph G, $G \subseteq e_{v}(G) \subseteq \mathrm{e}_{v b}(G)$
Remark 2. For any (p, q) graph G the degree of a vertex in vertex semientire block graph $\mathrm{e}_{\mathrm{vb}}(\mathrm{T})$ is $2 \mathrm{p}+1$.

In the following theorem we obtain the number of vertices and edges in a vertex semientire block graph.

Theorem 3. For any (p, q) graph G with b blocks and r regions vertex semientire block graph $\mathbf{e}_{\mathrm{vb}}(\mathrm{G})$ has $(\mathrm{p}+\mathrm{b}+\mathrm{r})$ vertices and $q+\sum_{i=1}^{k} d\left(b_{i}\right)+\sum_{j}^{l} d\left(r_{j}\right)$ edges, where $d\left(b_{i}\right)$ is the block degree of a block bi and $d\left(r_{j}\right)$ is the degree of a region r_{j}.

Proof. By the definition of vertex semientire block graph $\mathbf{e}_{\mathrm{ev}}(\mathrm{G})$, the number of vertices is the union of the vertices, blocks and the regions of G. Hence the number of vertices of vertex semientire block graph $\mathbf{e}_{\mathrm{vb}}(G)$ is $(p+k+1)$.

Further, by remark 1, the graph G is a sub graph of $\mathbf{e}_{\mathrm{vb}}(\mathrm{G})$, hence all the edges of G are present $\mathbf{e}_{\mathrm{vb}}(\mathrm{G})$. Also by the Remark 2, the number of vertices is the degree of a block. Lastly, the degree of regionvertex is the number of vertices lies on the region and is the number of edges in $\mathbf{e}_{\mathrm{vb}}(\mathrm{G})$. Hence the number of edges vertex semientire block $\operatorname{graph} \mathbf{e}_{\mathrm{vb}}(\mathrm{G})$ is $q+\sum_{i=1}^{k} d\left(b_{i}\right)+\sum_{j}^{l} d\left(r_{j}\right)$

Theorem 4. For any tree T, vertex semientire block graph $\mathbf{e}_{\mathrm{vb}}(\mathrm{G})$ is always nonseparable.
Proof. Consider a graph G. We have the following cases
Case 1. Suppose G be a tree. All internal vertices of G are the cut vertices C_{i}. These cut vertices lies on the region as well as on two blocks. Clearly C_{i} is not a cut vertex in $\mathbf{e}_{\mathrm{vb}}(G)$. Hence $\mathbf{e}_{\mathrm{vb}}(G)$ is nonseparable.

Case 2. Suppose G be any graph with at least one cut vertex. Since cut vertex C C_{i} lies on at least two blocks and one region. Hence in $\mathrm{e}_{\mathrm{vb}}(\mathrm{G}), \mathrm{C}_{\mathrm{i}}$ becomes non-cut vertex. Hence $\mathbf{e}_{\mathrm{vb}}(\mathrm{G})$ is nonseparable.

Theorem 5. For any graph G, vertex semientire block graph $\mathrm{e}_{\mathrm{vb}}(\mathrm{G})$ is planar if and only if G is a tree.

Proof. Suppose $\mathbf{e}_{\mathrm{vb}}(\mathrm{G})$ is planar. Assume that G is a graph other than a tree, say a cycle C_{n}, for Without loss of generality we take $n=3$. Clearly all vertices of C3 lies on a block b_{i}. By the definition of vertex semientire block graph $\mathbf{e}_{\mathrm{vb}}(G), C_{3}$ along with bi form a graph K_{4}. Further all vertices of C3lies on both regions vertices r_{1} and r_{2}. Clearly r_{1} and r_{2} are adjacent to all vertices of C_{3} to form a graph which is homeomorphic to K_{5} and is non planar, a contradiction. Hence G must be a tree.

Conversely suppose a graph G is a tree. By definition, for each edge of a tree G, there is a K_{4} - e in $\mathbf{e}_{\mathrm{vb}}(G)$. Clearly $\mathrm{e}_{\mathrm{vb}}(\mathrm{G})$ is planar.

Theorem 6. For any tree T the vertex semientire block graph $\mathbf{e}_{\mathrm{vb}}(G)$ outerplanar if and only if T is a path P_{n}.

Proof. Suppose vertex semientire block graph $\mathbf{e}_{\mathrm{vb}}(\mathrm{G})$ is outerplanar. Assume that G is a tree which is not a path P_{n}. Since each edge is a block and both end vertices lies on a block. These end vertices and a blockvertex form a graph K3 in $\mathbf{e}_{\mathrm{vb}}(G)$. Further the regionvertex is adjacent to all vertices of G to form a graph such that it has at least two inner verteices, which is non outerplanar, a contradiction.

Conversely, suppose a graph G is a path P_{n}. By definition of $e_{v b}(G)$, the regionvertex r is adjacent to two vertices v_{1}, v_{2} to form K_{3} and a pathosvertex Pi is adjacent to two vertices $v 1, \mathrm{v}_{2}$ fo K_{3} to form $\mathrm{K}_{4}-\mathrm{x}$, which is outerplanar.

Theorem 7. For any graph G, vertex semientire block graph $\mathbf{e}_{\mathrm{vb}}(G)$ is not minimally non outerplanar .
Proof. Proof follows from the Theorem 6.
Theorem 8. For any graph G, vertex semientire block graph $\mathbf{e}_{\mathrm{vb}}(\mathrm{G})$ is maximal outerplanar if G is a path P_{n}.

Proof. Suppose vertex semientire block graph $\mathbf{e}_{\mathrm{vb}}(\mathrm{G})$ is maximal outerplanar, then $\mathbf{e}_{\mathrm{vb}}(\mathrm{G})$ is connected. Let G be a path P_{n}, it contains p vertices and $\mathrm{p}-1$ edges. Given that $\mathbf{e}_{\mathrm{vb}}(\mathrm{G})$ is maximal outerplanar, by Theorem 2, it has $2 \mathrm{p}-3$ edges. We know that $\mathrm{V}\left[\mathbf{e}_{\mathrm{eb}}(\mathrm{G})\right]=2 \mathrm{p}$ and $\mathrm{E}\left[\mathrm{e}_{\mathrm{vb}}(\mathrm{G})\right]=4 \mathrm{p}-3$.
$\Rightarrow 2(2 p)-3=q=4 p-3$
$\Rightarrow 2 p-3=4 p-3$ is satisfied.
Clearly, $\mathrm{G}=\mathrm{P}_{\mathrm{n}}$ is a nonempty path. Hence necessity is proved.
Theorem 9. For any graph G vertex semientire block graph $\mathbf{e}_{\mathrm{vb}}(G)$ is Eulerian if and only if following conditions hold:
i. G is a graph without tree
ii. Each region contains even number of vertices.
iii. number of vertices in each block is even and
iv. the number of vertices in a graph G is even.

Proof. Suppose $\mathbf{e}_{\mathrm{vb}}(\mathrm{G})$ is Eulerian. We have the following cases.
Case 1. Assume that G is a tree. Clearly a tree contains at least two vertices vi and $v j$ of odd degree and at least one vertex v_{k} of even degree. By the Remark 2, in $\operatorname{evb}(\mathrm{G}), \operatorname{deg}\left(\mathrm{v}_{\mathrm{i}}\right)$ and $\operatorname{deg}\left(\mathrm{v}_{\mathrm{j}}\right)$ becomes even and $\operatorname{deg}\left(\mathrm{v}_{\mathrm{k}}\right)$ becomes odd. Clearly $\mathbf{e}_{\mathrm{vb}}(\mathrm{G})$ is non Eulerian, a contradiction.

Case 2. Assume that degree each region contains odd number of vertices. By definition of $\mathbf{e}_{\mathrm{vb}}(G)$, the degree of regionvertex in $\mathbf{e}_{\mathrm{vb}}(G)$ is becomes odd. Clearly $\mathbf{e}_{\mathrm{vb}}(G)$ is non Eulerian, a contradiction.

Case 3. Assume that the number of vertices in each block is odd. By definition of $\mathbf{e}_{\mathrm{vb}}(G)$, the degree of blockvertex in $\mathbf{e}_{\mathrm{vb}}(G)$ is becomes odd. Clearly $\mathbf{e}_{\mathrm{vb}}(G)$ is non Eulerian, a contradiction.

Case 4. Assume that the number of vertices in a graph G is odd. Clearly it follows that G has either at least two vertices of even degree and at least two vertices of odd degree or all vertices of even degree. If all vertices of odd degree then G must be a complete graph. Without loss of generality G is either K_{3} or K_{4}. If G is K_{3}, then inner regionvertex is of odd degree. By the case 2, $\mathbf{e}_{\mathrm{vb}}(\mathrm{G})$ is non Eulerian. Also if G is K4, then each region have odd degree. By the case $2, \mathbf{e}_{\mathrm{vb}}(G)$ is non Eulerian, which is a contradiction.

Conversely suppose G satisfies all the conditions of the Theorem. For a graph G with degree of regionvertex, degree of blockvertex and all vertices of G is even, then the corresponding vertices in $\mathbf{e}_{\mathrm{vb}}(G)$ is even. Hence $\mathbf{e}_{\mathrm{vb}}(G)$ is Eulerian.

References Références Referencias

1. Haray F., Annals of New York, Academy of Sciences, (1977)175, 198.
2. Harrary, F.,Graph Theory, Addison- Wesley Reading Mass, (1969)., p.72, 107.
3. Kulli. V R., On minimally nonouterplanar graphs, proceedings of the Indian National Science Academy, (1975)., 41A.
4. Kulli. V. R. and Akka. D. G., Journal mathematical Science, Vol. 14, No. 6, (1980)., P. 585- 588.
5. Sedlacek J., Some properties of interchange graphs. The Graphs and the applications. Academic press, New York (1962).
6. Venkanagouda. M. Goudar, "On Pathos vertex semientire graph of a tree", international journal of applied mathematical research, 1 (4),. 666-670 (2012).

Global Journal of Science Frontier Research: F
MATHEMATICS AND DECISION SCIENCES
Volume 14 Issue 1 Version 1.0 Year 2014
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Implied Cost Method (ICM): An Alternative Approach to Find the Feasible Solution of Transportation Problem

By Md. Ashraful Babu, Md. Abu Helal, Mohammad Sazzad Hasan \& Utpal Kanti Das

University of Business Agriculture and Technology, Bangladesh
Abstract- Transportation Algorithm uses for solving Transportation Problem to find feasible solution which may optimal or not. This is now a challenge that developed such an algorithm which gives optimal solution without using Optimality Methods like as MODI, Stepping-Stone. For this reason there are several transportation algorithm exists for solving TP like as North West Corner Rule (NWC), Least Cost Method (LCM), Vogel's Approximation Method (VAM) etc. where VAM provides the feasible solution which is lower than NWC and LCM and for some case of TP it coincides with optimal solution. In this paper we proposed a new approach named "Implied Cost Method (ICM)" where feasible solutions are lower than VAM and very close to optimal solution or sometimes coincides with optimal solution.

Keywords: transportation problem (TP), ICM, LCM, VAM, feasible solution, optimal solution.
GJSFR-F Classification : MSC 2010: 03D32

Strictly as per the compliance and regulations of:

[^1]
Implied Cost Method (ICM): An Alternative Approach to Find the Feasible Solution of Transportation Problem

Md. Ashraful Babu ${ }^{\alpha}$, Md. Abu Helal ${ }^{\circ}$, Mohammad Sazzad Hasan ${ }^{\rho}$ \& Utpal Kanti Das ${ }^{\omega}$

Abstract

Transportation Algorithm uses for solving Transportation Problem to find feasible solution which may optimal or not. This is now a challenge that developed such an algorithm which gives optimal solution without using Optimality Methods like as MODI, Stepping-Stone. For this reason there are several transportation algorithm exists for solving TP like as North West Corner Rule (NWC), Least Cost Method (LCM), Vogel's Approximation Method (VAM) etc. where VAM provides the feasible solution which is lower than NWC and LCM and for some case of TP it coincides with optimal solution. In this paper we proposed a new approach named "Implied Cost Method (ICM)" where feasible solutions are lower than VAM and very close to optimal solution or sometimes coincides with optimal solution. Keywords: transportation problem (TP), ICM, LCM, VAM, feasible solution, optimal solution.

I. Introduction

Transportation Model is one of the most important branches in Production Management. To obtain best possible profit in a business it's not only a matter of profit maximization but also cost should be minimized in optimistic way.

Transportation cost is the most important part of the total expenditure of a company along with the production cost. In generally a business company has some factories for manufacturing products and some retail centers for distributing products which are known as sources and destinations respectively in transportation model. For a transportation problem we consider \boldsymbol{m} sources and \boldsymbol{n} destinations where $\boldsymbol{c}_{i j}$ is the unit cost of $\boldsymbol{i}^{t h}$ source to $\boldsymbol{j}^{t h}$ destinations. The main output of the transportation problem is $\boldsymbol{x}_{i j}$ the amount of products transferred from $i^{\text {th }}$ source to $j^{\text {th }}$ destination so that total transportation cost will be minimized. In this paper we proposed a new algorithm to modify Least Cost Method (LCM) to obtain the feasible solution of Transportation problem which is more efficient than other existing algorithms. Also transportation problem is known as special types of linear programming problem, the general linear programming formulation of transportation is given below:

[^2]Minimize: $\quad \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j}$

Subject to:

$$
\begin{array}{ll}
\sum_{j=1}^{n} x_{i j} \leq s_{i}, & \text { for } i=1,2,3 \ldots \ldots \ldots \ldots \ldots . m \\
\sum_{i=1}^{m} x_{i j} \geq d_{j}, & \text { for } j=1,2,3 \ldots \ldots \ldots \ldots \ldots . n \\
x_{i j} \geq 0, & \text { for all } i, j
\end{array}
$$

where \boldsymbol{s}_{i} be the amount of supply capacity of $\boldsymbol{i}^{\text {th }}$ source and \boldsymbol{d}_{j} be the amount of demand of the $\boldsymbol{j}^{t h}$ destination.

II. Methodology

In the beginning we noticed that there are some existing transportation algorithms such as North West Corner Rule (NWC), Least Cost Method (LCM), Vogel's Approximation Method (VAM) etc. where VAM is the better than others. In this paper we developed a new algorithm "ICM" which provides feasible solution lower than VAM.

a) Existing Algorithm of Vogel's Approximation Method (VAM)

Vogel's Approximation Method (VAM) is known as the most efficient algorithm of Transportation Problem. The existing algorithm of VAM is given below:

Step-1: Indentify the boxes having minimum and next to minimum transportation cost in each row and write the difference (Penalty) along the side of the table against the corresponding row.

Step-2: Indentify the boxes having minimum and next to minimum transportation cost in each column and write the difference (Penalty) along the side of the table against the corresponding column.

If minimum cost appear in two or more times in a row or column then select these same cost as a minimum and next to minimum cost and penalty will be zero.

Step-3: i) Indentify the row and column with the largest penalty, breaking ties arbitrarily. Allocate as much as possible to the variable with the least cost in the selected row or column. Adjust the supply and demand and cross out the satisfied row or column. If a row and column are satisfies simultaneously, only one of them is crossed out and remaining row or column is assigned a zero supply or demand.
ii) If two or more penalty costs have same largest magnitude, then select any one of them (or select most top row or extreme left column).
Step-4:
i. If exactly one row or one column with zero supply or demand remains uncrossed out, stop.
ii. If only one row or column with positive supply or demand remains uncrossed out, determine the basic variables in the row or column by the Least-Cost Method.
iii. If all uncrossed out rows or column have (remaining) zero supply or demand, determined the zero basic variables by the Least-Cost Method. Stop.
iv. Otherwise, go to Step-1.

b) Proposed Algorithm for Implied Cost Method (ICM)

In this proposed algorithm, determining implied cost by multiplying unit transport cost and maximum possible amount of commodity according to the availability of supply and demand. We allocate the maximum possible amount of commodity to the lowest implied cost. The goal of the transportation problem is transfer maximum possible amount into the lowest cost roots so that total cost will be minimized. For this reason we choose the concept of implied cost which ensures that cost of each and every allocation is minimum that's why total transportation cost will be minimized.
The algorithm of Implied Cost Method (ICM) is given below:
Step-1: Balanced the supply and demand by adding dummy supply or demand

$$
\text { if } \sum_{i} s_{i}>\sum_{j} d_{j} \text { or if } \sum_{i} s_{i}<\sum_{j} d_{j}
$$

Step-2: Determine implied cost for each cell by the product of unit transportation cost and maximum possible amount of commodity according to the availability of supply and demand.

Step-3: Identify the lowest implied cost and allocate maximum possible amount of $x_{i j}$.

Step-4: If two or more implied costs are equal then select that cell where the allocation is maximum.

Step-5: Adjust the supply and demand and cross out the satisfied row or column. If a row and column are satisfies simultaneously, only one of them is crossed out and remaining row or column is assigned a zero supply or demand.

Step-6: If exactly one row or one column with zero supply or demand remains uncrossed out then Stop. Otherwise, go to Step-2.

iII. Numerical Illustration

Consider some transportation problem and solve these by Implied Cost Method (ICM) and compare results with the other existing methods.

Example-1:

Table-1.1 Consider a Mathematical Model of a Transportation Problem in Table-1.1

Source	Destinations				Supply
	D1	D2	D3	D4	
S1	7	5	9	11	30
S2	4	3	8	6	25
S3	3	8	10	5	20
S4	2	6	7	3	15
Demad	30	30	20	10	

a) Solv ing Example - 1 by Implied Cost Method (ICM)

Costs are indicating in the top-right corner, implied costs are indicating in bottom-left corner and allocations are indicating in bottom-right corner.

Iteration-1: Determine implied cost by multiplying unit transport cost and maximum possible amount of supply and demand for each cell and placed it in left-bottom corner of each cell. Here cell (S4, D1) and (S4, D4) has the lowest
implied cost and (S4,D1) has maximum allocation that is 15 . So allocate 15 in (S4,D1) cell which is placed in right-bottom corner.

Source	Destinations				Supply
	D1	D2	D3	D4	
S1	7	5	9	11	110
	210	150	180	6	25
S2	4	3	8	60	
	100	75	160	20	
S3	3	8	10	50	3
	60	160	200	7	
S4	2	6	105	30	
	30	90		10	
Demand	$\mathbf{1 5}$	$\mathbf{3 0}$	$\mathbf{2 0}$	$\mathbf{1 0}$	

Adjust supply and demand and crossed out S 4 row.
Iteration 2 : Compute implied cost for all cells in uncrossed out rows and columns.

Source	Destinations				
	D1	D2	D3	D4	
S1	7	5	9	11	30
	105	150	180	110	6
S2	4	3	8	60	25
	60	75	160	5	5
S3	3	8	10	50	5
	45	160	200	3	
S4	2				
	30	6	7		
Demand	15			10	

Here cell (S3,D1) has the lowest implied cost, allocate 15 in (S3,D1) cell and adjust supply and demand and crossed out D1 column.

Iteration 3 : Compute implied cost for all cells in uncrossed out rows and columns.

Source	Destinations				
	D1	D2	D3	D4	
S1	7	5	9	11	30
		150	180	110	30
S2	4	3	8	60	
	3	75	160	5	
	45	40	50	25	
S4	15			5	
	30	6	7	3	
Demand	15				

Here cell (S3,D4) has the lowest implied cost, allocate 5 in (S3,D4) cell and adjust supply and demand and crossed out S 3 row.

Iteration 4 : Compute implied cost for all cells in uncrossed out rows and columns.

Source	Destinations				
	D1	D2	D3	D4	
S1	7	5	9	11	30
		150	180	55	
	4	3	8	6	
S3	35	160	30		
	45	8	10	5	
S4	15			25	
	2	60		7	3
	15				
Demand		30	20		

Here cell (S2,D4) has the lowest implied cost, allocate 5 in (S2,D4) cell and adjust supply and demand and crossed out D4 column.
Iteration 5 : Compute implied cost for all cells in uncrossed out rows and columns.

Source	Destinations				
	D1	D2	D3	D4	
S1	7	5	9	11	30
	4	150	180		
		60	8	160	30
S3	3	20		5	
	45	8	10	5	
	15			25	
S4	2	6	7	3	
	30				

Here cell (S2,D2) has the lowest implied cost, allocate 20 in (S2,D2) cell and adjust supply and demand and crossed out S 2 row.
Iteration 6 : Compute implied cost for all cells in uncrossed out rows and columns.

Source	Destinations				
	D1	D2	D3	D4	
S1	7	5	9	11	20
		50	180	55	
S2		10			
	4	3	8	6	
S3	30		30		
	45	20		5	
S4	15		10	5	
	2	6		25	
	30		7	3	

	15				
Demand			20		

Here cell (S1,D2) has the lowest implied cost, allocate 10 in (S1,D2) cell and adjust supply and demand and crossed out D2 column.

Iteration-7: Finally one allocation has been left. Allocate 20 in (S1,D3) cell adjust supply and demand and crossed out S1 row and set zero demand inD3 column.

Table: 1.3

	$\mathbf{2 5}$	$\mathbf{0}$			
S3	3	8	10	5	20
	5		5	10	
S4	2	6	7	3	$\mathbf{1 5}$
			15		
Demand	$\mathbf{3 0}$	$\mathbf{3 0}$	$\mathbf{2 0}$	$\mathbf{1 0}$	

Total Transportation Cost:
$(5 \times 30)+(4 \times 25)+(3 \times 0)+(3 \times 5)+(10 \times 5)+(5 \times 10)+(7 \times 15)=470$
A. Example-2:

Consider a Mathematical Model of a Transportation Problem in Table-2.1:

Source	Destinations					Supply
	D1	D2	D3	D4	D5	
S1	7	6	4	5	9	$\mathbf{4 0}$
S2	8	5	6	7	8	$\mathbf{3 0}$
S3	6	8	9	6	5	20
S4	5	7	7	8	6	$\mathbf{1 0}$
Demand	$\mathbf{3 0}$	$\mathbf{3 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{5}$	

Table-2.1

B.1. Solution of Example-2 using Implied Cost Method (ICM):

Costs are indicating in the top-right corner, implied costs are indicating in bottom-left corner and allocations are indicating in bottom-right corner.

Source	Destinations					Supply
	D1	D2	D3	D4	D5	
S1	7	6	4	5	9	40
	35		60	100		
	5		15	20		
S2	8	5	6	7	8	$\mathbf{3 0}$
		150		0		
	6	30		0		
	90			6	5	$\mathbf{2 0}$
	15				25	
	5	7	7	8	6	$\mathbf{1 0}$
S4	50					
	10					
Demand	$\mathbf{3 0}$	$\mathbf{3 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{5}$	

Table -2.2

Total Transportation cost: $\mathbf{3 5}+\mathbf{6 0}+\mathbf{1 0 0}+\mathbf{1 5 0}+\mathbf{9 0}+\mathbf{2 5}+\mathbf{5 0}=\mathbf{5 1 0}$
B.2. Solution of Example -2 using Vogel's Approx imation Method (VAM):

Source	Destinations					Supply
	D1	D2	D3	D4	D5	
S1	7	6	4	5	9	$\mathbf{4 0}$
	$\mathbf{5}$	$\mathbf{0}$	$\mathbf{1 5}$	$\mathbf{2 0}$		
S2	8	5	6	7	8	$\mathbf{3 0}$
		$\mathbf{3 0}$				

S3	6 15	8	9	6	5	20
S4	5 10	7	7	8	6	10
Demand	30	30	15	20	5	

Tabl e-2.3

Total Transportation cost: $\mathbf{3 5}+\mathbf{0}+\mathbf{6 0}+\mathbf{1 0 0}+\mathbf{1 5 0}+\mathbf{9 0}+\mathbf{2 5}+\mathbf{5 0}=\mathbf{5 1 0}$

IV. Result Analysis

In above two examples we observed that Implied Cost Method (ICM) provides lowest feasible solutions which are lower than VAM or equal to VAM and very close to optimal solution. The comparison table is given below:

Transportation Problems	Optimal Solution	Methods			
	I CM	VAM	LCM	NWC	
Example-1	410	420	470	435	540
Example-2	510	510	510	510	635

V. Conclusion

In this paper we proposed a new algorithm named "Implied Cost Method (ICM)" which is easier than other algorithms. ICM provides better feasible solution than others which are very close to optimal solution and sometimes it is equal to optimal solution. But it is not grantee that all time ICM provides least feasible solution but most of the times it gives better approach.

References Références Referencias

1. Taha, Hamdy. A. (2006) Operation Research: An Introduction, Eighth Edition, ISBN-13: 978-0132555937.
2. Murthy, P. Rama. (2008) Operation Research, Second Edition, ISBN (13): 978-81-224-2944-2.
3. Taha, Hamdy. A. TORA Optimizing System Software.
4. F. S. Hillier, and Lieberman, G. J. (1995). Introduction to Operations Research, 6th ed. New York: McGraw-Hill, Inc.
5. Bronson, Richard et al. (1997) Theory and Problems of Operation Research, Publisher: McGraw-
6. Shah, Syed Nasir Mehmood, Mahmood, Ahmad Kamil Bin, Alan Oxley. Modified Least Cost Method for Grid Resource Allocation. CYBERC '10 Proceedings of the 2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. Pp. 218-225, ISBN: 978-0-7695-4235-5.
7. A.D, Ajibade, S.N. Babarinde, On The Use of Transportation Techniques to Determine the Cost of Transporting Commodity. IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 4 (May. - Jun. 2013), PP 23-28.
8. J. Sudhakar and N. Arunsankar. (2012). A new approach for finding an Optimal Solution for Transportation Problem (Euro Journals Publishing) India pp. 254 257.
9. Samuel, A. Edward and Venkatachalapathy, M. (2011)"Modified Vogel's Approximation Method for Fuzzy Transportation Problems", Applied Mathematical Sciences, Vol. 5, 2011, no. 28, 1367 - 1372.
10. Hakim, M.A.(2012) An Alternative Method to find Initial Basic Feasible Solution of a Transportation problem. Annals of Pure and Applied Mathematics, Vol. 1, No. 2, 2012, pp. 203-209, ISSN: 2279-087X (P), 2279-0888(online).
11. Islam, Md. Amirul, Khan, Aminur Rahman, Uddin, M. Sharif and Malek, M. Abdul. (2012). Determination of Basic Feasible Solution of Transportation Problem: A New Approach. Jahangirnagar University Journal of Science, Vol. 35, No. 1, pp. 101 - 108, ISSN 1022-8594
12. Khan, Aminur Rahman. (2011). A Re-solution of the Transportation Problem: An Algorithmic Approach. Jahangirnagar University Journal of Science, Vol. 34, No. 2, pp. 49-62 ISSN 1022-8594.

Global Journal of Science Frontier Research: F MATHEMATICS AND DECISION SCIENCES
Volume 14 Issue 1 Version 1.0 Year 2014
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

The Nature of Points in Countable Boolean Lattice Measures

By D. V. S. R. Anil Kumar, Y. V. Seshagiri Rao \& Y. Narasimhulu
T. K. R. College of Engineering and Technology, India

Abstract- This paper describes a class of null sets; point, lattice measure of a point and lattice semi-finite measure were introduced. Here it has been derived a result that in a countable Boolean lattice the lattice measure of any two points are either disjoint or identical also the class of all points in countable Boolean lattice is countable and proved that Any union countable of null partial lattices is null partial lattice, also established that the class of points in countable Boolean lattice is countable. It has been obtained a theorem that if a countable Boolean lattice is pointless if and only if every non empty set in countable Boolean lattice contains countable number of disjoint non-empty sets. Finally it has been observed that some elementary nature of points in a countable Boolean lattice.

Keywords: Lattice, measure of a point, partial lattice measure, semi-finite measure.
GJSFR-F Classification : ASM:03G10, 28A05, $28 A 12$.

Strictly as per the compliance and regulations of :

© 2014. D. V. S. R. Anil Kumar, Y. V. Seshagiri Rao \& Y. Narasimhulu. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

D. V. S. R. Anil Kumar ${ }^{\alpha}$, Y. V. Seshagiri Rao ${ }^{\circ}$ \& Y. Narasimhulu ${ }^{\rho}$

Abstract

This paper describes a class of null sets; point, lattice measure of a point and lattice semi-finite measure were introduced. Here it has been derived a result that in a countable Boolean lattice the lattice measure of any two points are either disjoint or identical also the class of all points in countable Boolean lattice is countable and proved that Any countable union of null partial lattices is null partial lattice, also established that the class of points in countable Boolean lattice is countable. It has been obtained a theorem that if a countable Boolean lattice is pointless if and only if every non empty set in countable Boolean lattice contains countable number of disjoint non-empty sets. Finally it has been observed that some elementary nature of points in a countable Boolean lattice.

Keywords: Lattice, measure of a point, partial Iattice measure, semi-finite measure.

I. Introduction

The origin of a lattice concept can be traced back to Boole's analysis of thought and Dedekind's study of divisibility, Schroder and Pierce contributed substantially to this area. Though some of the work in this direction was done around 1930, much momentum was gained in 1967 with the contributions of Birkhoff's [3]. In 1963, Gabor szasz [9] introduced the generalization of the lattice measure concepts. To study σ - additive set functions on a lattice of sets, Gena A. DE Both [4] introduced σ - lattice in 1973. The concept of partial lattices was introduced by George Gratzer [6] in 1978. In 2000, Pao - Sheng Hus [8] characterized outer measures associated with lattice measure. The Hann decomposition theorem of a signed lattice measure by Jun Tanaka [10] defined a signed lattice measure on a lattice σ - algebras and the concept of sigma algebras are extensively studied by [5]. D.V.S.R. Anil Kumar etal [1] introduce the concept of measurable Borel lattices, σ - lattice and δ-lattice to characterize a class of Measurable Borel Lattices. This paper is organized as follows. Section 2 presents the preliminaries definitions and results.

In Section 3, a class of null sets, lattice measure of a point and lattice semi-finite measure. It has been established a result that in a countable Boolean lattice the lattice measure of any two points are either disjoint or identical. In fact it has been proved that the class of all points in countable Boolean lattice is countable. Finally it has been observed various elementary natures of points in countable Boolean lattice.

[^3]
II. Preliminaries

Consider a lattice $(\mathrm{L}, \wedge, \vee)$ with the operations meet \wedge and join \vee and usual ordering \leq, where L is a collection of subset of a non empty set X. Now this lattice (L, \wedge, \vee) is denoted by L and satisfy the commutative law, the associative law and the absorption law. A lattice L is called distributive if the distributive law is satisfied. The zero and one elements of the lattice L are denoted by 0 and 1 respectively. A distributive lattice L is called a Boolean lattice if for any element x in L, there exists a unique complement x^{c} such that $x \vee x^{c}=1$ and $x \wedge x^{c}=0$. An operator $\mathrm{C}: \mathrm{L} \rightarrow \mathrm{L}$, where L is a lattice is called a lattice complement in L if the law of complementation, the law of contra positive and the law of double negation are satisfied. The following are very important examples of Boolean lattice. Let ($\{0,1\}, \leq$) be the set cons isting of the two elements 0,1 equipped with the usual order relation $0 \leq 1$. This poset is a Boolean lattice with respect to the operations presented in the tables below (at the left the lattice operations and at the right the complementation)

a	b	$a \wedge b$	$a \vee b$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

X	X^{c}
0	1
1	0

$\mathrm{B}=\left(\{0,1\}, \vee, \wedge,{ }^{\mathrm{c}}, 0,1\right)$. The power set $\mathrm{P}(\mathrm{X})$ of a universe X a Boolean lattice if we choose the set theoretic complement $A^{c}=X \backslash A:=\{x \in X: x \in X$ and $x \notin A\}$ as the complement of a given set A in the universe X. Such a Boolean lattice is $P=\left(P(X), \vee, \wedge,{ }^{c}, \phi, X\right)$. $\mathrm{E}=\left(2^{\mathrm{X}}, \vee, \wedge,{ }^{\mathrm{c}}, 0,1\right)$ is the collection 2^{X} of all two valued functional on the universe X is a Boolean lattice if we choose the functional $\chi^{\mathrm{c}}=1-\chi$ as the complement of a given functional χ. Let $\left(\mathrm{D}, \vee, \wedge,{ }^{\mathrm{c}}, 1,70\right)$ is a Boolean lattice where $\mathrm{D}=\{1,2,5,7,10,14,35,70\}$ is the set of all divisors of 70, $x \wedge y=$ Greatest Common Devisor of x and $y, x \vee y=$ Least Common Multiple of x and y and $x^{c}=\frac{70}{x}$.

A Boolean lattice L is called a countable Boolean lattice if L is closed under countable joins and is denoted by $\sigma(\mathrm{L})$. \{empty set $\phi, \mathrm{X}\}$, Power set of X , and Let $\mathrm{X}=\mathfrak{R}$, $\mathrm{L}=\{$ measurable subsets of $\mathfrak{R}\}$ with usual ordering (\leq) are all countable Boolean lattices. The entire set X together with countable Boolean lattice is called lattice measurable space and is denoted by the ordered pair $(\mathrm{X}, \sigma(\mathrm{L}))$. $\mathrm{X}=\Re$, where \mathfrak{R} is extended real number system and $\sigma(\mathrm{L})=\{$ All Lebesgue measurable sub sets of $\mathfrak{R}\},(\Re, \sigma(\mathrm{L}))$ is a lattice measurable space. If $\mu: \sigma(\mathrm{L}) \rightarrow \mathrm{R} \cup\{\infty\}$ satisfies the following properties (i) $\mu(\phi)=\mu(0)=0$ (ii) for all $\mathrm{h}, \mathrm{g} \in \sigma$ (L), such that $\mu(\mathrm{h}), \mu(\mathrm{g}) \geq 0 ; \mathrm{h} \leq \mathrm{g} \Rightarrow \mu(\mathrm{h}) \leq \mu(\mathrm{g})$ (iii) for all $\mathrm{h}, \mathrm{g} \in \sigma(\mathrm{L}): \mu(\mathrm{h} v \mathrm{~g})+\mu(\mathrm{h}$ $\wedge \mathrm{g})=\mu(\mathrm{h})+\mu(\mathrm{g})($ iv $)$ If $\mathrm{h}_{\mathrm{n}} \in \sigma(\mathrm{L}), \mathrm{n} \in \mathrm{N}$ such that $\mathrm{h}_{1} \leq \mathrm{h}_{2} \leq \ldots \leq \mathrm{h}_{\mathrm{n}} \leq \ldots$, then $\mu\left(\vee_{n=1} \mathrm{~h}_{\mathrm{n}}\right)$ $=\lim \mu\left(\mathrm{h}_{\mathrm{n}}\right)$ then μ is called a lattice measure on the countable Boolean lattice $\sigma(\mathrm{L})[2]$.
Definition2.1. Let $\sigma(\mathrm{L})$ be a countable Boolean lattice, $\mathrm{H} \subseteq \sigma(\mathrm{L})$, and restrict \wedge and \vee to H as follows. For $a, b, c \in H$, if $a \wedge b=c$ (dually, $a \vee b=c$), then we say that in $H, a \wedge b$ (dually $a \vee b$) is defined and it equals c, if, for $a, b \in H, a \wedge b \notin H$ (dually $a \vee b \notin H$), the n we say that $\mathrm{a} \wedge \mathrm{b}$ (dually $\mathrm{a} \vee \mathrm{b}$) is not defined in H . Thus $(\mathrm{H}, \wedge, \vee)$ is a set with two binary partial operations. $(\mathrm{H}, \wedge, \vee)$ is called a partial Boolean lattice of $\sigma(\mathrm{L})$.

Note2.1. Here onwards we call partial Boolean lattice by simply partial lattice.
Observation2.1. Every subset of a countable Boolean lattice determines a partial lattice. Every Boolean sub lattice of $\sigma(\mathrm{L})$ is a partial lattice and the converse need not be true.

A set A is said to be measurable partial lattice, if A is in $\sigma(\mathrm{L}) .(\Re, \sigma(\mathrm{L}))$ be lattice measurable space. Then the interval (a, ∞) is a measurable partial lattice under usual ordering.

III. Nature of Points in Countable Boolean Lattice

Definition3.1. Let X be a lattice measurable space, let μ be a lattice measure on X , and let N be a measurable partial lattice. If μ is a positive lattice measure, then N is null partial lattice if its lattice measure $\mu(\mathrm{N})=0$.
Example3.1. The empty set is always a null partial lattice.
Observation3.1. Any countable union of null partial lattices is null partial lattice.
Observation3.2. Any partial lattice of a null partial lattice is itself a null partial lattice.
Definition3.2. Let $(\mathrm{X}, \sigma(\mathrm{L})$) be a lattice measurable space. A nonempty class N of sets, where N is contained in $\sigma(\mathrm{L})$ is called a class of null partial lattice of σ (L).If

For $E \in N, F \in \sigma(L)$, then $E \wedge F \in N$, and also for any $E_{n} \in N, n=1,2,3 \ldots, \underset{n=1}{\vee} E_{n} \in N$.
Definition3.3. Let $(\mathrm{X}, \sigma(\mathrm{L}), \mu)$ be a lattice measure space. A set E in $\sigma(\mathrm{L})$ is called a μ-point if $\mu(E)>0$ and $F \in \sigma(L)$ such that F is contained in E, then either $\mu(E-F)=0$ or $\mu(F)=0$.
Example3.2. Consider the set $\mathrm{X}=\{1,2, \ldots, 9,10\}$ and let $\sigma(\mathrm{L})$ be the power set of X . Define the lattice measure μ of a set to be its cardinality, that is, the number of elements in the set. Then, each of the singletons $\{i\}$, for $i=1,2, \ldots 9,10$ is a μ - point.
Definition3.4. Let $\sigma(\mathrm{L})$ be the countable Boolean lattice. A partial lattice E is said to be a point of $\sigma(\mathrm{L})$ if $\mathrm{E} \neq \phi$ and F in $\sigma(\mathrm{L}), \mathrm{F}$ is contained in E implies $\mathrm{F}=\phi$ or $\mathrm{F}=\mathrm{E}$.
Example3.3. Let $\sigma(\mathrm{L})=\{$ All Lebesgue measurable subsets of a real line $\mathfrak{R}\}$. Here $\sigma(\mathrm{L})$ is a countable Boolean lattice. Clearly $\{1\}$ is a member of $\sigma(\mathrm{L})$. Put $\{1\}=$ E. It can be easily verified that E is a point of $\sigma(\mathrm{L})$.
$(\{1\} \neq \phi$ that is $\mathrm{E} \neq \phi$ also $\mathrm{F} \in \sigma(\mathrm{L}), \mathrm{F}<\mathrm{E}$, then $\mathrm{F}=\phi$ or $\mathrm{F}=\mathrm{E})$.
Example3.4. Suppose X consists of five points $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, and e. Suppose E consists of two sets, $\mathrm{E}_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{E}_{2}=\{\mathrm{c}, \mathrm{d}, \mathrm{e}\}$. We can find the countable Boolean lattice by E .
Let $\mathrm{F}_{1}=\{\mathrm{a}, \mathrm{b}\}=\mathrm{E}_{1} \cap \mathrm{E}_{2}^{\mathrm{c}}$ and $\mathrm{F}_{2}=\{\mathrm{c}\}=\mathrm{E}_{1} \cap \mathrm{E}_{2}$,
$\mathrm{F}_{3}=\{\mathrm{d}, \mathrm{e}\}=\mathrm{E}_{1}^{\mathrm{c}} \cap \mathrm{E}_{2}$ and $\mathrm{F}_{4}=\{\mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{e}\}=\mathrm{F}_{1} \cup \mathrm{~F}_{3}$.
Clearly $\sigma(E)$ consists of the sets $\emptyset, F_{1}, F_{2}, F_{3}, F_{1} \cup F_{3}, F_{1} \cup F_{2}=E_{1}, F_{2} \cup F_{3}=E_{2}$, X. The partial lattices F_{1}, F_{2}, F_{3} are the points of the countable Boolean lattice. Every member of $\sigma(\mathrm{E})$ is a union of some collection (possibly empty) of F_{i}. The only partial lattices of F_{i} are the empty set and F_{i} itself.
Note3.1. A countable Boolean lattice $\sigma(\mathrm{L})$ of X is said to be pointless if there are no points of σ (L).
Example3.5. Consider the Lebesgue lattice measure on the real line. This lattice measure has no points.
Definition3.5. Lattice semi-finite measure: A lattice measure μ on a countable Boolean lattice $\sigma(\mathrm{L})$ of X is said to be semi-finite if $\mathrm{F} \in \sigma(\mathrm{L}), \mu(\mathrm{F})=\infty$ implies there exists $E \in \sigma(L)$ such that E is contained in F and $0<\mu(E)<\infty$.

Note3.2. A lattice σ-finite measure is a lattice semi-finite but converse is not true.
Example3.6. An example of lattice measure which is lattice semi finite but not lattice σ-finite.
Consider an infinite set X .
Put $\mu(A)=|A|$ (the number of elements) if A is finite and $\mu(A)=0$ if A is infinite.
Definition3.6. A partially ordered set X is said to satisfy the countable chain condition (CCC), if every strong antichain in X is countable. In other words no two elements have a common lower bound.
Example3.7. The partially ordered set of non-empty open partial lattices of X satisfies the countable chain condition. That is every pair wise disjoint collection of non-empty open partial lattices of X is countable.

Result3.1. Let $(X, \sigma(L), \mu)$ be a lattice measure space. If E_{1} and E_{2} are points, then either μ $\left(E_{1} \Delta E_{2}\right)=0$ or $\mu\left(E_{1} \wedge E_{2}\right)=0$ or (the lattice measure of any two points are either disjoint or identical).
Proof. Let E_{1} and E_{2} are points.
Since E_{1} is a point by definition3.3, $E_{2} \in \sigma(L)$ such that E_{2} is contained in E_{1}.
This implies $\mu\left(E_{1}-E_{2}\right)=0$ or $\mu\left(E_{2}\right)=0$.
Since E_{2} is a point $\mu\left(E_{2}\right) \neq 0, \mu\left(E_{1}-E_{2}\right)=0$.
By similar argument we have that $\mu\left(\mathrm{E}_{2}-\mathrm{E}_{1}\right)=0$.
Now consider $\mathrm{E}_{1} \Delta \mathrm{E}_{2}=\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right) \vee\left(\mathrm{E}_{2}-\mathrm{E}_{1}\right)$
This implies $\mu\left(\mathrm{E}_{1} \Delta \mathrm{E}_{2}\right)=\mu\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right)+\mu\left(\mathrm{E}_{2}-\mathrm{E}_{1}\right)$.
Which leads to $\mu\left(\mathrm{E}_{1} \Delta \mathrm{E}_{2}\right)=0$.
Also evidently $\left(\mathrm{E}_{1} \vee \mathrm{E}_{2}\right)=\left(\mathrm{E}_{1} \wedge \mathrm{E}_{2}\right) \vee\left(\mathrm{E}_{1} \Delta \mathrm{E}_{2}\right)$.
This implies $\mu\left(E_{1} \vee E_{2}\right)=\mu\left(E_{1} \wedge E_{2}\right)+\mu\left(E_{1} \Delta E_{2}\right)$.
Which leads to $\mu\left(E_{1} \vee E_{2}\right)=\mu\left(E_{1} \wedge E_{2}\right)\left(\right.$ since $\left.\mu\left(E_{1} \Delta E_{2}\right)=0\right)$.
Again if $\mu\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right) \neq 0$, then $\mu\left(\mathrm{E}_{2}\right)=0$.
Now $E_{1} \wedge E_{2} \leq E_{2}$.
Hence $\mu\left(\mathrm{E}_{1} \wedge \mathrm{E}_{2}\right) \leq \mu\left(\mathrm{E}_{2}\right)$.
Which implies $\mu\left(\mathrm{E}_{1} \wedge \mathrm{E}_{2}\right) \leq 0$.
But $\mu\left(\mathrm{E}_{1} \wedge \mathrm{E}_{2}\right) \geq 0$ (by definition3.3).
Therefore $\mu\left(E_{1} \wedge E_{2}\right)=0$.
If $E_{2}-E_{1} \neq 0$ similarly we get $\mu\left(\mathrm{E}_{1} \wedge \mathrm{E}_{2}\right)=0$.
Result3.2. Let $(\mathrm{X}, \sigma(\mathrm{L}), \mu)$ be a lattice measure space and μ is lattice σ - finite measure. Then the class A of all points in $\sigma(\mathrm{L})$ is countable.
Proof. Let $\mathrm{E}_{1}, \mathrm{E}_{2} \in \mathrm{~A}$ be any two points of $\sigma(\mathrm{L})$ by result 3.1.
We have either $\mu\left(E_{1} \Delta E_{2}\right)=0$ or $\mu\left(E_{1} \wedge E_{2}\right)=0$.
If $\mu\left(E_{1} \Delta E_{2}\right)=0$, then the set $\left(E_{1} \wedge E_{2}\right)$ represents a point or if $\mu\left(E_{1} \wedge E_{2}\right)=0$ then $\left(E_{1}-E_{2}\right)$ and $\left(E_{2}-E_{1}\right)$ represents two disjoint points.
This implies two disjoint sets in $\sigma(\mathrm{L})-\mathrm{N}$.
Continuing this process for $\mathrm{E}_{1}, \mathrm{E}_{2} \ldots \ldots$, we get a countable collection of disjoint sets in $\sigma(\mathrm{L})-\mathrm{N}$. Which leads to $\sigma(\mathrm{L})-\mathrm{N}$ is countable.

Theorem3.1. Any countable union of null partial lattices is null partial lattice.
Proof. Let $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \ldots \ldots$. be a sequence of null partial lattices.
That is for each positive integer n, we have $B \in \sigma(L)$ such that $A_{n}<B_{n}$ and $\mu\left(B_{n}\right)=0$.
Now clearly $\underset{n=1}{\vee} A_{n}<\underset{n=1}{\infty} B_{n}$. Since each $B_{n} \in \sigma(L)$ by the definition of $\sigma(L)$,
$\bigvee_{\mathrm{n}=1}^{\infty} \mathrm{B}_{\mathrm{n}} \in \sigma(\mathrm{L})$.Now $\mu\left(\underset{\mathrm{n}=1}{\underset{\sim}{\vee}} \mathrm{~B}_{\mathrm{n}}\right) \leq \sum_{\mathrm{n}=1}^{\infty} \mu\left(\mathrm{B}_{\mathrm{n}}\right)=\sum_{\mathrm{n}=1}^{\infty} 0=0$
Therefore $\underset{n=1}{\infty} A_{n}$ is the largest partial lattice such that whose lattice measure is zero.
Hence $\underset{\mathrm{n}=1}{\infty} \mathrm{~A}_{\mathrm{n}}$ is also a null partial lattice.
Theorem3.2. Let μ be a lattice semi-finite measure on countable Boolean lattice $\sigma(\mathrm{L})$ of X . Let N denotes the collection of partial lattice of μ - measure zero. Then $\sigma(\mathrm{L})-\mathrm{N}$ satisfies countable chain condition (CCC) if and only if μ is lattice σ - finite measure.
Proof. If μ is lattice σ - finite measure, it is obvious that $\sigma(\mathrm{L})-\mathrm{N}$ satisfies countable chain condition (CCC) (by result 3.2).
Conversely, if $\mu(\mathrm{X})<\infty$, then there is nothing to prove.
If $\mu(X)=\infty$, choose E_{1} in $\sigma(L)$ such that $0<\mu\left(E_{1}\right)<\infty$.
Choose E_{2} in $\sigma(L)$ such that E_{2} is contained in $X-E_{1}$ and $0<\mu\left(E_{2}\right)<\infty$.
Continuing this process we get a sequence of disjoint partial lattices $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots$, in σ (L) such that E_{i} in $\sigma(\mathrm{L})-\mathrm{N}$ and $\mu\left(\mathrm{E}_{\mathrm{i}}\right)<\infty$. If $\mu\left(\mathrm{X}-\underset{\mathrm{i}=1}{\infty} \mathrm{E}_{\mathrm{i}}\right)<\infty$, then we have a decomposition of X .
Which implies that μ is σ - finite. Hence $\mu\left(X-\underset{i=1}{\infty} \mathrm{E}_{\mathrm{i}}\right)=\infty$. Choose E_{α} in $\sigma(\mathrm{L})$ such that E_{α} is contained in $\mathrm{X}-\underset{\mathrm{i}=1}{\vee} \mathrm{E}_{\mathrm{i}}$ and $0<\mu\left(\mathrm{E}_{\alpha}\right)<\infty$, where α is the first countable ordinal.
Proceeding inductively, since $\sigma(\mathrm{L})-\mathrm{N}$ satisfies countable chain condition (CCC), there exists a countable ordinal β such that $\mu\left(\mathrm{X}-\underset{\alpha<\beta}{\vee} \mathrm{A}_{\alpha}\right)<\infty$.
This implies that μ is lattice σ - finite measure.
Theorem3.3. Let $\sigma(\mathrm{L})$ is a countable Boolean lattice of a set X . Then $\sigma(\mathrm{L})$ is pointless if and only if every non empty set in $\sigma(\mathrm{L})$ contains countable number of disjoint non empty sets in σ (L).
Proof. Let E in $\sigma(\mathrm{L})$ is non empty set.
Fix $x \in E$.
We can choose E_{1} in E such that $\mathrm{x} \notin \mathrm{E}_{1}$.
Now E_{1} is non empty and E_{1} is contained in E.
Choose E_{2} in E such that $\mathrm{x} \notin \mathrm{E}_{2}$.
Now E_{2} is non empty and E_{2} is contained in $E-E_{1}$.
Choose E_{3} in E such that $x \notin E_{3}$.
Continuing this process we get a family $\left\{\mathrm{E}_{\alpha} / \alpha<\beta\right\}$ of non empty disjoint sets contained in β where β is the first uncountable ordinal.
The converse part is trivial.
Theorem3.4. Let $\sigma(\mathrm{L})$ is a countable Boolean lattice of a set X . Then it satisfies countable chain condition (CCC) if and only if $\sigma(\mathrm{L})$ is isomorphic to the power set.
Proof. We can prove this theorem by using theorem 3.1 and theorem 3.2.
If $\sigma(\mathrm{L})$ satisfies countable chain condition (CCC), then the number of points of $\sigma(\mathrm{L})$ is countable.
From X remove all points of $\sigma(\mathrm{L})$.
In the view of above theorem 3.2, the remaining part is empty.
Hence it is isomorphic.
Remark 3.1 Take the numbers 0,1 and the fractions $\frac{m}{n}, \quad 0<\frac{m}{n}<1$

That is
$0,1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \ldots \ldots \ldots \ldots \ldots$ order as follows
$0<\frac{\mathrm{m}}{\mathrm{n}}<1$ for all $\frac{\mathrm{m}}{\mathrm{n}} ; \frac{\mathrm{m}}{\mathrm{n}} \leq \frac{\mathrm{r}}{\mathrm{s}}$ only if $\max (\mathrm{m}, \mathrm{r})=\mathrm{r} ; \frac{\mathrm{m}}{\mathrm{n}}, \frac{\mathrm{r}}{\mathrm{s}}$ in comparable if $\mathrm{n} \neq \mathrm{s}$.
Clearly the fractions from 0 to 1 have a countable number of points and of counter points.

IV. Conclusion

A crucial result is obtained that the lattice measures of any two points are either disjoint or identical. By defining a class of null sets, lattice measure of a point and lattice semi- finite measure, it was observed scrupulously that the class of all points in a countable Boolean lattice is countable and various elementary nature of points in a countable Boolean lattice have been identified.

References Références Referencias

[1] D.V.S.R. Anil Kumar, J. Venkateswara Rao, E.S.R. Ravi Kumar, Characterization of Class of Measurable Borel Lattices, International Journal of Contemporary Mathematical Sciences, ISSN: 1312-7586, Volume 6(2011), no. 9, 439-446.
[2] D.V.S.R. Anil Kumar, Y.V.Seshagiri Rao,Y.Narasimhulu \& Venkata Sundaranand Putcha, Characterization of Partial Lattices On Countable Boolean Lattice, Global Journal Of Science Frontier Research Mathematics and Decision Sciences, ISSN:2249-4626\&Print ISSN:0975-5896,Volume 13, Issue 6, Version 1.0, Year 2013
[3] Birkhoff. G, Lattice Theory 3rd ed., AMS Colloquium Publications, Providence, RI, 1967.
[4] Gene A. DE Both, Additive Set Functions On Lattices Of Sets, Transactions Of The American Mathematical Society, Volume 178, Apr 1973 pp 341 - 355.
[5] SenGupta,Chapter1sigmaAlgebras www.math. lsu.edu/~sengupta/7312S02/sigmaalg.pdf.
[6] Gratzer. G, General Lattice Theory, Academic Press Inc., 1978.
[7] Halmos. P.R., Measure Theory (Springer, New York, 1974).
[8] Pao - Sheng Hus Characterization of outer measures associated with lattice measures, International Journal of Mathematics and Mathematical Sciences. Vol.24, No. 4 (2000) $237-249$.
[9] Szasz Gabor, Introduction to lattice theory, academic press, New York and London 1963.
[10]Tanaka. J, Hahn Decomposition Theorem of Signed Lattice Measure, arXiv: 0906.0147Voll [Math.CA] 31 May 2009.

Global Journal of Science Frontier Research: F
MATHEMATICS AND DECISION SCIENCES
Volume 14 Issue 1 Version 1.0 Year 2014
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Optimal Hedging Strategy of Asset Returns on Target in Finance Logistics using the Law of Iterated Logarithm (Lil) Measure

By Bright O. Osu., Jonathan O. Egemba \& Philip U. Uzoma

Abia State University, Nigeria
Abstract- The world of finance works better through logistics and there are more to a risk measurement and hedging than being coherent. Thus, several predictable assumptions hast been made in other to make risk calculation and hedging tractable which both Value-at-risk (VaR) and Conditional tail expectation (CTE or CVAR) ignore useful information on target. The question is can the classical law of iterated logarithm(LIL)be centralized for risky and contingent hedging capacities? Here we find the imposition of the law of iterated logarithm (LIL) constraint unique and complete, hence continuous for the QUEST as it utilizes information in the whole distribution, curbs rate of returns on target, provides incentives for risk management and raises challenges of performances and cost.

Keywords: law of iterated logarithm (lii), hedging, sublinear expectation, cvar, capital requirement, expected returns.

GJSFR-F Classification : MSC 2010: 33B30, 90B06

Strictly as per the compliance and regulations of :

© 2014. Bright O. Osu., Jonathan O. Egemba \& Philip U. Uzoma. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
epaper

Optimal Hedging Strategy of Asset Returns on Target in Finance Logistics using the Law of Iterated Logarithm (Lil) Measure

Bright O. Osu. ${ }^{\alpha}$, Jonathan O. Egemba ${ }^{\circ}$ \& Philip U. Uzoma ${ }^{\rho}$

Abstract- The world of finance works better through logistics and there are more to a risk measurement and hedging than being coherent. Thus, several predictable assumptions hast been made in other to make risk calculation and hedging tractable which both Value-at-risk (VaR) and Conditional tail expectation (CTE or CVAR) ignore useful information on target. The question is can the classical law of iterated logarithm(LIL)be centralized for risky and contingent hedging capacities? Here we find the imposition of the law of iterated logarithm (LIL) constraint unique and complete, hence continuous for the QUEST as it utilizes information in the whole distribution, curbs rate of returns on target, provides incentives for risk management and raises challenges of performances and cost.
Keywords: law of iterated logarithm (lii), hedging, sublinear expectation, cvar, capital requirement, expected returns.

I. Introduction

Asset-liability management is a means of managing the risk that can arise from the changes inthe relationship between assets and liabilities. In cases such as in portfolio containing option as well as credit portfolio (i.e wealth distributions that are highly skewed), it is reasonable to consider asymmetric risk measures since individualsare typically loss averse.Value-at-risk (VaR) and tail conditionalexpectation (TCE) have also emerged in recent years as standard tools for measuring andcontrolling the risk of trading portfolios. In some dynamical settings however, the limits of TCEcan be transformed into the limits ofVaR and conversely even though TCE is more preferableto VaRsince it is coherent and VaR is not.Werecently discovered in literature that the law of the iterated logarithm (LIL) obeys these coherencies.

The law of the iterated logarithm(LIL) is one of the most important results on the asymptoticbehaviour of finite-dimensional standard Brownian motion (Dvoretzky and Erdos, 1951). Its classical laws as fundamental limit theorems in probability theory plays an important role in the development of probability theory and its application. The original statement of LIL obtained by (Khinchine 1924) is for a class of Bernoulli random variables. Kolmogorov(1929) and Hartman-Winter (1941) extended Khinchine's result to large class of independent random variables. Levy (1937) extendedKhinchine's

[^4]result to martingales, an important class of dependent random variables. Strassen(1964) extended Hartman-wintner's result to large classes of functional random variable. After that the research activity of LIL has enjoyed a rich classical period and a modern resurgence (Stout, 1974).To extend the LIL, a lot of fairly neat methods have been found (De Acosta, 1983). However, the key in the proofs of LIL is the additivity of the probabilities and expectations. In practice, such additivity assumption is not feasible in many areas of application because the uncertainty phenomenon cannot be modeled using additive probabilities or probability expectations. As an alternative to the traditional expectations or probability, capacities or non-linear probabilities /expectations have been studies in many fields such as statistics, finance and economics. In statistics, capacities have been applied in robust statistics (Huber 1981), under the assumption of two alternating capacity (Huber and strassen, 1973). Financial risk management is vital to the survival of financial institutions and the stability of the financial system. A fundamental task in risk management is to measure the riskentailed by a decision, such as the choice of a portfolio (Osu et al., 2013). Recently, thesubstitution of variance as a risk measure in the standard Markowitz (1952) meanvarianceproblem has been emphasized, because it makes no distinction between positive and negativedeviations from the mean. Variance is a good measure of risk only for distributions thatare (approximately) symmetric around the mean such as the normal distribution or moregenerally, elliptical distributions (Frey and Embrechts, 2006).In capital requirement Logistics is the single most powerful force on risk management in finance. Because it is the intersection of the virtual and physical world of finance that allows one to keep up to date information of where everything and anything are or is going at a particular moment (Achi etal, 2013). Money can be invested and produce more money. However, investing money involves different level of risks depending on the choice of the investment and a high rate or value of money at risk bring about high target of positive expected returns. (Gerber 1979).The LIL assumption can be represented as the assumption of an expected rate of returns on high target, that is the best guess estimate of tomorrow's return level. Since there is no relevant information available at time t that could help forecast returns at time $t+1$. It is well known in finance that an important framework is calculating the price of uncertainty option claim.

The objective of this work is to investigate if the classical law of iterated logarithm can be centralized for the contingent hedging capacities which depends on its completeness and uniqueness and to show how one should calculate returns of high diversified portfolio to maximize the capital growth in returns by measuring the risk involved to know the future returns on target.

II. Frame work of Lil Hedging Pricing Capacity (Result)

Consider a sequence of independent and identically distributed (iid) random variable $X_{1}, X_{2}, \ldots, X_{n}$ with $E\left(X_{n}\right)=0, \operatorname{Var}\left(X_{n}\right)=\sigma^{2}, \sigma>0$. Then

$$
\begin{equation*}
P\left\{\log _{n \rightarrow \infty} \sup \frac{s_{n}}{\left(2 \sigma^{2} \log \log n\right)^{\frac{1}{2}}}=1\right\}=1 \tag{2.1}
\end{equation*}
$$

This implies that with probability one and for

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{s_{n}}{\left(2 \sigma^{2} \log \log n\right)^{\frac{1}{2}}}=\lim _{n \rightarrow \infty} \sup \frac{z_{n}}{(2 \log \log n)^{\frac{1}{2}}}, \tag{2.2}
\end{equation*}
$$

then $Z_{n}>(c \log \log n)^{\frac{1}{2}}$ for infinitely many n if $c<2$, but for only finitely many n if $c>2$.

Put in another way, let $\left\{X_{n}, n \in W\right\}$ be a sequence of iid random variable on a probability space $\{\Omega, \mathfrak{F}, P\}$, let $S_{n}=X_{1}+X_{2}+\cdots$ and set $Z_{n}=\frac{S_{n}-\mu n}{\sigma n^{\frac{1}{2}}}$ (where μ is the expectation and σ is the standard deviation). Then we define the law of iterated logarithm for a stationary independent process thus:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{z_{n}}{(2 \log \log n)^{\frac{1}{2}}}=1 \tag{2.3}
\end{equation*}
$$

Similarly with probability one,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{z_{n}}{(2 \log \log n)^{\frac{1}{2}}}=-1 \tag{2.4}
\end{equation*}
$$

Since a supremum expectation (super hedge) of LIL is sublinear it is continuous, hence complete (unique) which makes it have a hedging pricing capacity.
A good hedging pricing capacity model according to Artzner etal, (1997) must be complete, if it is sublinear and continuous. Completeness implies Uniqueness and continuous implies completeness.

Given a set P of multiple prior probability measure on (Ω, f), let X be the set of random variable on (Ω, f), where $\Omega=$ sample space and f is the increasing sequence of Ω. For any $\xi \in X$, we define a pair of maximum (super hedge) and minimum (subhedge) expectation as ($\mathbb{E}, \boldsymbol{\epsilon}$) by (Peng 2006-2009):

$$
\begin{align*}
& E(\xi)=\operatorname{Sup}_{Q \in P} E_{Q}(\xi) \Rightarrow \text { Super hedge pricing } \tag{2,5}\\
& E(\xi)=\operatorname{Inf}_{Q \in P} E_{Q}(\xi) \Rightarrow \text { Super hedge pricing } \tag{2.6}
\end{align*}
$$

where $E_{P}($.$) denotes the classical expectation under probability measure \mathrm{P}$. Let $\xi=I_{A}$ for $A \in f, \quad$ immediately, a pair of (V, v) of capacities is given by $V(A):=\sup _{p \in P} P(A), v(A):=\sup _{p \in P} P(A), \forall A \in f$.

According to $\operatorname{Peng}(2007) E$ is called sub-linear expectation in the sense that A functional E on $X \rightarrow(-\infty,+\infty)$ is called a sub-linear expectation, if it satisfies the following properties for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$. (coherent properties)

1. Monotonicity: $x>y$ implies $E(x) \geq E(y)$.
2. Constant preserving: $E(c)=C \forall C \in R$.
3. Sub-addivity: $E[x+y] \leq E(x)+E(y)$ hedging property.
4. Positive homogeneity: $E(\lambda x)=\lambda E(x), \forall \lambda \geq 0$.

Note: A sublinear expectation is a supremum expectation (Cheng, 2009).

Remark

If a market is complete and self financing, then there exist a neutral probability measure P such that the pricing of any discounted contingent claim ξ in this market is given by $\mathbb{E}(\xi)$ then by LIL $\mu=E_{p}(\xi)$ and variance $\sigma^{2}=E_{p}\left[(\xi-\mu)^{2}\right]$ with probability one.

$$
\mu=\lim _{n \rightarrow \infty} \frac{1}{n} S_{n}, \quad \sigma=\lim _{n \rightarrow \infty} \operatorname{Sup}\left(2_{n} \log \log n\right)^{-\frac{1}{2}}\left|S_{n}-n \mu\right| \text { where } S_{n} \text { is the sum of }
$$ the first n of a sample $\left(X_{i}\right)$ with mean μ and variance σ^{2}.

Note; Everysublinear expectation is a supremum expectation/continuous expectation.
The question is can the classical supremum/ superhedge expectation of LIL be centralized for contingent hedging pricing capacity? By the definition, a pricing hedging capacity is c alled continuous capacity if it satisfies the following desirable axioms or properties.(Wasserman and Kadane 1990).

Given a set function $P: f \rightarrow[0,1]$ then it is a continuous capacity if it satisfies the following:

1. Stability property: the system or function is stable if
2. $P(\phi)=0, P(\Omega)=1$;
3. If there exist any positive even bounded continuous function $\mathrm{P}(\mathrm{x})$ where $\mathrm{x} \in \mathrm{R}$, thenfor every $a, b \in R . P(A) \leq P(B)$ whenever $A \subset B$ and $A, B \in f$ the function $\mathrm{P}(\mathrm{x})$ is a self-financing value which completely determines the distribution x and also has a mathematical properties of the ($2,1,3$ and 4)(very important property of completeness).
4. $P\left(A_{n}\right) \uparrow P(A)$, if $A_{n} \uparrow A, \uparrow \Rightarrow$ Superhedging (Supremum expectation)
5. $P\left(A_{n}\right) \downarrow P(A)$, if $A_{n} \downarrow A$, where A_{n}, $A \in f \downarrow \Rightarrow$ Subhedging .

III. The Model

Assuming $P(\xi)$ to be the risk neutral asset, that is the self financing value.If the simple European security V_{b} is hedgeble then for any positive bounded continuous function, there assume a portfolio process whose self-financing value process $P(\xi)$ of LIL supremum expectation that satisfies the continuous capacity property $P(\xi) \leq$ $\mathrm{V}_{\mathrm{b}}(\mathrm{x})$ where X_{i} is adapted at time t for $\mathrm{V}_{\mathrm{b}}(\mathrm{x})$. if the result is satisfied, then it is complete and also a martingale.

a) Lemma

Suppose ξ is distributed to G normal $N\left(0 ;\left[\underline{\sigma^{2}}, \overline{\sigma^{2}}\right]\right)$, where $0<\underline{\sigma} \leq \bar{\sigma}<\infty$. Let ϕ be a bounded continuous function. Furthermore, if ϕ is a positively even function, then for any $b \in R$

$$
\begin{equation*}
e^{-b^{2} / 2 \sigma^{2} \epsilon[\phi(\xi)] \leq \in[\phi(\xi-b)]} \tag{3.1}
\end{equation*}
$$

(see Chen and $\mathrm{Hu}, 2013$ for prove).
It has been shown by $\operatorname{Mao}(1997)$ that if X is the solution of the d- dimensional equation

$$
\begin{equation*}
d X(t)=f(X(t), t) d t+g(X(t), t) d B(t), t \geq 0 \tag{3.2}
\end{equation*}
$$

and if there exist positive real numbers ρ, k such that for all $x \in R^{d}$ and $t \geq 0$, $x^{T} f(x, t) \leq \rho$, and $\|g(x, t)\|$, then;

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \frac{|X(t)|}{\sqrt{2 t l o g l o g} t} \leq k \sqrt{e}, \quad \text { a.s. } \tag{3.3}
\end{equation*}
$$

Appleby and Wu (2008) had shown also that for X a unique continuous adapted process which obeys (3.2). Let $A:=\left\{\omega: \lim _{t \rightarrow \infty} X(t, \omega)=\infty\right\}$. If

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x f(x)=L_{\infty} ; g(x)=\sigma, x \in R, \tag{3.4}
\end{equation*}
$$

where $\sigma \neq 0$ and $L_{\infty}>\frac{\sigma^{2}}{2}$, then $P[A]>0$ and X satisfies for super hedge;

$$
\lim _{t \rightarrow \infty} \sup \frac{|X(t)|}{\sqrt{2 t \log \log t}}=|\sigma| \text {, a.s.on } A,(3.5) \text { and for sub hedge; }
$$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup \frac{\log \frac{X(t)}{\sqrt{t}}}{\log \log t}=-\frac{1}{\frac{2 L_{\infty}}{\sigma^{2}}-1} \text {, a.s. on } A \tag{3.6}
\end{equation*}
$$

Theorem 1
If X (the capital allocation to the individual risk with $X=X_{1}+X_{2}+\cdots X_{n}$, where $X_{1}+X_{2}, \ldots, X_{n}$ are copies of X) obeys (3.2) and if the exist positive real numbers ρ and C_{2} such that for $k \epsilon K^{d}$ and $t \geq 0, x f(x, t)=P$ and $\|g(x, t)\|, \leq C_{2} K$ (where $\|\cdot\|_{o p}$ denotes the operator norm), then and if in addition $\psi(t)=\left(2 \log t+C_{k} \log _{2} t\right)^{1 / 2},-C_{2}=\frac{1}{1-c}$ and $n=\log \log t_{2}$. Then

$$
E(\xi)=P\left(F_{n}\right)=\frac{1}{1-c}\left(\log _{2}\right)^{\frac{1-c}{4}}\left\{\begin{array}{l}
c>1:=\text { super hegde } \tag{3.7}\\
c<1:=\text { sub hegde }
\end{array}\right.
$$

Proof;

Following the method variation of Brownian motion result (Osu, 2003) define the event

$$
\begin{equation*}
F_{n}=\left\{w: S\left(h_{n}\right)<h_{n-1}^{1 / 2} \phi\left(1 / h_{n-1}\right)\right\} \tag{3.8}
\end{equation*}
$$

where $h_{n}=e^{-n \rho}$, and $0<\rho<\frac{1}{2}$.
Then the event

$$
\begin{equation*}
\left\{S_{i}\left(h_{n}\right)<h_{n-1}^{1 / 2} \psi\left(1 / h_{n-1}\right)\right\} \tag{3.9}
\end{equation*}
$$

for the independent and identically distributed (iid) random variables

$$
S_{i}\left(h_{n}\right)=\sup R\{X ; t, t+h), i=0,1, \ldots,\left[\frac{1}{2 h_{n}}\right] ;
$$

are independent and have equal probabilities.
Moreover since

$$
F_{n} \subseteq \bigcap_{i=0}^{\left[1 / 2 h_{n}\right]}\left\{S_{i}\left(h_{n}\right)<h_{n-1}^{1 / 2} \psi\left(\frac{1}{h_{n-1}}\right)\right\}
$$

then

$$
\begin{equation*}
P\left(F_{n}\right) \leq\left(P\left\{S_{0}\left(h_{n}\right)<h_{n-1}^{1 / 2} \psi\left(\frac{1}{h_{n-1}}\right)\right\}\right)^{\left[1 / 2 h_{n}\right]} \tag{3.10}
\end{equation*}
$$

By Kochen and Stone (1964), and the scaling property, we have

$$
\begin{equation*}
\left\{S_{0}\left(h_{n}\right)<h_{n-1}^{1 / 2} \psi\left(\frac{1}{h_{n-1}}\right)\right\}=P\left\{S(1)<h_{n}^{-1 / 2} h_{n-1}^{1 / 2} \psi\left(\frac{1}{h_{n-1}}\right)\right\} \leq 1-C_{0} \lambda_{n} e^{-\lambda_{n}^{2 / 2}} \tag{3.11}
\end{equation*}
$$

where $\lambda_{n}=\left(\frac{h_{n-1}}{h_{n}}\right)^{\frac{1}{2}} \psi\left(\frac{1}{h_{n-1}}\right)$.
Hence

$$
\begin{equation*}
P\left(F_{n}\right) \leq\left(1-C_{0} \lambda_{n} e^{-\lambda^{2 / 2}}\right)^{\left[1 / 2 h_{n}\right]}=(1-u)^{N}, \tag{3.12}
\end{equation*}
$$

say, where $u-C_{0} \lambda_{n} e^{-\lambda^{2 / 2}}$ and $N=\left[1 / 2 h_{n}\right]$. Andbecause $\log (1-u)<-u$, then

But

$$
\begin{equation*}
(1-u)^{N}=e^{\log (1-u)^{N}}=e^{N \log (1-u)}<e^{-N u} . \tag{3.13}
\end{equation*}
$$

$$
\begin{gathered}
\lambda_{n}^{2}=\left(\frac{h_{n-1}}{h_{n}}\right)\left(2 \log \frac{1}{h_{n-1}}+C \log _{2} \frac{1}{h_{n-1}}\right) \\
=\left(\frac{e^{(n-1)^{p}}}{e^{-n^{p}}}\right)\left(2 \log e^{(n-1)^{p}}+C \log _{2} e^{(n-1)^{p}}\right)
\end{gathered}
$$

$$
\begin{align*}
= & \left\{1+0\left(n^{\rho-1}\right)\right\}\left\{2 n^{\rho}\left(1+0\left(n^{-1}\right)+C_{\rho}\left(\log _{n}+0\left(n^{-1}\right)\right)\right\}\right. \\
& =2 n^{\rho}+C_{\rho} \log _{n}+0\left(n^{2 \rho-1}\right) \\
& =2 n^{\rho}+C_{\rho} \log _{n}+0(1) \text { since } \rho<\frac{1}{2} . \tag{3.14}
\end{align*}
$$

Therefore $\lambda_{n} \sim C_{1 n^{1 / 2 \rho}}$ and

$$
N U \sim \frac{1}{e} e^{n \rho} \cdot C_{0} C_{1} n^{\frac{1}{2} \rho} \exp \left\{-n^{\rho}-\frac{1}{2} C_{\rho} \log n+0(1)\right\}=C_{2} n^{\delta},
$$

where

$$
\begin{equation*}
\delta=\frac{1}{2}(1-C) \rho>0 \text { if } C<1 \tag{3.15}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
E(\xi)=P\left(F_{n}\right)<e^{-C_{2} n^{\delta}} \tag{3.16}
\end{equation*}
$$

for large n, so that $\sum_{n=1}^{\infty} P\left(F_{n}\right)<\infty$, and, by Ugbebor (1980), F_{n} happens only finitely often.
Using equation (3.15), we have (for $\rho=\frac{1}{2}$) equation (3.7) as required.

IV. Application

We refer to equation (3.7) as the LIL measure. All investment involve some element of risk, but we are predicting a measure that will help attain a high target on expected returns on a risky portfolio by raising performances and cost. Banks meet their target by focusing on the high rate of returns. Hence LIL measure focus on the high rate of returns, because higher target implies higher investment which also implies high expected returns on target. Hence raises challenges of performance which value at risk and conditional value at risk ignore.

Banks expected returns are the risk free rate of capital plus a market premium. That is risk free rate + a market premium;

$$
\begin{equation*}
E(B)=\mathrm{R}(\mathrm{x})+\mathrm{M}(\mathrm{x}) \tag{4.1}
\end{equation*}
$$

and risk free rate equals solvency capital minus capital requirement for the risk. Capital requirement is the capital required in respect of a random variable (risk) with the view to avoiding insolvency or shortfall. The reason of solvency is to make sure that the bank have the financial means to meet its future obligation, to pay the present and future claims related to the policy holders and regulators.In order to avoid insolvency over the specific horizon at some given level of risk tolerance they should hold asset of value that is enough or small enough. Solvency capital requirement for the risk $=$ Assets - Liabilities

$$
\begin{equation*}
\mathrm{A}(\mathrm{x})-\mathrm{L}(\mathrm{x})=S(x) \tag{4.2}
\end{equation*}
$$

At least for values greater than the relevant $V a R$ with probability function $f(y)$ then CVaR for the normal distribution is shown to be;

$$
\begin{equation*}
\mathrm{CVAR}_{\alpha}=\frac{\sigma}{1-\alpha}+\mu \phi\left(\frac{\mathrm{Q}_{\alpha}-\mu}{\sigma}\right) . \tag{4.3}
\end{equation*}
$$

For two and three parameter Weibull, Osu and Ogwo (2012) had shown that

$$
\begin{gather*}
\mathrm{CVaR}_{\alpha}=\frac{x}{1-\alpha} e^{-\mathrm{Q}_{\alpha}}, \tag{4.4}\\
C V a R_{\alpha}=\frac{e^{-\mathrm{Q}_{\alpha}}}{(1-\alpha)}, \tag{4.5}
\end{gather*}
$$

respectively. Equation (4.3) implies that CVAR is a little bigger than VAR and it can be adjusted for by adding an inverse of a decay constant (Klygman, 2004).

V. Emperical Example

Calculate the CVAR of 1 million portfolio on a 100 basis point per day standard deviation, suppose that the daily returns are normally distributed with $\mu=0$ on a 100 basis point per day.

Solution

Using (4.3), we have $\mathrm{CVAR}_{5 \%}=20+16450=16470$.
Expected returns $=1 \mathrm{~m}-16470=983530$ meaning that there is 5% chance that the daily loss on 1 m portfolio is equal or exceed only 16470 and a 95% chance that it will worth 983530 or more tomorrow. $C V_{a} \mathrm{R}_{1 \%}=\phi_{0.99}=2.326 \therefore \frac{2.326}{100}=$ $0.02326 \mathrm{X} 1 \mathrm{~m}=23260$ which is $V A R_{-(1 \%)} \quad$ on 1 m portfolio.Hence, $1 \mathrm{~m}-23260=976740$ is the expected returns. Which means that there is 1% chance that the daily loss on 1 m portfolio is equal or exceed only 23260 and 99% chance of being worth 976740 or more tomorrow.

Expected returns $=1 \mathrm{~m}-23360=976640$. Which means that there is 1% chance that the daily loss on 1 m portfolio is equal or exceed only 23360 and 99% chance of being worth 976640 or more tomorrow.
Using (3.7), we have the expected returns $20 \mathrm{~m}-(-5128205.12)=25128205.12$

VI. Conclusion

It shows that the classical LIL can be centralized for hedging pricing capacity as the supremum/sublinear expectation is continuous in the interval [0,1]. Hence investigating LIL for capacities shows that the supremum limit points of it lie with probability capacity one between the lower and upper standard bound and also satisfies the desirable axioms under the hedging pricing continuous capacity. Here laws of iterated logarithm (LIL) has been represented as the assumption of an ERR on a target of high diversified portfolio in bank's capital requirements as it utilizes information on the whole distribution, have a continuous hedging capacity, hence complete and unique. Which CVAR ignores useful information on. The measure on ERR curbs rates of returns on target, provides incentives for risk managers by raising challenges of performances and cost. Making it an optimal computational method to increase performances in hedging and banks attaining their targets on focus as it's application is a measure of a multifractal returns on banks portfolios.

References Références Referencias

1. AchiG. U., Ogwo. O and Solomon, O. U. (2013) Risk measurement strategy: An alternative to merging that offers a capital relief in risk measurement. International Journal of Science and Research (IJSR). V. 2 ISSN 2379-7064.
2. Artzner, F.D., Eber, J.M., Heath, D. (1999). Coherent measures of Risk. Mathematical Finance, 9(3), 203-228. MR 1850791 (2002 d: 91056). Zbl 0980.91042.
3. Appleby, J. A. D. and Wu, H. (2008). Solution of stochastic differential equations obeying the Law of the Iterated logarithm with application to financial markets. Working paper.
4. Dvoretzky and P. Erdos, Some problems on random walk in space, proceedings of the Second Berkeley Symposium, University of California Press, Berkeley and Los Angeles, 1951.
5. Birkel, T: Moment bounds for associated sequences. Ann. Probab. 16, 1184-1193 (1988).
6. Chen, Z: Strong laws of large numbers under sub-linear expectations, preprint (2009).
7. Chen, Z and Hu, F : A law of the iterated logarithm for sublinear expectations.arXiv: 1103.2965 V 2 [Math. PR].
8. De-Acosta, A: A new proof of the Hartman-Wintner law of the iterated logarithm. Ann. Probab11, 270-276 (1983).
9. Hartman, P., Wintner, A: On the law of the interated logarithm. Amer. J. ath. 63, 169-176 (1941)
10. Huber, P: Robust statistics. John Wiley \& sons, New York (1981)
11. Huber, P., Strassen, V: Minimax tests and the Neyman-Pearson lemma for capacities. Ann. Statist. 1(2), 251-263 (1973).
12. Frey, R. and Embrechts, P., 2006. Quantitative Risk Management: Concepts Techniques andTools. Princeton University Press. 0980.91042.
13. Levy, P-C. Theorie de I addition des variables aleatoires. Paris, 258-289 (1937).
14. Khinchine, A UbereinenSatz der Wahrscheinlichkeitsrechnung. Fundamenta Mathematica6,9-20 (1924).
15. Kolmogorov, A Uber das Gesetz des iteriertenLogarithmus. MathematischeAnnalen 101, 126-135 (2005).
16. Kochen, S. B. and Stone, C. J.(1964). A note on the Borel-Cantelli lemma. Illinois J. Math. 8: 248-251.
17. Markowitz, H.M., 1952. Portfolio selection. The Journal of Finance. 7(1), 77-91.
18. Mao, X. (1997). Stochastic differential equations and application, Horwood.
19. Peng, S Nonlinear expectations and nonlinear Markov chains, Chin. Ann Math. 26(2), 159 - 184 (2005).
20. Peng, S G-expectation, G-brownian Motion and related Stochastic Calculus of Ito type. In: Benth, F.-E, et al. (eds.) Stochastic Analysis and Applications. The Abel Symposium 2005, proceedings of the second Abel Symposium, PP. 541 - 567. Springer-Verlag (2006).
21. Peng, S Law of large number and central limit theorem under nonlinear expectations, preprint (pdf-file available in arXiv:math.PR/0702358vl 13 FEB 2007) (2007).
22. Peng, S: Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Process. Appl. 118(12), 2223-2253 (2008).
23. Peng, S A New Central Limit Theorem under Sublinear Expectations. Preprint (pdf-file available in arXiv:08032656vl [math.PR] 18 Mar. 2008) (2008).
24. Peng, S Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations. Science in China Series A-Mathematics 52(7), 1391-1411 (2009).
25. Stout, W-F: Almost Sur Convergence. Academic press, New York (1974).
26. Strassen, V: An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3, 211-226 (1964).
27. Wasserman, L, Kadane, J Bayes's theorem for Choquet capacities. Ann. Statist. 18, 1328-1339 (1990).
28. Gerber, H.U. (1979) An introduction to mathematical risk theory. S.S Huebner Foundation Wharton's School University of Pennsylvania. Distributed by R Irwin Philadelphia.
29. Klyman S. Panyer H. and willmot L. (2004) loss models: from data to decision (2 $2^{\text {nd }}$ edition). Wiley.
30. Osu, B. O. and Ogwo O. 20012. Application of Weibull Survival Function Distortion based risk measure to capital requirement in banking industry in Advances in Theoretical and Applied mathematics. ISSN 0973-455 V.7, N 3(2012), PP. 237-245 Research Indian Publications.
31. Osu, B.O., S.A. Ihedioha and E. Ekuma-Okereke, The price of portfolio selection under tail conditional expectation with consumption cost and transaction cost. , AfrikaStatistika, Vol. 8, 2013, pages 545-559.
32. Osu, B. O. (2002). Variation results for Wiener process. M.Sc dissertation, department of Mathematics, University of Ibadan.
33. Ugbebor, O. O. (1980). Uniform variation result for Brownian Motion. Z. wahrscheinlichkeitsHieonie View. Gebiete. 51: 39-48.

Global Journal of Science Frontier Research: f MATHEMATICS AND DECISION SCIENCES
Volume 14 Issue 1 Version 1.0 Year 2014
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Computation of a Summation Formula

By Salahuddin, M. P. Chaudhary \& Vinesh Kumar

Jawaharlal Nehru University. India
Abstract - The main aim of the present paper is to compute a summation formula involving recurrence relation of Gamma function.

Keywords: contiguous function, recurrence relation, bailey summation theorem and legendre duplication formula.

GJSFR-F Classification : MSC 2010: 40A25, 65B10

Strictly as per the compliance and regulations of :

Computation of a Summation Formula

Salahuddin ${ }^{\alpha}$, M. P. Chaudhary ${ }^{\circ}$ \& Vinesh Kumar ${ }^{\rho}$

Abstract- The main aim of the present paper is to compute a summation formula involving recur- rence relation of Gamma function.
Keywords: contiguous function, recurrence relation, bailey summation theorem and legendre duplication formula.

I. Introduction

Generalized Gaussian hypergeometric function of one variable is defined by

$$
{ }_{A} F_{B}\left[\begin{array}{ccc}
a_{1}, a_{2}, \cdots, a_{A} & ; & \tag{1}\\
b_{1}, b_{2}, \cdots, b_{B} ; & z
\end{array}\right]=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{A}\right)_{k} z^{k}}{\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \cdots\left(b_{B}\right)_{k} k!}
$$

where the parameters $b_{1}, b_{2}, \cdots, b_{B}$ are neither zero nor negative integers and A, B are non-negative integers.

Contiguous Relation[E. D. p.51(10), Andrews p.363(9.16)] is defined as follows

$$
(a-b){ }_{2} F_{1}\left[\begin{array}{rr}
a, b ; & z \tag{2}\\
c ; & z
\end{array}\right]=a_{2} F_{1}\left[\begin{array}{rrr}
a+1, & b ; & z \\
c & ; &
\end{array}\right]-b_{2} F_{1}\left[\begin{array}{cc}
a, b+1 ; & z \\
c & ;
\end{array}\right]
$$

Recurrence relation of gamma function is defined as follows

$$
\begin{equation*}
\Gamma(z+1)=z \Gamma(z) \tag{3}
\end{equation*}
$$

Legendre duplication formula[Bells \& Wong p.26(2.3.1)] is defined as follows

$$
\begin{align*}
\sqrt{\pi} \Gamma(2 z) & =2^{(2 z-1)} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right) \tag{4}\\
\Gamma\left(\frac{1}{2}\right) & =\sqrt{\pi}=\frac{2^{(b-1)} \Gamma\left(\frac{b}{2}\right) \Gamma\left(\frac{b+1}{2}\right)}{\Gamma(b)} \tag{5}\\
& =\frac{2^{(a-1)} \Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{a+1}{2}\right)}{\Gamma(a)} \tag{6}
\end{align*}
$$

[^5]Bailey summation theorem [Prud, p.491(7.3.7.8)]is defined as follows

$$
\begin{align*}
& { }_{2} F_{1}\left[\begin{array}{ll}
a, 1-a & ; \frac{1}{2} \\
c & ; 2
\end{array}\right]=\frac{\Gamma\left(\frac{c}{2}\right) \Gamma\left(\frac{c+1}{2}\right)}{\Gamma\left(\frac{c+a}{2}\right) \Gamma\left(\frac{c+1-a}{2}\right)}=\frac{\sqrt{\pi} \Gamma(c)}{2^{c-1} \Gamma\left(\frac{c+a}{2}\right) \Gamma\left(\frac{c+1-a}{2}\right)} \tag{7}\\
& \text { II. Main Result of Summation Formula } \\
& { }_{2} F_{1}\left[\begin{array}{rrr}
a & , \quad-a-57 & ; \\
& c & \frac{1}{2}
\end{array}\right] \\
& =\frac{\sqrt{\pi} \Gamma(c)}{2^{c+57}}\left[\frac{1}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+57}{2}\right)}\{4663993231426051494968193237484327403520000000\right. \\
& \text {-9073290164577758977892122586870705081548800000a } \\
& +6014608599484707275800601864484573501849600000 a^{2} \\
& -1888036219179493312589613630382918642827264000 a^{3} \\
& +305882190592324772863078478896813270974873600 a^{4} \\
& \text {-23503014146793886208180982364121333912309760 } a^{5} \\
& +278791118679540135744865231405769654424576 a^{6} \\
& +69224845183875522946832415354508697535744 a^{7} \\
& -2535712248376814335343977751564501745792 a^{8} \\
& -108549944997731834507186371483101954240 a^{9} \\
& +4557554083806613399443726191766521440 a^{10} \\
& +145589201260019100940545911010809520 a^{11}-3685340640053462238648671778586680 a_{12} \\
& -148455131024117581464577195085940 a^{13}+703789848420398412314305604430 a^{14} \\
& +81662738285843613292539805380 a^{15}+737178620075422201572806790 a^{16} \\
& -15453205296485440868797140 a^{17}-356486644733827756383690 a^{18} \\
& -1336655811521431100700 a^{19}+32941890966055701630 a^{20}+445343405624977860 a^{21} \\
& +1502906526285450 a^{22}-10300901787540 a^{23}-110701049550 a^{24}-342030780 a^{25} \\
& -52206 a^{26}+1596 a^{27}+2 a^{28}+12349712285441871032901059162511984348364800000 c \\
& \text {-18399167583909244001629621522703942984663040000ac } \\
& +9883327676707633486355970893424545281081344000 a^{2} c \\
& -2548019215741280662436272161528151588995072000 a^{3} c \\
& +332869371755995806063997895249079236528701440 a^{4} c \\
& -18533489916374313009459094330204275566641152 a^{5} c \\
& -219977757420867232822000000994805006483456 a^{6} c \\
& +63650708636640391991306830993440111144960 a^{7} c
\end{align*}
$$

$$
\begin{aligned}
& -786946959907484168061439374690130247680 a^{8} c \\
& -105333354550439270320203019772149281792 a^{9} c \\
& +1272103784350987562244170485487243264 a^{10} c \\
& +118535841449585106927547371397966080 a^{11} c
\end{aligned}
$$

$-247233008505961828377294660520960 a^{12} c-81689240943219624269790590830272 a^{13} c$ $-754883858724479220655956538816 a^{14} c+24750765341360435154969609600 a^{15} c$ $+531219767676732770129836160 a^{16} c+106672931409531813213888 a^{17} c$ $-97230321230337925005376 a^{18}{ }_{c}-1019279993673478817280 a^{19} c+259106548835214080 a^{20}{ }_{c}$ $+76009425920395968 a^{21} c+539477067007424 a^{22} c+781695008640 a^{23} c-7135623040 a^{24} c$ $-34856640 a^{25} c-47040 a^{26} c+13494135444075880964110548638532103003176960000 c^{2}$ $-16257576015192941245160018517482974337826816000 a c^{2}$ $+7233995424521593529602977282580412697201868800 a^{2} c^{2}$
$-1543355849118250807798527942099714455607705600 a^{3} c^{2}$ $+161277491380084838730576831057220479059066880 a^{4} c^{2}$ $-5917455011702141973783995493819270785605632 a^{5} c^{2}$ $-264723867823483210789400382086327189157888 a^{6} c^{2}$ $+23096692644806495806556920822512910871040 a^{7} c^{2}$ $+166586817890952004341389353500124223488 a^{8} c^{2}$ $-36134051997281413873556906633031177600 a^{9} c^{2}$ $-212949336348315839241353521493266944 a^{10} c^{2}$ $+32264763151661319017833449716797920 a^{11} c^{2}$ $+404334941759226115989270314857856 a^{12} c^{2}-14218553787878722298709743501928 a^{13} c^{2}$ $-328225254933201367131430008200 a^{14} c^{2}+1143229647253660219786188240 a^{15} c^{2}$ $+97367615004800303776904304 a^{16} c^{2}+820106715230945721379944 a^{17} c^{2}$ $-5911924582527365744056 a^{18} c^{2}-141960880118220820800 a^{19} c^{2}-725001102026815328 a^{20} c^{2}$ $+2211323321863656 a^{21} c^{2}+38291954101128 a^{22} c^{2}+138885037200 a^{23} c^{2}+55218800 a^{24} c^{2}$ $-622440 a^{25} c^{2}-840 a^{26} c^{2}+8503508418886169448888178254733450433003520000 c^{3}$ $-8515296832751290559466335704757694266710425600 a c^{3}$ $+3176567663094301371561153309912365816768102400 a^{2} c^{3}$
$-561918804935876961195354695777965295750086656 a^{3} c^{3}$ $+46189958201951932823079728295118858792992768 a^{4} c^{3}$
$-869322064993772452952491622404221024337920 a^{5} c^{3}$ $-102991028046491082289579737359791411036160 a^{6} c^{3}$

$$
\begin{gathered}
+4332207037492464545904351830174877745152 a^{7} c^{3} \\
+125982068284420711603185003071050842112 a^{8} c^{3} \\
-6045163799865803639622483060427161600 a^{9} c^{3} \\
-140275929158998727700833437257850880 a^{10} c^{3}
\end{gathered}
$$

$$
+3882856168239761927883033010888704 a^{11} c^{3}+116812278024072710451296861554688 a^{12} c^{3}
$$

$$
-682475133954918414072511610880 a^{13} c^{3}-49019782795360217251135262720 a^{14} c^{3}
$$

$$
-330492273500001618768322560 a^{15} c^{3}+6714367719278375671330816 a^{16} c^{3}
$$

$$
+116581044196640285982720 a^{17} c^{3}+302885286468449484800 a^{18} c^{3}
$$

$$
-6826246208006184960 a^{19} c^{3}-65078503959332864 a^{20} c^{3}-143929851985920 a^{21} c^{3}
$$

$$
+745317314560 a^{22} c^{3}+4461649920 a^{23} c^{3}+6522880 a^{24} c^{3}
$$

$$
+3561261065507197629301363276799707812200448000 c^{4}
$$

$$
-3010245394488795638590287560253158832985866240 a c^{4}
$$

$$
+947399864953188793058206727349547698216763392 a^{2} c^{4}
$$

$$
-138618021601763633900282415668783181747191808 a^{3} c^{4}
$$

$$
+8705958157821068935221924991437973346451456 a^{4} c^{4}
$$

$$
-6545532381448157843612246039082886594560 a^{5} c^{4}
$$

$$
-22334908585405693095747598370064318783488 a^{6} c^{4}
$$

$$
+413859977284095480091170554515104030720 a^{7} c^{4}
$$

$$
+29254233942802110742901053487829485568 a^{8} c^{4}
$$

$$
-485011692124391703971622583455590400 a^{9} c^{4}
$$

$$
-26684292126084283167340789915585024 a^{10} c^{4}
$$

$$
+139246104363744831556092713906688 a^{11} c^{4}+14601002459767951505475582032768 a^{12} c^{4}
$$$+85933698958471849931140531200 a^{13} c^{4}-3407619360710347219130453760 a^{14} c^{4}$$-52591205727410294231738880 a^{15} c^{4}+54695691465192056749184 a^{16} c^{4}$

$$
+6704288546893480857600 a^{17} c^{4}+48990032197516467200 a^{18} c^{4}-42781401116213760 a^{19} c^{4}
$$

$$
-2102705477448576 a^{20} c^{4}-9072154291200 a^{21} c^{4}-5764944640 a^{22} c^{4}+39836160 a^{23} c^{4}
$$

$$
+58240 a^{24} c^{4}+1072222813971144348944661206228083295146475520 c^{5}
$$

$$
-771955970780867938711218378135730636858589184 a c^{5}
$$

$$
+205497257561337377900462770972553886277042176 a^{2} c^{5}
$$

$$
-24708803793159510844090828036989490393251840 a^{3} c^{5}
$$

$$
+1127019567699989225382988912166933071134720 a^{4} c^{5}
$$

$$
+22387691467933408312897780423470011645952 a^{5} c^{5}
$$

$$
-3112100533321908254934145983627669012480 a^{6} c^{5}
$$

$+5124628293853339619904189458261606400 a^{7} c^{5}$
$+3829773132020314532300280189521756160 a^{8} c^{5}$
$-933508745701830528533431891918848 a^{9} c^{5}$
$-2743566111413385672154074653147136 a^{10} c^{5}-19247072311498272636067394641920 a^{11} c^{5}$ $+970964177802757606050320424960 a^{12} c^{5}+15032825475370109826676088832 a^{13} c^{5}$ $-85768382005633298871803904 a^{14} c^{5}-3384247255338239724994560 a^{15} c^{5}$
$-18375409016677836963840 a^{16} c^{5}+156077581075549765632 a^{17} c^{5}$ $+2192963360706134016 a^{18} c^{5}+6668787980574720 a^{19} c^{5}-21590080512000 a^{20} c^{5}$ $-166865707008 a^{21} c^{5}-266133504 a^{22} c^{5}$ $+243890488149341637300824039218934163569639424 c^{6}$ $-150321771497018843749746565721892434107957248 a c^{6}$ $+33839101509315467383343065030221994527817728 a^{2} c^{6}$ $-3307414859224703274338630570242969782190080 a^{3} c^{6}$ $+99329120549956957396045675400627113951232 a^{4} c^{6}$ $+4887206737133741709404961469245710008320 a^{5} c^{6}$ $-292954507636483690726773143905519042560 a^{6} c^{6}$ $-4025881344973482804545093699908976640 a^{7} c^{6}$ $+316621333331420393869780615398096896 a^{8} c^{6}$ $+3984040841614292103838617498894336 a^{9} c^{6}-166306661074386710952004844480512 a^{10} c^{6}$ $-3038507371758994979751178951680 a^{11} c^{6}+30278304609796953429224494080 a^{12} c^{6}$
$+1031766521753165323963149312 a^{13} c^{6}+3470841044718249605731328 a^{14} c^{6}$
$-108558108968035386316800 a^{15} c^{6}-1157796012019705051136 a^{16} c^{6}$
$-901101796452329472 a^{17} c^{6}+43219410012979200 a^{18} c^{6}+226584758400000 a^{19} c^{6}$
$+199364092928 a^{20} c^{6}-993248256 a^{21} c^{6}-1584128 a^{22} c^{6}$
$+43355389491055769847463879254244627518062592 c^{7}$
$-22932332314025228643707793270129164078284800 a c^{7}$
$+4354351621061894603205398821295755488133120 a^{2} c^{7}$ $-340280278205918007749476681007943439613952 a^{3} c^{7}$
$+5268826680927529460010835301966427455488 a^{4} c^{7}$ $+607087424002840331349343636652194529280 a^{5} c^{7}$
$-18437303301372552264659488449434746880 a^{6} c^{7}$ $-603661151100359177840858346740514816 a^{7} c^{7}$
$+16429189593277264282920436663320576 a^{8} c^{7}+458939103196979469552427872092160 a^{9} c^{7}$ $-5237422369426935938151121059840 a^{10} c^{7}-207974579190169053766694141952 a^{11} c^{7}$
$-296405190586920108836093952 a^{12} c^{7}+38723174283616217992396800 a^{13} c^{7}$ $+354068653936202771005440 a^{14} c^{7}-1229871189063139983360 a^{15} c^{7}$ $-32292563516970172416 a^{16} c^{7}-130278255330263040 a^{17} c^{7}+262376459304960 a^{18} c^{7}$ $+2860554977280 a^{1} 9 c^{7}+5018517504 a^{20} c^{7}$ $+6171290629603643126170580214228889934757888 c^{8}$ $-2802629659556658619881783593724180336476160 a c^{8}$ $+446762298233352858329171137594640971071488 a^{2} c^{8}$ $-27234105005962376769265869372381816422400 a^{3} c^{8}$ $+34005593641616561522098963684291510272 a^{4} c^{8}$ $+52024380602683954033731680390240501760 a^{5} c^{8}$ $-673739124242171592292621127316193280 a^{6} c^{8}$ $-49625299280098543277519119704047616 a^{7} c^{8}+427094431749423840936631304773632 a^{8} c^{8}$ $+28966115302685253557341551360000 a^{9} c^{8}+17932140456528884843713876992 a^{10} c^{8}$
$-8394161385978078190463453184 a^{11} c^{8}-69785672710363246659449856 a^{12} c^{8}$ $+744918949016407969689600 a^{13} c^{8}+12861312108952905861120 a^{14} c^{8}$ $+29989104310096588800 a^{15} c^{8}-435016831929698304 a^{16} c^{8}-2864322226022400 a^{17} c^{8}$ $-3278428707840 a^{18} c^{8}+12770334720 a^{19} c^{8}+22404096 a^{20} c^{8}$ $+716136359002421753334636316504433990041600 c^{9}$ $-278927665676587737338789279445144305664000 a c^{9}$ $+37070372176984097349474493611626385637376 a^{2} c^{9}$
$-1696926592070759457997617833086770216960 a^{3} c^{9}$ $-23453509224301325867233427545925877760 a^{4} c^{9}$ $+3259768163222589195235110000391618560 a^{5} c^{9}$ $+3259768163222589195235110000391618560 a^{5} c^{9}-406186249061206132900695113203712 a^{6} c^{9}$ $-2729628530242733424233244937420800 a^{7} c^{9}-7089741271975303163177293578240 a^{8} c^{9}$
$+1174373949670553060404796620800 a^{9} c^{9}+10111389834351011106294890496 a^{10} c^{9}$
$-199478333790058458479984640 a^{11} c^{9}-3134893884117907735183360 a^{12} c^{9}$
$+981384285718052536320 a^{13} c^{9}+249222060888817336320 a^{14} c^{9}$ $+1331407173441945600 a^{15} c^{9}-1469053900554240 a^{16} c^{9}-27175272284160 a^{17} c^{9}$
$-52973240320 a^{18} c^{9}+68671834987125330030421072486570267770880 c^{10}$
$-22882708575763566744543275240786849955840 a c^{10}$
$+2511663177351930865843795854161162010624 a^{2} c^{10}$
$-81036432418679722583828635815766917120 a^{3} c^{10}$

$$
\begin{gathered}
-2606010011827642918441988956573663232 a^{4} c^{10} \\
+151675625085089343325830323308265472 a^{5} c^{10} \\
+1696721845213480414689970160336896 a^{6} c^{10}
\end{gathered}
$$

$-104663464419698498656675978444800 a^{7} c^{10}-1226537509620043280063155175424 a^{8} c^{10}$ $+30480845647972909412775112704 a^{9} c^{10}+513919518846713652406136832 a^{10} c^{10}$ $-1935632471862432878346240 a^{11} c^{10}-76828748499389047422976 a^{12} c^{10}$ $-314383187993679028224 a^{13} c^{10}+2406525855763341312 a^{14} c^{10}+20987721597173760 a^{15} c^{10}$ $+30351396421632 a^{16} c^{10}-97054543872 a^{17} c^{10}-189190144 a^{18} c^{10}$ $+5497635147596192782359823742199807344640 c^{11}$
$-1561382656611557490409360890779821670400 a c^{11}$
$+139776823488644702604807441395660881920 a^{2} c^{11}$
$-2812542121252118149855351183169814528 a^{3} c^{11}$
$-171641327808813782638871520208748544 a^{4} c^{11}$ $+5149700372373416450676088425676800 a^{5} c^{11}$ $+122331755997391581507162073989120 a^{6} c^{11}-2713864686690451131253552840704 a^{7} c^{11}$ $-60745021571699617498179305472 a^{8} c^{11}+415445612517627736086282240 a^{9} c^{11}$ $+14624775143761555693240320 a^{10} c^{11}+37100204878937028820992 a^{11} c^{11}$ $-1096071224208325607424 a^{12} c^{11}-7955496728726077440 a^{13} c^{11}+2592182910320640 a^{14} c^{11}$

$$
\begin{gathered}
+158110675107840 a^{15} c^{11}+346733936640 a^{16} c^{11} \\
+370280998566765020991674964489126543360 c^{12} \\
-89184394142031575767273273726945198080 a c^{12} \\
+6404360415447396665252022066016681984 a^{2} c^{12} \\
-57931705474008623210790770045878272 a^{3} c^{12} \\
-8135731094395636052832874936401920 a^{4} c^{12}
\end{gathered}
$$

$+117358578660093549301123991470080 a^{5} c^{12}+5226128750325301780808687812608 a^{6} c^{12}$ $-39352638321024742523943124992 a^{7} c^{12}-1842369256216054559514673152 a^{8} c^{12}$
$-1956512728893023492505600 a^{9} c^{12}+261744719713921596325888 a^{10} c^{12}$ $+1695017345841063788544 a^{11} c^{12}-7558979539619708928 a^{12} c^{12}$ $-95986355680051200 a^{13} c^{12}-173511440793600 a^{14} c^{12}+470567485440 a^{15} c^{12}$ $+1031946240 a^{16} c^{12}+21100243617267630080507066093823590400 c^{13}$
$-4282590123912327053620539705073336320 a c^{13}$
$+241243015910053286321986048595329024 a^{2} c^{13}$
$+317392344731618976203762659491840 a^{3} c^{13}-292918390869245011485391679651840 a^{4} c^{13}$

$$
\begin{gathered}
+1145732892161591869492974059520 a^{5} c^{13}+155820033424534888855468244992 a^{6} c^{13} \\
+126062959077358580520714240 a^{7} c^{13}-37586591854992814138982400 a^{8} c^{13} \\
-227483303554457870008320 a^{9} c^{13}+2811309253983410847744 a^{10} c^{13} \\
+29506358779073003520 a^{11} c^{13}+12675383600087040 a^{12} c^{13}-595955621560320 a^{13} c^{13} \\
-1493623111680 a^{14} c^{13}+1021211891165813781752728290318090240 c^{14} \\
-173297026100886417422779234123776000 a c^{14}
\end{gathered}
$$

$+7423534831050524634811927453761536 a^{2} c^{14}+85028856086488930301151019008000 a^{3} c^{14}$
$-8138561013982787524540382576640 a^{4} c^{14}-33817863753060452180243251200 a^{5} c^{14}$ $+3356324308027556616644067328 a^{6} c^{14}+22655202063533428683571200 a^{7} c^{14}$ $-508961813714509096550400 a^{8} c^{14}-5307765096818371461120 a^{9} c^{14}$
$+12505793085327015936 a^{10} c^{14}+285047702205235200 a^{11} c^{14}+645716386775040 a^{12} c^{14}$ $-1520294952960 a^{13} c^{14}-3810263040 a^{14} c^{14}+42072255717618339333719752987115520 c^{15}$ $-5912635830876391885353527122329600 a c^{15}+184011430001246598125992489779200 a^{2} c^{15}$ $+4089204576532065294692433002496 a^{3} c^{15}-173636174358710696859330936832 a^{4} c^{15}$ $-1941669908253312615217889280 a^{5} c^{15}+51429915147772080517283840 a^{6} c^{15}$ $+622310622589700567728128 a^{7} c^{15}-4000985207569851088896 a^{8} c^{15}$ $-69793100690746245120 a^{9} c^{15}-88304989860003840 a^{10} c^{15}+1498402705637376 a^{11} c^{15}$ $+4381294460928 a^{12} c^{15}+1476554274182984272218838196551680 c^{16}$ $-169868923301578108950033098342400 a c^{16}+3568900932399156837419266867200 a^{2} c^{16}$ $+126768410949664960828136226816 a^{3} c^{16}-2765896222956318792434057216 a^{4} c^{16}$ $-51423387034574054522880000 a^{5} c^{16}+517128526311411192037376 a^{6} c^{16}$ $+10012552612767620923392 a^{7} c^{16}-5485653566916526080 a^{8} c^{16}-557859563864064000 a^{9} c^{16}$ $-1607886168784896 a^{10} c^{16}+3344648896512 a^{11} c^{16}+9779675136 a^{12} c^{16}$ $+44110245621889122921426714624000 c^{17}-4095998640540586676771094528000 a c^{17}$ $+50586979392030133489659543552 a^{2} c^{17}+2895499458971099845110005760 a^{3} c^{17}$ $-30409297354552693217034240 a^{4} c^{17}-903537133713942254714880 a^{5} c^{17}$ $+2369578977058111881216 a^{6} c^{17}+105209244209633034240 a^{7} c^{17}+244781632916029440 a^{8} c^{17}$ $-2534063399239680 a^{9} c^{17}-8891450523648 a^{10} c^{17}+1118994148123491144793073909760 c^{18}$
$-82430418273727153657746554880 a c^{18}+413191190264441749570060288 a^{2} c^{18}$
$+50493990960957170437324800 a^{3} c^{18}-169285744033286208880640 a^{4} c^{18}$ $-11202779747419194654720 a^{5} c^{18}-16774719107706126336 a^{6} c^{18}+713308679464550400 a^{7} c^{18}$ $+2698661084528640 a^{8} c^{18}-5027903569920 a^{9} c^{18}-17641766912 a^{10} c^{18}$ $+24004195848546383983993159680 c^{19}-1372881198774176650258022400 a c^{19}$
$-1535229549819440912138240 a^{2} c^{19}+675445575549134611415040 a^{3} c^{19}$
$+977888288505415598080 a^{4} c^{19}-97677918872587468800 a^{5} c^{19}-382005832696463360 a^{6} c^{19}$
$+2845264167567360 a^{7} c^{19}+12479228805120 a^{8} c^{19}+432663577898625869461585920 c^{20}$
$-18694574765226612353925120 a c^{20}-114853179343061766897664 a^{2} c^{20}$
$+6839779658949527076864 a^{3} c^{20}+32243001718512549888 a^{4} c^{20}-572761838589050880 a^{5} c^{20}$
$-3011609316294656 a^{6} c^{20}+5080828870656 a^{7} c^{20}+22284337152 a^{8} c^{20}$
$+6493318159017051999436800 c^{21}-204546451808367799173120 a c^{21}$
$-2076938877274748354560 a^{2} c^{21}+50837418792085094400 a^{3} c^{21}+349406521563545600 a^{4} c^{21}$
$-2032331548262400 a^{5} c^{21}-11884979814400 a^{6} c^{21}+80114118503930391429120 c^{22}$
$-1753523695458598256640 a c^{22}-23198555938561720320 a^{2} c^{22}+261866139942912000 a^{3} c^{22}$
$+2140357525504000 a^{4} c^{22}-3299239526400 a^{5} c^{22}-19293798400 a^{6} c^{22}$
$+798215672745752002560 c^{23}-11337550315860787200 a c^{23}-175094783960678400 a^{2} c^{23}$
$+835424826163200 a^{3} c^{23}+7328287948800 a^{4} c^{23}+6259840420927242240 c^{24}$
$-51959197335552000 a c^{24}-876133901926400 a^{2} c^{24}+1243191705600 a^{3} c^{24}$
$+10905190400 a^{4} c^{24}+37180801737031680 c^{25}-150376468709376 a c^{25}-2638183661568 a^{2} c^{25}$
$\left.+157141042200576 c^{26}-206561083392 a c^{26}-3623878656 a^{2} c^{26}+420906795008 c^{27}+536870912 c^{28}\right\}$
$+837552258934621203905452191174023520 a^{11}-141270168289011067377045582877148880 a^{12}$
$-2021845356765428409654773282119080 a^{13}+83736396384333210544848776469060 a^{14}$
$+2238231712979988013322503297080 a^{15}-9990799722552224799091706460 a^{16}$
$-956791010584687537587935880 a^{17}-9622102991569333817866860 a^{18}$
$+91183745535600965247000 a^{19}+2694991378838118540180 a^{20}+17680142227039011720 a^{21}$
$-77419018063607220 a^{22}-1844216166887640 a^{23}-10136750250900 a^{24}-6696831960 a^{25}$
$+157168284 a^{2} 6+647976 a^{27}+812 a^{28}+21969520562926750625769039772789971615744000000 c$
$-70455822097427141799160248482942198486138880000 a c$
$+57986056640905171422632284931380541245685760000 a^{2} c$
$-20787412783749576213887121000725743133078323200 a^{3} c$
$+3712575069664523041064042609152834889963888640 a^{4} c$
$-312335355150989769289748433026823949446346752 a^{5} c$
$+5177023115455607373919400529925384716621312 a^{6} c$
$+895006890831413379848615510354466997693824 a^{7} c$
$-37381766993452100157598246005743416891200 a^{8} c$
$-1402689952549802870466457516845851463072 a^{9} c$
$+66936787013755696900858600776599339120 a^{10}{ }_{c}$
$+1956103305212164515056776674035946216 a^{11} c-55293581297084350538063748337832876 a^{12} c$

$$
\begin{gathered}
-2083316898092694304203911421182022 a^{13} c+11768243926975392724462344998695 a^{14} c \\
+1178230555342833729585631608066 a^{15} c+10218874688324348216615363599 a^{16} c \\
-227989941300486079532373582 a^{17} c-5140151472777200700238925 a^{18} c \\
-18695659349061936746934 a^{19} c+481147358429282747059 a^{20} c+6446729951856043278 a^{21} c \\
+21607027877432725 a^{22} c-150034084041114 a^{23} c-1605431715251 a^{24} c-4956437850 a^{25} c \\
-752927 a^{26} c+23142 a^{27} c+29 a^{28} c+43139032447351017510868169359754611528826880000 c^{2} \\
-83143829797965396330113455873789432071979008000 a c^{2} \\
+51793764842040309292230678479220909891964108800 a^{2} c^{2} \\
-14792645989820833965953860378854976249606963200 a^{3} c^{2} \\
+2097084514361647796550237688138573002013999104 a^{4} c^{2} \\
-127730203597139988988913994704114723916398592 a^{5} c^{2} \\
-899419858647540764674277598821708479746048 a^{6} c^{2} \\
+430189561288423560703315712980668525419520 a^{7} c^{2} \\
-6555182824343309950996560884891597754368 a^{8} c^{2} \\
-719888910790141183992017167821599136000 a^{9} c^{2} \\
+10193738795798674642143609212846693376 a^{10} c^{2}
\end{gathered}
$$

$+830924017317370088202898962506721600 a^{11} c^{2}-2622882369415839936982955260852480 a^{12} c^{2}$ $-587047647239454765951943802800368 a^{13} c^{2}-5118991853591789446479691041200 a^{14} c^{2}$ $+181781960397411567463149166560 a^{15} c^{2}+3802355717459842607816807328 a^{16} c^{2}$ $-69183760293692391883536 a^{17} c^{2}-707078669302295745831376 a^{18} c^{2}$ $-7340177069764582243200 a^{19} c^{2}+2349976024594534336 a^{20} c^{2}+552109006538225136 a^{21} c^{2}$ $+3905800683181488 a^{22} c^{2}+5634941850720 a^{23} c^{2}-51780557920 a^{24} c^{2}-252710640 a^{25} c^{2}$ $-341040 a^{26} c^{2}+37932635782998989661984392630993271222435840000 c^{3}$ $-54045241668658053303130668761965584450374860800 a c^{3}$ $+26866219340665671317855817250904463869670850560 a^{2} c^{3}$ $-6226186922754679115796278878919792179432390656 a^{3} c^{3}$ $+698699519454286850072740325134681279308447744 a^{4} c^{3}$ $-28382525500158607788219888250890824970104832 a^{5} c^{3}$ $-1073368610597303462333782393054181612209152 a^{6} c^{3}$ $+107506881293715072453913957496600361929472 a^{7} c^{3}$ $+533003509429799755452441327863529405440 a^{8} c^{3}$ $-169830408857608894053850378941161762112 a^{9} c^{3}$
$-776936319683713162962262903573218560 a^{10} c^{3}+154499180085475575071327946036339984 a^{11} c^{3}$ $+1814180744364596991609540755925696 a^{12} c^{3}-69518943692178626551519233440844 a^{13} c^{3}$ $-1553366879870044980110829451196 a^{14} c^{3}+6030312781884889180813180440 a^{15} c^{3}$

$$
\begin{gathered}
+470042329036527199687955272 a^{16} c^{3}+3899011085768023912944972 a^{17} c^{3} \\
-29046409548810679611300 a^{18} c^{3}-685723036794180459360 a^{19} c^{3} \\
-3483839099504967632 a^{20} c^{3}+10775726608923276 a^{21} c^{3}+185133452357308 a^{22} c^{3} \\
+670892596920 a^{23} c^{3}+266327880 a^{24} c^{3}-3008460 a^{25} c^{3}-4060 a^{26} c^{3} \\
+20140506281711585092274569936754369963753472000 c^{4} \\
-22780130085276130810328992611557701973421588480 a c^{4} \\
+9273805481403358576517849794863402047602950144 a^{2} c^{4} \\
-1757789876715546789892175999509552386511208448 a^{3} c^{4} \\
+154142100175124049142725226804267273258008576 a^{4} c^{4} \\
-3387305071917140442684291171907473637048320 a^{5} c^{4} \\
-336828780892989232519523609294423783063552 a^{6} c^{4} \\
+15607799363985381728771606808466827755520 a^{7} c^{4} \\
+411384199348144522422927805520418091008 a^{8} c^{4} \\
-21875791616848895850889138943738695680 a^{9} c^{4}
\end{gathered}
$$

$-475663389638436044296298213794388992 a^{10} c^{4}+14295698423115401405345408174896128 a^{11} c^{4}$ $+411695877947970183695399604647168 a^{12} c^{4}-2653326748508621493374981591040 a^{13} c^{4}$
$-176639492881130251239431324160 a^{14} c^{4}-1157214920058986824345390080 a^{15} c^{4}$ $+24559707847899700692280064 a^{16} c^{4}+420712646431742022758400 a^{17} c^{4}$ $+1071476414857263134720 a^{18} c^{4}-24825554323428418560 a^{19} c^{4}-235648399575004416 a^{20} c^{4}$ $-519729419489280 a^{21} c^{4}+2704991045120 a^{22} c^{4}+16173480960 a^{23} c^{4}+23645440 a^{24} c^{4}$ $+7318414689134299284552336599179067657080012800 c^{5}$ $-6796022756120630120646217665866567861586100224 a c^{5}$ $+2296934121931367748435555823642842368034471936 a^{2} c^{5}$ $-356542595503161787886614548711069916217475072 a^{3} c^{5}$ $+23812473609165156745542494957897989579407360 a^{4} c^{5}$
$-85053021306692855315876573527798517219328 a^{5} c^{5}$
$-60588682676595614836897015497705631313920 a^{6} c^{5}$
$+1253961652736781464863798406409876295680 a^{7} c^{5}$
$+80287809559598866803367642180485735424 a^{8} c^{5}$
$-1461585867577404105706482685169875968 a^{9} c^{5}-74971760643874388116118674215357696 a^{10} c^{5}$ $+447078613327349750180717077884672 a^{11} c^{5}+41897329664118986929620103840192 a^{12} c^{5}$ $+234317962533470086974279263232 a^{13} c^{5}-9931207111816028739283506560 a^{14} c^{5}$
$-150937581923880849384857856 a^{15} c^{5}+175364309555434669420608 a^{16} c^{5}$ $+19455231502499476349952 a^{17} c^{5}+141444101521211906560 a^{18} c^{5}-127350332457444096 a^{19} c^{5}$ $-6100734541533632 a^{20} c^{5}-26294845344768 a^{21} c^{5}-16695369600 a^{22} c^{5}+115524864 a^{23} c^{5}$

$$
+168896 a^{24} c^{5}+1951011092316213314772126280542273980923379712 c^{6}
$$

$-1514793359398616370648133563534610226938380288 a c^{6}$ $+428000832053981857784820659957344663291035648 a^{2} c^{6}$ $-54193026086173415669805497748171224021729280 a^{3} c^{6}$ $+2631442170650665840963636676242487150379008 a^{4} c^{6}$ $+44288448864437812917034668726329266667520 a^{5} c^{6}$ $-7209267175783381613164375720741403688960 a^{6} c^{6}$ $+22213048508393431575140460054314188800 a^{7} c^{6}$ $+8976449623248376950069290718160289792 a^{8} c^{6}-9853511434467465699153847337385984 a^{9} c^{6}$ $-6540272242323363216880245501202432 a^{10} c^{6}-43023927697210750521088677980160 a^{11} c^{6}$ $+2351067289249207278626740770816 a^{12} c^{6}+35674413751511215761480271872 a^{13} c^{6}$ $-213227841099530651096614912 a^{14} c^{6}-8157603280419159473786880 a^{15} c^{6}$ $-43861165248177279242240 a^{16} c^{6}+379387499812390637568 a^{17} c^{6}+5295215392439132160 a^{18} c^{6}$ $+16067846564689920 a^{19} c^{6}-52260924491776 a^{20} c^{6}-403258791936 a^{21} c^{6}-643155968 a^{22} c^{6}$ $+398836218240295813151513685889423815670235136 c^{7}$ $-261598756782465716652319275581488086990716928 a c^{7}$ $+61950036235078071656550762302203122860163072 a^{2} c^{7}$ $-6340830003337838595437496153393116696543232 a^{3} c^{7}$ $+204589278612368334019528752216550821068800 a^{4} c^{7}$ $+9148151826252336515812759158024761966592 a^{5} c^{7}$ $-593478869594852922835510615964528361472 a^{6} c^{7}$
$-7401037505270888127692646867896180736 a^{7} c^{7}+647357508742686097329835635939033088 a^{8} c^{7}$ $+7698837327365830557964184831778816 a^{9} c^{7}-344735470635176634694772736443392 a^{10} c^{7}$ $-6132161571762951490799604460032 a^{11} c^{7}+64052960090957894517833688576 a^{12} c^{7}$
$+2122765337190694626464027136 a^{13} c^{7}+6941436287602178840411648 a^{14} c^{7}$ $-225445898748710521390080 a^{15} c^{7}-2389875255348584047616 a^{16} c^{7}$
$-1811210812639607808 a^{17} c^{7}+89589265290590208 a^{18} c^{7}+469107249262080 a^{19} c^{7}$
$+412535332352 a^{20} c^{7}-2057442816 a^{21} c^{7}-3281408 a^{22} c^{7}$
$+64447363569356834989024133875256882708348928 c^{8}$ $-35914906602747459100651507474947632466493440 a c^{8}$ $+7123907332965106557753659796009964663734272 a^{2} c^{8}$ $-580635962968394103885702593436357151948800 a^{3} c^{8}$ $+10013280618104858142996168906416767107072 a^{4} c^{8}$ $+1030877958859430152126427334499401400320 a^{5} c^{8}$ $-33375342179062817786908043589441978368 a^{6} c^{8}$
$-1035524440946277352189175634567069696 a^{7} c^{8}+29915324732693006166880702796316672 a^{8} c^{8}$ $+806401489959567645699210495160320 a^{9} c^{8}-9708681549441763729549486761984 a^{10} c^{8}$ $-372605050752770223923724693504 a^{11} c^{8}-469356464603790946519873536 a^{12} c^{8}$ $+70162190439039437549690880 a^{13} c^{8}+636329585835794387496960 a^{14} c^{8}$ $-2258055503557114060800 a^{15} c^{8}-58498222670061318144 a^{16} c^{8}-235538275613921280 a^{17} c^{8}$ $+476709500467200 a^{18} c^{8}+5184755896320 a^{19} c^{8}+9096062976 a^{20} c^{8}$
$+8413831451454398671211253430202993574150144 c^{9}$
$-3994332131505973182909453266446303132385280 a c^{9}$
$+661416270356953318924701762753931771904000 a^{2} c^{9}$
$-41940934275868854919469461999031961255936 a^{3} c^{9}$
$+114795158534557413284964316101038047232 a^{4} c^{9}$
$+80195472878180969900057410215739146240 a^{5} c^{9}$
$-1124551589578132034896537160373854208 a^{6} c^{9}-77437309796637223617844172236922880 a^{7} c^{9}$ $+717055873265261304321786692980736 a^{8} c^{9}+45930319435013377467440146867200 a^{9} c^{9}$ $+16568272090662756186824944128 a^{10} c^{9}-13476520098956257499744400384 a^{11} c^{9}$ $-110578595754871858567709184 a^{12} c^{9}+1207709077283385505720320 a^{13} c^{9}$ $+20662780586059518100480 a^{14} c^{9}+47808751023867525120 a^{15} c^{9}-701593559466488832 a^{16} c^{9}$
$-4612395879336960 a^{17} c^{9}-5277340823040 a^{18} c^{9}+20574428160 a^{19} c^{9}+36095488 a^{20} c^{9}$
$+902023097253511514784928036423916050186240 c^{10}$ $-364948213813154206097473504443127761469440 a c^{10}$ $+50151066940062270305425584264615259275264 a^{2} c^{10}$ $-2385666204895399774638860449294697103360 a^{3} c^{10}$ $-29584657450502853080248056967423066112 a^{4} c^{10}$ $+4590342492402740888445975946760159232 a^{5} c^{10}$
$-3766117840717582589464984927207424 a^{6} c^{10}-3885763443399271253436458077716480 a^{7} c^{10}$ $-8683461771353251592701513826304 a^{8} c^{10}+1691688984552250258698247348224 a^{9} c^{10}$ $+14274101088874635506907881472 a^{10} c^{10}-290215571492979598027161600 a^{11} c^{10}$ $-4516452819636092112633856 a^{12} c^{10}+1634202502400839827456 a^{13} c^{10}$ $+361302356786663964672 a^{14} c^{10}+1926337292710871040 a^{15} c^{10}-2139345499619328 a^{16} c^{10}$

$$
-39404144812032 a^{17} c^{10}-76811198464 a^{18} c^{10}
$$

$+80390173322487870753544750441989637406720 c^{11}$ $-27681326391739888280153640647653117132800 a c^{11}$ $+3129618037971996304940434335899007844352 a^{2} c^{11}$ $-105090325289687581517088997559039950848 a^{3} c^{11}$ $-3204227251681130545372679663232221184 a^{4} c^{11}$
$+196512624407388790832342987959861248 a^{5} c^{11}+2087088799367409351825822725734400 a^{6} c^{11}$ $-136810454670409251188372276035584 a^{7} c^{11}-1563684050989749415212993282048 a^{8} c^{11}$ $+40232775750765244192400025600 a^{9} c^{11}+669856494577843197251168256 a^{10} c^{11}$ $-2600495563365900605104128 a^{11} c^{11}-101054651520675639468032 a^{12} c^{11}$ $-411631534187538223104 a^{13} c^{11}+3177268113601720320 a^{14} c^{11}+27651986557378560 a^{15} c^{11}$ $+39978732478464 a^{16} c^{11}-127935535104 a^{17} c^{11}-249387008 a^{18} c^{11}$
$+6011504443812791784462808494698460610560 c^{12}$
$-1756587642604168209215602456732788326400 a c^{12}$
$+161458460914447859965301557100900515840 a^{2} c^{12}$ $-3405375709998780501066378923193925632 a^{3} c^{12}$
$-198330395489494829947780591289630720 a^{4} c^{12}+6185084859268652851177515248517120 a^{5} c^{12}$
$+142961725876531248424599719510016 a^{6} c^{12}-3282736963717249866912152420352 a^{7} c^{12}$ $-72222473957362316717007470592 a^{8} c^{12}+509089884521501014661529600 a^{9} c^{12}$ $+17583213560178719543394304 a^{10} c^{12}+43903576123455584600064 a^{11} c^{12}$
$-1324814241900972146688 a^{12} c^{12}-9594168941433323520 a^{13} c^{12}+3179145676062720 a^{14} c^{12}$ $+191050399088640 a^{15} c^{12}+418970173440 a^{16} c^{12}+379819823006335416921526441752794234880 c^{13}$
$-93770110175324094948603867777277624320 a c^{13}$
$+6895530324194773825822783010246754304 a^{2} c^{13}$
$-67374385995605578433337578165895168 a^{3} c^{13}-8801729663018801430628629761359872 a^{4} c^{13}$ $+131995750832188727145377649131520 a^{5} c^{13}+5716078369288898170171260207104 a^{6} c^{13}$ $-44650364933322674874708197376 a^{7} c^{13}-2037735728746887161256140800 a^{8} c^{13}$ $-2003213137113027750789120 a^{9} c^{13}+291521398196087183736832 a^{10} c^{13}$ $+1880955324933964038144 a^{11} c^{13}-8453006959639216128 a^{12} c^{13}-107010267766456320 a^{13} c^{13}$ $-193403077754880 a^{14} c^{13}+524863733760 a^{15} c^{13}+1151016960 a^{16} c^{13}$ $+20378461723974834183946479387719761920 c^{14}-4225861899605037799430157454698086400 a c^{14}$ $+243246675452904197173151885359579136 a^{2} c^{14}+183796980775398087110335943147520 a^{3} c^{14}$
$-297120471421972648153649585848320 a^{4} c^{14}+1256002137606645628935811891200 a^{5} c^{14}$ $+159523441825166765944537612288 a^{6} c^{14}+108127355219080577010892800 a^{7} c^{14}$ $-38783653358950851147202560 a^{8} c^{14}-233080622370388739358720 a^{9} c^{14}$ $+2914903983661895909376 a^{10} c^{14}+30505840208817684480 a^{11} c^{14}+12969253947310080 a^{12} c^{14}$ $-617239750901760 a^{13} c^{14}-1546966794240 a^{14} c^{14}+931599000551830597248660685990133760 c^{15}$ $-161064951065689450838436224843120640 a c^{15}+7038662828348231262404904335966208 a^{2} c^{15}$ $+77362173276271043074045400580096 a^{3} c^{15}-7760563119360787326317473300480 a^{4} c^{15}$ $-30717663309016738582721200128 a^{5} c^{15}+3224428205441670449097080832 a^{6} c^{15}$ $+21513860997336271636267008 a^{7} c^{15}-491780583986888169881600 a^{8} c^{15}$

$$
\begin{gathered}
-5109275964306436521984 a^{9} c^{15}+12151080561647419392 a^{10} c^{15}+275416785707728896 a^{11} c^{15} \\
+623814359777280 a^{12} c^{15}-1469618454528 a^{13} c^{15}-3683254272 a^{14} c^{15} \\
+36354665714647566301947230662164480 c^{16}-5192284599155266987778685806837760 a c^{16} \\
+164679710230976039419640102780928 a^{2} c^{16}+3587988397955062408574398365696 a^{3} c^{16} \\
-156106890071336647983849537536 a^{4} c^{16}-1722678005662129516322488320 a^{5} c^{16} \\
+46510385068964404570357760 a^{6} c^{16}+559651319300458796285952 a^{7} c^{16} \\
-3635928833515306352640 a^{8} c^{16}-63145889729670021120 a^{9} c^{16}-79661106634948608 a^{10} c^{16} \\
+1357927451983872 a^{11} c^{16}+3970548105216 a^{12} c^{16}+1211564592842492994413829071831040 c^{17} \\
-141338364119403481556505140920320 a c^{17}+3025869423602487964672131596288 a^{2} c^{17}
\end{gathered}
$$

Derivation of the result (8):
Substituting $b=-a-57, z=\frac{1}{2}$ in given result (2), we get

$$
\begin{gathered}
(2 a+57){ }_{2} F_{1}\left[\begin{array}{ccc}
a,-a-57 & ; & \frac{1}{2} \\
c & ;
\end{array}\right] \\
=a_{2} F_{1}\left[\begin{array}{ccc}
a+1, & -a-57 & ; \\
c & & \frac{1}{2}
\end{array}\right]+(a+57){ }_{2} F_{1}\left[\begin{array}{ccc}
a, & -a-56 & ; \\
c & \frac{1}{2}
\end{array}\right]
\end{gathered}
$$

Now involving the derived result of $\operatorname{Ref}[6]$, we can prove the main result.

References Références Referencias

1. Andrews, L.C.(1992) ; Special Function of mathematics for Engineers,second Edition, McGraw-Hill Co Inc., New York.
2. Bells, Richard, Wong, Roderick ; Special Functions, A Graduate Text. Cambridge Studies in Advanced Mathematics, 2010.
3. Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O.I.; Integrals and Series Vol. 3: More Special Functions. Nauka, Moscow, 1986. Translated from the Russian by G.G. Gould, Gordon and Breach Science Publishers, New York, Philadelphia, London, Paris, Montreux, Tokyo, Melbourne, 1990.
4. Rainville, E. D.; The contiguous function relations for ${ }_{p} F_{q}$ with applications to Bateman's $J_{n}^{u, v}$ and Rice's $H_{n}(\zeta, p, \nu)$, Bull. Amer. Math. Soc., 51(1945), 714-723.
5. Salahuddin, Chaudhary, M.P ; A New Summation Formula Allied With Hypergeometric Function, Global Journal of Science Frontier Research, 11(2010),21- 37.

This page is intentionally left blank

Global Journal of Science Frontier Research: F
MATHEMATICS AND DECISION SCIENCES
Volume 14 Issue 1 Version 1.0 Year 2014
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

On the Valuation Credit Risk Via Reduced- Form Approach

By Fadugba S. E. \& Edogbanya O. H.

Ekiti State University, Nigeria
Abstract- This paper presents the valuation of credit risk via reduced-form approach. Credit risk arises whenever a borrower is expecting to use future cash flows to pay a current debt. It is closely tied to the potential return of investment, the most notable being that the yields on bonds correlate strongly to their perceived credit risk. Credit risk embedded in a financial transaction, is the risk that at least one of the parties involved in the transaction will suffer a financial loss due to decline in creditworthiness of the counter-party to the transaction or perhaps of some third party. Reduced-form approach is known as intensity-based approach. This is purely probabilistic in nature and technically speaking it has a lot in common with the reliability theory. Here the value of firm is not modeled but specifically the default risk is related either by a deterministic default intensity function or more general by stochastic intensity.

Keywords: credit risk, risk-neutral valuation formula, reduced-form approach.
GJSFR-F Classification : MSC 2010: 62P05, 97M30, 91G40

Strictly as per the compliance and regulations of :

© 2014. Fadugba S. E. \& Edogbanya O. H. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

On the Valuation Credit Risk Via ReducedForm Approach

Fadugba S. E. ${ }^{\alpha}$ \& Edogbanya O. H. ${ }^{\sigma}$

Abstract

This paper presents the valuation of credit risk via reduced-form approach. Credit risk arises whenever a borrower is expecting to use future cash flows to pay a current debt. It is closely tied to the potential return of investment, the most notable being that the yields on bonds correlate strongly to their perceived credit risk. Credit risk embedded in a financial transaction, is the risk that at least one of the parties involved in the transaction will suffer a financial loss due to decline in creditworthiness of the counter-party to the transaction or perhaps of some third party. Reduced-form approach is known as intensity-based approach. This is purely probabilistic in nature and technically speaking it has a lot in common with the reliability theory. Here the value of firm is not modeled but specifically the default risk is related either by a deterministic default intensity function or more general by stochastic intensity.

Keywords: credit risk, risk-neutral valuation formula, reduced-form approach.

I. Introduction

The main emphasis in the intensity-based approach is put on the modelling of the random time of default, as well as evaluating condition expectations under a risk-neutral probability of functionals of the default time and corresponding cash follows. Typically, the random default time is defined as the jump time of some one-jump process.
In recent years, we see a spectacular growth in trading, especially in derivative instruments. There is also an increase complexity of products in the financial markets with the growing complexity and trading size of financial markets, mathematical models have come to play an increasingly important role in financial decision making, especially in the context of pricing and hedging of derivative instruments. Models have become indispensable tools in the development of new financial products and the management of their risks.
The importance of valuation and hedging models in derivatives markets cannot be over-emphasized. The financial risk can therefore be categorized into four (4) types namely: Market risk, Liquidity risk, Operational risk and Credit risk.
The first category of credit risk models are the ones based on the original framework developed by [14]. Using the principles of option pricing [3]. In such a framework, the default process of a company is driven by the value of the company's assets and the risk of a firm's default is

[^6]therefore explicitly linked to the variability of the firm's asset value. The basic intuition behind the Merton model is that; default occurs when the value of a firm's assets (the market value of the firm) is lower than that of its liabilities. [14] derived an explicit formula for risky bonds which can be used both to estimate the probability of default of a firm and to estimate the yield differential between a risk bond and a default-free bonds.
In addition to [14], first generation structure-firm models include [2], they try to refine the original Merton framework by removing one or more of the unrealistic assumptions. [2] introduce the possibility of more complex capital structure with subordinated debts.
Reduced-form models somewhat differ from each other by the manner in which the recovery rate is parameterized. For example, [12] assumed that, at default, a bond would have a market value equals to an exogenous specified fraction of an otherwise equivalent default-free bond. [7] would have a market value equals to an exogenously specified fraction of an otherwise equivalent default-free bond. [8] followed with a model that when market value at default (recovery rate) is exogenously specified, allows for closed-form solutions for term-structure of credit spreads.
For mathematical background, valuation of credit risk, some numerical method for options valuation and stochastic analysis based on the Ito integral, see ([1], [4], [5], [6], [9], [10], [11], [13], [15], [16], [17] and [18]), just to mention few. In this paper we shall consider reduced-form approach for the valuation of credit risk.

II. Reduced-form Model

In this approach, the value of the firm's assets and its capital structure are not model at all, and the credit events are specified in terms of some exogenously specified jump process (as a rule, the recovery rates at default are also given exogenously). We can distinguish between the reduced-form models that are only concerned with the modelling of default time, and that are henceforth referred to as the intensity-based models, and the reduced form models with migrations between credit rating classes called the credit migration models.
The main emphasis in the intensity-based approach is put on the modelling of the random time of default, as well as evaluating condition expectations under a risk-neutral probability of functionals of the default time and corresponding cash follows. Typically, the random default time is defined as the jump time of some one-jump process. As well shall see, a pivotal role in evaluating respective conditional expectations is played by the default intensity process.
Modelling of the intensity process which is also known as the hazard rate process, is the starting point in the intensity approach.
a) Hazard Function

Before going deeper in the analysis of the reduced-form approach, we shall first examine a related technical question. Suppose we want to evaluate a conditional expectation $E_{p}\left(1_{\{\tau>s\}} Y \mid \mathcal{G}_{t}\right)$, where τ is a stopping time on a probability space (Ω, G, p), with respect to some filtration $G=\left(\mathcal{G}_{t}\right)_{t \geq 0}$ and Y is an integrable, \mathcal{G}_{s}-measurable random variable for some $s>t$.
In financial applications, it is quite natural and convenient to model the filtration G as $G=F V H$, where h is the filtration that carries full information about default events (that is, events such as
$\{\tau \leq t\}$), whereas the reference filtration F carries information about other relevant financial and economic processes, but, typically, it does not carry full information about default event. The first question we address is how to compute the expectation

$$
\begin{equation*}
E_{p}\left(1_{\{\tau>s\}} Y \mid \mathcal{G}_{t}\right) \tag{2.1}
\end{equation*}
$$

Using the intensity of τ with respect to F.

b) Hazard Function of a Random Time

We study the case where the reference filtration F is trivial, so that it does not carry any information whatsoever. Consequently, we have that $G=h$. Arguably, this is the simplest possible used in practical financial applications, as it leads to relatively easy calibration of the model.
We start by recalling the notion of a hazard function of a random time. Let τ be a finite, nonnegative random time.
Let τ be a finite, non-negative, variable on a probability space (Ω, \mathcal{G}, p), referred to as the random time. We assume that $p\{T=0\}=0$ and τ is unbounded;

$$
\begin{equation*}
p\{\tau>t\}>0 \text { for every } t \in R_{+} \tag{2.2}
\end{equation*}
$$

The right continuous cumulative distribution function F of τ satisfies

$$
\begin{equation*}
F(t)=p\{\tau \leq t\}<1 \text { for every } t \in R_{+} \tag{2.3}
\end{equation*}
$$

We also assume that $p\{\tau<\infty\}=1$ so that τ is a Markov time.
We introduce the right-continuous jump process $H_{t}=1_{\{\tau \leq t\}}$ and we write

Lemma 1

For any \mathcal{G}-measurable (integrable) random variable Y we have

$$
\begin{equation*}
E_{p}\left(Y \mid \mathcal{H}_{t}\right)=1_{\{\tau \leq t\}} E_{p}(Y \mid \tau)+1_{\{\tau>t\}} \frac{E_{p}\left(1_{\{\tau>t\}} Y\right)}{p\{\tau>t\}} \tag{2.4}
\end{equation*}
$$

For any \mathcal{H}_{t}-measurable random variable Y we have

$$
\begin{equation*}
Y=1_{\{\tau \leq t\}} E_{p}(Y \mid \tau)+1_{\{\tau>t\}} \frac{E_{p}\left(1_{\{\tau>t\}} Y\right)}{p\{\tau>t\}} \tag{2.5}
\end{equation*}
$$

that is, $Y=h(\tau)$ for a Borel measurable $h: R \rightarrow R$ which is constant on the interval (t, ∞).
The hazard function is introduced through the following definition.
$h=\left(\mathcal{H}_{t}\right)_{t \geq 0}$ to denote the (right continuous and p-completed) filtration generated by the process H. Of course, τ is an h-stopping time.
We shall assume throughout that all random variables and processes that are used in what follows satisfy suitable integrability conditions. We begin with the following simple and important result.

Definition 1: The increasing right-continuous function $\Gamma: R_{+} \rightarrow R_{+}$given by the formula

$$
\begin{equation*}
\Gamma(t)=-\ln \left(1-F(t), \quad \forall t \in R_{+}\right. \tag{2.6}
\end{equation*}
$$

is called the hazard function of a random time τ.
If the distribution function F is an absolutely continuous function, i.e., if we have

$$
F(t)=\int_{0}^{t} f(u) d u
$$

for some function $f: R_{+} \rightarrow R_{+}$, then we have

$$
\begin{aligned}
F(t) & =1-e^{-\Gamma(t)} \\
& =1-e^{-\int_{0}^{t} \gamma(u) d u}
\end{aligned}
$$

where we set

$$
\gamma(t)=\frac{f(t)}{1-F(t)}
$$

$\gamma: R_{+} \rightarrow R$ is a non-negative function and it satisfies $\int_{0}^{\infty} \gamma(u) d u=\infty$.
The function γ is called the hazard rate or intensity of τ sometimes, in order to emphasize relevance of the measure p the terminology p-hazard rate and p-intensity is used. The next result follows from definition 2

Definition 2: The dividend process D of a defaultable contingent claim (X, C, \tilde{X}, Z, τ), which settles at time T, equals

$$
D_{t}=X^{d}(T) 1_{\{t \geq T\}^{-1}}+\int_{(0, t]}(1-H u) d i C v+\int_{(0, t]} Z_{u} d H u
$$

D is a process of finite variation and

$$
\begin{gathered}
\int_{(0, t]}(1-H u) d c u=\int_{(0, t]} 1_{\{\tau>u\}} d c u \\
=C_{\tau}-1_{\{\tau \leq t\}}+C_{t} 1_{\{\tau>t\}} .
\end{gathered}
$$

Note that if default occurs at some date t, the promised dividend $C_{t}-C_{t}-$, which is due to be paid at this date, is not received by the holder of a defaultable claim. Furthermore, if we set $\tau \wedge t=\min \{\tau, t\}$ then

$$
\begin{equation*}
\int_{(0, t]} Z_{u} d H u=Z_{\tau \wedge t} 1_{\{\tau \leq t\}}=Z_{\{\tau=t\}} \tag{2.7}
\end{equation*}
$$

Remark: In principle, the promised payoff X could be incorporated into the promised dividends process C. However, this would inconvenient, since in practice the recovery rules concerning the promised dividend C as the promised claim X are different, in general. For instance, in the case of a defaultable coupon bond, it is frequently postulated that in case of default the future coupons are lost, but a strictly positive fraction of the face value is usually received by the bondholder.
Corollary 2: For any \mathcal{G}-measurable random variable Y we have

$$
\begin{equation*}
E_{p}\left(1_{\{\tau>t\}} Y \mid \mathcal{H}_{t}\right)=1_{\{\tau>t\}} e^{\Gamma(t)} E_{p}\left(1_{\{\tau>t\}} Y\right) \tag{2.8}
\end{equation*}
$$

Corollary 3: Let Y be \mathcal{H}_{∞}-measurable, so that $Y=h(\tau)$ for some function $h: R_{+} \rightarrow R$. If the hazard function Γ is continuous then

$$
\begin{equation*}
E_{p}\left(Y \mid \mathcal{H}_{t}\right)=1_{\{\tau \leq t\}} h(\tau)+1_{\{\tau>t\}} \int_{t}^{\infty} h(u) e^{\Gamma(t)-\Gamma(u)} d \Gamma(u) \tag{2.9}
\end{equation*}
$$

If, in addition, the random time τ admits the hazard rate function γ then we have

$$
\begin{equation*}
E_{p}\left(Y \mid \mathcal{H}_{t}\right)=1_{\{\tau \leq t\}} h(\tau)+1_{\{\tau>t\}} \int_{t}^{\infty} h(u) \gamma(u) e^{-\int_{t}^{u} \gamma(v) d v} d u \tag{2.10}
\end{equation*}
$$

In particular, for any $t \leq s$ we have:

$$
\begin{equation*}
p\left\{\tau>s \mid \mathcal{H}_{t}\right\}=1_{\{\tau>t\}} e^{-\int_{t}^{s} \gamma(v) d v} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
p\left\{t<\tau<s \mid \mathcal{H}_{t}\right\}=1_{\{\tau>t\}}\left(1-e^{-\int_{t}^{s} \gamma(v) d v}\right) \tag{2.12}
\end{equation*}
$$

Lemma 4: The process L, given by the formula

$$
\begin{aligned}
L t & :=1_{\{\tau>t\}} e^{\Gamma(t)} \\
& =\frac{1-H_{t}}{1-F(t)} \\
& =\left(1-H_{t}\right) e^{\Gamma(t)} \quad \forall t \in R_{+}
\end{aligned}
$$

is an h-Martingale.
c) Martingales Associated with Continuous Hazard Function

The h-adapted process of finite variation L given by last formula is an h-martingale (for Γ continuous or a discontinuous function).
We examine further important examples of martingales associated with the hazard function, with the assumption that the hazard function Γ of a random time τ is continuous. Also we assume that the cumulative distribution function F is absolutely continuous function, so that the random time τ admits the intensity function γ, our goal is to establish a martingale characterization of γ.
More specifically, we shall check directly that the process \hat{M}, defined as:

$$
\begin{aligned}
\hat{M}_{t} & =H_{t}-\int_{0}^{t} Y(u) 1_{\{\tau \leq t\}} d u \\
& =H_{t}-\int_{0}^{t \wedge \tau} \gamma(u) d u \\
& =H_{t}-\Gamma(t \wedge \tau),
\end{aligned}
$$

follows and h-martingale. To this end,

$$
E_{p}\left(H_{s}-H_{t} \mid \mathcal{H}_{t}\right)=1_{\{\tau>t\}} \frac{F(s)-F(t)}{1-F(t)}
$$

On the other hand, if we denote

$$
\begin{aligned}
Y & =\int_{t}^{s} \gamma(u) 1_{\{\tau \leq t\}} d u \\
& =\int_{t \wedge \tau}^{s \wedge \tau} \frac{f(u)}{1-F(u)} d u \\
& =\ln \frac{1-F(t \wedge \tau)}{1-F(\tau \wedge \tau)} \\
Y & =1_{\{\tau>t\}} Y .
\end{aligned}
$$

Let us set $A=\{\tau>t\}$. Using the Fubini's theorem, we obtain

$$
\begin{equation*}
E_{p}\left(Y \mid \mathcal{H}_{t}\right)=E_{p}\left(1_{A} Y \mid \mathcal{H}_{t}\right)=1_{A} \frac{E_{p}(Y)}{p A} \tag{2.13}
\end{equation*}
$$

This shows that the process \hat{M} follows an h-Martingale.

d) Martingale Hazard Function

Lemma 5: Assume that F (and this also the Hazard function Γ) is continuous function. Then the process

$$
\begin{equation*}
M_{t}=H_{t}-\Gamma(t \wedge \tau) \tag{2.14}
\end{equation*}
$$

is h-Martingale.
In view of the Martingale in Lemma 5, the following definition is natural.
Definition 3: A function $\Lambda: R_{+} \rightarrow R$ is called a martingale hazard function of a random time τ with respect to the filtration if and only if the process

$$
H_{t}-\wedge(t \wedge \tau) \text { is an } h \text {-martingale. }
$$

Remarks: Since the bounded, increasing process H is constant after time τ its compensation is constant after τ as well. This explains why the function \wedge has to be evaluated at time $t \wedge \tau$, rather than at time $t . H$ is thus a bounded h-submartingale.
It happen that the martingale hazard function can be found explicitly. In fact, we have the following.
Proposition 6: The unique Martingale hazard function of τ with respect to the filtration h is the right-continuous increasing function \wedge given by the formula

$$
\begin{align*}
\bigwedge(t) & =\int_{[0, t]} \frac{d F(u)}{1-F(u-)} \tag{2.15}\\
& =\int_{(0, t]} \frac{d p\{\tau \leq u\}}{1-p\{\tau>u\}} \tag{2.16}
\end{align*}
$$

Observe that the martingale hazard function \wedge is continuous if and only if F is continuous. In this case, we have

$$
\begin{equation*}
\wedge(t)=-\ln (1-F(t)) \tag{2.17}
\end{equation*}
$$

We conclude that the Martingale hazard function \wedge coincides with the hazard function Γ if and only if F is a continuous function.
In general, we have

$$
\begin{equation*}
e^{-\Gamma(t)}=e^{-\wedge^{c}(t)} \prod_{0 \leq u \leq t}(1-\triangle \wedge(u)) \tag{2.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\wedge^{c}(t)=\wedge(t)-\sum_{0 \leq u \leq t} \triangle \wedge(u) \text { and } \triangle \wedge(u)=\wedge(u)-\wedge(u-) \tag{2.19}
\end{equation*}
$$

e) Default Table Bonds : Deterministic Intensity

In order to value a defaultable claim, we need, of course, to specify the unit in which we would like to express all prices. Formally, this is done through a choice of discount factor (a numeraire). For the sake of simplicity, we shall take the savings account

$$
\begin{equation*}
B_{t}=e^{\int_{0}^{t} \gamma_{r} d v} \quad \forall t \in\left[0, T^{*}\right] \tag{2.20}
\end{equation*}
$$

as the numraire, where r is the short term interest rate process.
We also postulate that some probability measure Q^{*} is a martingale measure relative to this nomeraire. This assumption means, in particular, that the price of any contingent claim Y which settles at time T is given as the conditional expectation.
In accordance with our assumption that the reference filtration is trivial, we also assume that:

- the default time τ admits the Q^{*}-intensity function
- the short-term interest rate $r(t)$ is a deterministic function of time.

In view of the latter assumption, the price at time t of a unit default-free zero-coupon bond of maturity T equals

$$
\begin{equation*}
B(t, T)=e^{-\int_{t}^{T} r(v) d v} \tag{2.21}
\end{equation*}
$$

In the market practice, the interest rate (more precisely, the yield curve) can be derived from the market price of the zero-coupon bond. In a similar way the hazard rate can be deduced from the prices of the corporate zero-coupon bonds, or from the market values of other actively traded credit derivatives.
In view of our earlier notation for defaultable claims adopted, for the corporate unit discount bond we have $C \equiv 0$ and $X=L=1$. And since the reference filtration is assumed trivial, we have that $G=h$.

f) Zero Recovery

Consider first a corporate zero-coupon bond with unit face value, the maturity date T, and zero recovery at default (that is, $\tilde{X}=0$ and $Z \equiv 0$). Finally, the bond can thus be identified with a claim of the form $1_{\{\tau>T\}}$ which settle at T. It is clear that a corporate bond with zero recovery becomes worthless as soon as default occurs. Its time t price is defined as

$$
D^{0}(t, T)=B_{t} E_{Q^{*}}\left(B_{T}^{-1} 1_{\{\tau>T\}} \mid \mathcal{H}_{t}\right)
$$

The price $D^{0}(t, T)$ can be represented as follows:

$$
\begin{equation*}
D^{0}(t, T)=1_{\{\tau>t\}} \tilde{D}^{0}(t, T) \tag{2.22}
\end{equation*}
$$

where $\tilde{D}^{0}(t, T)$ is the bond's pre-default value, and is given by the formula

$$
\begin{equation*}
\tilde{D}^{0}(t, T)=e^{-\int_{t}^{\tau}(r(v)+\gamma(v))} d v=B(t, T) e^{-\int_{t}^{\tau} \gamma(v) d v} \tag{2.23}
\end{equation*}
$$

f) Hazard Function

According to this convention, we have $\tilde{X}=0$ and the recovery process Z satisfy $Z_{t}=\delta$ for some constant recovery rate $\delta \in[0,1]$. This means that under FRPV the bondholder receives at time of default a fixed fraction of bond's par value.

Using Corollary 3, we check that the pre-default value $\tilde{D}^{\delta}(t, T)$ of a unit corporate zero-coupon bond with FRPV equals

$$
\begin{equation*}
\tilde{D}^{\delta}(t, T)=\delta \int_{t}^{T} e^{-\int_{t}^{u} \tilde{r}(v) d v} \gamma(u) d u+e^{-\int_{t}^{\tau} \tilde{\sigma}(v) d v} \tag{2.24}
\end{equation*}
$$

where $\tilde{r}=r+\gamma$ is the default risk-adjusted interest rate. Since the fraction of the par value is received at the time of default, in the case of full recovery, that is, for $\delta=$, we do not obtain the equality $\tilde{D}^{\delta}(t, T)=B(t, T)$ but rather the inequality $\tilde{D}^{\delta}(t, T)>B(t, T)$ (at least when the interest rate is strictly positive, so that $B(t, T)<1$ for $t<T$.

g) Fractional Recovery of Treasury Value (FRTV)

Assume now that $\tilde{X}=0$ and that the recovery process equal $Z=\delta B(t, T)$. This means that the recovery payoff at the time of default τ represent a fraction of the price of the (equivalent) Treasury bond. The price of a corporate bond which is subject to this recovery scheme equals

$$
S_{t}=B(t, T)\left(\delta Q^{*}\left\{t<\tau \leq T \mid \mathcal{H}_{t}\right\}+Q^{*}\left\{\tau>T \mid \mathcal{H}_{t}\right\}\right) .
$$

Let us denote by $\hat{D}^{\delta}(t, T)$ the pre-default value of a unit corporate bond subject to the FRTV scheme. Then

$$
\hat{D}^{\delta}(t, T)=\int_{t}^{T} \delta B(t, T) e^{-\int_{t}^{v} \gamma(v) d v} \gamma(u) d u+e^{-\int_{t}^{T} \tilde{r}(v) d v}
$$

or equivalently,

$$
\begin{equation*}
\hat{D}^{\delta}(t, T)=B(t, T)\left(\delta\left(1-e^{-\int_{t}^{T} \gamma(v) d v}\right)+e^{-\int_{t}^{T} \gamma(v) d v}\right) \tag{2.25}
\end{equation*}
$$

In the case of full recovery, that is, for $\delta=1$, we obtain $\hat{D}^{\delta}(t, T)=B(t, T)$ as expected.
Remarks. Similar representations can be derived also in the case when the reference filtration F is not trivial, and under the assumption that market risk and credit risk are independent that is:

- the default time admits the F-intensity process γ,
- the interest rate process r is independent of the filtration F.

iiI. Hazard Processes

In the previous section, it was assumed that the reference filtration F carries no information. However, for practical purposes it is important to study the situation where the reference filtration is not trivial. This section presents some results to this effect.
We assume that a martingale measure Q is given, and examine the valuation of defaultable contingent claims under this probability measure. Note that the defaultable market is incomplete if there are no defaultable assets traded on the market that are sensitive to the same default risk as the defaultable contingent claim we wish to price. Thus, the martingale measure may not be unique.

a) Hazard Process of a Random Time

Let $\tau: \Omega \rightarrow R_{+}$be a finite, non-negative random variable on a probability space (Ω, \mathcal{G}, p). Assume $\mathcal{G}=\mathcal{F}_{t} V \mathcal{H}_{t}$ for some reference filtration F, so that $G=F V h$.

We start by extending some definitions and results to the present framework. We denote $F_{t}=p\left\{\tau \leq t \mid \mathcal{F}_{t}\right\}$, so that $G_{t}=1-F_{t}=p\left\{\tau>t \mid \mathcal{F}_{t}\right\}$ is the survival process with respect to F. F is a bonded non-negative, F-submartingale. As a submartingale, this process admits a Doob-Meter decomposition as $F_{t}=Z_{t}+A_{t}$ where A is an F-predictable increasing process. Assume, in addition, that $F_{t}<1$ for every $t \in R_{+}$.

Definition 4: The F-hazard process Γ of a random time τ is defined through the equality $1-F_{t}=e^{-\Gamma_{t}}$, that is, $\Gamma_{t}=\ln G_{t}$.
Notice that the existence of Γ implies that τ is not an F-stopping time. If the event $\{\tau>t\}$ belongs to the σ-field \mathcal{F}_{t} for some $t>0$ then $p\left\{\tau>t \mid \mathcal{F}_{t}\right\}=1_{\{\tau>t\}}>0$ (p-almost surely) and this $\tau=\infty$.
If the hazard process is absolutely continuous, so that $\Gamma_{t}=\int_{0}^{t} \gamma_{u} d u$, for some process γ, then γ is called the F-intensity of τ. Thus the case only if the process Γ is increasing and thus γ is always non-negative. Note that if the reference filtration F is trivial, then the hazard process Γ is the same as the hazard function $\Gamma(\cdot)$. In this case, if T is absolutely continuous, then we have $\gamma_{t}=\gamma(t)$.

b) Terminal Payoff

The valuation of the terminal payoff $X^{d}(T)$ is based on the following generalization of Lemma 1.

The question is how to compute $F_{p}\left(1_{\{\tau>s\}} Y \mid \mathcal{G}_{t}\right)$ for and \mathcal{F}_{s}-measurable random variable Y ?
Lemma 7: For any \mathcal{G}-measurable (integrable) random variable Y an arbitrary $s \geq t$ we have

$$
\begin{equation*}
E_{p}\left(1_{\{\tau>s\}} Y \mid \mathcal{G}_{t}\right)=1_{\{\tau>t\}} \frac{E_{p}\left(1_{\{\tau>s\}} Y \mid \mathcal{F}_{t}\right)}{p\left\{\tau>t \mid \mathcal{F}_{t}\right\}} \tag{3.1}
\end{equation*}
$$

If, in addition, Y is \mathcal{F}_{s}-measurable then

$$
\begin{equation*}
E_{p}\left(1_{\{\tau>s\}} Y \mid \mathcal{G}_{t}\right)=1_{\{\tau>t\}} E_{p}\left(e^{\Gamma_{t}-\Gamma_{s}} Y \mid \mathcal{F}_{t}\right) \tag{3.2}
\end{equation*}
$$

Assume that Y is \mathcal{G}_{t}-measurable. Then there exists on \mathcal{F}_{t}-measurable random variable \tilde{Y} such that $1_{\{\tau>t\}} Y=1_{\{\tau>t\}} \tilde{Y}$.
The latter property can be extended to stochastic process: for any G-predictable process X there exists an F-predictable process \tilde{X} such that the equality

$$
\begin{equation*}
1_{\{\tau>t\}} X_{t}=1_{\{\tau>t\}} \tilde{X}_{t} \tag{3.3}
\end{equation*}
$$

is valid for every $t \in R_{+}$, that both processes coincides on the random interval $[0, t)$.

c) Recovery Process

The following extension of Corollary 3 appears to be useful in the valuation of the recovery payoff Z_{τ} (Note that the payoff occurs at time τ).
Lemma 8: Assume that the hazard process Γ is a continuous, increasing process, and let Z be a bonded, F-predictable process. Then for any $t \leq s$ we have:

$$
\begin{equation*}
E_{p}\left(Z_{\tau} 1_{\{t<\tau>s\}} \mid \mathcal{G}_{t}\right)=1_{\{\tau>t\}} E_{p}\left(\int_{t}^{s} Z_{u} e^{\Gamma_{t}-\Gamma_{u}} d \Gamma u \mid \mathcal{F}_{t}\right) \tag{3.4}
\end{equation*}
$$

d) Promised Dividends

To value the promised dividends (that are paid prior to τ, it is convenient to make use of the following result.

Lemma 9: Assume that the hazard process Γ is continuous. Let C be a bounded, F-predictable process of finite variation. Then for event $t \leq s$

$$
\begin{equation*}
E_{p}\left(\int_{(t, s)}\left(1-H_{u}\right) d C_{u} \mid \mathcal{G}_{t}\right)=1_{\{\tau>t\}} E_{p}\left(\int_{(t, s]} e^{\Gamma_{t}-\Gamma_{u}} d C_{u} \mid \mathcal{F}_{t}\right) \tag{3.5}
\end{equation*}
$$

e) Valuation of Defaultable Claims

We assume that τ is given on a filtered probability spaces $\left(\Omega, G, Q^{*}\right)$, where $G=F V h$ and $\left.Q^{*} \tau>t \mid \mathcal{F}_{t}\right\}>0$ for every $t \in R_{+}$so that the F-hazard process Γ of τ under Q^{*} is well define. A default time τ is thus a G-stopping time, but it is an F-stopping time.
The probability Q^{*} is assumed to be a martingale measure relative to saving account process B, which is given by (3) for some F-progressively measurable process r. In some sense, this probability, and thus also the F-hazard process Γ of τ under Q^{*}, are given by the market via calibration.
The ex-dividend price S_{t} of a defaultable claim $(X, C, \tilde{X}, Z, \tau)$ is given by definition 5 below,

Definition 5: For any date $t \in(0, T)$, the ex-dividend price of the defaultable claim (X, C, \tilde{X}, Z, τ) is given as

$$
\begin{equation*}
S_{t}=B_{t} E_{p^{*}}\left(\int_{(t, T]} B_{u}^{-1} d D u \mid \mathcal{F}_{t}\right) \tag{3.6}
\end{equation*}
$$

we always set $S_{T}=X^{d}(T)$. With p^{*} substituted with Q^{*} and F replaced by G. We postulate in particular, that the processes Z and C are F-predictable, and the random variable X and \tilde{X} are \mathcal{F}_{T}-measurable and \mathcal{G}_{T}-measurable, respectively. Using Lemmas 7, 8, 9 and the fact that the savings account process B is F-adapted, a convenient representation for the arbitrage price of a defaultable claim in terms of the F-hazard process Γ is derived.

Proposition 10: The value process of a defaultable claim (X, C, \tilde{X}, Z, T) admits the following representation for $t<T$

$$
\begin{aligned}
& S_{t}=1_{\{\tau>t\}} \mathcal{G}_{t}^{-} B_{t} E_{Q^{*}}\left(\int_{(t, T]} B_{u}^{-1}\left(\mathcal{G}_{u} d C_{u}-Z_{u} d \mathcal{G}_{u}\right) \mid \mathcal{F}_{t}\right) \\
& +1_{\{\tau>t\}} \mathcal{G}_{t}^{-1} B_{t} E_{Q^{*}}\left(\mathcal{G}_{T} B_{T}^{-1} X \mid \mathcal{F}_{t}\right)+B_{t} E_{Q^{*}}\left(B_{T}^{-1} 1_{\{\tau>T\}} \tilde{X} \mid \mathcal{G}_{t}\right)
\end{aligned}
$$

If the hazard process Γ is an increasing, continuous process, then

$$
\begin{aligned}
S_{t}= & 1_{\{\tau>t\}} B_{t} E_{Q^{*}}\left(\int_{(t, T]} B_{u}^{-1} e^{\Gamma_{t}-\Gamma_{u}}\left(d C_{u}+Z_{u} d \Gamma_{u}\right) \mid \mathcal{F}_{t}\right) \\
& +1_{\{\tau>t\}} B_{t} E_{Q^{*}}\left(B_{T}^{-1}-e^{\Gamma_{t}-\Gamma_{T}} X \mid \mathcal{F}_{t}\right)+B_{t} E_{Q^{*}}\left(B_{T}^{-1} 1_{\{\tau \leq T\}} \tilde{X} \mid \mathcal{G}_{t}\right)
\end{aligned}
$$

Corollary 11: Assume that the F-hazard process Γ is a continuous, increasing process. Then the value process of a defaultable contingent claim $(X, C, \tilde{X}, Z, \tau)$ coincides with the value process of a claim $(X, \hat{C}, \tilde{X}, 0, \tau)$, where we set $\hat{C}_{t}=C_{t}+\int_{0}^{t} Z_{u} d \Gamma_{u}$.

f) Defaultable Bonds : Stochastic Intensity

Consider a defaultable zero-coupon bond with the par (face) value L and maturity date T. First, we re-examine the following recovery schemes: the fractional recovery of par value and the fractional recovery of Treasury value. Subsequently, we shall deal with the fractional recovery of pre-default value, but in this section using the stochastic intensity instead of the deterministic intensity used earlier. We assume that τ has the E-intensity γ.

g) Functional Recovery of Par Value

Under this scheme, a fixed fraction of the face value of the bond is paid to the bondholders at the time of default. Formally, we deal here with a defaultable claim $(X, 0,0, Z, \tau)$, which settle at time T. With the promised payoff $X=L$, where L stands for the bond's face value, and with the recovery process $Z=\delta L$, where $\delta \in[0,1]$ is a constant. The value at time $t<T$ of the bond is given by the expression

$$
\begin{equation*}
S_{t}=L B_{t} E_{Q^{*}}\left(\delta B_{\tau}^{-1} 1_{\{t<\tau>T\}}+B_{T\{\tau>T\}}^{-1} \mid \mathcal{G}_{t}\right) \tag{3.7}
\end{equation*}
$$

If τ admits the F-intensity γ, the pre-default value of the bond equals

$$
\begin{equation*}
\tilde{D}^{\delta}(t, T)=L \tilde{B}_{t} E_{Q^{*}}\left(\delta \int_{t}^{T} \tilde{B}_{u}^{-1} \gamma_{u} d u+B_{T}^{-1} \mid \mathcal{F}_{t}\right) \tag{3.8}
\end{equation*}
$$

Remarks. The above setup is a special case of the fractional recovery of par value scheme with a general F-predictable recovery process $Z_{t}=\delta_{t}$, where the process δ_{t} satisfies $\delta_{t} \in[0,1]$, for every $t \in[0, T]$. A general version of formula (3.8) is given by

$$
\begin{equation*}
\tilde{D}^{\delta}(t, T)=L \tilde{B}_{t} E_{Q^{*}}\left(\int_{t}^{T} \tilde{B}_{u}^{-1} \delta_{u} \gamma_{u} d u+\tilde{B}_{T}^{-1} \mid \mathcal{F}_{t}\right) \tag{3.9}
\end{equation*}
$$

h) Fractional Recovery of Treasury Value

Here, in the case of default, the fixed fraction of the face value is paid to bondholders at maturity date T. A corporate zero-coupon bond is now represented by a defaultable claim ($X, 0,0, Z, \tau$) with the promised payoff $X=L$ and the recovery process $\left(Z_{t}=\delta L B U, T\right) . B(t, T)$ stands for the price at time t of unit zero-coupon Treasury bond with Maturity T. The corporate bond is now equivalent to a single contingent claim Y, which settle at time T and equals

$$
\begin{equation*}
Y=L\left(1_{\{\tau>T\}}+\delta 1_{\{\tau \leq T\}}\right) \tag{3.10}
\end{equation*}
$$

The price of this claim oat time $t<T$ equals

$$
\begin{equation*}
S_{t}=L B_{t} E_{Q^{*}}\left(B_{T}^{-1}\left(\delta 1_{\{\tau \leq T\}}+1_{\{\tau>T\}}\right) \mid \mathcal{G}_{t}\right) \tag{3.11}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
S_{t}=L B_{t} E_{Q^{*}}\left(\delta B_{T}^{-1} B(t, T) 1_{\{t<\tau \leq T\}}+\left(B_{T}^{-1} 1_{\{\tau>T\}} \mid \mathcal{G}_{t}\right)\right. \tag{3.12}
\end{equation*}
$$

The pre-default value $\hat{D}^{\delta}(t, T)$ of defaultable bond with the fractional recovery of Treasury value equals

$$
\begin{equation*}
\hat{D}^{\delta}(t, T)=L \tilde{B}_{t} E_{Q^{*}}\left(\delta \int_{t}^{T} \tilde{B}_{u}^{-1} B(u, T) \gamma_{u} d u+\tilde{B}_{T}^{-1} \mid \mathcal{F}_{t}\right) \tag{3.13}
\end{equation*}
$$

Again, the last formula is special case of the general situation where $Z_{t}=\delta_{t}$ with some predictable recovery ratio process $\delta_{t} \in[0,1)$.

i) Fractional Recovery of Pre-default value

Assume that δ_{t} is some predictable recovery ratio process $\delta_{t} \in[0,1)$ and let us set $X=L$. The pre-default value of the bond equals

$$
\begin{equation*}
D_{M}^{\delta}(t, T)=L E_{Q^{*}}\left(e^{-\int_{t}^{T}\left(r_{u}+\left(1-\delta_{t}\right) \gamma_{u}\right) d u} \mid \mathcal{F}_{t}\right) \tag{3.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{B}_{t}=\exp \left(\int_{0}^{t}\left(r_{u}+\left(1-\delta_{u}\right) \gamma_{u}\right) d u\right) \tag{3.15}
\end{equation*}
$$

j) Choice of a Recovery Scheme

A challenging practical problem is the calibration of statistical properties of both the recovery process δ and the intensity process γ. The empirical evidence strongly suggests that the amount recovered at default is best modelled by the recovery of par value scheme. However, we conclude that recovery concept that specifies the amount recovered as fraction of appropriately discounted par value, that is, the fractional recovery of treasury value, has broader empirical support.

IV. Conclusion

We conclude this section by giving few comments on the reduced-form approach to the modeling of credit risk. The advantages and disadvantages listed below are mainly relative to the alternative structural approach. It also worth noting that some of the disadvantages listed below disappear in the hybrid approach to credit risk modeling.

Advantages

- The specifications of the value-of-the firm process and the default-triggering barrier are not needed.
- The level of the credit risk is reflected in a single quantity: the risk-neutral default intensity.
- The random time of default is an unpredictable stopping time, and thus the default event comes as an almost total surprise.
- The valuation of defaultable claims is rather straightforward. It resembles the valuation of default-free contingent claims in term structure models, through well understood techniques.
- Credit spreads are much easier to quantify and manipulate than in structural models of credit risk. Consequently, the credit spreads are more realistic and risk premia are easier to handle.

Disadvantages

- Typically, current data regarding the level of the firm's assets and the firm's leverage are not taken into account.
- Specific features related to safety covenants and debt's seniority are not easy to handle.
- All (important) issues related to the capital structure of a firm are beyond the scope of this approach.
- Most practical approaches to Portfolio's credit risk are linked to the value-of-the-firm approach.

References Références Referencias

[1] M, Ammann Pricing Derivative Credit Risk, Springer- Verlag, New York, (1999).
[2] F. Black and J.C. Cox, Valuing Corporate Securities: Some Effects of Bond Indenture Provisions, Journal of Finance, Vol. 31, (1976), 351-367.
[3] F. Black and M. Scholes, The Pricing of Options and Coporate Liabilities Journal Of Political Economy, Vol. 81, (1973), 637-654.
[4] M. Crouly, D. Galev, R. Mark, Credit Risk Revisited, Risk-Credit Risk Supplement, March, 40-44, (1998).
[5] M. Davis and V. Lo , Infectious Default, Quantitative Finance 1, 382-386, (2001).
[6] C. Dellacherie, Capacities et Processus Stochastique, Springer- Verlag, Brelin Heidelberg New York, (1972).
[7] D. Duffie, and D. Lando , The Term Structure of Credit Spreads With Incomplete According Information, Econometrica Vol. 69, 633-664, (2001).
[8] D. Duffie and K. Singleton, Credit Risk Pricing and Risk Management for Financial Institutions, Princeton University Press, Princeton, (1999)
[9] R.J. Elliott and P.E. Kopp, Mathematics of Financial Market, Springer- Verlag, Brelin Heidelberg New York. (1999).
[10] R.J. Elliott, Stochastic Calculus and Applications, Springer- Verlag, Brelin Heidelberg New York, (1982).
[11] J. Hull and White A., Valuing Credit Default swaps II: Modelling Default Correlations, Journal of Derivatives, Vol. 8, 12-22, (1995).
[12] R.A. Jarrow and S.M. Turnbull , Pricing Derivatives on Financial Securities Subject to Credit Risk, The Journal of Finance, Vol. 1, No.1, (1995), 53-85.
[13] D.L. Koa , Estimating and Pricing Credit Risk; An Overview, Financial Analysis Journal , Vol. 56, No.4, (2000), 50-66.
[14] R.C. Merton , On The Pricing of Coporate Debt: The Risk structure of Interest Rates, Journal of Finance Vol. 29, (1974), 449-470.
[15] C.R. Nwozo and S.E. Fadugba, Some Numerical Methods for Options Valuation, Communications in Mathematical Finance, Vol.1, No. 1, (2012), 57-74.
[16] K. Ramaswamy and S. Sundaresan, The Valuation of Floating-Rate Instruments, Journal of Financial Economics, Vol.17, (1986), 251-272.
[17] S. Titman and W. Torous, Valuing Commercial Mortgages: An Empirical Investigation of the Contigent Claims Approach to Pricing Risky Debt, Journal of Finance, Vol.44, (1989), 345-373.
[18] L.A. Weiss, Bankrupty Resolution: Direct Costs and Violations of Priority of Claims, Journal of Financial Econmics, Vol.27, No. 1, (1999), 251-272.

This page is intentionally left blank

Global Journal of Science Frontier Research: F MATHEMATICS AND DECISION SCIENCES
Volume 14 Issue 1 Version 1.0 Year 2014
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

An Wonderful Summation Formula

By Salahuddin, M. P. Chaudhary \& Upendra Kumar Pandit

University of Delhi, India
Abstract- The main aim of the present paper is to develop a summation formula associated to recurrence relation and contiguous relation.

Keywords: gaussian hypergeometric function, contiguous function, recurrence relation, bailey summation theorem and legendre duplication formula.

GJSFR-F Classification : MSC 2010: 40A25

Strictly as per the compliance and regulations of :

© 2014. Salahuddin, M. P. Chaudhary \& Upendra Kumar Pandit. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

An Wonderful Summation Formula

Salahuddin ${ }^{\alpha}$, M. P. Chaudhary ${ }^{\circ}$ \& Upendra Kumar Pandit ${ }^{\rho}$

Abstract- The main aim of the present paper is to develop a summation formula associated to recurrence relation and contiguous relation.

Keywords: gaussian hypergeometric function, contiguous function, recurrence relation, bailey summation theorem and legendre duplication formula.

I. Introduction

Generalized Gaussian hypergeometric function of one variable is defined by

$$
{ }_{A} F_{B}\left[\begin{array}{cc}
a_{1}, a_{2}, \cdots, a_{A} ; & \\
b_{1}, b_{2}, \cdots, b_{B} ;
\end{array}\right]=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{A}\right)_{k} z^{k}}{\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \cdots\left(b_{B}\right)_{k} k!}
$$

or

$$
{ }_{A} F_{B}\left[\begin{array}{ccc}
\left(a_{A}\right) & ; & \tag{1}\\
\left(b_{B}\right) & ; & z
\end{array}\right] \equiv{ }_{A} F_{B}\left[\begin{array}{ccc}
\left(a_{j}\right)_{j=1}^{A} & ; & \\
\left(b_{j}\right)_{j=1}^{B} & ; & z
\end{array}\right]=\sum_{k=0}^{\infty} \frac{\left(\left(a_{A}\right)\right)_{k} z^{k}}{\left(\left(b_{B}\right)\right)_{k} k!}
$$

where the parameters $b_{1}, b_{2}, \cdots, b_{B}$ are neither zero nor negative integers and A, B are non-negative integers.

Contiguous Relation[E. D. p.51(10), Andrews p.363(9.16)] is defined as follows

$$
(a-b){ }_{2} F_{1}\left[\begin{array}{cc}
a, b ; & z \tag{2}\\
c ; &
\end{array}\right]=a_{2} F_{1}\left[\begin{array}{ccc}
a+1, & b ; & z \\
c & ; &
\end{array}\right]-b_{2} F_{1}\left[\begin{array}{cc}
a, b+1 ; & z \\
c & ;
\end{array}\right]
$$

Recurrence relation of gamma function is defined as follows

$$
\begin{equation*}
\Gamma(z+1)=z \Gamma(z) \tag{3}
\end{equation*}
$$

Legendre duplication formula[Bells \& Wong p.26(2.3.1)] is defined as follows

$$
\begin{equation*}
\sqrt{\pi} \Gamma(2 z)=2^{(2 z-1)} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right) \tag{4}
\end{equation*}
$$

[^7]\[

$$
\begin{align*}
\Gamma\left(\frac{1}{2}\right) & =\sqrt{\pi}=\frac{2^{(b-1)} \Gamma\left(\frac{b}{2}\right) \Gamma\left(\frac{b+1}{2}\right)}{\Gamma(b)} \tag{5}\\
& =\frac{2^{(a-1)} \Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{a+1}{2}\right)}{\Gamma(a)} \tag{6}
\end{align*}
$$
\]

Bailey summation theorem [Prud, p.491(7.3.7.8)]is defined as follows

iI. Main Result of Summation Formula

$$
\begin{aligned}
& { }_{2} F_{1}\left[\begin{array}{ccc}
a & , & -a-56
\end{array} \quad ; \frac{1}{2}\right] \\
& =\frac{\sqrt{\pi} \Gamma(c)}{2^{c+56}}\left[\frac{1}{\Gamma\left(\frac{c-a+1}{2}\right) \Gamma\left(\frac{c+a+56}{2}\right)}\{-392312867195120535999863402667183046656000000 a\right. \\
& +487667433435258712194707372030113676328960000 a^{2} \\
& -228095684410100725800504919763538436030464000 a^{3} \\
& +51845398391020438102873122501399352168243200 a^{4} \\
& -5849348254141838819888217025184181557852160 a^{5} \\
& +239139167257437895025431683734632206915072 a^{6} \\
& +10501030990169311014798995758581643165056 a^{7} \\
& -1069742972529123218285391002112425222976 a^{8} \\
& -5808531809104680379248555271709788320 a^{9} \\
& +1979605698314068283091072158593812080 a^{10}+8422448665047606387827839382051880 a^{11} \\
& -2166063483233160892282874093541420 a^{12}-25690510900754348108605662314070 a^{13} \\
& +1226314824642370048466069688135 a^{14}+28581751497347875498352983470 a^{15} \\
& -162386296383745240991235885 a^{16}-11464694637488712923391270 a^{17} \\
& -100263562465497518965605 a^{18}+1026471605036366238750 a^{19}+25583339037643321935 a^{20} \\
& +145491821083438830 a^{21}-641582290366875 a^{22}-12414432376710 a^{23}-56984964855 a^{24} \\
& -28493010 a^{25}+557193 a^{26}+1554 a^{27}+a^{28} \\
& +392312867195120546888732853085535207424000000 c \\
& \text {-1251001711652328258463632751538417141022720000ac } \\
& +1026610002675779137600800574986139556904960000 a^{2} c \\
& -367377641536189276599795466361415045926092800 a^{3} c
\end{aligned}
$$

$$
\begin{aligned}
& +65656123126843056616163877202171879267368960 a^{4} c \\
& -5578935137030005377935635220064268134924288 a^{5} c \\
& +105933342804759074946510217907654864007168 a^{6}{ }^{6} \\
& +14545242989752884059319278215823363552256 a^{7} c \\
& -650605125984558517950510150952441908480 a^{8} c \\
& -20714917356597714225418914795745901568 a^{9} c \\
& +1089470288611038232643319619119151296 a^{10} c \\
& +27314462671269787176089622238157824 a^{11} c \\
& -858068925473892163225850611812720 a^{12} c-27938933217754288188713123398208 a^{13} c \\
& +196770529341573722024838603636 a^{14} c+14859132261150439059281552764 a^{15} c \\
& +109175788062386723618879640 a^{16} c-2669892789586285568614088 a^{17} c \\
& -52364962784338584715764 a^{18} c-154802949695408867996 a^{19} c \\
& +4261124282447604000 a^{20} c+49060494855026512 a^{21} c+138137686555596 a^{22} c \\
& -874801822076 a^{23} c-7437011400 a^{24} c-17468360 a^{25} c-1932 a^{26} c+28 a^{27} c \\
& +763334278217069588642489937619090648596480000 c^{2} \\
& -1462251845136784053706018310741129875685376000 a c^{2} \\
& +906753002789798094480091969139579535674572800 a^{2} c^{2} \\
& -258110290456606498321136294992752157788733440 a^{3} c^{2} \\
& +36586999630223454211668789557473099419697152 a^{4} c^{2} \\
& -2262255290843978740472054822460589923299328 a^{5} c^{2} \\
& -8102088787721679204771384451769074689024 a^{6} c^{2} \\
& +6996111430663857294820081735379790938880 a^{7} c^{2} \\
& -121469255526419654861228765949296353792 a^{8} c^{2} \\
& -10860672658061798414318839774002926400 a^{9} c^{2} \\
& +175106044179165531616158380011022208 a^{10} c^{2} \\
& +11763544312113580055192580635832720 a^{11} c^{2} \\
& -55076297891418895883011233864416 a^{12} c^{2}-7788655955223768041752477949292 a^{13} c^{2} \\
& -56317908556295755290668334340 a^{14} c^{2}+2242765456779041747060915160 a^{15} c^{2} \\
& +41157688680870667904932440 a^{16} c^{2}-26448758117359274489364 a^{17} c^{2} \\
& -6790412301648933768668 a^{18} c^{2}-61523026875954415200 a^{19} c^{2}+34030606051675376 a^{20} c^{2} \\
& +3731523229878444 a^{21} c^{2}+22015454541444 a^{22} c^{2}+25189589880 a^{23} c^{2} \\
& -183670760 a^{24} c^{2}-606060 a^{25} c^{2}-420 a^{26} c^{2} \\
& +663737526871105715595391119524538938818560000 c^{3}
\end{aligned}
$$

$$
\begin{aligned}
& -114462332340023537402987136506548464465739776 a c^{5} \\
& +38323683831966644032294010457274993669570560 a^{2} c^{5} \\
& -5903027306715558724302699102206375302791168 a^{3} c^{5} \\
& +394802204967306028105148456034610650808320 a^{4} c^{5} \\
& -2244374770902281226073661498995547308032 a^{5} c^{5} \\
& -917087206014615447197368905667157360640 a^{6} c^{5} \\
& +20272644947033057701533907914264985600 a^{7} c^{5} \\
& +1114332539080623239512200978705408000 a^{8} c^{5} \\
& -21782701999463028875884649778184192 a^{9} c^{5} \\
& -961733921909139450088617936568320 a^{10} c^{5}+6671068365581504232962453756928 a^{11} c^{5} \\
& +492060069236356358930635322880 a^{12} c^{5}+2243760267758116628443406848 a^{13} c^{5} \\
& -104365329089781763824877056 a^{14} c^{5}-1390340454442574367276544 a^{15} c^{5} \\
& +2006828052869627919360 a^{16} c^{5}+149634711137895379968 a^{17} c^{5} \\
& +928064604696413184 a^{18} c^{5}-818435718324224 a^{19} c^{5}-28304431034880 a^{20} c^{5} \\
& -92729308672 a^{21} c^{5}-40674816 a^{22} c^{5}+139776 a^{23} c^{5} \\
& +32616711072265423848437137533275858955927552 c^{6} \\
& -25034158078374012088633501804095222382067712 a c^{6} \\
& +6993953220021563378411052424568691411124224 a^{2} c^{6} \\
& -877482373793402232306995232739867487109120 a^{3} c^{6} \\
& +42842906244115005133509420306113930985472 a^{4} c^{6} \\
& +582113915225919960209298976072175124480 a^{5} c^{6} \\
& -107113088847369152836886318061009715200 a^{6} c^{6} \\
& +492878743103117415308030774955171840 a^{7} c^{6} \\
& +122362429316264665864997773244661760 a^{8} c^{6} \\
& -283509741412953008952590365188096 a^{9} c^{6}-81559402462720064629340200150016 a^{10} c \\
& -435815299588535264963216171520 a^{11} c^{6}+26459846935690576793069787648 a^{12} c^{6}{ }_{6} \\
& +353013092194789963025177088 a^{13} c^{6}-2191975732564182545716736 a^{14} c^{6} \\
& -69633180713937371182080 a^{15} c^{6}-320473497224262114304 a^{16} c^{6} \\
& +2604830060186145792 a^{17} c^{6}+29961750806507520 a^{18} c^{6}+73209323066880 a^{19} c^{6} \\
& -185746136576 a^{20} c^{6}-967110144 a^{21} c^{6}-792064 a^{22} c^{6} \\
& +6539634056571971237554938363502642084184064 c^{7} \\
& -4232078777869641431363860050698192994435072 a c^{7} \\
& +988933434874909938975855290867808825507840 a^{2} c^{7} \\
& -100158880497513043185352960401644546162688 a^{3} c^{7}
\end{aligned}
$$

$$
\begin{aligned}
& +3283875747729570577847009525242186432512 a^{4} c^{7} \\
& +127935706111680468861253530142362042368 a^{5} c^{7} \\
& -8613922880809906238932432893551738880 a^{6} c^{7} \\
& -88731205543130682507555747700752384 a^{7} c^{7} \\
& +8578009585423751432121942411067392 a^{8} c^{7} \\
& +86870909046101527329589843861504 a^{9} c^{7} \\
& -4144104405420837201576473978880 a^{10} c^{7}-64880719283484930505648370688 a^{11} c^{7} \\
& +698413386236965388599154688 a^{12} c^{7}+19807095005324673347851264 a^{13} c^{7} \\
& +52901987306950064025600 a^{14} c^{7}-1745972935410360616960 a^{15} c^{7} \\
& -15764865330594631680 a^{16} c^{7}-8796245433710592 a^{17} c^{7}+416070275512320 a^{18} c^{7} \\
& +1654679403520 a^{19} c^{7}+1000716288 a^{20} c^{7}-2489344 a^{21} c^{7} \\
& +1034066598442586852704807062709897154002944 c^{8} \\
& -567325685054489551200216616172866460712960 a c^{8} \\
& +110790467041011359109770321282460232450048 a^{2} c^{8} \\
& -8924563149943868251181153026397019832320 a^{3} c^{8} \\
& +161758411316518283230778799212646629376 a^{4} c^{8} \\
& +14278686827282832928004522714356531200 a^{5} c^{8} \\
& -473436373472461674449568981466046464 a^{6} c^{8} \\
& -12910578475288422758422676109041664 a^{7} c^{8} \\
& +384830221970055078187335817875456 a^{8} c^{8} \\
& +9138063252610995249026786042880 a^{9} c^{8}-113795232173689976614404969984 a^{10} c^{8} \\
& -3761252006184609559017348096 a^{11} c^{8}-2721298053355269027813888 a^{12} c^{8} \\
& +603544106657058936145920 a^{13} c^{8}+4733682882262824821760 a^{14} c^{8} \\
& -15913474690533488640 a^{15} c^{8}-331544797703488512 a^{16} c^{8}-1076903171435520 a^{17} c^{8} \\
& +1698099786240 a^{18} c^{8}+12434273280 a^{19} c^{8}+11202048 a^{20} c^{8} \\
& +131781515232353782473329399419519578931200 c^{9} \\
& -61440962524630417607224968599265974681600 a c^{9} \\
& +9991536111828614112609762014408478818304 a^{2} c^{9} \\
& -625694453659783029061455749953160740864 a^{3} c^{9} \\
& +2586369453237258340495344613455298560 a^{4} c^{9} \\
& +1081254478288394365370416123150336000 a^{5} c^{9} \\
& -15881388116433718875532478991138816 a^{6} c^{9} \\
& -941097096485137807816974458060800 a^{7} c^{9}
\end{aligned}
$$

$$
\begin{aligned}
& +9211431747949657082702341816320 a^{8} c^{9}+498644068454649159678616780800 a^{9} c^{9} \\
& -118477836605530926917572608 a^{10} c^{9}-127037551356916687990204416 a^{11} c^{9} \\
& -904292546850269368197120 a^{12} c^{9}+9467428982039089684480 a^{13} c^{9} \\
& +136827209954842767360 a^{14} c^{9}+258812783887257600 a^{15} c^{9}-3262786466734080 a^{16} c^{9} \\
& -16272244285440 a^{17} c^{9}-12770334720 a^{18} c^{9}+24893440 a^{19} c^{9} \\
& +13754313964663530934135689946507079843840 c^{10} \\
& -5450204906005910501289151031748832788480 a c^{10} \\
& +733512263828437066811863080330678239232 a^{2} c^{10} \\
& -34466212025547302423765892440850432000 a^{3} c^{10} \\
& -351901884698906296340427209811165184 a^{4} c^{10} \\
& +59708922066603611051330076649095168 a^{5} c^{10} \\
& -106903359939654081772071186890752 a^{6} c^{10} \\
& -45236409219961734403539031080960 a^{7} c^{10}-63169199202381551073395048448 a^{8} c^{10} \\
& +17308584949751402921288902656 a^{9} c^{10}+126503258637608924141131776 a^{10} c^{10} \\
& -2523797666043678233763840 a^{11} c^{10}-33906896028633162309632 a^{12} c^{10} \\
& +16376761595542892544 a^{13} c^{10}+2051252519974834176 a^{14} c^{10}+8827281036288000 a^{15} c^{10} \\
& -7661065691136 a^{16} c^{10}-94500476928 a^{17} c^{10}-94595072 a^{18} c^{10} \\
& +1189926059961148925346590365990759956480 c^{11} \\
& -400055387271134785273182089253423677440 a c^{11} \\
& +44161378753915522140395727601816043520 a^{2} c^{11} \\
& -1468486613551526351794397842167037952 a^{3} c^{11} \\
& \text {-39520278393891499552737604534272000 } a^{4} c^{11} \\
& +2450569258751735649978335652544512 a^{5} c^{11}+22189942095434499500914885263360 a^{6} c^{11} \\
& -1510510482141460755163965259776 a^{7} c^{11}-15063937571615960558594359296 a^{8} c^{11} \\
& +384089144593482816116428800 a^{9} c^{11}+5585276375444152929484800 a^{10} c^{11} \\
& -21176383107857079877632 a^{11} c^{11}-671294079817176711168 a^{12} c^{11} \\
& -2272714835262283776 a^{13} c^{11}+14806579296337920 a^{14} c^{11}+97569485045760 a^{15} c^{11} \\
& +96590168064 a^{16} c^{11}-154791936 a^{17} c^{11}+86099613997350765341361038012637511680 c^{12} \\
& -24478441206460896505341616755698565120 a c^{12} \\
& +2189374948536707131253943929610960896 a^{2} c^{12} \\
& -46147082123482210211488220297822208 a^{3} c^{12} \\
& -2378990169215620093476790166487040 a^{4} c^{12}+73626742858321876669323104747520 a^{5} c^{12} \\
& +1506287927584203050584138383360 a^{6} c^{12}-34163036287061937417276162048 a^{7} c^{12}
\end{aligned}
$$

$-660736914495119116330131456 a^{8} c^{12}+4552042085400677980569600 a^{9} c^{12}$ $+132796323007276799197184 a^{10} c^{12}+271618177210354630656 a^{11} c^{12}$
$-7537101612075270144 a^{12} c^{12}-44034169751470080 a^{13} c^{12}+11716717608960 a^{14} c^{12}$ $+458184130560 a^{15} c^{12}+515973120 a^{16} c^{12}+5245003732303297349645810781074227200 c^{13}$ $-1254874113738873529126710066659983360 a c^{13}$ $+89457404273374357285771694655406080 a^{2} c^{13}$ $-907471133521427272196805059674112 a^{3} c^{13}-100861077605311499855305113600000 a^{4} c^{13}$ $+1502118326507537350376444395520 a^{5} c^{13}+57021896210644510464073531392 a^{6} c^{13}$ $-441512604965466524143058944 a^{7} c^{13}-17159681389760043604377600 a^{8} c^{13}$ $-11169981010897353441280 a^{9} c^{13}+1942465840752164732928 a^{10} c^{13}$
$+10471818548765392896 a^{11} c^{1} 3-39538910958059520 a^{12} c^{13}-377633264762880 a^{13} c^{13}$ $-466757222400 a^{14} c^{13}+635043840 a^{15} c^{13}+270240321279848872041083367975813120 c^{14}$ $-54061028745154475983568411641774080 a c^{14}$
$+3004188563750010651615904292405248 a^{2} c^{14}-324849457710843806679060971520 a^{3} c^{14}$ $-3215997483446879506628707614720 a^{4} c^{14}+14437661040139763269860065280 a^{5} c^{14}$ $+1478830138977840882649923584 a^{6} c^{14}+433769263434913687142400 a^{7} c^{14}$ $-294336439990920690401280 a^{8} c^{14}-1503347949025789870080 a^{9} c^{14}$ $+16633401668123885568 a^{10} c^{14}+140176435679723520 a^{11} c^{14}+44297483059200 a^{12} c^{14}$ $-1480287191040 a^{13} c^{14}-1905131520 a^{14} c^{14}+11809976415571102235849594964541440 c^{15}$ $-1959438728874570938038875188101120 a c^{15}+82294493554669794971603152404480 a^{2} c^{15}$
$+779980672019849572323682156544 a^{3} c^{15}-78532265864630137932950274048 a^{4} c^{15}$ $-251732193747404220296855552 a^{5} c^{15}+27346783862579935893258240 a^{6} c^{15}$ $+156558945985873382735872 a^{7} c^{15}-3289038236929655046144 a^{8} c^{15}$
$-28575946559247876096 a^{9} c^{15}+57359555014164480 a^{10} c^{15}+972041030467584 a^{11} c^{15}$ $+1504291848192 a^{12} c^{15}-1778122752 a^{13} c^{15}+438298023197794001180314923171840 c^{16}$ $-59707072922723281920648208711680 a c^{16}+1811353135962816696824956452864 a^{2} c^{16}$
$+35044047338238552221230301184 a^{3} c^{16}-1460994222545935837544316928 a^{4} c^{16}$
$-14067412278997075051806720 a^{5} c^{16}+354863943381061000167424 a^{6} c^{16}$ $+3655201649017038962688 a^{7} c^{16}-20868677359454453760 a^{8} c^{16}$
$-290422171574599680 a^{9} c^{16}-278187749081088 a^{10} c^{16}+3256631820288 a^{11} c^{16}$ $+4889837568 a^{12} c^{16}+13808331600798196307741324083200 c^{17}$
$-1525426226845017974770719784960 a c^{17}+31101789345617251073582432256 a^{2} c^{17}$ $+966090980870043920572088320 a^{3} c^{17}-20110589865115026849792000 a^{4} c^{17}$

$$
\begin{aligned}
& -322726982556838055116800 a^{5} c^{17}+2974452888522164797440 a^{6} c^{17} \\
& +47730767548483633152 a^{7} c^{17}-24204661445099520 a^{8} c^{17}-1678733011845120 a^{9} c^{17} \\
& -3303229095936 a^{10} c^{17}+3451650048 a^{11} c^{17}+368522197094120932451108782080 c^{18} \\
& -32514976126611109448735784960 a c^{18}+389840835813970117797085184 a^{2} c^{18} \\
& +19218527319692799120506880 a^{3} c^{18}-189265078515007183912960 a^{4} c^{18} \\
& -4753511049070388183040 a^{5} c^{18}+11289672379411464192 a^{6} c^{18}+389471730959646720 a^{7} c^{18} \\
& +689881295093760 a^{8} c^{18}-4895590318080 a^{9} c^{18}-8820883456 a^{10} c^{18} \\
& +8298976987639826931158876160 c^{19}-573843151569259724674170880 a c^{19} \\
& +2870256135015511275601920 a^{2} c^{19}+286700970257606099599360 a^{3} c^{19} \\
& -906748122098219089920 a^{4} c^{19}-47899657025353154560 a^{5} c^{19}-56216363068293120 a^{6} c^{19} \\
& +1920752015114240 a^{7} c^{19}+4958265016320 a^{8} c^{19}-4642570240 a^{9} c^{19} \\
& +156730597716016195656744960 c^{20}-8293215213820935866941440 a c^{20} \\
& -5707932129131975671808 a^{2} c^{20}+3212832078309428822016 a^{3} c^{20} \\
& +3599006567868923904 a^{4} c^{20}-325650378223779840 a^{5} c^{20}-971693665288192 a^{6} c^{20} \\
& +4947122847744 a^{7} c^{20}+11142168576 a^{8} c^{20}+2460273162242231579443200 c^{21} \\
& -96616847844240491806720 a c^{21}-499649740956833415168 a^{2} c^{21} \\
& +26507105515278958592 a^{3} c^{21}+100760158501601280 a^{4} c^{21}-1395530085171200 a^{5} c^{21} \\
& -5004425428992 a^{6} c^{21}+4244635648 a^{7} c^{21}+31699836811997463183360 c^{22} \\
& -887218686416765583360 a c^{22}-7552080931046031360 a^{2} c^{22}+154165446495436800 a^{3} c^{22} \\
& +809249433190400 a^{4} c^{22}-3212417433600 a^{5} c^{22}-9646899200 a^{6} c^{22} \\
& +329366255302732677120 c^{23}-6213301019669954560 a c^{23}-66709923613900800 a^{2} c^{23} \\
& +582598053068800 a^{3} c^{23}+3246391296000 a^{4} c^{23}-2516582400 a^{5} c^{23} \\
& +2690085528136581120 c^{24}-31530973082419200 a c^{24}-372112359424000 a^{2} c^{24} \\
& +1210476134400 a^{3} c^{24}+5452595200 a^{4} c^{24}+16620557067878400 c^{25}-106357885763584 a c^{25} \\
& -1222253740032 a^{2} c^{25}+872415232 a^{3} c^{25}+72989747970048 c^{26}-201125265408 a c^{26} \\
& \left.-1811939328 a^{2} c^{26}+202937204736 c^{27}-134217728 a c^{27}+268435456 c^{28}\right\}+ \\
& +\frac{1}{\Gamma\left(\frac{c-a}{2}\right) \Gamma\left(\frac{c+a+57}{2}\right)}\{2331996615713025747484096618742163701760000000 \\
& -4494215378479870212084288956837912091033600000 a \\
& +2925594749975710478126933229722426636697600000 a^{2} \\
& -890872898627476213907354999729485029900288000 a^{3} \\
& +136747307374579641086641969192979504826163200 a^{4} \\
& -9248756214103950450529226590657796818667520 a^{5} \\
& -36045315347565477419270779087525104096768 a^{6}
\end{aligned}
$$

$+35177566505563688059742275899912321806976 a^{7}$
$-705141707727191322309469426013889293376 a^{8}$
$-68273592522633607445777485108650666080 a^{9}$
$+1327289223712603498102611428826110000 a^{10}$ $+95724566559461892965072970907657560 a^{11}-632946297274746622624883141936220 a^{12}$ $-86097482545634324031847546623930 a^{13}-643150295706449418662129490345 a^{14}$ $+35909882429246859476568330450 a^{15}+744131689189306719315762915 a^{16}$
$+35177566505563688059742275899912321806976 a^{7}$
$\quad-705141707727191322309469426013889293376 a^{8}$

$-68273592522633607445777485108650666080 a^{9}$

$+1327289223712603498102611428826110000 a^{10}$
$+95724566559461892965072970907657560 a^{11}-632946297274746622624883141936220 a^{12}$
$-86097482545634324031847546623930 a^{13}-643150295706449418662129490345 a^{14}$
$+35909882429246859476568330450 a^{15}+744131689189306719315762915 a^{16}$
$-1330956170273675440843530 a^{17}-196810947199859253819285 a^{18}$
$-2141386072653679321470 a^{19}+3087418925245990335 a^{20}+246998073613060770 a^{21}$
$+1983467887703445 a^{22}+2960738614470 a^{23}-46096086855 a^{24}-295459710 a^{25}-607047 a^{26}$
$+14 a^{27}+a^{28}+6174856142720935516450529581255992174182400000 c$
-9088809833539409892221412671533981315891200000ac
$+4779454979179260319382476726943325156802560000 a^{2} c$
$-1189108332536667810970418216851914685336780800 a^{3} c$
$+145365245627598729159282611958955880707522560 a^{4} c$
$-6675648289408790121514879640125658383368192 a^{5} c$
$-235974828422579590090147545152098443767808 a^{6}{ }_{c}$
$+28807169334892598060813843430370602322944 a^{7} c$
$+64594079678926043752608009320773845760 a^{8} c$
$-53852198205989251776556518343804280832 a^{9} c$
$-117543814948903591932189034192068416 a^{10} c$
$+60392462759207196576085964848242176 a^{11} c+634499821496906119753702453609360 a^{12} c$
$-35323673021305784475410656227712 a^{13} c-777371097363936120989140061036 a^{14} c$
$+5212330457268002133262728836 a^{15} c+324186313827544771592393560 a^{16} c$
$+2709231781634073056029448 a^{17} c-30523586609594989197716 a^{18} c$
$-725014731847134876004 a^{19} c-3996625114512499040 a^{20} c+19303948250972528 a^{21} c$
$+354695589219244 a^{22} c+1598865962876 a^{23} c+666647800 a^{24} c-16165240 a^{25} c$
$-44268 a^{26} c-28 a^{27} c+6747067722037940482055274319266051501588480000 c^{2}$
$-8010138550220934439276700491147791531245568000 a c^{2}$
$+3477359172458365886568114922596112205689651200 a^{2} c^{2}$
$-711549975921178545479710966879881385468231680 a^{3} c^{2}$
$+68401970973520100877697078998441306138918912 a^{4} c^{2}$
$-1774757412279289819184158869217213283831808 a^{5} c^{2}$
$-166934335675994805089267698568445367041024 a^{6} c^{2}$

$$
\begin{aligned}
& +9190645790302454324513913948099176725760 a^{7} c^{2} \\
& +227992288821959757510481264377178047488 a^{8} c^{2} \\
& -15470069460959891162324961583437529280 a^{9} c^{2} \\
& -320221659913225878260519261079067392 a^{10} c^{2} \\
& +12775876201176905570459230313888880 a^{11} c^{2}
\end{aligned}
$$

$-205818159001495411025193126340 a^{14} c^{2}-1264001218862097239407534040 a^{15} c^{2}$ $+40180616754548528934569400 a^{16} c^{2}+718426075033728774056916 a^{17} c^{2}$ $+1619749060474002647332 a^{18} c^{2}-63680693346759517600 a^{19} c^{2}-682772670912979504 a^{20} c^{2}$ $-1696956264919916 a^{21} c^{2}+13644623272644 a^{22} c^{2}+106365484680 a^{23} c^{2}+236749240 a^{24} c^{2}$ $-5460 a^{25} c^{2}-420 a^{26} c^{2}+4251754209443084724444089127366725216501760000 c^{3}$ $-4184690517065654261581836197006401910656204800 a c^{3}$ $+1517338181355069492299034810495798548323368960 a^{2} c^{3}$
$-255529809800386761501696409342253028738072576 a^{3} c^{3}$
$+18847164644440061398854569879526899543015424 a^{4} c^{3}$
$-118438584110269539999816462019777572544512 a^{5} c^{3}$
$-54834767721886719080219512076339606394880 a^{6} c^{3}$
$+1389920437308489665672498835693225718272 a^{7} c^{3}$
$+85177461412927135594718740979724150272 a^{8} c^{3}$
$-1982455637217443971425520966138060672 a^{9} c^{3}$
$-97712451840297041011638074739026560 a^{10} c^{3}$
$+876737682093207913608858325481824 a^{11} c^{3}+70105142098226036870006931322912 a^{12} c^{3}$
$+338384082933622682804807258296 a^{13} c^{3}-22362118976493259089885304000 a^{14} c^{3}$ $-353247887684171542807479280 a^{15} c^{3}+883051209386310184878944 a^{16} c^{3}$ $+65708434478479817599432 a^{17} c^{3}+528554093967314272000 a^{18} c^{3}$ $-898723420976912960 a^{19} c^{3}-36805344722097952 a^{20} c^{3}-197508253526584 a^{21} c^{3}$ $-150896374720 a^{22} c^{3}+1939821520 a^{23} c^{3}+5751200 a^{24} c^{3}+3640 a^{25} c^{3}$ $+1780630532753598814650681638399853906100224000 c^{4}$ $-1475429664357373343398965380464176186733363200 a c^{4}$ $+449473363050257477010715068696229331337216000 a^{2} c^{4}$
$-62038005093458488914634893957039067080425472 a^{3} c^{4}$ $+3359979718808927117872814805675901145776128 a^{4} c^{4}$ $+51403562253141350661333809510694515589120 a^{5} c^{4}$

$$
\begin{gathered}
-10668432893081648273453274718222232547328 a^{6} c^{4} \\
+59446322949521134995375445692881285120 a^{7} c^{4} \\
+15888710268273572406977880122650297344 a^{8} c^{4} \\
-51410200604844707875330671393182720 a^{9} c^{4}
\end{gathered}
$$

$-14401262292658283796609600548832512 a^{10} c^{4}-82556008445651985731783730263808 a^{11} c^{4}$ $+6740345981690786878603026073024 a^{12} c^{4}+104989451533740522181053770240 a^{13} c^{4}$ $-904614468961873878081793920 a^{14} c^{4}-33681244965493267510734080 a^{15} c^{4}$
$-190005301681350910259648 a^{16} c^{4}+2354192452289044224000 a^{17} c^{4}$
$+36500576026453327360 a^{18} c^{4}+128899668647509760 a^{19} c^{4}-627419776471488 a^{20} c^{4}$ $-6240107793920 a^{21} c^{4}-15152009600 a^{22} c^{4}+349440 a^{23} c^{4}+29120 a^{24} c^{4}$
$+536111406985572174472330603114041647573237760 c^{5}$ $-377323842435631084395653090366523843368976384 a c^{5}$
$+96771949538749896798656000258948937925263360 a^{2} c^{5}$
$-10849531074878638131910879699672365879263232 a^{3} c^{5}$
$+396923139273589320451948357723775057264640 a^{4} c^{5}$
$+17500649307492985336645896877813256159232 a^{5} c^{5}$
$-1342913503427012602902038507668300431360 a^{6} c^{5}$
$-15388238111656574765404048391226572800 a^{7} c^{5}$
$+1778440107082372924712529003752448000 a^{8} c^{5}$ $+20146859117162372335682859790630912 a^{9} c^{5}$
$-1199096687931923894171153825832960 a^{10} c^{5}-21713471379159626596388216675328 a^{11} c^{5}$ $+305753540089014466157498549760 a^{12} c^{5}+10220043251721280197991726592 a^{13} c^{5}$ $+30355009511276802210034176 a^{14} c^{5}-1538586010712145845305856 a^{15} c^{5}$
$-18109354408937955271680 a^{16} c^{5}-8939008503340151808 a^{17} c^{5}+1076297314697020416 a^{18} c^{5}$
$+7012520037146624 a^{19} c^{5}+7807184985600 a^{20} c^{5}-68281461248 a^{21} c^{5}-220706304 a^{22} c^{5}$
$-139776 a^{23} c^{5}+121945244074670818650412019609467081784819712 c^{6}$
$-73262589227235648928947694717825943435476992 a c^{6}$
$+15804566062521407536243800589322586553319424 a^{2} c^{6}$
$-1418413680398920787753723297190036231946240 a^{3} c^{6}$
$+28847132612377292540622016932544310935552 a^{4} c^{6}$
$+2905172584429293571275607213323087052800 a^{5} c^{6}$
$-110942999852391914486916318472837939200 a^{6} c^{6}$
$-3446863471917812820141304100276101120 a^{7} c^{6}$

$$
\begin{gathered}
+122684696373634368265375076971479040 a^{8} c^{6} \\
+3357885912597709617108120607268864 a^{9} c^{6}
\end{gathered}
$$

$-52571581303890717505978219222016 a^{10} c^{6}-2032001315070727524982798179840 a^{11} c^{6}$ $-910841492102055143172920832 a^{12} c^{6}+522406917714578275555624448 a^{13} c^{6}$ $+5148028646105815625419264 a^{14} c^{6}-26281179919308666260480 a^{15} c^{6}$
$-717409565359998843904 a^{16} c^{6}-3412818064668300288 a^{17} c^{6}+10298713056952320 a^{18} c^{6}$ $+141442428807680 a^{19} c^{6}+377791558144 a^{20} c^{6}-8712704 a^{21} c^{6}-792064 a^{22} c^{6}$
$+21677694745527884923731939627122313759031296 c^{7}$
$-11141991388679496232448215897519884576227328 a c^{7}$ $+2014906068040370222241287016988102287687680 a^{2} c^{7}$
$-141541244766668262240692570613484735168512 a^{3} c^{7}$ $+655113057975761008561317448809594748928 a^{4} c^{7}$ $+317962365772947700503803518275892805632 a^{5} c^{7}$ $-5459949823342055974131567810995322880 a^{6} c^{7}$ $-371811172494493784286861359574859776 a^{7} c^{7}$ $+4454031873686157885257574835765248 a^{8} c^{7}$ $+278805141351023981004113152925696 a^{9} c^{7}-195823002150090217346269562880 a^{10} c^{7}$ $-108120881660622326358714289152 a^{11} c^{7}-936197269069175052165777408 a^{12} c^{7}$ $+13745719294358750690241536 a^{13} c^{7}+258120379067064455884800 a^{14} c^{7}$ $+633000448025560975360 a^{15} c^{7}-13756992447468441600 a^{16} c^{7}-112269592592222208 a^{17} c^{7}$ $-166807531038720 a^{18} c^{7}+1105505223680 a^{19} c^{7}+3928184832 a^{20} c^{7}+2489344 a^{21} c^{7}$ $+3085645314801821563085290107114444967378944 c^{8}$
$-1357159339491002745191232161282238929960960 a c^{8}$
$+204544879311585643959997006253850590445568 a^{2} c^{8}$
$-10861005738713172873772016929780120944640 a^{3} c^{8}$
$-127356121371146763492483031157514829824 a^{4} c^{8}$ $+24884738038818606405347574379596595200 a^{5} c^{8}$
$-57044568218205035001599491203948544 a^{6} c^{8}$
$-25942497720593458959973132578545664 a^{7} c^{8}-34960457679702566237655959506944 a^{8} c^{8}$
$+14495760219537830717409497594880 a^{9} c^{8}+126111171470049320851084478976 a^{10} c^{8}$
$-3372654774871565025846322176 a^{11} c^{8}-57285386281789238454655488 a^{12} c^{8}$ $+55828312581799455160320 a^{13} c^{8}+6801429694776171586560 a^{14} c^{8}$
$+43159709715533199360 a^{15} c^{8}-73778400853926912 a^{16} c^{8}-1636690793886720 a^{17} c^{8}$

$$
\begin{gathered}
-4857338703360 a^{18} c^{8}+112020480 a^{19} c^{8}+11202048 a^{20} c^{8} \\
+ \\
358068179501210876667318158252216995020800 c^{9} \\
-134580356797519087290842219896501593702400 a c^{9} \\
+ \\
16762765296044876985835286872610408759296 a^{2} c^{9} \\
-635005733288195121427248952428657115136 a^{3} c^{9} \\
-19744902318270198768248175430805749760 a^{4} c^{9} \\
\\
+1429343781739042009913294400939622400 a^{5} c^{9} \\
\\
+14948533030573546707871861133705216 a^{6} c^{9} \\
-1245259410523040258857633653555200 a^{7} c^{9}-14682727205598342234229996830720 a^{8} c^{9} \\
+480528822132067532549806080000 a^{9} c^{9}+8627007245901771477323409408 a^{10} c^{9} \\
-46105633586650859967043584 a^{11} c^{9}-1852924866183851979284480 a^{12} c^{9} \\
-8514852498772950753280 a^{13} c^{9}+91065723740540989440 a^{14} c^{9} \\
+978854002949222400 a^{15} c^{9}+1864917249761280 a^{16} c^{9}-9949509672960 a^{17} c^{9} \\
-39256954880 a^{18} c^{9}- \\
-109893440 a^{19} c^{9}+34335917493562665015210536243285133885440 c^{10} \\
-1693531245813320535547739844672225280 a c^{10} \\
+1119022732382276855739722073732947116032 a^{2} c^{10} \\
-21809264265121107891916800 a^{9} c^{11}+7288298958937187967959040 a^{10} c^{11}
\end{gathered}
$$

$+54148002687186732859392 a^{11} c^{11}-331266088992533839872 a^{12} c^{11}$
$-5124375210119553024 a^{13} c^{11}-12317896466104320 a^{14} c^{11}+54993447075840 a^{15} c^{11}$ $+243952091136 a^{16} c^{11}+154791936 a^{17} c^{11}+185140499283382510495837482244563271680 c^{12}$ $-42462751412804613593252409545295134720 a c^{12}$ $+2737717556147396966868694642139856896 a^{2} c^{12}$ $-382958488652245237868424753840128 a^{3} c^{12}$ $-4114371951811143842256228279255040 a^{4} c^{12}+23032698974773354068528629022720 a^{5} c^{12}$ $+2830875377781868487665156423680 a^{6} c^{12}+432399354640806381539622912 a^{7} c^{12}$ $-930237237504035869811859456 a^{8} c^{12}-6212999294638419653427200 a^{9} c^{12}$ $+102157129533371790884864 a^{10} c^{12}+1274061244752318038016 a^{11} c^{12}$ $+487403491656646656 a^{12} c^{12}-46907438306426880 a^{13} c^{12}-178986947543040 a^{14} c^{12}$ $+4127784960 a^{15} c^{12}+515973120 a^{16} c^{12}+10550121808633815040253533046911795200 c^{13}$ $-2027759245125889800731719903729418240 a c^{13}$ $+99994252422072432007746692191354880 a^{2} c^{13}$ $+1125416739412201260623137668595712 a^{3} c^{13}$ $-137919794686208509215080080998400 a^{4} c^{13}-523392914243543703207327825920 a^{5} c^{13}$ $+75017204828159893848982028288 a^{6} c^{13}+542900203384005434592722944 a^{7} c^{13}$
$-15949113270361056952320000 a^{8} c^{13}-192099302996448403128320 a^{9} c^{13}$ $+630116759003087634432 a^{10} c^{13}+16968173893845909504 a^{11} c^{13}+51433440842219520 a^{12} c^{13}$ $-197411633233920 a^{13} c^{13}-1000194048000 a^{14} c^{13}-635043840 a^{15} c^{13}$ $+510605945582906890876364145159045120 c^{14}$ $-81535776394043655789918975772590080 a c^{14}$
$+2945191264422880693932554608181248 a^{2} c^{14}+68729497802447818320186630471680 a^{3} c^{14}$ $-3554995491420568854935104389120 a^{4} c^{14}-42556882558838617561505464320 a^{5} c^{14}$ $+1422652255475328906955587584 a^{6} c^{14}+19400753180250184630272000 a^{7} c^{14}$ $-162771268840065429012480 a^{8} c^{14}-3339770715876676730880 a^{9} c^{14}$ $-4952346190430994432 a^{10} c^{14}+129897508128030720 a^{11} c^{14}+578267745484800 a^{12} c^{14}$ $-13335920640 a^{13} c^{14}-1905131520 a^{14} c^{14}+21036127858809169666859876493557760 c^{15}$ $-2761535556589354155846378224353280 a c^{15}+68176324615298990908120697405440 a^{2} c 15$ $+2600285925739135874811220197376 a^{3} c^{15}-68835067258159028211487342592 a^{4} c^{15}$
$-1416898599167952555420418048 a^{5} c^{15}+17991803458561756042362880 a^{6} c^{15}$ $-162771268840065429012480 a^{8} c^{14}-3339770715876676730880 a^{9} c^{14}$ $-36338078900392034304 a^{9} c^{15}-140757103890923520 a^{10} c^{15}+473786141638656 a^{11} c^{15}$

$$
\begin{gathered}
+2798765211648 a^{12} c^{15}+1778122752 a^{13} c^{15}+738277137091492136109419098275840 c^{16} \\
-78656544732609103582420092846080 a c^{16}+1166428853904227547944325218304 a^{2} c^{16} \\
+72066451805567001111294377984 a^{3} c^{16}-933205325496018634260348928 a^{4} c^{16} \\
-31094307679916138808606720 a^{5} c^{16}+110030848017882078183424 a^{6} c^{16} \\
+5484453476702600429568 a^{7} c^{16}+15684092656347709440 a^{8} c^{16}-238145407118868480 a^{9} c^{16} \\
\quad-1272193929904128 a^{10} c^{16}+29339025408 a^{11} c^{16}+4889837568 a^{12} c^{16} \\
+22055122810944561460713357312000 c^{17}-1877119145060476044784896573440 a c^{17} \\
+11986944389783698816477691904 a^{2} c^{17}+1530623727812465315419258880 a^{3} c^{17} \\
-6741609704699945051750400 a^{4} c^{17}-486676432393924824268800 a^{5} c^{17}
\end{gathered}
$$

$$
-797337079902716559360 a^{6} c^{17}+50133871785100443648 a^{7} c^{17}+255707865659473920 a^{8} c^{17}
$$ $-766415882158080 a^{9} c^{17}-5429445525504 a^{10} c^{17}-3451650048 a^{11} c^{17}$ $+559497074061745572396536954880 c^{18}-37301507597600211539968655360 a c^{18}$ $-29377931985381883396489216 a^{2} c^{18}+25181305173728125313351680 a^{3} c^{18}$ $+36383696911562902077440 a^{4} c^{18}-5475422004477292707840 a^{5} c^{18}$ $-26804932339527057408 a^{6} c^{18}+286397061511249920 a^{7} c^{18}+1912455742095360 a^{8} c^{18}$ $-44104417280 a^{9} c^{18}-8820883456 a^{10} c^{18}+12002097924273191991996579840 c^{19}$ $-611461510162537071635333120 a c^{19}-4174163641727209669918720 a^{2} c^{19}$ $+318678846269186103050240 a^{3} c^{19}+1790221423281774264320 a^{4} c^{19}$ $-42967223557687869440 a^{5} c^{19}-305289810757550080 a^{6} c^{19}+824678322012160 a^{7} c^{19}$ $+7298120417280 a^{8} c^{19}+4642570240 a^{9} c^{19}+216331788949312934730792960 c^{20}$ $-8156113728669814190243840 a c^{20}-96785909262609199136768 a^{2} c^{20}$ $+3033641456655983968256 a^{3} c^{20}+26335287904781205504 a^{4} c^{20}-217058803282083840 a^{5} c^{20}$ $-1932594283282432 a^{6} c^{20}+44568674304 a^{7} c^{20}+11142168576 a^{8} c^{20}$ $+3246659079508525999718400 c^{21}-86773650318458492026880 a c^{21}$

$-1393497009045930770432 a^{2} c^{21}+20788815106731409408 a^{3} c^{21}+230010502481182720 a^{4} c^{21}$ $-565491584204800 a^{5} c^{21}-6668322603008 a^{6} c^{21}-4244635648 a^{7} c^{21}$ $+40057059251965195714560 c^{22}-714448896223304744960 a c^{22}-14006605481099919360 a^{2} c^{22}$ $+93964840258764800 a^{3} c^{22}+1254936176230400 a^{4} c^{22}-28940697600 a^{5} c^{22}-9646899200 a^{6} c^{22}$
$+399107836372876001280 c^{23}-4335073295272509440 a c^{23}-99082776556339200 a^{2} c^{23}$ $+223513621299200 a^{3} c^{23}+3951034368000 a^{4} c^{23}+2516582400 a^{5} c^{23}+3129920210463621120 c^{24}$ $-17703518810931200 a c^{24}-472876318720000 a^{2} c^{24}+10905190400 a^{3} c^{24}+5452595200 a^{4} c^{24}$ $+18590400868515840 c^{25}-38742215622656 a c^{25}-1368819499008 a^{2} c^{25}-872415232 a^{3} c^{25}$ $+78570521100288 c^{26}-1811939328 a c^{26}-1811939328 a^{2} c^{26}+210453397504 c^{27}$

$$
\begin{equation*}
\left.\left.+134217728 a c^{27}+268435456 c^{28}\right\}\right] \tag{8}
\end{equation*}
$$

Derivation of the result (8):
Substituting $b=-a-56, z=\frac{1}{2}$ in given result (2), we get

$$
\begin{gathered}
(2 a+56){ }_{2} F_{1}\left[\begin{array}{ccc}
a & -a-56 & ; \frac{1}{2} \\
c & ;
\end{array}\right] \\
=a_{2} F_{1}\left[\begin{array}{ccc}
a+1 \\
c & ,-a-56 & ; \frac{1}{2}
\end{array}\right]+(a+56){ }_{2} F_{1}\left[\begin{array}{ccc}
a, & -a-55 & ; \frac{1}{2} \\
c & ;
\end{array}\right]
\end{gathered}
$$

Now using the result of salahuddin et al [Salahuddin et al, p.76-90(8)], we can prove the main result.

References Références Referencias

1. Andrews, L.C.(1992) ; Special Function of mathematics for Engineers,second Edition, McGraw-Hill Co Inc., New York.
2. Arora, Asish, Singh, Rahul, Salahuddin. ; Development of a family of summation formulae of half argument using Gauss and Bailey theorems Journal of Rajasthan Academy of Physical Sciences., 7(2008), 335-342.
3. Bells, Richard, Wong, Roderick ; Special Functions, A Graduate Text. Cambridge Studies in Advanced Mathematics, 2010.
4. Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O.I.; Integrals and Series Vol. 3: More Special Functions. Nauka, Moscow, 1986. Translated from the Russian by G.G. Gould, Gordon and Breach Science Publishers, New York, Philadelphia, London, Paris, Montreux, Tokyo, Melbourne, 1990.
5. Rainville, E. D.; The contiguous function relations for ${ }_{p} F_{q}$ with applications to Bateman's $J_{n}^{u, v}$ and Rice's $H_{n}(\zeta, p, \nu)$, Bull. Amer. Math. Soc., 51(1945), 714-723.
6. Salahuddin, Chaudhary, M.P, Pandit, Upendra Kumar; A New Summation Formula Coupled With Contguous relation and Recurrence relation, Global Journal of Science Frontier Research, 13(2013),75- 91.

This page is intentionally left blank

Global Journal of Science Frontier Research: F
MATHEMATICS AND DECISION SCIENCES
Volume 14 Issue 1 Version 1.0 Year 2014
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Parallel Surfaces Satisfying the Properties of Ruled Surfaces in Minkowski 3-Space

By Yasin Ünlütürk \& Cumali Ekici
Kirklareli University \& Eskisehir Osmangazi University, Turkey

Abstract- In this study, some properties of timelike parallel surfaces have been investigated in Minkowski 3-space. The main motivation of this work is to study the conditions under which parallel surfaces of timelike ruled surfaces with timelike ruling become timelike ruled surfaces. Also some characterizations of ruled surfaces such as distribution parameter, striction curve and orthogonal trajectory have been given for timelike parallel ruled surfaces.

Keywords: Developable timelike surface, striction curve, orthogonal trajectory, timelike parallel surface, timelike parallel ruled surface with timelike ruling, timelike ruled surface with timelike ruling.

GJSFR-F Classification : MSC 2010: 53A05, 53B25, 53B30

Strictly as per the compliance and regulations of :

[^8]

$3 d$ virtual journal

Parallel Surfaces Satisfying the Properties of Ruled Surfaces in Minkowski 3-Space

Yasin Ünlütürk ${ }^{\alpha}$ \& Cumali Ekici ${ }^{\circ}$

Abstract-In this study, some properties of timelike parallel surfaces have been investigated in Minkowski 3-space. The main motivation of this work is to study the conditions under which parallel surfaces of timelike ruled surfaces with timelike ruling become timelike ruled surfaces. Also some characterizations of ruled surfaces such as distribution parameter, striction curve and orthogonal trajectory have been given for timelike parallel ruled surfaces.
Keywords: Developable timelike surface, striction curve, orthogonal trajectory, timelike parallel surface, timelike parallel ruled surface with timelike ruling, timelike ruled surface with timelike ruling.

I. Introduction

Parallel surfaces and ruled surfaces are some of the main topics in both the classical and the modern differential geometry. These surfaces have many applications especially in physics and engineering $[2,8,17,18,19]$. It is possible to see many interesting papers which study on these two fields in terms of differential geometry such as $[3,4,6,7,9,10,11,12,15,17,21,23,24]$.

If we mention briefly these studies: Craig studied to find the parallel of ellipsoid [4]. Çöken et al. studied parallel timelike ruled surfaces with timelike rulings in Dual space D_{1}^{3} [3]. Görgülü and Çöken gave the dupin indicatrices for parallel pseudo Euclidean hypersurfaces in semi Euclidean space R_{1}^{n} [9]. Eisenhart studied parallel surfaces within a chapter of his book [6]. Nizamoğlu investigated a parallel ruled surface as a one-parameter curve using E. Study theorem and obtained some geometric characterizations of such a surface [15]. Güneş studied the relations among curves under parallel map preserving the connection [11]. Park examined offsets of ruled surfaces in Euclidean space [17]. Küçük and Gürsoy researched Bertrand offsets of trajectory ruled surfaces in view of their integral invariants [12]. Tarakçı and Hacısalihoğlu dealt with parallel surfaces as surfaces at a constant distance from the edge of regression on a surface in the general sense, [21]. Ekici and Çöken gave the parallel timelike ruled surface with a timelike ruling and its geometric invariants in terms of the main surface in Dual space $D_{1}^{3}[7]$. Ünlütürk studied parallel ruled surfaces in Minkowski 3-space in detail [23, 24].

In this study, we have given some properties of timelike parallel surfaces in Minkowski 3-space. We have also studied the conditions under which parallel

[^9]surfaces of timelike ruled surfaces with timelike ruling become timelike ruled surfaces. Furthermore we obtained some characterizations of ruled surfaces such as distribution parameter, striction curve and orthogonal trajectory have been given for timelike parallel ruled surfaces.

II. Preliminaries

Let E_{1}^{3} be the three-dimensional Minkowski space, that is, the threedimensional real vector space E^{3} with the metric

$$
<d \mathbf{x}, d \mathbf{x}>=d x_{1}^{2}+d x_{2}^{2}-d x_{3}^{2}
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ denotes the canonical coordinates in E^{3}. A vector \mathbf{x} of E_{1}^{3} is called to be spacelike, timelike and lightlike, respectively, if it satisfies $<\mathbf{x}, \mathbf{x} \gg 0$ or $\mathbf{x}=\mathbf{0},<\mathbf{x}, \mathbf{x}><0,<\mathbf{x}, \mathbf{x}>=0$ and $\mathbf{x} \neq \mathbf{0}$. A timelike or null vector in E_{1}^{3} is said to be causal. The norm of $\mathbf{x} \in E_{1}^{3}$ is defined by $\|\mathbf{x}\|=\sqrt{|<\mathbf{x}, \mathbf{x}\rangle \mid}$, then the vector \mathbf{x} is called a spacelike or timelike unit vector if it satisfies $\langle\mathbf{x}, \mathbf{x}\rangle=1$ or $\langle\mathbf{x}, \mathbf{x}\rangle=-1$, respectively. Similarly, a regular curve in E_{1}^{3} can locally be spacelike, timelike or null (lightlike), if all of its velocity vectors are spacelike, timelike or null (lightlike), respectively [16]. For any two vectors $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right)$ of E_{1}^{3}, the inner product is the real number $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+x_{2} y_{2}-x_{3} y_{3}$ and the vector product is defined by $\mathbf{x} \times \mathbf{y}=\left(\left(x_{2} y_{3}-x_{3} y_{2}\right),\left(x_{3} y_{1}-x_{1} y_{3}\right),-\left(x_{1} y_{2}-x_{2} y_{1}\right)\right)$ [14].

A one-parameter family of lines $\{\alpha(u), X(u)\}$, the parameterized surface

$$
\begin{equation*}
\varphi(u, v)=\alpha(u)+v X(u), \quad u \in I, \quad v \in R \tag{1}
\end{equation*}
$$

is called the ruled surface generated by the family $\{\alpha(u), X(u)\}$ where $\alpha(u)$ is a point in E_{1}^{3} and a vector $X(u) \in E_{1}^{3}$. The normal vector of the surface is denoted by N. Let us take timelike ruled surface φ with a spacelike directrix and timelike ruling. So the system $\{T, X, N\}$ establishes an orthonormal frame such that $T=\alpha^{\prime}(u)$. Therefore

$$
\begin{equation*}
<T, T>=<X, X>=-1,<N, N>=1 \text { and }<D_{T} N, N>=0 \tag{2}
\end{equation*}
$$

Derivative equations of the frame $\{T, X, N\}$ are

$$
\begin{equation*}
D_{T} T=a X+b N, \quad D_{T} X=a T+c N, \quad D_{T} N=-b T+c X \tag{3}
\end{equation*}
$$

Also the cross products of these vectors are as follows:

$$
\begin{equation*}
T \wedge X=N, T \wedge N=X, X \wedge N=T \tag{4}
\end{equation*}
$$

The distribution parameter is expressed as

$$
\begin{equation*}
\lambda=\frac{\operatorname{det}\left(\alpha^{\prime}, X, X^{\prime}\right)}{\left|X^{\prime}\right|^{2}} \tag{5}
\end{equation*}
$$

where, as usual, $\left(\alpha^{\prime}, X, X^{\prime}\right)$ is a short for $\left\langle\alpha^{\prime} \wedge X, X^{\prime}\right\rangle[22]$.

Theorem 2.1. A surface in Minkowski 3-space is called a timelike surface if the induced metric on the surface is a Lorentzian metric, i.e., the normal vector on the surface is a spacelike vector [1].

The coefficients which belong to the parametric equation of the surface given in (1) are as follows:

$$
E=\left\langle X_{u}, X_{u}\right\rangle, \quad F=\left\langle X_{u}, X_{v}\right\rangle, \quad G=\left\langle X_{v}, X_{v}\right\rangle
$$

where the differentiable functions $E, F, G: U \rightarrow R$ are called the coefficients of the first fundamental form I. So the first fundamental form is

$$
I=E d u^{2}+2 F d u d v+G d v^{2}
$$

The following differentiable functions

$$
\begin{aligned}
l & =-\left\langle X_{u}, N_{u}\right\rangle=\left\langle N, X_{u u}\right\rangle \\
m & =-\left\langle X_{u}, N_{v}\right\rangle=-\left\langle X_{v}, N_{u}\right\rangle=\left\langle N, X_{u v}\right\rangle \\
n & =-\left\langle X_{v}, N_{v}\right\rangle=\left\langle N, X_{v v}\right\rangle
\end{aligned}
$$

are called the coefficients of the second fundamental form $I I$. So the second fundamental form is

$$
I I=l d u^{2}+2 m d u d v+n d v^{2}
$$

[14].
Theorem 2.2. Up to Lorentzian motions, a ruled surface is uniquely determined by the quantities

$$
\begin{equation*}
Q=\left\langle\alpha^{\prime}, X \wedge X^{\prime}\right\rangle, \quad J=\left\langle X, X^{\prime \prime} \wedge X^{\prime}\right\rangle, \quad F=\left\langle\alpha^{\prime}, X\right\rangle \tag{6}
\end{equation*}
$$

each of which is a function of u. Conversely, every choice of these three quantities uniquely determines a ruled surface [13].

Theorem 2.3. The Gauss K and mean H curvatures of a timelike ruled surface φ with timelike ruling in terms of the parameters Q, J, F, D in E_{1}^{3} are obtained as

$$
\begin{equation*}
K=-\frac{Q^{2}}{D^{4}} \quad \text { and } \quad H=\frac{1}{2 D^{3}}\left(-Q F-Q^{2} J-J v^{2}+v Q^{\prime}\right) \tag{7}
\end{equation*}
$$

where $D=\sqrt{-\varepsilon Q^{2}+\varepsilon v^{2}}$, respectively [5].
Theorem 2.4. The parameter curves are lines of curvature if and only if $F=m=0$, where the coefficients F and m belong, respectively, to the first and second fundamental forms in E_{1}^{3} [14].

Definition 2.5. Let M and M^{r} be two surfaces in E_{1}^{3}. The function $f: M \rightarrow M^{r}, \quad f(p)=p+r \mathbf{N}_{p}$ is said to be the parallelization function between M and M^{r} and furthermore M^{r} is said to be a parallel surface to M in E_{1}^{3} where r is a given positive real number and \mathbf{N} is the unit normal vector field on M [9].

Theorem 2.6. Let M be a surface and M^{r} be a parallel surface of M in E_{1}^{3}. Let $f: M \rightarrow M^{r}$ be the parallelization function. Then for $X \in \chi(M)$, we have the following relations:

1. $f_{*}(X)=X+r S(X)$
2. $S^{r}\left(f_{*}(X)\right)=S(X)$
3. f preserves principal directions of curvature, that is

$$
\begin{equation*}
S^{r}\left(f_{*}(X)\right)=\frac{k}{1+r k} f_{*}(X) \tag{8}
\end{equation*}
$$

where S^{r} is the shape operator on M^{r}, and k is a principal curvature of M at p in direction of X [9].

Definition 2.7. Let M be a hypersurface of \bar{M} - manifold and M^{r} be a parallel surface of M in E_{1}^{3}. If σ is a curve passing through p on M and T is the tangent vector field of σ on M, then $\sigma^{r}=f \circ \sigma$ is a curve passing through a point $f(p)$ on M^{r} and $f_{*}(T) \in T_{f(p)} M^{r}$ is a tangent of σ^{r} at $f(p)$. The connection D^{r} belongs to the parallel surface M^{r} of M and the vector \mathbf{N}^{r} is the unit normal vector of M^{r}, where $\left\langle\mathbf{N}^{r}, \mathbf{N}^{r}\right\rangle=\varepsilon= \pm 1$. Therefore the Gauss equation is as follows:

$$
\begin{equation*}
\bar{D}_{f_{*}(T)} f_{*}(T)=D_{f_{*}(T)}^{r} f_{*}(T)-\varepsilon\left\langle S^{r}\left(f_{*}(T)\right), f_{*}(T)\right\rangle \mathbf{N}^{r} \tag{9}
\end{equation*}
$$

[11, 16].
Theorem 2.8. Let $\varphi(u, v)$ be a surface in E_{1}^{3} with the normal vector N. Then the shape operator S of φ is given in terms of the basis $\left\{\varphi_{u}, \varphi_{v}\right\}$ by

$$
\begin{align*}
& -S\left(\varphi_{u}\right)=N_{u}=\frac{m F-l G}{E G-F^{2}} \varphi_{u}+\frac{l F-m E}{E G-F^{2}} \varphi_{v} \\
& -S\left(\varphi_{v}\right)=N_{v}=\frac{n F-m G}{E G-F^{2}} \varphi_{u}+\frac{m F-n E}{E G-F^{2}} \varphi_{v} \tag{10}
\end{align*}
$$

[20].

III. Timelike Parallel Surfaces

The representation of points are obtained on M^{r} by using the representations of points on M. Let φ be the position vector of a point P on M and φ^{r} be the position vector of a point $f(P)$ on the parallel surface M^{r}. Then $f(P)$ is at a constant distance r from P along the normal to the surface M. Therefore the parameterization for M^{r} is given by

$$
\begin{equation*}
\varphi^{r}(u, v)=\varphi(u, v)+r \mathbf{N}(u, v) \tag{11}
\end{equation*}
$$

where r is a constant scalar and \mathbf{N} is the unit normal vector field on M. In E_{1}^{3}, let the parallel surface of a timelike surface $\varphi(u, v)$ be as given in (11), is defined in E_{1}^{3} as where \mathbf{N} is the unit normal vector on the surface $\varphi(u, v)$ such that $\langle\mathbf{N}, \mathbf{N}\rangle=1$ and $r \in R$. Fundamental forms' coefficients of timelike parallel surfaces can be given relative to ones of timelike surface as follows:

$$
\begin{array}{ccc}
E^{r}=E-2 r l+r^{2}\left\langle\mathbf{N}_{u}, \mathbf{N}_{u}\right\rangle, & l^{r}=l-r\left\langle\mathbf{N}_{u}, \mathbf{N}_{u}\right\rangle \\
F^{r}=F-2 r m+r^{2}\left\langle\mathbf{N}_{u}, \mathbf{N}_{v}\right\rangle, & m^{r}=m-r\left\langle\mathbf{N}_{u}, \mathbf{N}_{v}\right\rangle \tag{12}\\
G^{r}=G-2 r n+r^{2}\left\langle\mathbf{N}_{v}, \mathbf{N}_{v}\right\rangle, & n^{r}=n-r\left\langle\mathbf{N}_{v}, \mathbf{N}_{v}\right\rangle,
\end{array}
$$

where E, F, G, l, m, n, are fundamental forms' coefficients of the surface φ, and $E^{r}, F^{r}, G^{r}, l^{r}, m^{r}, n^{r}$, are fundamental forms' coefficients of the parallel surface $\varphi^{r}[23]$.

To get explicit formulas for H^{r} and K^{r}, we work in a parallel surface M^{r}. Let $\varphi^{r}(u, v)$ be a timelike parallel surface with first and second fundamental forms

$$
E^{r} d u^{2}+2 F^{r} d u d v+G^{r} d v^{2} \quad \text { and } \quad l^{r} d u^{2}+2 m^{r} d u d v+n^{r} d v^{2}
$$

respectively. Define 2×2 matrices $\mathcal{F}_{I^{r}}$ and $\mathcal{F}_{I I^{r}}$ by

$$
\mathcal{F}_{I^{r}}=\left[\begin{array}{cc}
E^{r} & F^{r} \\
F^{r} & G^{r}
\end{array}\right], \quad \mathcal{F}_{I I^{r}}=\left[\begin{array}{cc}
e^{r} & f^{r} \\
f^{r} & g^{r}
\end{array}\right]
$$

also the matrix of S_{p}^{r}, with respect to the basis $\left\{\varphi_{u}^{r}, \varphi_{v}^{r}\right\}$ of $T_{p} M^{r}$, is

$$
\begin{equation*}
\mathcal{F}_{I^{r}}^{-1} \mathcal{F}_{I I^{r}} . \tag{13}
\end{equation*}
$$

Definition 3.1. Let M be a timelike surface and M^{r} be a parallel surface of M in E_{1}^{3}. Let \mathbf{N}^{r} and S^{r} be the unit normal vector field and the shape operator of M^{r}, respectively. The Gaussian and mean curvature functions are defined as $K^{r}: M^{r} \rightarrow R, K^{r}(f(P))=\operatorname{det} S_{f(P)}^{r} \quad$ and $H^{r}: M^{r} \rightarrow R, H^{r}(f(P))=\frac{1}{2} \operatorname{tr} S_{f(P)}^{r}$ where $P \in M, f(P) \in M^{r}$ and $\langle\mathbf{N}, \mathbf{N}\rangle=1$, respectively.

Theorem 3.2. Let M be a timelike surface and M^{r} be a parallel surface of M in E_{1}^{3}. Let \mathbf{N}^{r} and S^{r} be the unit normal vector field and the shape operator of M^{r}, respectively. The Gaussian K^{r} and mean H^{r} curvatures are given in terms of the coefficients of the fundamental forms I^{r} and $I I^{r}$ as follows:

$$
\begin{equation*}
K^{r}=\frac{l^{r} n^{r}-m^{r 2}}{E^{r} G^{r}-F^{r 2}} \quad \text { and } \quad H^{r}=\frac{l^{r} G^{r}-2 m^{r} F^{r}+n^{r} E^{r}}{2\left(E^{r} G^{r}-F^{r 2}\right)} \tag{14}
\end{equation*}
$$

respectively.
Proof. Since $S_{p}^{r}=\mathcal{F}_{I^{r}}^{-1} \mathcal{F}_{I I^{r}}$ for the matrices $\mathcal{F}_{I^{r}}$ and $\mathcal{F}_{I I^{r}}$, using the Definition 3.1 and the equation (13) we get

$$
K^{r}=\operatorname{det}\left(\mathcal{F}_{I^{r}}^{-1} \mathcal{F}_{I I^{r}}\right)=\frac{\operatorname{det} \mathcal{F}_{I I^{r}}}{\operatorname{det} \mathcal{F}_{I^{r}}}=\frac{l^{r} n^{r}-m^{r 2}}{E^{r} G^{r}-F^{r 2}}
$$

For the mean curvature H^{r}, first the matrix $\mathcal{F}_{I^{r}}^{-1} \mathcal{F}_{I I^{r}}$ is obtained as

$$
\begin{aligned}
\mathcal{F}_{I^{r}}^{-1} \mathcal{F}_{I I^{r}} & =\frac{1}{E^{r} G^{r}-F^{r 2}}\left[\begin{array}{cc}
G^{r} & -F^{r} \\
-F^{r} & E^{r}
\end{array}\right]\left[\begin{array}{cc}
l^{r} & m^{r} \\
m^{r} & n^{r}
\end{array}\right] \\
& =\frac{1}{E^{r} G^{r}-F^{r 2}}\left[\begin{array}{cc}
l^{r} G^{r}-m^{r} F^{r} & m^{r} G^{r}-n^{r} F^{r} \\
m^{r} E^{r}-l^{r} F^{r} & n^{r} E^{r}-m^{r} F^{r}
\end{array}\right] .
\end{aligned}
$$

From Definition 3.1, the mean curvature is found as

$$
H^{r}=\frac{1}{2} \operatorname{tr}\left(\mathcal{F}_{I^{r}}^{-1} \mathcal{F}_{I I^{r}}\right)=\frac{l^{r} G^{r}-2 m^{r} F^{r}+n^{r} E^{r}}{2\left(E^{r} G^{r}-F^{r 2}\right)}
$$

Lemma 3.3. Let M be a timelike surface and M^{r} be its parallel surface in E_{1}^{3}. The surface M is a timelike one if and only if the surface M^{r} is a timelike parallel surface.

Proof. (\Rightarrow) : If M is a timelike surface, then by Theorem 2.1, the unit normal vector \mathbf{N} of M has to be as follows

$$
\begin{equation*}
\left\langle\mathbf{N}_{P}, \mathbf{N}_{P}\right\rangle>0 . \tag{15}
\end{equation*}
$$

Between the unit normal vectors of the surfaces M and M^{r}, there is the following relation:

$$
\begin{equation*}
\mathbf{N}_{P}=\mathbf{N}_{f(P)}^{r} \tag{16}
\end{equation*}
$$

By substituting (16) into (15), we get

$$
\begin{equation*}
\left\langle\mathbf{N}_{f(P)}^{r}, \mathbf{N}_{f(P)}^{r}\right\rangle>0 \tag{17}
\end{equation*}
$$

The inequality (17) means that M^{r} is a timelike surface in accordance with Theorem 2.1.
(\Leftarrow) : If M^{r} is a timelike parallel surface, in accordance with Theorem 2.1, we get

$$
\begin{equation*}
\left\langle\mathbf{N}_{f(P)}^{r}, \mathbf{N}_{f(P)}^{r}\right\rangle>0 \tag{18}
\end{equation*}
$$

By substituting (16) into (18), we have

$$
\begin{equation*}
\left\langle\mathbf{N}_{P}, \mathbf{N}_{P}\right\rangle>0 . \tag{19}
\end{equation*}
$$

The inequality (19) means that M^{r} is a timelike surface in accordance with Theorem 2.1.

Theorem 3.4. Let M be a timelike surface and M^{r} be a parallel surface of M in E_{1}^{3}. Then we have

$$
\begin{equation*}
K^{r}=\frac{K}{1+2 r H+r^{2} K} \quad \text { and } \quad H^{r}=\frac{H+r K}{1+2 r H+r^{2} K} \tag{20}
\end{equation*}
$$

where Gaussian and mean curvatures of M and M^{r} be denoted by K, H and K^{r}, H^{r}, respectively [23].

Corollary 3.5. Let M be a timelike surface and M^{r} be a parallel surface of M in E_{1}^{3}. Then we have

$$
\begin{equation*}
K=\frac{K^{r}}{1-2 r H^{r}+r^{2} K^{r}} \quad \text { and } \quad H=\frac{H^{r}-r K^{r}}{1-2 r H^{r}+r^{2} K^{r}} \tag{21}
\end{equation*}
$$

where Gaussian and mean curvatures of M and M^{r} be denoted by K, H and K^{r}, H^{r}, respectively [23].

Theorem 3.6. Let M be a timelike surface and M^{r} be a its parallel surface in E_{1}^{3}. The curves on the timelike parallel surface M^{r} which correspond to the lines of curvature on the timelike surface M are also the lines of curvature.

Proof. If the lines of curvature on M are chosen as parameter curves, then in accordance with Theorem 2.4, we have

$$
\begin{equation*}
F=m=0 \tag{22}
\end{equation*}
$$

It suffices to see $F^{r}=m^{r}=0$ such that the curves on M^{r} which correspond to the lines of curvature on M are the lines of curvature. The parametric representation of M^{r} is as in (11). From Weingarten equations given in (10), by using the equation (22), we get

$$
\begin{equation*}
N_{u}=-\frac{l}{E} \varphi_{u} \quad \text { and } \quad N_{v}=-\frac{n}{G} \varphi_{v} \tag{23}
\end{equation*}
$$

If the values of F^{r} and m^{r} are used in the equations (22) and (23), then we have

$$
\begin{equation*}
F^{r}=F-2 r m+r^{2}\left\langle N_{u}, N_{v}\right\rangle=r^{2}\left\langle N_{u}, N_{v}\right\rangle=r^{2} \frac{l n}{E G}\left\langle\varphi_{u}, \varphi_{v}\right\rangle=0 \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
m^{r}=m-r\left\langle N_{u}, N_{v}\right\rangle=-r\left\langle N_{u}, N_{v}\right\rangle=-r \frac{l n}{E G} F=0 \tag{25}
\end{equation*}
$$

In (24) and (25), it is seen that the coefficients F^{r} and m^{r} vanish. So the curves on M^{r} are the lines of curvature.

IV. Timelike Parallel Ruled Surfaces

Theorem 4.1. Let M be a timelike ruled surface with a timelike ruling and M^{r} be a parallel surface of M in E_{1}^{3}. A parallel surface of a timelike developable ruled surface is again a timelike ruled surface.

Proof. Let the timelike ruled surface M with a timelike ruling be given as

$$
\begin{equation*}
\varphi(u, v)=\alpha(u)+v X(u), \quad\left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle=1, \quad\langle X, X\rangle=-1, \quad\left\langle X^{\prime}, X^{\prime}\right\rangle=1 \tag{26}
\end{equation*}
$$

We get its normal vector as follows:

$$
\begin{equation*}
N=\alpha^{\prime} \wedge X+v X^{\prime} \wedge X \tag{27}
\end{equation*}
$$

For the normal vector of a timelike developable ruled surface which is constant along its ruling and is independent from the parameter v, we infer that the expressions $\alpha^{\prime} \wedge X$ and $X^{\prime} \wedge X$ in (27) are linearly dependent, that is

$$
\alpha^{\prime} \wedge X=\lambda X^{\prime} \wedge X
$$

for $\lambda \in \mathbb{R}$. Also, from (26), we obtain the normal vector of the surface M as

$$
\begin{equation*}
N=(\lambda+v) X^{\prime} \wedge X \tag{28}
\end{equation*}
$$

In the end, the unit normal vector of the surface M is as follows

$$
\begin{equation*}
\mathbf{N}=X^{\prime} \wedge X \tag{29}
\end{equation*}
$$

We get the parallel surface of the ruled surface $\varphi(u, v)=\alpha(u)+v X(u)$ as

$$
\begin{equation*}
\varphi^{r}(u, v)=\alpha(u)+r X^{\prime}(u) \wedge X(u)+v X(u) \tag{30}
\end{equation*}
$$

We call this surface obtained in (30) as timelike parallel ruled surface. The ruling of timelike parallel ruled surface is

$$
\begin{equation*}
f_{*}(X)=f_{*}(T) \wedge N^{r}=(T-r b T) \wedge N=(1-r b) X \tag{31}
\end{equation*}
$$

And also we find

$$
\begin{equation*}
f \circ \alpha(u)=\alpha(u)+r N(u)=\alpha(u)+r X^{\prime}(u) \wedge X(u) . \tag{32}
\end{equation*}
$$

The coefficient n^{r} of the second fundamental form of the surface M^{r} is calculated as

$$
n^{r}=-\left\langle\varphi_{v}^{r}, \mathbf{N}_{v}\right\rangle=-\langle X, 0\rangle=0
$$

The drall of timelike parallel ruled surface is obtained as

$$
\begin{equation*}
P^{r}=<\frac{d f \circ \alpha}{d u}, f_{*}^{\prime}(X) \wedge f_{*}(X)> \tag{33}
\end{equation*}
$$

From (33), we find

$$
\begin{equation*}
P^{r}=\left\langle\alpha^{\prime}+r X^{\prime \prime} \wedge X,(1-r b)^{2} X^{\prime} \wedge X\right\rangle=0 \tag{34}
\end{equation*}
$$

Finally, timelike parallel ruled surface given in (30) is a developable ruled surface.

The coefficients of the first I^{r} and second $I I^{r}$ fundamental forms for timelike parallel ruled surface M^{r} parameterized in (30) are given by

$$
\begin{align*}
E^{r}= & \left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle+2 r\left\langle\alpha^{\prime}, X^{\prime \prime} \wedge X\right\rangle+2 v\left\langle\alpha^{\prime}, X^{\prime}\right\rangle+r^{2}\left\langle X^{\prime \prime} \wedge X, X^{\prime \prime} \wedge X\right\rangle \\
& +2 r v\left\langle X^{\prime}, X^{\prime \prime} \wedge X\right\rangle+v^{2}\left\langle X^{\prime}, X^{\prime}\right\rangle . \tag{35}
\end{align*}
$$

Since $\left\langle X^{\prime}, X^{\prime}\right\rangle=1$ and $\left\langle X^{\prime \prime}, X^{\prime}\right\rangle=0, X^{\prime \prime}$ lies in the plane spanned by the vectors X and $X^{\prime} \wedge X$. Therefore

$$
\begin{equation*}
X^{\prime \prime}=w X+y X^{\prime} \wedge X \tag{36}
\end{equation*}
$$

where $w, y \in \mathbb{R}$. By using (36), we have

$$
\begin{equation*}
X^{\prime \prime} \wedge X=\left(w X+y X^{\prime} \wedge X\right) \wedge X=\left(y X^{\prime} \wedge X\right) \wedge X=-y X^{\prime} \tag{37}
\end{equation*}
$$

Substituting (37) into (35), the coefficients E^{r}, F^{r} and G^{r} are found as

$$
\begin{aligned}
& E^{r}=1+(r y-v)^{2} \\
& F^{r}=\left\langle\varphi_{u}^{r}, \varphi_{v}^{r}\right\rangle=\left\langle\alpha^{\prime}+r X^{\prime \prime} \wedge X+v X^{\prime}, X\right\rangle=\left\langle\alpha^{\prime}, X\right\rangle \\
& G^{r}=\left\langle\varphi_{v}^{r}, \varphi_{v}^{r}\right\rangle=\langle X, X\rangle=-1 .
\end{aligned}
$$

Also, the normal vector of the surface is

$$
N^{r}=N=\varphi_{u} \wedge \varphi_{v}=\alpha^{\prime} \wedge X+v X^{\prime} \wedge X
$$

Additionally, the coefficients l^{r}, m^{r} and n^{r} of the second fundamental form are computed as follows:

$$
\begin{aligned}
& l^{r}=-\left\langle\varphi_{u}^{r}, N_{u}^{r}\right\rangle=-\left\langle\alpha^{\prime}, \alpha^{\prime \prime} \wedge X\right\rangle+\left\langle X^{\prime}, \alpha^{\prime \prime} \wedge X\right\rangle(r y-v)+v^{2} y-r v y^{2} \\
& m^{r}=\left\langle-\varphi_{u}^{r}, N_{v}^{r}\right\rangle=-\left\langle\alpha^{\prime}, X^{\prime} \wedge X\right\rangle \\
& n^{r}=-\left\langle\varphi_{v}^{r}, N_{v}^{r}\right\rangle=-\left\langle X, X^{\prime} \wedge X\right\rangle=0 .
\end{aligned}
$$

Corollary 4.2. Let M^{r} be a timelike parallel ruled surface. Then the causal characters of the directrix and the ruling of M^{r} are a spacelike curve and a timelike vector, respectively.

Proof. The ruling of timelike parallel ruled surface M^{r} given in (30) is timelike since $\langle X, X\rangle=-1$. The causal character of the directrix is seen by the following computation:

$$
\begin{equation*}
\left\langle\frac{d f \circ \alpha(u)}{d u}, \frac{d f \circ \alpha(u)}{d u}\right\rangle=\left\langle\alpha^{\prime}+r X^{\prime \prime} \wedge X, \alpha^{\prime}+r X^{\prime \prime} \wedge X\right\rangle . \tag{38}
\end{equation*}
$$

By using $\left\langle X^{\prime}, X^{\prime}\right\rangle=1$ and $\left\langle X^{\prime}, X^{\prime \prime}\right\rangle=0$, from (38), the following result is obtained that

$$
\begin{equation*}
\left\langle\frac{d f \circ \alpha(u)}{d u}, \frac{d f \circ \alpha(u)}{d u}\right\rangle=1+r^{2} y^{2}>0 \tag{39}
\end{equation*}
$$

which means that the causal character of the directrix is spacelike.
Theorem 4.3. Let M^{r} be a timelike parallel ruled surface with timelike ruling and $f_{*}(T), f_{*}(X)$ and N^{r} be the tangent vector field of the directrix, tangent vector field of the ruling and the normal vector field of the surface M^{r}, respectively. Hence we have

$$
\begin{equation*}
f_{*}(T) \wedge \mathbf{N}^{r}=f_{*}(X), \quad f_{*}(T) \wedge f_{*}(X)=(1-r b) \mathbf{N}^{r}, \quad f_{*}(X) \wedge \mathbf{N}^{r}=f_{*}(T) \tag{40}
\end{equation*}
$$

Proof. Frenet equations for timelike developable ruled surface M are obtained in (3) by taking $c=0$. And also the cross products of the unit vectors T, X, \mathbf{N} for timelike developable ruled surface M are as in (4). By means of these information, we have the following results:

$$
\begin{align*}
& f_{*}(T) \wedge \mathbf{N}^{r}=(T-r b T) \wedge \mathbf{N}=(1-r b) X=f_{*}(X) \\
& f_{*}(T) \wedge f_{*}(X)=(T-r b T) \wedge(X-r b X)=(1-r b)^{2} \mathbf{N}=(1-r b)^{2} \mathbf{N}^{r} \tag{41}\\
& f_{*}(X) \wedge \mathbf{N}^{r}=(1-r b) X \wedge \mathbf{N}=(1-r b) T=f_{*}(T)
\end{align*}
$$

Theorem 4.4. The vectors $f_{*}(T), f_{*}(X)$ and \mathbf{N}^{r} for timelike parallel ruled surface M^{r} are spacelike, timelike and spacelike vectors, respectively, while the unit vectors T, X, \mathbf{N} for timelike developable ruled surface M with timelike ruling are spacelike, timelike and spacelike vectors, respectively.

Proof. The unit normal vector \mathbf{N}^{r} of the timelike parallel ruled surface M^{r} is a spacelike vector because

$$
\left\langle\mathbf{N}^{r}, \mathbf{N}^{r}\right\rangle=\langle\mathbf{N}, \mathbf{N}\rangle=1
$$

The tangent vector field of the directrix is a spacelike vector since

$$
\left\langle f_{*}(T), f_{*}(T)\right\rangle=(1-r b)^{2}>0
$$

From (31), the vector $f_{*}(X)$ is a timelike vector because of

$$
\left\langle f_{*}(X), f_{*}(X)\right\rangle=\langle(1-r b) X,(1-r b) X\rangle=-(1-r b)^{2}=-1<0
$$

We get the position vector of the striction curve on the timelike parallel ruled surface M^{r} as

$$
\begin{equation*}
\overrightarrow{O \gamma}=\overrightarrow{O f \circ \alpha}+\overrightarrow{\theta f_{*}(X)} \tag{42}
\end{equation*}
$$

Using $f_{*}(X)=X^{r}$ in (42), we have the striction curve as

$$
\begin{equation*}
(u)=f \circ \alpha(u)+\theta X^{r}(u) \text { and } \theta=\theta(u) . \tag{43}
\end{equation*}
$$

By (43), we obtain the value θ as follows:

$$
\begin{equation*}
\theta=-\frac{\left\langle\frac{d f \circ \alpha}{d u}, \frac{d X^{r}}{d u}\right\rangle}{\left\langle\frac{d X^{r}}{d u}, \frac{d X^{r}}{d u}\right\rangle}=-\frac{\left\langle\alpha^{\prime}, X^{\prime}\right\rangle+r\left\langle X^{\prime \prime} \wedge X, X^{\prime}\right\rangle}{(1-r b)\left\langle X^{\prime}, X^{\prime}\right\rangle} \tag{44}
\end{equation*}
$$

Hence using (43) and (44), we find the striction curve as

$$
\begin{equation*}
(u)=\alpha(u)+r X^{\prime}(u) \wedge X(u)-\frac{\left\langle\alpha^{\prime}, X^{\prime}\right\rangle+r\left\langle X^{\prime \prime} \wedge X, X^{\prime}\right\rangle}{\left\langle X^{\prime}, X^{\prime}\right\rangle} X \tag{45}
\end{equation*}
$$

After some arrangements in (45), it becomes

$$
\begin{equation*}
(u)=\alpha(u)+r X^{\prime}(u) \wedge X(u)-\frac{(1-r y a)}{a} X \tag{46}
\end{equation*}
$$

Corollary 4.5. The striction curve of timelike parallel ruled surface with a timelike ruling is also the directrix provided that $\left\langle\alpha^{\prime}, X^{\prime}\right\rangle=0$ and $\left\langle X^{\prime \prime} \wedge X, X^{\prime}\right\rangle=0$.

Proof. Straightforward calculation by using (45).
Corollary 4.6. The striction curve of timelike parallel ruled surface with a timelike ruling is also the directrix provided that $1-$ rya $=0$.

Proof. Straightforward calculation by using (46).
Theorem 4.7. The striction curve of timelike parallel ruled surface M^{r} with a timelike ruling is a timelike curve.

Proof. The normal vector N^{r} of timelike parallel ruled surface M^{r} with a timelike ruling is

$$
N^{r}=N=\varphi_{u} \wedge \varphi_{v}=\alpha^{\prime} \wedge X+v X^{\prime} \wedge X
$$

For $v=0$, we have

$$
\begin{equation*}
N^{r}(u, 0)=\alpha^{\prime}(u) \wedge X(u) \tag{47}
\end{equation*}
$$

From (47), we get

$$
\begin{align*}
\left\langle N^{r}(u, 0), N^{r}(u, 0)\right\rangle & =\left\langle\alpha^{\prime}(u) \wedge X(u), \alpha^{\prime}(u) \wedge X(u)\right\rangle \tag{48}\\
& =F^{2}+1>0
\end{align*}
$$

The result (48) means that the striction curve is a timelike one because the vector, which is normal to it, is a spacelike vector.

Theorem 4.8. The striction curve of timelike parallel ruled surface M^{r} with a timelike ruling does not depend on the choice of the base curve $f \circ \alpha$.

Proof. Let $f \circ \alpha$ and ρ be two different directrices of timelike parallel ruled surface with a timelike ruling. Then timelike parallel ruled surface is given as

$$
\begin{equation*}
\varphi^{r}(u, v)=f \circ \alpha(u)+v X^{r}(u)=\rho(u)+s X^{r}(u) \tag{49}
\end{equation*}
$$

for some function $s=s(v)$. Assume that the curves $\gamma(u)$ and $\bar{\gamma}(u)$ are the striction curves of the surfaces in (49). Then as analogous to (45) from (49) we obtain

$$
\begin{equation*}
\gamma(u)-\bar{\gamma}(u)=(v-s) X^{r}-\frac{\left\langle(v-s) X^{r \prime}, X^{\prime}\right\rangle}{\left\langle X^{\prime}, X^{\prime}\right\rangle} X(u)=0 . \tag{50}
\end{equation*}
$$

The proof is completed by the result obtained in (50).
Theorem 4.9. Given timelike parallel ruled surface M^{r} which is parallel to timelike developable ruled surface M with a timelike ruling. There exists a unique orthogonal trajectory of M^{r} through each point of M. This orthogonal trajectory in terms of the magnitudes of timelike ruled surface M with timelike ruling is as follows:

$$
\beta(s)=\alpha(s)+r X^{\prime}(s) \wedge X(s)+g(s) X(s) .
$$

Here, the function $g(s)$ has been taken instead of $v(1-r b)$.
Proof. Let

$$
\begin{aligned}
& \varphi^{r}: I \times J \longrightarrow E_{1}^{3} \\
& \begin{array}{l}
I(u, v) \longrightarrow \varphi^{r}(u, v)
\end{array} \\
&=f \circ \alpha(u)+v X^{r}(u) \\
&=\alpha(u)+r X^{\prime}(u) \wedge X(u)+v(1-r b) X .
\end{aligned}
$$

An orthogonal trajectory of M^{r} is given by

$$
\begin{align*}
\beta: \widetilde{I} & \longrightarrow M^{r} \\
s & \longrightarrow \beta(s)=f \circ \alpha(s)+g(s) X^{r}(s) . \tag{51}
\end{align*}
$$

We may assume $\tilde{I} \subset I$. Since

$$
\begin{equation*}
\left\langle\beta^{\prime}(s), X^{r}(s)\right\rangle=\left\langle\alpha^{\prime}(s), X(s)\right\rangle-g^{\prime}(s)=0 \tag{52}
\end{equation*}
$$

we have

$$
g(s)=\int\left\langle\alpha^{\prime}(s), X(s)\right\rangle d s+h
$$

where h is a real constant. So $h=g\left(s_{0}\right)-F\left(s_{0}\right)$, where

$$
-\int\left\langle\alpha^{\prime}(s), X(s)\right\rangle d s=F(s)
$$

Therefore we find that the orthogonal trajectory of the surface M^{r} through the point P_{0} is unique. Thus, we have $\widetilde{I}=I$ since the orthogonal trajectory of M^{r} meets each one of the rulings of the surface M^{r}.

Corollary 4.10. Let M^{r} be a timelike parallel ruled surface with timelike ruling. The Gaussian and mean curvatures K^{r} and H^{r} of the surface M^{r} are as follows:

$$
\begin{equation*}
K^{r}=\frac{-Q^{2}}{D^{4}-r Q F D-r Q^{2} J D+r v Q^{\prime} D-r v^{2} J D-r^{2} Q^{2}} \tag{53}
\end{equation*}
$$

$$
H^{r}=\frac{-Q F D-Q^{2} J D-v^{2} J D+v Q^{\prime} D-2 r Q^{2}}{2 D^{4}-2 r Q F D-2 r Q^{2} J D+2 r v Q^{\prime} D-2 r v^{2} J D-2 r^{2} Q^{2}},
$$

respectively, in terms of the parameters Q, J, F, D.
Proof. Using (7) in (20), the values of Gauss curvature K^{r} and mean curvature H^{r} are obtained as in (53).

Theorem 4.11. Let $\varphi(u, v)$ be a timelike ruled surface in E_{1}^{3} with $F=m=0$. Then the parallel surface

$$
\varphi^{r}(u, v)=\varphi(u, v)+r N(u, v)
$$

is a timelike developable ruled surface while one of the parameters of parallel surface is constant and the other is variable.

Proof. Every surface $u=u_{0}$ (a constant) is a ruled one as it is the union of the straight lines given by $v=$ constant. This surface is developable provided that the curve $(u)=\varphi\left(u, v_{0}\right)$ is a line of curvature of M, i.e., if φ_{v} is a principal vector. This is true since the matrices \mathcal{F}_{I} and $\mathcal{F}_{I I}$ are diagonal. Similarly for the surfaces $v=$ constant. If $F=m=0$, then \mathcal{F}_{I} and $\mathcal{F}_{I I}$ are diagonal. So $\mathcal{F}_{I}^{-1} \mathcal{F}_{I I}$, the matrix of Weingarten map, depends on the basis $\left\{\varphi_{u}, \varphi_{v}\right\}$. It means that the principal vectors φ_{u} and φ_{v} are lines of curvature. Hence, the ruled surface M is a developable ruled surface. From Theorem 4.1., $\varphi^{r}(u, v)$ is a developable timelike ruled surface.

Theorem 4.12. Let M^{r} be a timelike parallel ruled surface with timelike ruling. The rulings of M^{r} are both an asymptotic and a geodesic line in M^{r}.

Proof. Let $f_{*}(X) \in \chi\left(M^{r}\right)$ be a tangent vector field for a ruling of M^{r} while $\bar{D} \in \chi\left(E_{1}^{3}\right), D \in \chi(M)$ and $D^{r} \in \chi\left(M^{r}\right)$. Each one of the rulings is geodesic since each one of the rulings is a straight line in E_{1}^{3}. Thus we have

$$
\begin{equation*}
\bar{D}_{f_{*}(X)} f_{*}(X)=0 . \tag{54}
\end{equation*}
$$

The Gauss equation for M^{r} is

$$
\begin{equation*}
\left.\bar{D}_{f_{*}(X)} f_{*}(X)=D_{f_{*}(X)}^{r} f_{*}(X)-S^{r}\left(f_{*}(X)\right), f_{*}(X)\right\rangle N^{r}, \tag{55}
\end{equation*}
$$

where \bar{D} is Levi-Civita connection on M^{r}. By using (54), the equation (55) becomes

$$
D_{f_{*}(X)}^{r} f_{*}(X)=\left\langle S^{r}\left(f_{*}(X)\right), f_{*}(X)\right\rangle N^{r} .
$$

Furthermore, since

$$
D_{f_{*}(X)}^{r} f_{*}(X) \in \chi\left(M^{r}\right) \text { and }\left\langle S^{r}\left(f_{*}(X)\right), f_{*}(X)\right\rangle N^{r} \in \chi^{\perp}\left(M^{r}\right),
$$

we get the following results:

$$
D_{f_{*}(X)}^{r} f_{*}(X)=0 \text { or }\left\langle S^{r}\left(f_{*}(X)\right), f_{*}(X)\right\rangle N^{r}=0
$$

Also, for the normal vector N^{r} of the surface M^{r}, we write

$$
\chi\left(E_{1}^{3}\right)=\chi\left(M^{r}\right) \oplus \chi^{\perp}\left(M^{r}\right) \text { and } \chi\left(M^{r}\right) \cap \chi^{\perp}\left(M^{r}\right)=\{0\}
$$

Then, we obtain

$$
D_{f_{*}(X)}^{r} f_{*}(X)=0 \text { and }\left\langle S^{r}\left(f_{*}(X)\right), f_{*}(X)\right\rangle=0
$$

The last equations completes the proof.
Theorem 4.13. Let M^{r} be a timelike parallel ruled surface. Then the Gaussian curvature $K^{r}(f(P))$ of M^{r} satisfies
at each point $f(P) \in M^{r}$.

$$
K^{r} \geq 0
$$

Proof. Let $f_{*}(X)$ be the timelike vector field of the rulings through the point $f(P) \in M^{r}$. We get an orthogonal base $\left\{f_{*}(X), f_{*}(Y)\right\}$ of $\chi\left(M^{r}\right)$ in which $f_{*}(Y)$ is a spacelike vector field. We obtain the matrix corresponding to the shape operator of M^{r} derived from N^{r} as follows:

$$
S^{r}=\left[\begin{array}{cc}
-\langle S(X), X\rangle & \left\langle S^{r}\left(f_{*}(X)\right), f_{*}(Y)\right\rangle \\
-\left\langle S^{r}\left(f_{*}(Y)\right), f_{*}(X)\right\rangle & \left\langle S(Y), f_{*}(Y)\right\rangle
\end{array}\right] .
$$

Using $\left\langle S^{r}\left(f_{*}(X)\right), f_{*}(X)\right\rangle=\langle S(X), X\rangle=0$ by means of Theorem 4.12 and Definition 3.1, we have the Gaussian curvature K^{r} as follows:

$$
\begin{aligned}
K^{r} & =-\operatorname{det} S^{r} \\
& =\left\langle S^{r}\left(f_{*}(Y)\right), f_{*}(X)\right\rangle^{2}=\langle S(Y), X\rangle^{2} \geq 0
\end{aligned}
$$

Example 4.14. A hyperbolic cylinder has the parameterization

$$
\begin{equation*}
\varphi(u, v)=(\cosh u, \sinh u, v) \tag{56}
\end{equation*}
$$

It is easily seen that its base curve is a spacelike curve and its ruling is a timelike vector. A hyperbolic cylinder is a developable ruled surface since its drall λ vanishes. The unit normal vector of hyperbolic cylinder is found as

$$
\mathbf{N}=\left(-\frac{5 \cosh u}{\sqrt{2 \cosh ^{2} u-1}}, \frac{5 \sinh u}{\sqrt{2 \cosh ^{2} u-1}}, 0\right)
$$

By using the expression $\varphi^{r}=\varphi+r \mathbf{N}$ for $r=5$, parallel surface of hyperbolic cylinder can be parameterized as

$$
\begin{equation*}
\varphi^{r}(u, v)=\left(-\frac{5 \cosh u}{\sqrt{2 \cosh ^{2} u-1}}+\cosh u, \frac{5 \sinh u}{\sqrt{2 \cosh ^{2} u-1}}+\sinh u, v\right) \tag{57}
\end{equation*}
$$

where the base curve C^{r} is

$$
C^{r}=\left(-\frac{5 \cosh u}{\sqrt{2 \cosh ^{2} u-1}}+\cosh u, \frac{5 \sinh u}{\sqrt{2 \cosh ^{2} u-1}}+\sinh u, 0\right)
$$

and the ruling X^{r} is $(0,0,1)$. The surface in (57) is a ruled surface because it can be written in the form $\varphi^{r}=C^{r}+v X^{r}$. Also, parallel surface of a hyperbolic cylinder is a developable ruled surface since its drall λ^{r} vanishes. It means that the surface given with the parametrization in (57) is a timelike parallel ruled surface with timelike ruling, so the red and blue surfaces in (Fig. 1) show timelike hyperbolic cylinder and its timelike parallel ruled surface, respectively.

Figure 1 : Hyperbolic cylinder and its parallel surface
Also by using the equation (46), the striction curve of timelike parallel ruled surface with timelike ruling is found as $(u)=(\cosh u, \sinh u,-1)$ by taking $r=-5, y=1$ and $a=0$. Its orthogonal trajectory is calculated as

$$
\beta(u)=(\cosh u, \sinh u, v(1+5 b))
$$

by means of Theorem 4.9. The Gaussian curvature K^{r} of timelike parallel ruled surface vanishes because the main surface is developable, therefore timelike parallel ruled surface is also developable from Theorem 4.1. Nevertheless, the vanishing of the Gaussian curvature can be seen by computating the coefficients of the first and second fundamental forms of the surface given in in (56) or by calculating the values of Q, J, F, D in (6) and then putting them into (53) in Corollary 4.10. For instance, the values of Q, J, F, D are as follows:

$$
Q=0, J=0, F=0, D=\sqrt{\varepsilon}|v|
$$

for the surface given in (56). As a result, the accuracy of Theorem 4.13 is seen.

Example 4.15. The helicoid of the 3 rd kind has the parametrization

$$
\begin{equation*}
\varphi(u, v)=(v \cosh u, v \sinh u, u) \tag{58}
\end{equation*}
$$

It is easily seen that its base curve is a spacelike curve and its ruling is a timelike vector. The helicoid of the 3 rd kind is not a developable ruled surface since its drall λ doesn't vanish. Hence, the parallel surface of the helicoid of the 3 rd kind can not become a ruled surface because of Theorem 4.1. The unit normal vector for the helicoid of the 3 rd kind is found as

$$
\overrightarrow{\mathbf{N}}=\left(\frac{5 \sinh u}{\sqrt{2 \cosh ^{2} u-1-v^{2}}},-\frac{5 \cosh u}{\sqrt{2 \cosh ^{2} u-1-v^{2}}},-\frac{v}{\sqrt{2 \cosh ^{2} u-1-v^{2}}}\right) .
$$

The helicoid of the 3 rd kind in Minkowski 3-space is seen in (Fig. 2):

Figure 2: The Helicoid of the 3rd kind
By using the expression $\varphi^{r}=\varphi+r \mathbf{N}$ for $r=-1$, parallel surface of the helicoid of the 3 rd kind can be parameterized as

$$
\begin{align*}
\varphi^{r}(u, v)= & \left(\frac{5 \sinh u}{\sqrt{2 \cosh ^{2} u-1-v^{2}}}+v \cosh u,-\frac{5 \cosh u}{\sqrt{2 \cosh ^{2} u-1-v^{2}}}+v \sinh u\right. \\
& \left.-\frac{v}{\sqrt{2 \cosh ^{2} u-1-v^{2}}}+u\right) \tag{59}
\end{align*}
$$

Again we can state that the surface in (58) is not a ruled surface because both it can not be written in the form $\varphi^{r}=C^{r}+v X^{r}$ and the main surface is, as stated previously, not developable one. The parallel surface of the helicoid of the 3 rd kind and the two surfaces together are seen in (Fig. 3) and (Fig. $4)$, respectively.

Figure 3 : The parallel surface of the helicoid of the 3rd kind

Figure 4 : The two surfaces together

V. Conclusion

In this paper, we have constructed timelike parallel ruled surfaces by using the elements of differential geometry in Minkowski 3-space. Furthermore, we have presented some characterizations of timelike parallel ruled surfaces whose original surfaces are timelike ruled surfaces with timelike ruling. Researchers can try to see the results we obtained in this work, in Euclidean and

Lorentzian n-spaces. The results have a number of applications in computeraided design and manufacturing of sculptured surfaces.

VI. Acknowledgement

The authors thank anonymous referees for helpful comments and suggestions on an earlier version of this paper.

References Références Referencias

[1] J. K. Beem, P. E. Ehrlich, K. E. Easley, Global Lorentzian Geometry, Marcel Dekker, New York, 1996.
[2] Y.J. Chen, B. Ravani, Offset surface generation and contouring in computer-aided design, J. Mech. Trans. and Auto. in Design: ASME Transactions 109 (3) (1987) 133-142.
[3] A. C. Çöken, Ü. Çiftçi, C. Ekici, On parallel timelike ruled surfaces with timelike rulings, Kuwait J. Sci. \& Eng. 35 (2008) 21-31.
[4] T. Craig, Note on parallel surfaces, J. Rei. Ange. Math. 94 (1883) 162-170.
[5] F. Dillen, W. Kühnel, Ruled Weingarten surfaces in Minkowski 3space, Manuscripta Math. 98 (1999) 307-320.
[6] L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Ginn and Company, Boston: New York, 1909.
[7] C. Ekici, A. C. Çöken, The integral invariants of parallel timelike ruled surfaces, J. Math. Anal. and Appl. 393 (2012) 97-107.
[8] R. T. Farouki, The approximation of non-degenerate offset surfaces, Comp. Aid. Geo. Des. 3 (1986) 15-43.
[9] A. Görgülü, A. C. Çöken, The dupin indicatrix for parallel pseudoEuclidean hypersurfaces in pseudo-Euclidean space in semi-Euclidean space R_{1}^{n}, J. Inst. Math. and Comp. Sci. (Math Series) 7 (3) (1994) 221-225.
[10] A. Gray, Modern Differential Geometry of Curves and Surfaces, CRC Press, Inc., Florida, 1993.
[11] R. Güneş, On the properties of curves under the parallel map preserving the connection, Erciyes Üniv. Fen Bil. D. 12 (1996) 50-59.
[12] A. Küçük, O. Gürsoy, On the invariants of Bertrand trajectory surface offsets, Appl. Math. and Comp. 151 (2004) 763-773.
[13] W. Kühnel, Differential Geometry, Curves-Surfaces-Manifolds, American Mathematical Society, 2002.
[14] R. Lopez, Differential geometry of curves and surfaces in LorentzMinkowski space, Mini-Course taught at the Instituto de Matematica e Estatistica (IME-USP), University of Sao Paulo, Brasil, 2008.
[15] Ş. Nizamoğlu, Surfaces réglées parallèles, Ege Üniv. Fen Fk. D. 9 (Ser. A) (1986) 37-48.
[16] B. O'Neill, Semi Riemannian Geometry with Applications to Relativity, Academic Press Inc., New York, 1983.
[17] K. R. Park, G. I. Kim, Offsets of ruled surfaces, J. Korean Comp. Graph. Soc. 4 (1998) 69-75.
[18] N.M. Patrikalakis, P.V. Prakash, Free-form plate modeling using offset surfaces, J. OMAE: ASME Trans. 110 (3) (1988) 287-294.
[19] B. Ravani, T. S. Ku, Bertrand offsets of ruled and developabe surfaces, Comp. Aid. Geo. Des. 23 (2) (1991) 145-152.
[20] W. Sodsiri, Ruled surfaces of Weingarten type in Minkowski 3-space, PhD. thesis, Katholieke Universiteit Leuven, Belgium, 2005.
[21] Ö. Tarakçı and H. H. Hacısalihoğlu, Surfaces at a constant distance from the edge of regression on a surface, Appl. Math. and Comp. 155 (2004) 81-93.
[22] A. Turgut and H. H. Hacısalihoğlu, Timelike ruled surfaces in the Minkowski 3-space, Com. Fac. Sci. Univ. Ank. Ser. A1 46 (1997) 83-91.
[23] Y. Ünlütürk, On Parallel Ruled Weingarten Surfaces in 3-dimensional Minkowski Space, (in Turkish), PhD thesis, Eskisehir Osmangazi University, Graduate School of Natural Sciences, Eskisehir, 2011.
[24] Y. Ünlütürk, On timelike parallel ruled surfaces with spacelike ruling, Konuralp J. Math., 1 (1) (2013), 24-33.

This page is intentionally left blank

Global Journal of Science Frontier Research: F MATHEMATICS AND DECISION SCIENCES
Volume 14 Issue 1 Version 1.0 Year 2014
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Construction of a Mixed Quadrature Rule using Three Different Well-Known Quadrature Rules

By Debasish Das, Rajani B. Dash \& parthasarathi Das

Ravenshaw University, India
Abstract-This paper deals with construction of a mixed quadrature rule of precision nine by using Gauss- Legendre 3-point rule, Lobatto 4-point rule and Clenshaw-Curtis 5-point rule, each having precision five. This mixed rule is successfully tested on different real definite integrals.
Keywords: Gauss-Legendre quadrature rule, Lobatto quadrature rule, Clenshaw-Curtis quadrature rule, mixed quadrature rule.

```
GJSFR-F Classification : MSC 2010: 65D30, 65D32
```

Strictly as per the compliance and regulations of :

© 2014. Debasish Das, Rajani B. Dash \& parthasarathi Das. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Construction of a Mixed Quadrature Rule using Three Different Well-Known Quadrature Rules

Debasish Das ${ }^{\alpha}$, Rajani B. Dash ${ }^{\circ}$ \& parthasarathi Das ${ }^{\rho}$

Abstract- This paper deals with construction of a mixed quadrature rule of precision nine by using GaussLegendre 3-point rule, Lobatto 4-point rule and Clenshaw-Curtis 5-point rule, each having precision five. This mixed rule is successfully tested on different real definite integrals.
Keywords: Gauss-Legendre quadrature rule, Lobatto quadrature rule, Clenshaw-Curtis quadrature rule, mixed quadrature rule.

I. Introduction

Real definite integral of the form

$$
\begin{equation*}
I(f)=\int_{a}^{b} f(x) d x \tag{1.1}
\end{equation*}
$$

can be approximated by using (i) Gauss-Legendre quadrature rule,(ii) Lobatto quadrature rule,(iii)Clenshaw-Curtis quadrature rule. Among these three quadrature rules, Lobatto and Clenshaw-Curtis quadrature rules are of closed type where as Gauss-Legendre quadrature rule[2] is of open type. An n-point Clenshaw-Curtis rule[4] is of degree of precision n, while an n-point Gauss-Legendre rule and an n-point Lobatto rule are of degree of precision $2 n$ - 1 and $2 n-3$ respectively. That means Gauss-Legendre rule needs less number of nodes to maintain a particular precision than Lobatto and Clenshaw-Curtis rule. Usually by increasing the value of ' n ' in these above three rules, we can optimize the accuracy of approximation of the real definite integral (1.1).The nodes of n-point Gauss-Legendre rule and n-point Lobatto rule are zeros of $P_{n}(x), n \geq 2$ and $P_{n-1}^{\prime}(x), n \geq 3$ respectively. The nodes of n-point Clenshaw-Curtis rule are obtained from the following equation.

$$
\begin{equation*}
x_{i}=\cos \frac{i \pi}{n} \quad i=0,1,2, \ldots n \tag{1.2}
\end{equation*}
$$

In the Gauss-Legendre and Lobatto rules, the computational complexity for the evaluation of the zeros of $P_{n}(x)$ and $P_{n-1}^{\prime}(x)$ increases for large n. Also the computational complexity may arise to find the nodes of Clenshaw-Curtis rule for large n. In these three rules, as we move from lower order rule to higher order rule, almost all the information obtained in computing the former gets discarded because the nodes and weights are different for different values of n.

[^10]Keeping these facts in view, we desire to construct a mixed quadrature rule[3] of precision nine which is a linear combination of Gauss-Legendre 3-point rule, Lobatto 4-point rule and Clenshaw-Curtis 5-point rule each having precision five. The construction of the mixed quadrature rule is out-lined in the following section.

II. Construction of the Mixed Quadrature Rule of Precision Nine

We choose the Gauss-Legendre 3-point rule $\left(R_{G L_{3}}(f)\right)$:

$$
\begin{align*}
I(f)=\int_{a}^{b} f(t) d \mathrm{t}=\int_{-1}^{1} f(x) d t & \approx R_{G l_{3}}(f) \\
& =\frac{1}{9}\left[5 f\left(-\sqrt{\frac{3}{5}}\right)+8 f(0)+5 f\left(\sqrt{\frac{3}{5}}\right)\right] \tag{2.1}
\end{align*}
$$

the Clenshaw-Curtis 5-point rule $\left(R_{C C_{5}}(f)\right)$:

$$
\begin{align*}
I(f)=\int_{a}^{b} f(t) d \mathrm{t} & =\int_{-1}^{1} f(x) d t \approx R_{c c_{5}}(f) \\
& =\frac{1}{15}\left[f(-1)+8 f\left(\frac{-1}{\sqrt{2}}\right)+12 f(0)+8 f\left(\frac{1}{\sqrt{2}}\right)+f(1)\right] \tag{2.2}
\end{align*}
$$

and the Lobatto 4-point rule $\left(R_{L_{4}}(f)\right)$:

$$
\begin{align*}
I(f)=\int_{a}^{b} f(t) d \mathrm{t} & =\int_{-1}^{1} f(x) d t \approx R_{L_{4}}(f) \\
& =\frac{1}{6}\left[f(-1)+5 f\left(\frac{-1}{\sqrt{5}}\right)+5 f\left(\frac{1}{\sqrt{5}}\right)+f(1)\right] \tag{2.3}
\end{align*}
$$

Each of these rules (2.1), (2.2) and (2.3) is of precision 5. Let $E_{G L_{3}}(f), E_{C C_{5}}(f)$ and $E_{L_{4}}(f)$ denote the errors in approximating the integral $I(f)$ by the rules (2.1), (2.2) and (2.3) respectively.Then

$$
\begin{align*}
& I(f)=R_{G L_{3}}(f)+E_{G L_{3}}(f) \tag{2.4}\\
& I(f)=R_{C C_{5}}(f)+E_{C C_{5}}(f) \tag{2.5}
\end{align*}
$$

and $\quad I(f)=R_{L_{4}}(f)+E_{L_{4}}(f)$
Assuming $f(x)$ to be sufficiently differentiable in $-1 \leq x \leq 1$, using Maclaurin's expansion of the function $f(x)$ we can express the errors associated with the quadrature rules under reference as

$$
\begin{aligned}
& E_{G L_{3}}(f)=\frac{8}{7!\times 25} f^{(v i)}(0)+\frac{88}{9!\times 125} f^{(v i i i)}(0)+\frac{656}{11!\times 625} f^{(x)}(0)+\ldots \\
& E_{C C_{5}}(f)=\frac{2}{7!\times 15} f^{(v i)}(0)+\frac{1}{9!\times 5} f^{(v i i i)}(0)+\frac{1}{11!\times 6} f^{(x)}(0)+\ldots
\end{aligned}
$$

and $\quad E_{L_{4}}(f)=\frac{-32}{7!\times 75} f^{(v i)}(0)-\frac{128}{9!\times 125} f^{(v i i i)}(0)-\frac{3136}{11!\times 1875} f^{(x)}(0)-\ldots$
Now multiplying the $\operatorname{Eqs}(2.4),(2.5)$ and (2.6)by60,-32 and 35respectively, then adding the results we obtain,

$$
\begin{align*}
& I(f)=\frac{1}{63}\left[60 R_{G L_{3}}(f)+35 R_{L_{4}}(f)-32 R_{C C_{5}}(f)\right]+ \\
& \quad \frac{1}{63}\left[60 E_{G L_{3}}(f)+35 E_{L_{4}}(f)-32 E_{C C_{5}}(f)\right] \tag{2.7}
\end{align*}
$$

or $\quad I(f)=R_{G L_{3} L_{4} C C_{5}}(f)+E_{G L_{3} L_{4} C C_{5}}(f)$
where $R_{G L_{3} L_{4} C C_{5}}(f)=\frac{1}{63}\left[60 R_{G L_{3}}(f)+35 R_{L_{4}}(f)-32 R_{C C_{5}}(f)\right]$
and $\quad E_{G L_{3} L_{4} C C_{5}}(f)=\frac{1}{63}\left[60 E_{G L_{3}}(f)+35 E_{L_{4}}(f)-32 E_{C C_{5}}(f)\right]$
Eq (2.8), expresses the desired mixed quadrature rule for the approximate evaluation of $I(f)$ and $\mathrm{Eq}(2.9)$ expresses the error generated in this approximation.

$$
\begin{equation*}
\text { so, } E_{G L_{3} L_{4} C C_{5}}(f)=\frac{-16}{11!\times 1125} f^{(x)}(0)-\ldots \tag{2.10}
\end{equation*}
$$

As the first term of $E_{G L_{3} L_{4} C C_{5}}(f)$ contains 10th order derivative of the integrand, so the degree of precision of the mixed quadrature rule is 9 . It is called a mixed type rule as it is constructed from three different types of rules of equal precision.

iII. Error Analysis of the Mixed Quadrature Rule

An asymptotic error estimate and an error bound of the mixed quadrature rule (2.8) is given in theorems 3.1 and 3.2 respectively.

Theorem-3.1

Let $f(x)$ be sufficiently differentiable function in the closed interval $[-1,1]$.Then the error $E_{G L_{3} L_{4} C C_{5}}(f)$ associated with the mixed quadrature rule $R_{G L_{3} L_{4} C C_{5}}(f)$ is given by

$$
\left|E_{G L_{3} L_{4} C C_{5}}(f)\right| \cong \frac{16}{11!\times 1125}\left|f^{(x)}(0)\right|
$$

Proof:

The proof Follows from $\mathrm{Eq}(2.10)$.

Theorem-3.2

The bound for the truncation error

$$
E_{G L_{3} L_{4} C C_{5}}(f)=I(f)-R_{G L_{3} L_{4} C C_{5}}(f)
$$

is given by

$$
E_{G L_{3} L_{4} C C_{5}}(f) \leq \frac{4 M}{33075}
$$

where, $M=\max _{-1 \leq x \leq 1}\left|f^{(v i i)}(x)\right|$

Proof:

We have

$$
\begin{array}{ll}
E_{G L_{3}}(f)=\frac{8}{7!\times 25} f^{(v i)}\left(\eta_{1}\right) & \eta_{1} \in[-1,1] \\
E_{L_{4}}(f)=\frac{-32}{7!\times 75} f^{(v i)}\left(\eta_{2}\right) & \eta_{2} \in[-1,1]
\end{array}
$$

$$
E_{C C_{5}}(f)=\frac{2}{7!\times 15} f^{(v i)}\left(\eta_{3}\right) \quad \eta_{3} \in[-1,1]
$$

(Refer to Conte and Boor [1])

$$
\text { so, } \begin{aligned}
E_{G L_{3} L_{4} C C_{5}}(f) & =\frac{1}{63}\left[60 E_{G L_{3}}(f)+35 E_{L_{4}}(f)-32 E_{C C_{5}}(f)\right] \\
& =\frac{96}{7!\times 315} f^{(v i)}\left(\eta_{1}\right)-\frac{224}{7!\times 945} f^{(v i)}\left(\eta_{2}\right)-\frac{64}{7!\times 945} f^{(v i)}\left(\eta_{3}\right)
\end{aligned}
$$

Let $K=\max _{x \in[-1,1]}\left|f^{(v i)}(x)\right| \quad$ and $k=\min _{x \in[-1,1]}\left|f^{(v i)}(x)\right|$. As $f^{(v i)}(x)$ is continuous and [-1,1] is compact, hence there exist points b and a in the interval $[-1,1]$ such that $K=f^{(v i)}(b)$ and $k=f^{(v i)}(a)$.Thus

$$
\begin{aligned}
E_{G L_{3} L_{4} C C_{5}}(f) & \leq \frac{96}{7!\times 315} f^{(v i)}(b)-\frac{224}{7!\times 945} f^{(v i)}(a)-\frac{64}{7!\times 945} f^{(v i)}(a) \\
& =\frac{2}{33075}\left[f^{(v i)}(b)-f^{(v i)}(a)\right] \\
& =\frac{2}{33075} \int_{a}^{b} f^{(v i i)}(x) d x \\
& =\frac{2}{33075}(b-a) f^{(v i i)}(\xi) \quad \text { for some } \xi \in[-1,1]
\end{aligned}
$$

by Mean value theorem[1]
Hence by choosing $|(b-a)| \leq 2$
we have, $E_{G L_{3} L_{4} C C_{5}}(f) \leq \frac{2}{33075}|(b-a)|\left|f^{(v i i)}(\xi)\right| \leq \frac{4 M}{33075}$
where, $M=\max _{x \in[-1,]]}\left|f^{(v i i)}(x)\right|$

IV. Numerical Verification

For the Numerical verification of the mixed quadrature rule $\left(R_{G_{L_{3}} L_{4} C C_{5}}(f)\right)$, the following integrals are considered.

Table:1

Exact value of $I_{1}(f)=\int_{0}^{\frac{\pi}{4}} \cos ^{2}(x) d x=0.6426990818$

Quadrature/Mixed quadrature rule	Aproximate value of $\quad I_{1}(f)$
$R_{G L_{3}}(f)$	$\mathbf{0 . 6 4 2 7 0 1 1 1 2 0}$
$R_{L_{4}}(f)$	$\mathbf{0 . 6 4 2 6 9 6 3 7 9 1}$
$R_{C C_{5}}(f)$	$\mathbf{0 . 6 4 2 6 9 9 9 3 2 7 8}$
$R_{G L_{3} L_{4} C C_{5}}(f)$	$\mathbf{0 . 6 4 2 6 9 9 0 8 1 6 9}$

Table : 3
Exact value of $I_{3}(f)=\int_{0}^{1} e^{-x^{2}} d x=0.7468241328$

Quadrature/Mixed quadrature rules	Aproximate value of $\quad I_{3}(f)$
$R_{G L_{3}}(f)$	$\mathbf{0 . 7 4 6 8 1 4 5 8 4 1}$
$R_{L_{4}}(f)$	$\mathbf{0 . 7 4 6 8 3 6 5 9 8 0}$
$R_{C C_{5}}(f)$	$\mathbf{0 . 7 4 6 8 1 9 8 5 7 9}$
$R_{G L_{3} L_{4} C C_{5}}(f)$	$\mathbf{0 . 7 4 6 8 2 4 1 3 5 3}$

Table : 5
Exact value of $I_{5}(f)=\int_{0}^{1}\left(1+x^{2}\right)^{\frac{3}{2}} d x=1.5679519622$

Quadrature/Mixed quadrature rules	Aproximate value of $\quad I_{5}(f)$ $R_{G L_{3}}(f)$
$R_{L_{4}}(f)$	$\mathbf{1 . 5 6 7 9 4 9 3 8 9 4}$
$R_{C C_{5}}(f)$	$\mathbf{1 . 5 6 7 9 5 5 2 3 1 0}$
$R_{G L_{3} L_{4} C C_{5}}(f)$	$\mathbf{1 . 5 6 7 9 5 0 7 0 9 3}$

Table: 2
Exact value of $I_{2}(f)=\int_{0}^{\frac{\pi}{4}} e^{\cos x} d x=1.9397348506$

Quadrature/Mixed quadrature rule	Aproximate value of $\quad I_{2}(f)$
$R_{G L_{3}}(f)$	$\mathbf{1 . 9 3 9 7 3 6 7 2 5}$
$R_{L_{4}}(f)$	$\mathbf{1 . 9 3 9 7 3 2 3 5 2 4}$
$R_{C C_{5}}(f)$	$\mathbf{1 . 9 3 9 7 3 5 6 3 2 8}$
$R_{G L_{3} L_{4} C C_{5}}(f)$	$\mathbf{1 . 9 3 9 7 3 4 8 5 0 6 6 7}$

Table: 4
Exact value of $I_{4}(f)=\int_{0}^{1} \frac{1}{1+e^{x}} d x=0.3798854936$

Quadrature/Mixed quadrature rules	Aproximate value of $\quad I_{4}(f)$
$R_{G L_{3}}(f)$	$\mathbf{0 . 3 7 9 8 8 5 3 0 8}$
$R_{L_{4}}(f)$	$\mathbf{0 . 3 7 9 8 8 5 7 3 8 4}$
$R_{C C_{5}}(f)$	$\mathbf{0 . 3 7 9 8 8 5 4 1 4 9}$
$R_{G L_{3} L_{4} C C_{5}}(f)$	$\mathbf{0 . 3 7 9 8 8 5 4 9 3} 04$

Table: 6
Exact value of $I_{6}(f)=\int_{0}^{1} x^{2} e^{-x} d x=0.1606027942$

Quadrature/Mixed quadrature rules	Aproximate value of $\quad I_{6}(f)$
$R_{G L_{3}}(f)$	$\mathbf{0 . 1 6 0 5 9 5 3 8 6 8}$
$R_{L_{4}}(f)$	$\mathbf{0 . 1 6 0 6 1 2 6 8 4 1}$
$R_{C C_{5}}(f)$	$\mathbf{0 . 1 6 0 5 9 9 7 2 2 6}$
$R_{G L_{3} L_{4} C C_{5}}(f)$	$\mathbf{0 . 1 6 0 6 0 2 7 9 4 1 5}$

Table: 7

Exact value of $I_{7}(f)=\int_{0}^{1} \frac{1}{1+x^{4}} d x=0.8669729870$

Quadrature/Mixed quadrature rules	Aproximate value of $\quad I_{7}(f)$
$R_{G L_{3}}(f)$	$\mathbf{0 . 8 6 7 5 1 8 4 6}$
$R_{L_{4}}(f)$	$\mathbf{0 . 8 6 6 2 6 0 9}$
$R_{C C_{5}}(f)$	$\mathbf{0 . 8 6 7 2 1 6 6 4}$
$R_{G L_{3} L_{4} C C_{5}}(f)$	$\mathbf{0 . 8 6 6 9 7 3 1 3}$

Table: 9

Exact value of $I_{9}(f)=\int_{1}^{1.5} x^{2} \ln (x) d x=0.192259357$

Quadrature/Mixed quadrature rules	Aproximate value of$I_{9}(f)$
$R_{G L_{3}}(f)$	$\mathbf{0 . 1 9 2 2 5 9 3} 7$
$R_{L_{4}}(f)$	$\mathbf{0 . 1 9 2 2 5 9 3 3 1 6}$
$R_{C C_{5}}(f)$	$\mathbf{0 . 1 9 2 2 5 9 3 6 5 8}$
$R_{G L_{3} L_{4} C C_{5}}(f)$	$\mathbf{0 . 1 9 2 2 5 9 3 5 7 7 3 2 6}$

Table:11
Exact value of $I_{11}(f)=\int_{3}^{35} \frac{x}{\sqrt{x^{2}-4}} d k=0.6362133458$

Quadrature/Mixed quadrature rules	Aproximate value of $\quad I_{11}(f)$
$R_{G L_{3}}(f)$	$\mathbf{0 . 6 3 6 2 1 3 1 9 5 9}$
$R_{L_{4}}(f)$	$\mathbf{0 . 6 3 6 2 1 3 5 4 6 7}$
$R_{C C_{5}}(f)$	$\mathbf{0 . 6 3 6 2 1 3 2 8 4 5}$
$R_{G L_{3} L_{4} C C_{5}}(f)$	$\mathbf{0 . 6 3 6 2 1 3 3 4 5 7 7}$

Table: 8

Exact value of $I_{8}(f)=\int_{0}^{\overline{4}} e^{3 x} \sin (2 x) d x=2.5886286324$

Quadrature/Mixed quadrature rules	Aproximate value of $\quad I_{8}(f)$
$R_{G L_{3}}(f)$	$\mathbf{2 . 5 8} 9258$
$R_{L_{4}}(f)$	$\mathbf{2 . 5 8 7 7 8 6 1 3}$
$R_{C C_{5}}(f)$	$\mathbf{2 . 5 8 8 8 8 7 2}$
$R_{G L_{3} L_{4} C C_{5}}(f)$	$\mathbf{2 . 5 8 8 6 2 8 6 3} 8$

Table:10
Exact value of $I_{10}(f)=\int_{0}^{1} \frac{4}{1+x^{2}} d x=\pi \cong 3.141592654$

Quadrature/Mixed quadrature rules	Aproximate value of $\quad I_{10}(f)$
$R_{G L_{3}}(f)$	$\mathbf{3 . 1 4 1 0 6 8}$
$R_{L_{4}}(f)$	$\mathbf{3 . 1 4 2 2 7 6}$
$R_{C C_{5}}(f)$	$\mathbf{3 . 1 4 1 3 5}$
$R_{G L_{3} L_{4} C C_{5}}(f)$	$\mathbf{3 . 1 4 1 5 9 2 7 2}$

VI. Acknowledgement

The research is supported by the ministry of Social Justice and Empowerment, Govt. of India, under a central sector scheme of R.G.N.F .

References Références Referencias

[1] S. Conte, and C.de Boor, 'Elementary numerical analysis’ Mc-Graw Hill, 1980.
[2] Kendal E Atkinson, 'An Introduction to numerical analysis’ 2nd ed., John Wiley,2001.
[3]R.N. Das and G. Pradhan, 'A mixed quadrature rule for approximate evaluation of real definite integrals’, Int. J. Math. Educ. Sci, Technol,Vol.-27, No.-2, PP.-279-283, 1996.
[4]J.Oliver, 'A doubly-adaptive Clenshaw-Curtis quadrature method',The Computer Journal, Vol.-15, No.-2, PP.-141-147, 1971.

This page is intentionally left blank

Global Journal of Science Frontier Research: F
MATHEMATICS AND DECISION SCIENCES
Volume 14 Issue 1 Version 1.0 Year 2014
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Noiseless Coding Theo rems Connected with Tuteja and Bhaker's ‘useful' Inaccuracy Measure

By Rayees Ahmad Dar
Abstract- A new measure, $L_{\alpha}^{\beta}(U)$ called average code word length of order and type has been defined and its relationship with a result of Tuteja and Bhaker 'useful' inaccuracy measure has been discussed. Using $L_{\alpha}^{\beta}(U)$, some noiseless coding theorems for discrete noiseless channel has been proved. The results obtained in this paper generalizes some well known results available in the literature.

Keywords: inaccuracy measure, average code length, holder's inequality.
GJSFR-F Classification : AMS: 94A17, 94A24

Strictly as per the compliance and regulations of :

© 2014. Rayees Ahmad Dar. This is a research/review paper, distributed under the terms of the Creative Commons AttributionNoncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Noiseless Coding Theorems Connected with Tuteja and Bhaker's 'useful' Inaccuracy Measure

Rayees Ahmad Dar

Abstract

A new measure, $L_{\alpha}^{\beta}(U)$ called average code word length of order α and type β has been defined and its relationship with a result of Tuteja and Bhaker 'useful' inaccuracy measure has been discussed. Using $L_{\alpha}^{\beta}(U)$) some noiseless coding theorems for discrete noiseless channel has been proved. The results obtained in this paper generalizes some well known results available in the literature. Keywords: inaccuracy measure, average code length, holder's inequality.

I. Introduction

Consider the model given below for a finite scheme random experiment having $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as the complete system of events, happening with respective probabilities $P=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ and credited with utilities $U=\left(u_{1}, u_{2}, \ldots, u_{n}\right), u_{i}>0, i=1,2, \ldots, n$. Denote

$$
\mathrm{X}=\left[\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \tag{1.1}\\
p_{1} & p_{2} & \ldots . & p_{n} \\
u_{1} & u_{2} . . & u_{n}
\end{array}\right]
$$

We call scheme (1.1) as utility information scheme.
Now let us suppose that experimenter asserts that the ith outcome x_{i} has the probability q_{i} whereas the true probability is p_{i} with $\sum_{i=1}^{n} p_{i}=\sum_{i=1}^{n} q_{i}=1$. Thus we have two utility information schemes, (1.1) of a set of n events after an experiment and

$$
\mathrm{X}^{*}=\left[\begin{array}{ccc}
x_{1} & x_{2} & \ldots \tag{1.2}\\
q_{1} & x_{n} \\
q_{2} & \ldots . & q_{n} \\
u_{1} & u_{2} & \ldots
\end{array} u_{n} .\right]
$$

of the same set of n events before the experiment. In both the schemes (1.1) and (1.2), the utility distribution is the same because we assume that the utility u_{i} of an event x_{i} is independent of its probability of occurrence p_{i} or predicted probability q_{i}, u_{i} is only a "utility" or value of the outcome for an observer relative to some specified goal [14].

[^11]The quantitative@qualitative measure of inaccuracy [24] associated with the statement of an experimenter is given by

$$
\begin{equation*}
I(P / Q ; U)=-\sum_{i=1}^{n} u_{i} p_{i} \log q_{i} \tag{1.3}
\end{equation*}
$$

Let $X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ the finite set of n input symbols which are to be encoded using alphabet of D symbols. It has been shown Feinestein [5] that there is a unique decipherable code with lengths $l_{1}, l_{2} \ldots, l_{n}$ iff

$$
\begin{equation*}
\sum_{i=1}^{n} D^{-l_{i}} \leq 1 \tag{1.4}
\end{equation*}
$$

Noiseless coding theorem for Shannon entropy with ordinary code mean length

$$
\begin{equation*}
L=\sum_{i=1}^{n} l_{i} p_{i} \tag{1.5}
\end{equation*}
$$

under the condition of unique decipherability, has played an important role in ordinary communication theory.

A successful attempt in this direction has been made by Autar and Soni [2], who established noiseless coding theorem for inaccuracy of order α given by sharma [21] with the average code length of order t given by Campbell [4] under the condition

$$
\begin{equation*}
\sum_{i-1}^{n} p_{i} q_{i}^{-1} D^{-l_{i}} \leq 1 \tag{1.6}
\end{equation*}
$$

Inequality (1.6) is in a way generalization of (1.4).
Guiasu and Picard [6] defined the following quantity

$$
\begin{equation*}
L(U)=\frac{\sum_{i=1}^{n} u_{i} l_{i} p_{i}}{\sum_{i=1}^{n} u_{i} p_{i}} \tag{1.7}
\end{equation*}
$$

and call it 'useful' mean length of the code. They also derived a lower bound for it. Also (1.7) is generalization of (1.5).

Jain and Tuteja [9] studied the generalization of (1.7) as

$$
\begin{equation*}
L_{1}^{\beta}(U)=\frac{1}{2^{1-\beta}-1}\left[\left\{\frac{\sum_{i=1}^{n} u_{i} p_{i} D^{l_{i}-\frac{1-\beta}{\beta}}}{\sum_{i=1}^{n} u_{i} p^{i}}\right\}^{\beta}-1\right] \quad, \beta>0, \beta \neq 1 \tag{1.8}
\end{equation*}
$$

and found the bounds for the generalization in terms of 'useful' entropy of type which is given by

$$
\begin{equation*}
H^{\beta}(P, U)=\frac{1}{\left(2^{1-\beta}-1\right) \sum_{i=1}^{n} p_{i}}\left[\sum_{i=1}^{n} u_{i} p_{i}\left(p_{i}^{\beta-1}-1\right)\right], \beta>0, \beta \neq 1 \tag{1.9}
\end{equation*}
$$

under the condition

$$
\begin{equation*}
\sum_{i=1}^{n} u_{i} D^{-l_{i}} \leq \sum_{i=1}^{n} u_{i} p_{i} \tag{1.10}
\end{equation*}
$$

which is generalization of (1.4).

It may be seen that the mean code word length (1.5) had been generalized parametrically and their bounds had been studied in terms of generalized measure of information. Here we give another generalization of (1.5) and study its bounds in terms of generalized 'useful' inaccuracy measure of order α ant type β given by Tuteja and Bhaker [25].

Longo [14]. Gurdial and Pessoa [7], Singh, Kumar and Tuteja [23], Praskash and Sharam [17], Hooda and Bhaker [8], Khan , Bhat and Pirzada [11], Arndt [1], Baig and Rayees [3], Rayees and Baig [18], Kerridge [10], Satish and Rajesh [12], Mc@Millan [15], Pirzada and Bhat [16], Roy [19] and Satish Kumar [13] have studied generalized coding theorems by considering different generalized measure of Shannon's entropy [20] under the condition (1.4) of unique decipherability.

In this communication, generalization of (1.7) have been studied and the bounds for this generalization are obtained interms of 'useful' inaccuracy of order α and type β given by Tuteja and Bhaker [25] which is given by

$$
\begin{equation*}
I_{\alpha}^{\beta}(P / Q ; U)=\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}\left(q_{i}^{\alpha-1}-1\right)}{\left(2^{1-\alpha}-1\right) \sum_{i=1}^{n} \beta}, \alpha>0(\neq 1), \beta>0 \tag{1.11}
\end{equation*}
$$

under the condition

$$
\begin{equation*}
\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} q_{i}^{-1} D^{-l_{i}} \leq \sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} \tag{1.12}
\end{equation*}
$$

which is generalization of (1.6).

Remarks:

(i) For $\beta=1$ and $\alpha \rightarrow 1$, (1.11) reduces to $I(P / Q ; U)$ given by Taneja and Tuteja [24].
(ii) For $\beta=1, \alpha \rightarrow 1$ and $u_{i}=1 \forall i=1,2, \ldots, n,(1.11)$ reduces to the measure given by Kerridge [10]. Further if $p_{i}=q_{i} \forall i=1,2, \ldots, n$, it reduces to Shannon's entropy [20].
(iii) For $\beta=1$ and $p_{i}=q_{i} \forall i=1,2, \ldots, n$, (1.11) reduces to measure given by Jain and Tuteja [9].

II. Generalization of 'Useful' mean Length and the Coding Theorems

$$
\begin{equation*}
L_{\alpha}^{\beta}(U)=\frac{1}{\left(2^{1-\alpha}-1\right) \sum_{i=1}^{n} p_{i}^{\beta}}\left[\left\{\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} D^{l_{i}\left(\frac{1-\alpha}{\alpha}\right)}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right\}^{\alpha}-1\right], \alpha>0(\neq 1), \beta>0 \tag{2.1}
\end{equation*}
$$

Remarks:

(i) For $\beta=1$ and $\alpha \rightarrow 1$, (2.1) reduces to the mean length of the code given by Guiasu and Picard [6].
(ii) For $\beta=1, \alpha \rightarrow 1$ and $u_{i}=1 \forall i=1,2, \ldots, n,(2.1)$ reduces to the mean length of the code given by Shannon [20].
(iii) For $\beta=1$, (2.1) reduces to the mean length given by Jain and Tuteja [9]. In the following theorem we obtain lower bound for (2.1) in terms of $I_{\alpha}^{\beta}(P / Q ; U)$

Theorem 1: If $l_{1}, l_{2}, \ldots, l_{n}$ denote the lengths of a code satisfying (1.12). Then

$$
\begin{equation*}
L_{\alpha}^{\beta}(U) \geq \frac{I_{\alpha}^{\beta}(P / Q, U)}{\bar{U}}, \alpha>0(\neq 1), \beta>0 \tag{2.2}
\end{equation*}
$$

where $\bar{U}=\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}$
with equality iff

$$
\begin{equation*}
l_{i}=-\log q_{i}{ }^{\alpha}+\log \frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} q_{i}{ }^{\alpha-1}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}} \tag{2.3}
\end{equation*}
$$

Proof: By Holders inequality [22]

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i} y_{i} \geq\left[\sum_{i=1}^{n} x_{i}^{p}\right]^{\frac{1}{p}}\left[\sum_{i=1}^{n} y_{i}^{q}\right]^{\frac{1}{q}} \tag{2.4}
\end{equation*}
$$

for all $x_{i} \geq 0, y_{i} \geq 0, i=1,2, \ldots, n$ when $p<1(\neq 0), q<0$ or $q<1(\neq 0), p<0$ and $\frac{1}{p}+\frac{1}{q}=1$, with equality iff there exists a positive number c such that $x_{i} \stackrel{q}{=} c y_{i}$.

$$
\begin{aligned}
x_{i} & =\left[\frac{\left(u_{i} p_{i}\right)^{\beta}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right]^{\frac{\alpha}{\alpha-1}} D^{-l_{i}} \quad, y_{i}=\left[\frac{\left(u_{i} p_{i}\right)^{\beta}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right]^{\frac{1}{1-\alpha}} q_{i}^{-1} \\
p & =\frac{\alpha-1}{\alpha}, q=1-\alpha
\end{aligned}
$$

in (2.4), we get

$$
\sum_{i=1}^{n}\left[\frac{\left(u_{i} p_{i}\right)^{\beta}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right]^{\frac{\alpha}{\alpha-1}} D^{-t_{i}}\left[\frac{\left(u_{i} p_{i}\right)^{\beta}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right]^{\frac{1}{1-\alpha}} q_{i}^{-1}
$$

$$
\left.\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} D^{-l_{i}} q_{i}^{-1}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}} \geq\left[\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} D^{l_{i}\left(\frac{1-\alpha}{\alpha}\right)}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right] \frac{\sum_{i=1}^{\alpha-1}\left(u_{i} p_{i}\right)^{\beta} q_{i}^{\alpha-1}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right]^{\frac{1}{1-\alpha}}
$$

using inequality (1.12), we get

$$
\begin{equation*}
\left[\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} D^{l_{i}\left(\frac{1-\alpha}{\alpha}\right)}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right]^{\frac{\alpha}{1-\alpha}} \geq\left[\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} q_{i}^{\alpha-1}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right]^{\frac{1}{1-\alpha}} \tag{2.5}
\end{equation*}
$$

Let $0<\alpha<1$. Raising both sides of (2.5) to the power $(1-\alpha)$, we get

$$
\begin{equation*}
\left[\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} D^{l,\left(\frac{1-\alpha}{\alpha}\right)}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right] \geq\left[\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} q_{i}^{\alpha-1}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right] \tag{2.6}
\end{equation*}
$$

since $2^{1-\alpha}-1>0$ for $0<\alpha<1$, a simple manipulation proves (2.2) for $0<\alpha<1$. The proof for $1<\alpha<\infty$ follows on the same lines.

Theorem 2: For every code with lengths $l_{1}, l_{2}, \ldots, l_{n}$ and satisfying (1.12), $L_{\alpha}^{\beta}(U)$ can be made to satisfy the inequality

$$
\begin{equation*}
L_{\alpha}^{\beta}(U)<\frac{I_{\alpha}^{\beta}(P / Q ; U) D^{1-\alpha}}{\bar{U}}+\frac{D^{1-\alpha}-1}{\left(2^{1-\alpha}-1\right) \sum_{i=1}^{n} p_{i}{ }^{\beta}}, \alpha>0(\neq 1), \beta>0 \tag{2.7}
\end{equation*}
$$

Proof: Let l_{i} be the positive integer satisfying the inequality

$$
\begin{equation*}
-\log _{D} q_{i}{ }^{\alpha}+\log _{D}\left(\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} q_{i}^{\alpha-1}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right) \leq l_{i}<-\log _{D} q_{i}{ }^{\alpha}+\log _{D}\left(\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} q_{i}^{\alpha-1}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right)+1 \tag{2.8}
\end{equation*}
$$

Consider the intervals

$$
\begin{equation*}
\left.\delta_{i}=\left[-\log _{D} q_{i}{ }^{\alpha}+\log _{D}\left(\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} q_{i}{ }^{\alpha-1}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right),-\log _{D} q_{i}{ }^{\alpha}+\log _{D} \frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} q_{i}{ }^{\alpha-1}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right)+1\right] \tag{2.9}
\end{equation*}
$$

of length 1 . In every δ_{i}, there lies exactly one positive integer l_{i} such that

$$
\begin{equation*}
\left(\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} q_{i}^{\alpha-1}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right) \leq l_{i}<-\log _{D} q_{i}^{\alpha}+\log _{D}\left(\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} q_{i}^{\alpha-1}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right)+1 \tag{2.10}
\end{equation*}
$$

we will first show that sequence $\left\{l_{1}, l_{2}, \ldots, l_{n}\right\}$, thus defined satisfies (1.12), from (2.10) we have

$$
\begin{aligned}
& -\log _{D} q_{i}^{\alpha}+\log _{D}\left(\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} q_{i}^{\alpha-1}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right) \leq l_{i} \\
& -\log _{D} q_{i}^{\alpha}+\log _{D}\left(\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} q_{i}^{\alpha-1}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right) \leq-\log _{D} D^{-l_{i}}
\end{aligned}
$$

or

$$
\begin{equation*}
\frac{q_{i}^{\alpha}}{\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} q_{i}^{\alpha-1}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}} \geq D^{-l_{i}}} \tag{2.11}
\end{equation*}
$$

Multiplying both sides of (2.11) by $\left(u_{i} p_{i}\right)^{\beta} q_{i}^{-1}$ and summing over $i=1,2, \ldots, n$, we get (1.12).

The last inequality of (2.10) gives

$$
\begin{equation*}
D^{l_{i}}<D q_{i}^{-\alpha} \frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} q_{i}^{\alpha-1}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}} \tag{2.12}
\end{equation*}
$$

Let $0<\alpha<1$. Raising both sides of (2.12) to the power $\left(\frac{1-\alpha}{\alpha}\right)$, we get

$$
\begin{equation*}
D^{l_{i}\left(\frac{1-\alpha}{\alpha}\right)}<q_{i}^{\alpha-1} D^{\left(\frac{1-\alpha}{\alpha}\right)}\left(\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} q_{i}^{\alpha-1}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right)^{\frac{1-\alpha}{\alpha}} \tag{2.13}
\end{equation*}
$$

Multilply both sides of (2.13) by $\frac{\left(u_{i} p_{i}\right)^{\beta}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}$, summing over $i=1,2, \ldots, n$ and after then raising both sides to the power α, we get

$$
\begin{equation*}
\left[\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} D^{l,\left(\frac{1-\alpha}{\alpha}\right)}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right]^{\alpha}<D^{(1-\alpha)}\left[\frac{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta} q_{i}^{\alpha-1}}{\sum_{i=1}^{n}\left(u_{i} p_{i}\right)^{\beta}}\right] \tag{2.14}
\end{equation*}
$$

since for $0<\alpha<1,2^{1-\alpha}-1>0$, a simple manipulation in (2.14) proves the Theorem 2 for $0<\alpha<1$. Let $1<\alpha<\infty$, the proof follows on the same lines.

References Références Referencias

[1] Arndt, C, "Information measure -information and its description in science and Engineering, Springer, Berlin, 2001.
[2] Autar, R and Soni, R.S, "Inaccuracy and coding theorem" J.Appl.Prob. Vol 12, 845- 851(1975).
[3] Baig, M.A.K and Rayees Ahmad, "Some noiseless coding theorems of inaccuracy measure of order α and type β ", Sarajevo Journal of Mathematics, Vol 3(15), 137143 (2007).
[4] Campbell, L.L, "A coding theorem and Renyi's entropy", Information and control, Vol 8, 423-429 (1965).
[5] Feinstein, A, "Foundation of information theory", McGraw Hill, New York.
[6] Guiasu, S and Picard, C.F, "Borne inferieture dela Longuerur utile de certains codes",C.R Acad.Sci.,Paris, 273A, 248-251(1971).
[7] Gurdial and Pessoa, F, "On useful information of order α ", journal of comb. Information and System Sciences, Vol 2, 30-35 (1977).
[8] Hooda, D.S and Bhaker, U.S, "A generalizes 'useful' information measure and coding theorems, Soochow Journal of Mathematics, Vol 23, 53-62 (1997).
[9] Jain, P and Tuteja, R.K, "On coding theorem connected with 'useful' entropy of order- β ", International Journal of Math. and Math. Sci.,Vol. 12 No.1, 193198(1989).
[10] Kerridge, D.F, "Inaccuracy and inference", Journal of Royal Statistical Society S. Vol 23, pp 184-194 (1961).
[11] Khan, B.K, Bhat, B.A and Pirzda, S, "Some results on a generalized useful information measure", Journal of inequalities in pure and applied Mathematics, Vol 6(4), 117 (2005).
[12] Kumar, S and Kumar, R, "some noiseless coding theorem connected with Havrada and Charavat and Tsallis's entropy, Vol 35 (1), 111-117 (2011).
[13] Kumar, S, " Some more results on R-Norm information measure", Tamkang Journal of Mathematics, Vol 40 (1), 41-58 (2009).
[14] Longo, G, "Quantitative-qualitative measure of information", Springer, New York (1972).
[15] Mc-Millan, "two inequalities implied by unique dechiperability", IRE Transaction information Theory, IT-2, 115-116 (1956).
[16] Pirzada, S and Bhat, B.A, "Some more results in coding theory", J. KSIAM, Vol 10 (2), 123-131 (2006).
[17] Prakash, O and Sharma, P.K, "Noiseless coding theorems corresponding to fuzzy entropies", Southeast Asian Bulletin of Mathematics, Vol 27, 1073-1080 (1997).
[18] Rayees Ahmad and Baig, M.A. K, " Coding Theorems on generalized cost measure", Journal of inequalities in pure and applied Mathematics, Vol 31 (2), 253-264 (2006).
[19] Roy, L.K, "Comparison of Renyi's entropy of power distribution", ZAMM, Vol 56, 217-218 (1976).
[20] Shannon, C.E, "The mathematical theory of communication" Bell. system Tech.Journal, 27,379-423,623-656 (1948).
[21] Sharma, B.D, "The mean value study quantities in information theory", Ph.D Thesis, University of Delhi.
[22] Shisha Oved, "Inequalities", Academic press, New York (1967).
[23] Singh, R.P, Kumar, R and Tuteja, R.K, "Application of Holders inequality in information theory", Information Sciences, Vol 152, 145-154 (2003).
[24] Taneja, H.C and Tuteja, R.K, "Characterization of Quantitative- Qualititative measure of inaccuracy", Kybernetika, Vol 22, 393-402(1985).
[25] Tuteja, R.K and Bhaker, U.S, "On characterization of some non additive measure of 'useful' information", Information Sciences, Vol 78,119-128(1994).

Global Journal of Science Frontier Research: F MATHEMATICS AND DECISION SCIENCES
Volume 14 Issue 1 Version 1.0 Year 2014
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Analysis of Pulsatile Flow in Elastic Artery

By Anamol Kumar Lal \& Dr. Smita Dey

Ranchi University, India
Abstract- In this paper, we have considered a Pulsatile flow in an elastic arterial tube and witnessed the efforts on the flow due to elasticity of the tube. The expression for "Volumetric flow rate" and "impedance of $\mathrm{n}^{\text {th }}$ harmonic" have been found. Conclusions have been drawn with the aid of graphs. MATLAB software has been used for sketching graphs

Keywords: elastic artery, shear stress, radial stress.
GJSFR-F Classification : MSC 2010: 00A69, 30C30

Strictly as per the compliance and regulations of :

© 2014. Anamol Kumar Lal \& Dr. Smita Dey. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
epaper

Analysis of Pulsatile Flow in Elastic Artery

Anamol Kumar Lal ${ }^{\alpha}$ \& Dr. Smita Dey ${ }^{\sigma}$

Abstract- In this paper, we have considered a Pulsatile flow in an elastic arterial tube and witnessed the efforts on the flow due to elasticity of the tube. The expression for "Volumetric flow rate" and "impedance of $n^{\text {th }}$ harmonic" have been found. Conclusions have been drawn with the aid of graphs. MATLAB software has been used for sketching graphs.
Keywords: elastic artery, shear stress, radial stress.
Nomenclature :- $\quad Q_{n}=$ Volumetric flow rate
$Z_{n}=$ Impedance
$Q_{r}=$ Radial Component of Velocity
$Q_{\theta}=$ Transverse Component of Velocity
$Q_{z}=$ Axial Component of Velocity
$\mathrm{P}=$ Pressure

I. Introduction

In a Pulsatile flow in an elastic arterial tube, the following effects on the flow due to the elasticity of the tube take place :-
i. As the wall of the tube is elastic, therefore due to the deformation of the wall, the flow will be radial together with axial.
ii. There is an axial variation of pressure and the shape of the curve between pressure and time will vary with z. Also, the pressure gradient will have a radial component.
iii. The boundary conditions for continuity of shear and radial stresses in the fluid and the elastic material at the common boundary give a coupling between fluid flow and elastic deformation.
Thurston [1] attempted to study all of the rheological properties of blood with a model including non-Newtonian viscosity, viscoelasticity, and thixotropy, Liepsch 'and Moravec [2] investigated the flow of a shear thinning blood, analog fluid in pulsatile flow through arterial branch model and observed large differences in velocity profiles relative to those measured with Newtonian fluids having the high shear rate viscosity of the analog fluid/ Rindt et al. [3] considered both experimentally and numerically the two-dimensional steady and pulsatile flow, Nazemi et al. [4] made important contributions to the identification of atherogenic sites. Rodkiewicz et al. [5] used several different non-Newtonian models for blood for simulation of blood flow in large arteries and they' observed that there is no effect of the yield stress of blood on either the

[^12]velocity profiles or the wall shear stress, Boesiger et al, [6] used magnetic resonance imaging (MRI) to study arterial homodynamics. Perktold et al [7] modeled the flow in stenotic vessels as that of an incompressible Newtonian fluid in the rigid vessels. Sharma and Kapur [8] made a mathematical analysis of blood flow through arteries using finite element method, Dutta and Tarbell [9] studied the two different rheological models of blood displaying shearing thinning viscosity and oscillatory flow viscoelasticity. Lee and Libby [10] made a study of vulnerable atherosclerotic plaque containing a large necrotic core, and covered by this fibrous cap,

Korenga et al [11] considered biochemical factors such as gene expression and albumin transport in atherogenessis and in plaque rupture, which were shown to .be activated by hemodynarnic factors in wall shear stress. Rachev et al [12] considered a model for geometric and mechanical adaptation of arteries. Rees and Thompson [13] studied a simple model derived from laminar boundary layer theory to investigate the flow of blood in arteria" stenoses up to Reynolds numbers of 1000. Tang et al [14] analysed triggering events, which are believed to be primarily homo-dynamic including cap tension, bending of torsion of the artery. Zendehbudi and Moayery [15] made a comparison of physiological and simple pulsatile flows through stenosed arteries.

Berger- and Jou [16] measured wall shear stress downstream of axi-symmetric stenoses in the presence of hernodynamic forces acting on the plaque, which may be responsible for plaque rupture. Botnar et al [17] based on the correspondence between MRI velocity measurements and numerical simulations used two approaches to study in detail the role of different flow patterns for the initiation and amplification of atherosclerotic plaque sedimentation. Stroud et al [18] found differences in flow fields and in quantities such as wall shear stress among stenotic vessels with same degree of stenosis. Sharma et al [19] made a mathematical analysis of blood flow through arteries using finite element Galerkin approaches.

In the current study, we are interested in the analysis of blood flow in elastic arteries.

Basic equation are Mathematical Information :-

Let $\left(q_{r}, q_{\theta}, q_{z}\right)$ be the components of velocity in radial, transverse and axial directions respectively.
Due to the assumptions, the velocity profile is given by

$$
\begin{gathered}
q_{r}=q_{r}(r, z, t), q_{\theta}=0, q_{z}=q_{z}(r, z, t) \\
p=p(r, z, t)
\end{gathered}
$$

and
The equation of continuity gives

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \cdot q_{\mathrm{r}}\right)+\frac{\partial q_{z}}{\partial z}=0 \tag{1}
\end{equation*}
$$

And the equations of motion on neglecting inertial term are given by

$$
\begin{equation*}
\rho \frac{\partial q_{r}}{\partial t}=-\frac{\partial p}{\partial r}+\mu\left(\frac{\partial^{2} q_{r}}{\partial r^{2}}+\frac{\partial^{2} \mathrm{q}_{\mathrm{z}}}{\partial z^{2}}+\frac{1 \partial q_{r}}{r \partial t}-\frac{q_{r}}{r^{2}}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho \frac{\partial q_{z}}{\partial t}=-\frac{\partial p}{\partial z}+\mu\left(\frac{\partial^{2} q_{z}}{\partial r^{2}}+\frac{\partial^{2} q_{z}}{\partial r^{2}}+\frac{1 \partial q_{r}}{r \partial r}\right) \tag{3}
\end{equation*}
$$

Let $\left(u_{r}, u_{\theta}, u_{z}\right)$ be the components of deformation vector of the material of the wall of the tube and $\tau_{r r}, \tau_{r \theta}, \tau_{r z}, \tau_{\theta \theta}, \tau_{\theta z}$ and $\tau_{z z}$ are the components of the symmetric stress tensor.

Here, $u_{\theta}=0$ and ρ_{ω} is the density of the material of the wall, G the shear modulus and W the negative mean of normal stress. Then the equation of elasticity are

$$
\begin{gather*}
\rho_{w} \frac{\partial^{2} u_{\mathrm{r}}}{\partial t^{2}}=\frac{\partial \tau_{r r}}{\partial r}+\frac{\partial \tau_{r z}}{\partial z}+\frac{\tau_{r r}-\tau_{\theta \theta}}{r} \tag{4}\\
\rho_{w} \frac{\partial^{2} u_{z}}{\partial t^{2}}=\frac{\partial \tau_{r z}}{\partial r}+\frac{\partial \tau_{z z}}{\partial z}+\frac{\tau_{r z}}{r} \tag{5}\\
\tau_{i j}=2 G \in_{i j}-\Omega \delta_{i j} \tag{6}\\
\delta_{i j}=1 \text { If } i=j \text { and } \delta_{i j}=0 i \neq j \tag{7}\\
\epsilon_{r r}=\frac{\partial u_{r}}{\partial r}, \quad \epsilon_{r \theta}=0=\epsilon_{\theta r,}, \epsilon_{r z}=\frac{1}{2}\left(\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r}\right)=\epsilon_{z r} \tag{8}\\
\epsilon_{\theta \theta}=\frac{\partial u_{\theta}}{\partial \theta}=0, \in_{\theta r}=0=\epsilon_{r \theta} \tag{9}\\
\epsilon_{z z}=\frac{\partial u_{z}}{\partial z}, \in_{z \theta}=0=\in_{\theta z} \tag{10}
\end{gather*}
$$

Above equations for $\left(u_{r}, 0, u_{z}\right)$ become :

$$
\begin{align*}
& \rho_{w} \frac{\partial^{2} u_{\mathrm{r}}}{\partial t^{2}}=\mathrm{G}\left(\frac{\partial^{2} u_{\mathrm{r}}}{\partial r}+\frac{1}{r} \frac{\partial u_{\mathrm{r}}}{\partial r}-\frac{u_{r}}{r^{2}}+\frac{\partial^{2} u_{\mathrm{r}}}{\partial z^{2}}\right)-\frac{\partial \Omega}{\partial r} \tag{11}\\
& \rho_{w} \frac{\partial^{2} u_{\mathrm{z}}}{\partial t^{2}}=\mathrm{G}\left(\frac{\partial^{2} u_{\mathrm{z}}}{\partial r^{2}}+\frac{1}{r} \frac{\partial u_{\mathrm{z}}}{\partial r}+\frac{\partial^{2} u_{\mathrm{z}}}{\partial z^{2}}\right)-\frac{\partial \Omega}{\partial z} \tag{12}
\end{align*}
$$

And the equation of continuity becomes :

$$
\begin{equation*}
\frac{\partial u_{r}}{\partial r}+\frac{u_{r}}{r}+\frac{\partial u_{z}}{\partial z}=0 \tag{13}
\end{equation*}
$$

The partial differential equations for q_{r}, q_{z} and p are the same as those for $\frac{\partial u_{r}}{\partial t}, \frac{\partial u_{z}}{\partial t}$ and Ω and both sets are independent Due to the coupling between fluid flow and elastic deformation, we have following boundary conditions :
(i) From the symmetry of velocity field

$$
q_{r}=0, \frac{\partial q_{z}}{\partial r}=0 \quad \text { at } r=0
$$

(ii) From the continuity of motion at the interface of wall of the tube, we have

$$
q_{r}=\frac{\partial u_{r}}{\partial t}, q_{z}=\frac{\partial u_{z}}{\partial t} \quad \text { at } r=a \text { (inner radius of tube) }
$$

(iii) From the continuity of the shear stress and radial stress at the inner wall, we have

$$
\begin{array}{ll}
\mu\left(\frac{\partial q_{r}}{\partial z}+\frac{\partial q_{z}}{\partial r}\right)=G\left(\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r}\right) & \text { at } r=a \\
\text { and }-p+2 \mu \frac{\partial q_{z}}{\partial r}=-\Omega+2 \mathrm{G} \frac{\partial u_{r}}{\partial r} & \text { at } r=a
\end{array}
$$

(iv) It is assumed that the outer wall is constrained radially and axially, then we have

$$
G=\left(\frac{\partial u_{r}}{\partial z}+\frac{\partial u_{z}}{\partial r}\right)=0 \quad \text { at } r=b \text { (outer radius) }
$$

If the inner wall is perturbed and the perturbations are small, then the boundary condition can be taken the same as that at the undisturbed inner wall. Since the outer wall is constrained radially and axially, therefore we can replace the boundary conditions by some others.
Suppose the solutions of equations (1), (2) and (3) are of the form

$$
\begin{align*}
& q_{r}=\mathrm{U}_{1}(r) e^{-i y_{n} z} e^{i n \omega t} \tag{14}\\
& q_{z}=\mathrm{U}_{2}(r) e^{-i y_{n} z} e^{i n \omega t} \tag{15}
\end{align*}
$$

and $\quad P=P(r) e^{-i y_{n} z} e^{i n \omega t}$

Using (14), (15) and (16), equations (1), (2) and (3) becomes :
$\frac{d^{2} U_{1}}{d r^{2}}+\frac{1}{r} \frac{d U_{1}}{d r}-\frac{U_{1}}{r^{2}}-y_{n}^{2} U_{1}-\frac{\rho}{\mu} i n \omega U_{1}=\frac{1}{\mu} \frac{d p}{d r}$
$\frac{d^{2} U_{2}}{d r^{2}}+\frac{1}{r} \frac{d U_{2}}{d r}-y_{n}^{2} U_{2}-\frac{\rho}{\mu} i n \omega U_{2}=\frac{1}{\mu}\left(-i y_{r}\right) P$
and $\quad-i U_{2} y_{n}+\frac{d U_{1}}{d r}+\frac{U_{1}}{r}=0$ \qquad

Let us take $\frac{i n \omega}{v}+y_{n}^{2}=K_{n}^{2}\left(v=\frac{\mu}{\rho}\right)$, So that the equations (17), (18) and (19) reduce to

$$
\begin{align*}
& \frac{d^{2} U_{1}}{d r^{2}}+\frac{1}{r} \frac{d U_{1}}{d r}-\left(K_{n}^{2}+\frac{1}{r}\right) U_{1}=\frac{1}{\mu} \frac{d p}{d r} \tag{20}\\
& \frac{d^{2} U_{2}}{d r^{2}}+\frac{1}{r} \frac{d U_{2}}{d r}-K_{n}^{2} U_{2}=-\frac{i y_{n}}{\mu} p \tag{21}\\
& \text { and } \quad \frac{d}{d r}\left(r U_{1}\right)=i y_{n} r U_{2} \tag{22}
\end{align*}
$$

Since the expressions

$$
\left.\begin{array}{rl}
& X=A_{1} J_{1}\left(i y_{n} r\right)+A_{2} J_{1}\left(i k_{n} r\right) \\
\text { and } & Y=B_{1} J_{0}\left(i y_{n} r\right)+B_{2} J_{0}\left(i k_{n} r\right)
\end{array}\right]
$$

are the solutions of the respective equations

$$
\left.\begin{array}{l}
\frac{d^{2} X}{d r^{2}}+\frac{1}{r} \frac{d X}{d r}-\left(K_{n}^{2}+\frac{1}{r^{2}}\right) X=-\frac{i n \omega}{v} A_{1} J_{1}\left(i y_{n} r\right) \\
\text { and } \quad \frac{d^{2} Y}{d r^{2}}+\frac{1}{r} \frac{d Y}{d r}-K_{n}^{2} Y=-\frac{i n \omega}{v} B_{1} J_{1}\left(i y_{n} r\right)
\end{array}\right]
$$

with the help of the equations (17) - (24), we get

$$
\left.\begin{array}{c}
U_{1}(r)=-i\left[C_{1} Y_{n} J_{1}\left(i y_{n} r\right)+C_{2} Y_{n} J_{1}\left(i k_{n} r\right)\right] \tag{25}\\
U_{2}(r)=-i\left[C_{1} Y_{n} J_{0}\left(i y_{n} r\right)+C_{2} Y_{n} J_{0}\left(i k_{n} r\right)\right] \\
\text { and } \quad P(r)=-C_{1} i n \omega \rho J_{0}\left(i y_{n} r\right)
\end{array}\right)
$$

Where C_{1} and C_{2} are arbitrary constants
Putting these values in (14), (15) and (16), we get general solutions as

$$
\begin{aligned}
& q_{\left.r=-\sum_{n} i\left[C_{1} Y_{n} J_{1}\left(i y_{n} r\right)+C_{2} Y_{n} J_{1}\left(i k_{n} r\right)\right] e^{i n \omega t-i y_{n} z}\right] .}
\end{aligned}
$$

$$
\begin{align*}
& \text { and } P_{\left.=-\sum_{n} C_{1} i n \omega \rho J_{0}\left(i y_{n} r\right) e^{i n \omega t-i y_{n} z} \quad\right]} \tag{26}
\end{align*}
$$

Let Q_{n} be the volumetric flow rate for the n-th harmonic, then

$$
Q_{n}=\int_{0}^{a} 2 \pi r q_{z} d r
$$

$$
\begin{gather*}
=-2 \pi a\left[C_{1} J_{1}\left(i y_{n} a\right)+C_{2} J_{2}\left(i k_{n} a\right)\right] e^{i n \omega t-i y_{n} z} \tag{27}\\
{\left[\therefore \int_{0}^{a} r J_{0}(r) d r=a J_{1}(a)\right]}
\end{gather*}
$$

If Z_{n} be the impedance of n-th harmonic, then

$$
\begin{equation*}
Z_{n}=\frac{-i n \omega \rho\left[i y_{n} a J_{n}\left(i y_{n} a\right)\right] C_{1}}{2 \pi a^{2}\left[C_{1} J_{1}\left(i y_{n} a\right) C_{2} J_{1}\left(i k_{n} a\right)\right]} \tag{28}
\end{equation*}
$$

The solution for $\frac{\partial u_{r}}{\partial t}, \frac{\partial u_{z}}{\partial t}$ and W are similar to (26), but these solutions will have four more arbitrary constants. The boundary conditions (i) is trivially satisfied by (26). The other six boundary conditions give six equations to determine the six constants. These six equations is equivalent to an equation to find y_{n} of the form

$$
a y_{n=f}\left(\frac{a^{2} \omega \rho}{\mu}, \frac{b}{a}, \frac{\rho_{w} v^{2}}{G a^{2}} \frac{\rho}{\rho_{w}}\right)
$$

Where, $\frac{a^{2} \omega \rho}{\mu}, \frac{b}{a}, \frac{\rho_{\omega} v^{2}}{G a^{2}}$ and $\frac{\rho}{\rho_{\omega}}$ are all dimensionless parameters.

II. Numerical Results and Discussion

In order to see the effects of various parameters on volumetric flow rate, impedance etc., the following values of the parameters are taken:

$$
\begin{aligned}
\mathrm{a} & =1.0,0.2,0.3,0.4,0.5(\mathrm{in} \mathrm{~cm}) \\
\rho & = \\
\mu & =0.05 \mathrm{gm} / \mathrm{cm}^{3} \\
\omega & =0.04 \mathrm{gm} / \mathrm{cm}^{-\mathrm{sec}} \\
& =8 \mathrm{rad} . / \mathrm{sec}
\end{aligned}
$$

$1^{\text {st }}$ set for $\mathrm{J}_{1}\left(i y_{n} a\right)$ and $\mathrm{J}_{2}\left(i k_{n} a\right)$ are respectively

$$
-.7, .5, .4, .1, .2^{\prime \prime}, \quad-.6, .6, .3, .2, .3^{\prime \prime}
$$

$\mathrm{II}^{\mathrm{nd}}$ set of values for $\mathrm{J}_{1}\left(i y_{n} a\right)$ and $\mathrm{J}_{2}\left(i k_{n} a\right)$ are respectively

$$
-.3, .1, .2, .3, .4^{\prime \prime} \quad-0, .6, .7, .5, .1^{\prime \prime}
$$

$\mathrm{III}^{\mathrm{rd}}$ set of values for $\mathrm{J}_{1}\left(i y_{n} a\right)$ and $\mathrm{J}_{2}\left(i k_{n} a\right)$ are

$\mathrm{J}_{1}\left(i y_{n} a\right)$	$\mathrm{J}_{2}\left(i k_{n} a\right)$	
i. $\quad .68, .48, .43, .15$,	i. $.59, .61, .32, .25, .33$	
ii. $\quad .61, .45, .42, .17$,	ii. $.58, .63, .31, .30, .35$	
iii.	$.6, .6, .3 .2, .3$	
iii.	$.7, .5, .4, .1, .2$	

It has been observed that:

On changing the set of values for $\mathrm{J}_{1}\left(i y_{n} a\right)$ and $\mathrm{J}_{2}\left(i k_{n} a\right)$ arbitrarily within the range .7 to +.7 , the graphs show maximum deflections in the value of $\left|Q_{n}\right|$ when artery radius
$=.4$ but if ' a ' lies between 0.2 cm to 0.3 cm , the value of $\left|Q_{n}\right|$ becomes constant for $1^{\text {st }}$ set of values but for $2^{\text {nd }}$ set of values, the value of $\left|Q_{n}\right|$ in creases uniformly upto a $=0.3 \mathrm{~cm}$ (fig, (i)).
In figure (ii), it is observed that for value of 'a' between $a=.3 \mathrm{~cm}$ to $a=.5 \mathrm{~cm}$, the value of $\left|Q_{n}\right|$ increase as the value of ' n ' increases from $n=3$ to $n=4$ i.e. Z_{4} has more value of impedance that Z_{3}.
In fig (iii), if the difference in the value of $\mathrm{J}_{1}\left(i y_{n} a\right)$ or $\mathrm{J}_{2}\left(i k_{n} a\right)$ for three sets of values are small, then it has been observed that $\left|Q_{n}\right|$ is directly proportional to the value of 'a'.

\longrightarrow
Figure: 1
Fig: Variation of $\left|Q_{n}\right|$ with 'a' for two different sets of values of $J_{1}\left(i y_{n} a\right)$ and $J_{2}\left(i k_{n} a\right)$
t!a:- Λ su!sf!ou ot $, S^{\prime \prime}, ~ m!f f, s$,

$\mathrm{N}_{\text {otes }}$

Figure : 2

Fig: Variation of $\left|Q_{n}\right|$ with 'a' for two different sets of values of $J_{1}\left(i y_{n} a\right)$ and $J_{2}\left(i k_{n} a\right)$
References Références Referencias

1. G.8. Thurston, Rheological parameters for the viscosity, visco-elasticity and thixotropy of blood, Biorheology 16, 149-155, (1979).
2. D, Liepsch and S. Moravec, Pulsatile flow of non-Newtonian fluid in distensibls models of human arteries, Biorheology 21, 571-583, (1984),
3. C.C.M Rindt, F.N. VandeVosse, A.A. Van Steenhoven, J.D. Janssen and R.S. Renemanj A numerical and experimental analysis of the human carotid bifurcation, J. of Biomechanics 20, 499-509, (1987),
4. M, Nazemi, C. Kleinstreuer and J,P. Archie, Pulsatile two-dimensional flow and plaque formation in a carotid artery bifurcation, J. of Biomechanics 23 (10), 10311037, (1990),
5. C.M. Pvodkiewicz, P. Sinha and J.S. Kennedy, On the application of a constitutive equation for whole human blood/J. of Biomechanical Engg. 112, 198-204, (1990).
6. P. Boesiger, S.E. Maier, L. Kecheng, M.B. Scheidegger and D. Meier, Visualisation and quantification of the human blood flow by magnetic resonance imaging, J. of Biomechanics 25, 55-67, (1992).
7. K. Perktold, E. Thurner and T. Kenner, Flow and stress characteristics in rigid walled compliant carotid artery bifurcation models, Medical and Biological Engg. and Computing 32, 19-26, (1994).
8. G.C. Sharma and J. Kapoor, Finite element computations of two-dimensional arterial now in the presence of a transverse magnetic field, International J. for Numerical Methods in Fluid Dynamics 20. 1153-1161, (1995).
9. A. Dutta and J.M. Tarbell, Influence of non-Newtonian behavior of blood on flow in an elastic artery model, ASME J. of Biomechanical Engg. 118, 111-119, (1996).
10. R, Lee and P. Libby, The unstable atheroma, Arteriosclerosis Thrombosis Vascular Biology 17, 1859-1867, (1997),
11. R. Korenaga, J. Ando and A. Kamiya, The effect of laminar flow on the gen ${ }^{\wedge}$ expression of the adhesion molecule in endothelial cells, Japanese J. of Medical Electronics and Biological Engg. 36, 266-272, (1998).
A. Raehev, N. Stergiopelos and J.J. Meister, A model for geometric and mechanical adaptation of arteries to sustained hypertension, J. of Biomechanical Engg. 120, 917, (1998),
12. J.M. Rees and D.S. Thompson, Shear stress in arterial stenoses: A momentum integral model, J, of Biomechanics 31, 1051-1057, (1998).
13. D. Tang, C. Yang. Y. Huang and D.N: Ku, Wall stress and strain analysis using a three-dimensional thick wall.model with fluid-structure interactions for blood flow in carotid arteries with stenoses, Computers and Structures 72, 341-377, (1999).
14. G,R. Zendehbudi arid M.S. Moayari, Comparison of physiological and simple pulsatile flows through stenosed arteries, J. of Biomechanics 32, 959-965, (1999).
15. S.A, Berger and L.D. Jou, Flows in stenotic vessels, Annual Review of Fluid Mechanics 32, 347-384, (2000).
16. R, Botnar, G. Rappitch. M.B. Scheidegger, D. Liepsch, P. Perktold and R Boe\&iger, Hemodynainica in the carotid artery bifurcation; A comparison between numerical simulation and in vitro MBI measurements, J, of Biomechanics 33, 137144, (2000).
17. J.S. Stroud, S.A. Berger and D. Saloner, Influence of stenpsis morphology on flow through severely stenotic vessels: Implications for plaque rupture, J. of Biomechanics 33, 443-455, (2000).
18. G.C. Sharma, M. Jain and A. Kumar, Finite element Galerkin approach for a computational study of arterial flow, Applied Mathematics and Mechanics 22 (9), 1012-1018, (September 2001),
19. W.R. Milnor, Hemodynamics, Second Edition, Williams and Wilkins, Baltmore, MD, (1989).
20. K. C. White, Hemo-dynamics and wall shear rate measurements in the abdominal aorta of dogs, Ph.D, Thesis, The Pennsylvania State University, (1991).
21. A, Dutta, D.M. Wang and J.M. Tarbell, Numerical analysis of flow in an elastic artery model, ASME J. of Biomechanical Engg. 1.14, 26-32, (1992).
22. D.J. Patel, J.S. Janicki, R.N. Vaishnav and J.T. Young, Circulation Research 32, 93-98, (1973).

Global Journals Inc. (US) Guidelines Handbook 2014 WWW.GLOBALJOURNALS.ORG

Fellows

FELLOW OF ASSOCIATION OF RESEARCH SOCIETY IN SCIENCE (FARSS)

Global Journals Incorporate (USA) is accredited by Open Association of Research Society (OARS), U.S.A and in turn, awards "FARSS" title to individuals. The 'FARSS' title is accorded to a selected professional after the approval of the Editor-inChief/Editorial Board Members/Dean.

The "FARSS" is a dignified title which is accorded to a person's name viz. Dr. John E. Hall, Ph.D., FARSS or William Walldroff, M.S., FARSS.

FARSS accrediting is an honor. It authenticates your research activities. After recognition as FARSB, you can add 'FARSS' title with your name as you use this recognition as additional suffix to your status. This will definitely enhance and add more value and repute to your name. You may use it on your professional Counseling Materials such as CV, Resume, and Visiting Card etc.
The following benefits can be availed by you only for next three years from the date of certification:

FARSS designated members are entitled to avail a 40% discount while publishing their research papers (of a single author) with Global Journals Incorporation (USA), if the same is accepted by Editorial Board/Peer Reviewers. If you are a main author or coauthor in case of multiple authors, you will be entitled to avail discount of 10%.

Once FARSB title is accorded, the Fellow is authorized to organize a symposium/seminar/conference on behalf of Global Journal Incorporation (USA). The Fellow can also participate in conference/seminar/symposium organized by another institution as representative of Global Journal. In both the cases, it is mandatory for
 him to discuss with us and obtain our consent.

You may join as member of the Editorial Board of Global Journals Incorporation (USA) after successful completion of three years as Fellow and as Peer Reviewer. In addition, it is also desirable that you should organize seminar/symposium/conference at least once.

We shall provide you intimation regarding launching of e-version of journal of your stream time to time.This may be utilized in your library for the enrichment of knowledge of your students as well as it can also be helpful for the concerned faculty members.

Journals Research

The FARSS can go through standards of OARS. You can also play vital role if you have any suggestions so that proper amendment can take place to improve the same for the benefit of entire research community.

As FARSS, you will be given a renowned, secure and free professional email address with 100 GB of space e.g. johnhall@globaljournals.org. This will include Webmail,
 Spam Assassin, Email Forwarders,Auto-Responders, Email Delivery Route tracing, etc.

The FARSS will be eligible for a free application of standardization of their researches.
 Standardization of research will be subject to acceptability within stipulated norms as the next step after publishing in a journal. We shall depute a team of specialized research professionals who will render their services for elevating your researches to next higher level, which is worldwide open standardization.

The FARSS member can apply for grading and certification of standards of their educational and Institutional Degrees to Open Association of Research, Society U.S.A. Once you are designated as FARSS, you may send us a scanned copy of all of your credentials. OARS will verify, grade and certify them. This will be based on your academic records, quality of research papers published by you, and some more criteria. After certification of all your credentials by OARS, they will be published on your Fellow Profile link on website https://associationofresearch.org which will be helpful to upgrade the dignity.

The FARSS members can avail the benefits of free research podcasting in Global Research Radio with their research documents. After publishing the work, (including published elsewhere worldwide with proper authorization) you can upload your research paper with your recorded voice or you can utilize chargeable services of our professional RJs to record your paper in their voice on request.

The FARSS member also entitled to get the benefits of free research podcasting of their research documents through video clips. We can also streamline your conference videos and display your slides/ online slides and online research video clips at reasonable charges, on request.

The FARSS is eligible to earn from sales proceeds of his/her researches/reference/review Books or literature, while publishing with Global Journals. The FARSS can decide whether he/she would like to publish his/her research in a closed manner. In this case, whenever readers purchase that individual research paper for reading, maximum 60% of its profit earned as royalty by Global Journals, will be credited to his/her bank account. The entire entitled amount will be credited to his/her bank account exceeding limit of minimum fixed balance. There is no minimum time limit for collection. The FARSS member can decide its price and we can help in making the right decision.

The FARSS member is eligible to join as a paid peer reviewer at Global Journals Incorporation (USA) and can get remuneration of 15% of author fees, taken from the author of a respective paper. After reviewing 5 or more papers you can request to transfer the amount to your bank account.

MEMBER OF ASSOCIATION OF RESEARCH SOCIETY IN SCIENCE (MARSS)

The ' MARSS ' title is accorded to a selected professional after the approval of the Editor-in-Chief / Editorial Board Members/Dean.

The "MARSS" is a dignified ornament which is accorded to a person's name viz. Dr. John E. Hall, Ph.D., MARSS or William Walldroff, M.S., MARSS.

MARSS accrediting is an honor. It authenticates your research activities. After becoming MARSS, you can add 'MARSS' title with your name as you use this recognition as additional suffix to your status. This will definitely enhance and add more value and repute to your name. You may use it on your professional Counseling Materials such as CV, Resume, Visiting Card and Name Plate etc.

The following benefitscan be availed by you only for next three years from the date of certification.

MARSS designated members are entitled to avail a 25% discount while publishing their research papers (of a single author) in Global Journals Inc., if the same is accepted by our Editorial Board and Peer Reviewers. If you are a main author or coauthor of a group of authors, you will get discount of 10%.

As MARSS, you will be given a renowned, secure and free professional email address with 30 GB of space e.g. johnhall@globaljournals.org. This will include Webmail, Spam Assassin, Email Forwarders,Auto-Responders, Email Delivery Route tracing, etc.

We shall provide you intimation regarding launching of e-version of journal of your stream time to time.This may be utilized in your library for the enrichment of knowledge of your students as well as it can also be helpful for the concerned faculty members.

The MARSS member can apply for approval, grading and certification of standards of their educational and Institutional Degrees to Open Association of Research, Society U.S.A.

Once you are designated as MARSS, you may send us a scanned copy of all of your credentials. OARS will verify, grade and certify them. This will be based on your academic records, quality of research papers published by you, and some more criteria.

It is mandatory to read all terms and conditions carefully.

AUXILIARY MEMBERSHIPS

Institutional Fellow of Global Journals Incorporation (USA)-OARS (USA)

Global Journals Incorporation (USA) is accredited by Open Association of Research Society, U.S.A (OARS) and in turn, affiliates research institutions as "Institutional Fellow of Open Association of Research Society" (IFOARS).
The "FARSC" is a dignified title which is accorded to a person's name viz. Dr. John E.
 Hall, Ph.D., FARSC or William Walldroff, M.S., FARSC.
The IFOARS institution is entitled to form a Board comprised of one Chairperson and three to five board members preferably from different streams. The Board will be recognized as "Institutional Board of Open Association of Research Society"-(IBOARS).
The Institute will be entitled to following benefits:

The IBOARS can initially review research papers of their institute and recommend them to publish with respective journal of Global Journals. It can also review the papers of other institutions after obtaining our consent. The second review will be done by peer reviewer of Global Journals Incorporation (USA) The Board is at liberty to appoint a peer reviewer with the approval of chairperson after consulting us.
The author fees of such paper may be waived off up to 40%.
The Global Journals Incorporation (USA) at its discretion can also refer double blind peer reviewed paper at their end to the board for the verification and to get recommendation for final stage of acceptance of publication.

The IBOARS can organize symposium/seminar/conference in their couniuy urincriar ú Global Journals Incorporation (USA)-OARS (USA). The terms and conditions can be discussed separately.

The Board can also play vital role by exploring and giving valuable suggestions regarding the Standards of "Open Association of Research Society, U.S.A (OARS)" so that proper amendment can take place for the benefit of entire research community. We shall provide details of particular standard only on receipt of request from the
 Board.

The board members can also join us as Individual Fellow with 40% discount on total fees applicable to Individual Fellow. They will be entitled to avail all the benefits as declared. Please visit Individual Fellow-sub menu of GlobalJournals.org to have more relevant details.

We shall provide you intimation regarding launching of e-version of journal of your stream time to time. This may be utilized in your library for the enrichment of knowledge of your students as well as it can also be helpful for the concerned faculty members.

After nomination of your institution as "Institutional Fellow" and constantly functioning successfully for one year, we can consider giving recognition to your institute to function as Regional/Zonal office on our behalf.
The board can also take up the additional allied activities for betterment after our consultation.

The following entitlements are applicable to individual Fellows:

Open Association of Research Society, U.S.A (OARS) By-laws states that an individual Fellow may use the designations as applicable, or the corresponding initials. The Credentials of individual Fellow and Associate designations signify that the individual has gained knowledge of the fundamental concepts. One is magnanimous and proficient in an expertise course covering the professional code of conduct, and follows recognized standards of practice.

Open Association of Research Society (US)/ Global Journals Incorporation (USA), as described in Corporate Statements, are educational, research publishing and professional membership organizations. Achieving our individual Fellow or Associate status is based mainly on meeting stated educational research requirements.

Disbursement of 40\% Royalty earned through Global Journals : Researcher $=50 \%$, Peer Reviewer $=37.50 \%$, Institution $=12.50 \%$ E.g. Out of 40%, the 20% benefit should be passed on to researcher, 15 \% benefit towards remuneration should be given to a reviewer and remaining 5% is to be retained by the institution.

We shall provide print version of 12 issues of any three journals [as per your requirement] out of our 38 journals worth \$ 2376 USD.

Other:

The individual Fellow and Associate designations accredited by Open Association of Research Society (US) credentials signify guarantees following achievements:
> The professional accredited with Fellow honor, is entitled to various benefits viz. name, fame, honor, regular flow of income, secured bright future, social status etc.
$>$ In addition to above, if one is single author, then entitled to 40% discount on publishing research paper and can get 10% discount if one is co-author or main author among group of authors.
> The Fellow can organize symposium/seminar/conference on behalf of Global Journals Incorporation (USA) and he/she can also attend the same organized by other institutes on behalf of Global Journals.
> The Fellow can become member of Editorial Board Member after completing 3yrs.
$>$ The Fellow can earn 60% of sales proceeds from the sale of reference/review books/literature/publishing of research paper.
$>$ Fellow can also join as paid peer reviewer and earn 15% remuneration of author charges and can also get an opportunity to join as member of the Editorial Board of Global Journals Incorporation (USA)

- This individual has learned the basic methods of applying those concepts and techniques to common challenging situations. This individual has further demonstrated an in-depth understanding of the application of suitable techniques to a particular area of research practice.

Note :

```
"
```

> In future, if the board feels the necessity to change any board member, the same can be done with the consent of the chairperson along with anyone board member without our approval.
$>$ In case, the chairperson needs to be replaced then consent of $2 / 3$ rd board members are required and they are also required to jointly pass the resolution copy of which should be sent to us. In such case, it will be compulsory to obtain our approval before replacement.
> In case of "Difference of Opinion [if any]" among the Board members, our decision will be final and binding to everyone.

Process of submission of Research Paper

The Area or field of specialization may or may not be of any category as mentioned in 'Scope of Journal' menu of the GlobalJournals.org website. There are 37 Research Journal categorized with Six parental Journals GJCST, GJMR, GJRE, GJMBR, GJSFR, GJHSS. For Authors should prefer the mentioned categories. There are three widely used systems UDC, DDC and LCC. The details are available as 'Knowledge Abstract' at Home page. The major advantage of this coding is that, the research work will be exposed to and shared with all over the world as we are being abstracted and indexed worldwide.

The paper should be in proper format. The format can be downloaded from first page of 'Author Guideline' Menu. The Author is expected to follow the general rules as mentioned in this menu. The paper should be written in MS-Word Format (*.DOC,*.DOCX).

The Author can submit the paper either online or offline. The authors should prefer online submission. Online Submission: There are three ways to submit your paper:
(A) (I) First, register yourself using top right corner of Home page then Login. If you are already registered, then login using your username and password.
(II) Choose corresponding Journal.
(III) Click 'Submit Manuscript'. Fill required information and Upload the paper.
(B) If you are using Internet Explorer, then Direct Submission through Homepage is also available.
(C) If these two are not conveninet, and then email the paper directly to dean@globaljournals.org.

Offline Submission: Author can send the typed form of paper by Post. However, online submission should be preferred.
© Copyright by Global Journals Inc.(US)| Guidelines Handbook

Preferred Author Guidelines

MANUSCRIPT STYLE INSTRUCTION (Must be strictly followed)

Page Size: 8.27" X 11'

- Left Margin: 0.65
- Right Margin: 0.65
- Top Margin: 0.75
- Bottom Margin: 0.75
- Font type of all text should be Swis 721 Lt BT.
- Paper Title should be of Font Size 24 with one Column section.
- Author Name in Font Size of 11 with one column as of Title.
- Abstract Font size of 9 Bold, "Abstract" word in Italic Bold.
- Main Text: Font size 10 with justified two columns section
- Two Column with Equal Column with of 3.38 and Gaping of . 2
- First Character must be three lines Drop capped.
- Paragraph before Spacing of 1 pt and After of 0 pt .
- Line Spacing of 1 pt
- Large Images must be in One Column
- Numbering of First Main Headings (Heading 1) must be in Roman Letters, Capital Letter, and Font Size of 10.
- Numbering of Second Main Headings (Heading 2) must be in Alphabets, Italic, and Font Size of 10.

You can use your own standard format also.

Author Guidelines:

1. General,
2. Ethical Guidelines,
3. Submission of Manuscripts,
4. Manuscript's Category,
5. Structure and Format of Manuscript,
6. After Acceptance.

1. GENERAL

Before submitting your research paper, one is advised to go through the details as mentioned in following heads. It will be beneficial, while peer reviewer justify your paper for publication.

Scope

The Global Journals Inc. (US) welcome the submission of original paper, review paper, survey article relevant to the all the streams of Philosophy and knowledge. The Global Journals Inc. (US) is parental platform for Global Journal of Computer Science and Technology, Researches in Engineering, Medical Research, Science Frontier Research, Human Social Science, Management, and Business organization. The choice of specific field can be done otherwise as following in Abstracting and Indexing Page on this Website. As the all Global

Journals Inc. (US) are being abstracted and indexed (in process) by most of the reputed organizations. Topics of only narrow interest will not be accepted unless they have wider potential or consequences.

2. ETHICAL GUIDELINES

Authors should follow the ethical guidelines as mentioned below for publication of research paper and research activities.
Papers are accepted on strict understanding that the material in whole or in part has not been, nor is being, considered for publication elsewhere. If the paper once accepted by Global Journals Inc. (US) and Editorial Board, will become the copyright of the Global Journals Inc. (US).

Authorship: The authors and coauthors should have active contribution to conception design, analysis and interpretation of findings. They should critically review the contents and drafting of the paper. All should approve the final version of the paper before submission

The Global Journals Inc. (US) follows the definition of authorship set up by the Global Academy of Research and Development. According to the Global Academy of R\&D authorship, criteria must be based on:

1) Substantial contributions to conception and acquisition of data, analysis and interpretation of the findings.
2) Drafting the paper and revising it critically regarding important academic content.
3) Final approval of the version of the paper to be published.

All authors should have been credited according to their appropriate contribution in research activity and preparing paper. Contributors who do not match the criteria as authors may be mentioned under Acknowledgement.

Acknowledgements: Contributors to the research other than authors credited should be mentioned under acknowledgement. The specifications of the source of funding for the research if appropriate can be included. Suppliers of resources may be mentioned along with address.

Appeal of Decision: The Editorial Board's decision on publication of the paper is final and cannot be appealed elsewhere.
Permissions: It is the author's responsibility to have prior permission if all or parts of earlier published illustrations are used in this paper.

Please mention proper reference and appropriate acknowledgements wherever expected.
If all or parts of previously published illustrations are used, permission must be taken from the copyright holder concerned. It is the author's responsibility to take these in writing.

Approval for reproduction/modification of any information (including figures and tables) published elsewhere must be obtained by the authors/copyright holders before submission of the manuscript. Contributors (Authors) are responsible for any copyright fee involved.

3. SUBMISSION OF MANUSCRIPTS

Manuscripts should be uploaded via this online submission page. The online submission is most efficient method for submission of papers, as it enables rapid distribution of manuscripts and consequently speeds up the review procedure. It also enables authors to know the status of their own manuscripts by emailing us. Complete instructions for submitting a paper is available below.

Manuscript submission is a systematic procedure and little preparation is required beyond having all parts of your manuscript in a given format and a computer with an Internet connection and a Web browser. Full help and instructions are provided on-screen. As an author, you will be prompted for login and manuscript details as Field of Paper and then to upload your manuscript file(s) according to the instructions.

To avoid postal delays, all transaction is preferred by e-mail. A finished manuscript submission is confirmed by e-mail immediately and your paper enters the editorial process with no postal delays. When a conclusion is made about the publication of your paper by our Editorial Board, revisions can be submitted online with the same procedure, with an occasion to view and respond to all comments.

Complete support for both authors and co-author is provided.

4. MANUSCRIPT'S CATEGORY

Based on potential and nature, the manuscript can be categorized under the following heads:
Original research paper: Such papers are reports of high-level significant original research work.
Review papers: These are concise, significant but helpful and decisive topics for young researchers.
Research articles: These are handled with small investigation and applications
Research letters: The letters are small and concise comments on previously published matters.

5.STRUCTURE AND FORMAT OF MANUSCRIPT

The recommended size of original research paper is less than seven thousand words, review papers fewer than seven thousands words also. Preparation of research paper or how to write research paper, are major hurdle, while writing manuscript. The research articles and research letters should be fewer than three thousand words, the structure original research paper; sometime review paper should be as follows:

Papers: These are reports of significant research (typically less than 7000 words equivalent, including tables, figures, references), and comprise:
(a)Title should be relevant and commensurate with the theme of the paper.
(b) A brief Summary, "Abstract" (less than 150 words) containing the major results and conclusions.
(c) Up to ten keywords, that precisely identifies the paper's subject, purpose, and focus.
(d) An Introduction, giving necessary background excluding subheadings; objectives must be clearly declared.
(e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition; sources of information must be given and numerical methods must be specified by reference, unless non-standard.
(f) Results should be presented concisely, by well-designed tables and/or figures; the same data may not be used in both; suitable statistical data should be given. All data must be obtained with attention to numerical detail in the planning stage. As reproduced design has been recognized to be important to experiments for a considerable time, the Editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned un-refereed;
(g) Discussion should cover the implications and consequences, not just recapitulating the results; conclusions should be summarizing.
(h) Brief Acknowledgements.
(i) References in the proper form.

Authors should very cautiously consider the preparation of papers to ensure that they communicate efficiently. Papers are much more likely to be accepted, if they are cautiously designed and laid out, contain few or no errors, are summarizing, and be conventional to the approach and instructions. They will in addition, be published with much less delays than those that require much technical and editorial correction.

The Editorial Board reserves the right to make literary corrections and to make suggestions to improve briefness.

It is vital, that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

Format

Language: The language of publication is UK English. Authors, for whom English is a second language, must have their manuscript efficiently edited by an English-speaking person before submission to make sure that, the English is of high excellence. It is preferable, that manuscripts should be professionally edited.

Standard Usage, Abbreviations, and Units: Spelling and hyphenation should be conventional to The Concise Oxford English Dictionary. Statistics and measurements should at all times be given in figures, e.g. 16 min , except for when the number begins a sentence. When the number does not refer to a unit of measurement it should be spelt in full unless, it is 160 or greater.

Abbreviations supposed to be used carefully. The abbreviated name or expression is supposed to be cited in full at first usage, followed by the conventional abbreviation in parentheses.

Metric SI units are supposed to generally be used excluding where they conflict with current practice or are confusing. For illustration, 1.4 I rather than $1.4 \times 10-3 \mathrm{~m} 3$, or 4 mm somewhat than $4 \times 10-3 \mathrm{~m}$. Chemical formula and solutions must identify the form used, e.g. anhydrous or hydrated, and the concentration must be in clearly defined units. Common species names should be followed by underlines at the first mention. For following use the generic name should be constricted to a single letter, if it is clear.

Structure

All manuscripts submitted to Global Journals Inc. (US), ought to include:

Title: The title page must carry an instructive title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) wherever the work was carried out. The full postal address in addition with the email address of related author must be given. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining and indexing.

Abstract, used in Original Papers and Reviews:

Optimizing Abstract for Search Engines

Many researchers searching for information online will use search engines such as Google, Yahoo or similar. By optimizing your paper for search engines, you will amplify the chance of someone finding it. This in turn will make it more likely to be viewed and/or cited in a further work. Global Journals Inc. (US) have compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.

Key Words

A major linchpin in research work for the writing research paper is the keyword search, which one will employ to find both library and Internet resources.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy and planning a list of possible keywords and phrases to try.

Search engines for most searches, use Boolean searching, which is somewhat different from Internet searches. The Boolean search uses "operators," words (and, or, not, and near) that enable you to expand or narrow your affords. Tips for research paper while preparing research paper are very helpful guideline of research paper.

Choice of key words is first tool of tips to write research paper. Research paper writing is an art.A few tips for deciding as strategically as possible about keyword search:

© Copyright by Global Journals Inc.(US)| Guidelines Handbook

- One should start brainstorming lists of possible keywords before even begin searching. Think about the most important concepts related to research work. Ask, "What words would a source have to include to be truly valuable in research paper?" Then consider synonyms for the important words.
- It may take the discovery of only one relevant paper to let steer in the right keyword direction because in most databases, the keywords under which a research paper is abstracted are listed with the paper.
- One should avoid outdated words.

Keywords are the key that opens a door to research work sources. Keyword searching is an art in which researcher's skills are bound to improve with experience and time.

Numerical Methods: Numerical methods used should be clear and, where appropriate, supported by references.

Acknowledgements: Please make these as concise as possible.

References

References follow the Harvard scheme of referencing. References in the text should cite the authors' names followed by the time of their publication, unless there are three or more authors when simply the first author's name is quoted followed by et al. unpublished work has to only be cited where necessary, and only in the text. Copies of references in press in other journals have to be supplied with submitted typescripts. It is necessary that all citations and references be carefully checked before submission, as mistakes or omissions will cause delays.

References to information on the World Wide Web can be given, but only if the information is available without charge to readers on an official site. Wikipedia and Similar websites are not allowed where anyone can change the information. Authors will be asked to make available electronic copies of the cited information for inclusion on the Global Journals Inc. (US) homepage at the judgment of the Editorial Board.

The Editorial Board and Global Journals Inc. (US) recommend that, citation of online-published papers and other material should be done via a DOI (digital object identifier). If an author cites anything, which does not have a DOI, they run the risk of the cited material not being noticeable.

The Editorial Board and Global Journals Inc. (US) recommend the use of a tool such as Reference Manager for reference management and formatting.

Tables, Figures and Figure Legends

Tables: Tables should be few in number, cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g. Table 4, a self-explanatory caption and be on a separate sheet. Vertical lines should not be used.

Figures: Figures are supposed to be submitted as separate files. Always take in a citation in the text for each figure using Arabic numbers, e.g. Fig. 4. Artwork must be submitted online in electronic form by e-mailing them.

Preparation of Electronic Figures for Publication
Even though low quality images are sufficient for review purposes, print publication requires high quality images to prevent the final product being blurred or fuzzy. Submit (or e-mail) EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Do not use pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings) in relation to the imitation size. Please give the data for figures in black and white or submit a Color Work Agreement Form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution (at final image size) ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs) : >350 dpi; figures containing both halftone and line images: >650 dpi.

Color Charges: It is the rule of the Global Journals Inc. (US) for authors to pay the full cost for the reproduction of their color artwork. Hence, please note that, if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a color work agreement form before your paper can be published.

Figure Legends: Self-explanatory legends of all figures should be incorporated separately under the heading 'Legends to Figures'. In the full-text online edition of the journal, figure legends may possibly be truncated in abbreviated links to the full screen version. Therefore, the first 100 characters of any legend should notify the reader, about the key aspects of the figure.

6. AFTER ACCEPTANCE

Upon approval of a paper for publication, the manuscript will be forwarded to the dean, who is responsible for the publication of the Global Journals Inc. (US).

6.1 Proof Corrections

The corresponding author will receive an e-mail alert containing a link to a website or will be attached. A working e-mail address must therefore be provided for the related author.

Acrobat Reader will be required in order to read this file. This software can be downloaded
(Free of charge) from the following website:
www.adobe.com/products/acrobat/readstep2.html. This will facilitate the file to be opened, read on screen, and printed out in order for any corrections to be added. Further instructions will be sent with the proof.

Proofs must be returned to the dean at dean@globaljournals.org within three days of receipt.
As changes to proofs are costly, we inquire that you only correct typesetting errors. All illustrations are retained by the publisher. Please note that the authors are responsible for all statements made in their work, including changes made by the copy editor.

6.2 Early View of Global Journals Inc. (US) (Publication Prior to Print)

The Global Journals Inc. (US) are enclosed by our publishing's Early View service. Early View articles are complete full-text articles sent in advance of their publication. Early View articles are absolute and final. They have been completely reviewed, revised and edited for publication, and the authors' final corrections have been incorporated. Because they are in final form, no changes can be made after sending them. The nature of Early View articles means that they do not yet have volume, issue or page numbers, so Early View articles cannot be cited in the conventional way.

6.3 Author Services

Online production tracking is available for your article through Author Services. Author Services enables authors to track their article once it has been accepted - through the production process to publication online and in print. Authors can check the status of their articles online and choose to receive automated e-mails at key stages of production. The authors will receive an e-mail with a unique link that enables them to register and have their article automatically added to the system. Please ensure that a complete e-mail address is provided when submitting the manuscript.

6.4 Author Material Archive Policy

Please note that if not specifically requested, publisher will dispose off hardcopy \& electronic information submitted, after the two months of publication. If you require the return of any information submitted, please inform the Editorial Board or dean as soon as possible.

6.5 Offprint and Extra Copies

A PDF offprint of the online-published article will be provided free of charge to the related author, and may be distributed according to the Publisher's terms and conditions. Additional paper offprint may be ordered by emailing us at: editor@globaljournals.org .

Before start writing a good quality Computer Science Research Paper, let us first understand what is Computer Science Research Paper? So, Computer Science Research Paper is the paper which is written by professionals or scientists who are associated to Computer Science and Information Technology, or doing research study in these areas. If you are novel to this field then you can consult about this field from your supervisor or guide.

TECHNIQUES FOR WRITING A GOOD QUALITY RESEARCH PAPER:

1. Choosing the topic: In most cases, the topic is searched by the interest of author but it can be also suggested by the guides. You can have several topics and then you can judge that in which topic or subject you are finding yourself most comfortable. This can be done by asking several questions to yourself, like Will I be able to carry our search in this area? Will I find all necessary recourses to accomplish the search? Will I be able to find all information in this field area? If the answer of these types of questions will be "Yes" then you can choose that topic. In most of the cases, you may have to conduct the surveys and have to visit several places because this field is related to Computer Science and Information Technology. Also, you may have to do a lot of work to find all rise and falls regarding the various data of that subject. Sometimes, detailed information plays a vital role, instead of short information.
2. Evaluators are human: First thing to remember that evaluators are also human being. They are not only meant for rejecting a paper. They are here to evaluate your paper. So, present your Best.
3. Think Like Evaluators: If you are in a confusion or getting demotivated that your paper will be accepted by evaluators or not, then think and try to evaluate your paper like an Evaluator. Try to understand that what an evaluator wants in your research paper and automatically you will have your answer.
4. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.
5. Ask your Guides: If you are having any difficulty in your research, then do not hesitate to share your difficulty to your guide (if you have any). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work then ask the supervisor to help you with the alternative. He might also provide you the list of essential readings.
6. Use of computer is recommended: As you are doing research in the field of Computer Science, then this point is quite obvious.
7. Use right software: Always use good quality software packages. If you are not capable to judge good software then you can lose quality of your paper unknowingly. There are various software programs available to help you, which you can get through Internet.
8. Use the Internet for help: An excellent start for your paper can be by using the Google. It is an excellent search engine, where you can have your doubts resolved. You may also read some answers for the frequent question how to write my research paper or find model research paper. From the internet library you can download books. If you have all required books make important reading selecting and analyzing the specified information. Then put together research paper sketch out.
9. Use and get big pictures: Always use encyclopedias, Wikipedia to get pictures so that you can go into the depth.
10. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right! It is a good habit, which helps to not to lose your continuity. You should always use bookmarks while searching on Internet also, which will make your search easier.
11. Revise what you wrote: When you write anything, always read it, summarize it and then finalize it.
12. Make all efforts: Make all efforts to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in introduction, that what is the need of a particular research paper. Polish your work by good skill of writing and always give an evaluator, what he wants.
13. Have backups: When you are going to do any important thing like making research paper, you should always have backup copies of it either in your computer or in paper. This will help you to not to lose any of your important.
14. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. Using several and unnecessary diagrams will degrade the quality of your paper by creating "hotchpotch." So always, try to make and include those diagrams, which are made by your own to improve readability and understandability of your paper.
15. Use of direct quotes: When you do research relevant to literature, history or current affairs then use of quotes become essential but if study is relevant to science then use of quotes is not preferable.
16. Use proper verb tense: Use proper verb tenses in your paper. Use past tense, to present those events that happened. Use present tense to indicate events that are going on. Use future tense to indicate future happening events. Use of improper and wrong tenses will confuse the evaluator. Avoid the sentences that are incomplete.
17. Never use online paper: If you are getting any paper on Internet, then never use it as your research paper because it might be possible that evaluator has already seen it or maybe it is outdated version.
18. Pick a good study spot: To do your research studies always try to pick a spot, which is quiet. Every spot is not for studies. Spot that suits you choose it and proceed further.
19. Know what you know: Always try to know, what you know by making objectives. Else, you will be confused and cannot achieve your target.
20. Use good quality grammar: Always use a good quality grammar and use words that will throw positive impact on evaluator. Use of good quality grammar does not mean to use tough words, that for each word the evaluator has to go through dictionary. Do not start sentence with a conjunction. Do not fragment sentences. Eliminate one-word sentences. Ignore passive voice. Do not ever use a big word when a diminutive one would suffice. Verbs have to be in agreement with their subjects. Prepositions are not expressions to finish sentences with. It is incorrect to ever divide an infinitive. Avoid clichés like the disease. Also, always shun irritating alliteration. Use language that is simple and straight forward. put together a neat summary.
21. Arrangement of information: Each section of the main body should start with an opening sentence and there should be a changeover at the end of the section. Give only valid and powerful arguments to your topic. You may also maintain your arguments with records.
22. Never start in last minute: Always start at right time and give enough time to research work. Leaving everything to the last minute will degrade your paper and spoil your work.
23. Multitasking in research is not good: Doing several things at the same time proves bad habit in case of research activity. Research is an area, where everything has a particular time slot. Divide your research work in parts and do particular part in particular time slot.
24. Never copy others' work: Never copy others' work and give it your name because if evaluator has seen it anywhere you will be in trouble.
25. Take proper rest and food: No matter how many hours you spend for your research activity, if you are not taking care of your health then all your efforts will be in vain. For a quality research, study is must, and this can be done by taking proper rest and food.
26. Go for seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources.
27. Refresh your mind after intervals: Try to give rest to your mind by listening to soft music or by sleeping in intervals. This will also improve your memory.
28. Make colleagues: Always try to make colleagues. No matter how sharper or intelligent you are, if you make colleagues you can have several ideas, which will be helpful for your research.
29. Think technically: Always think technically. If anything happens, then search its reasons, its benefits, and demerits.
30. Think and then print: When you will go to print your paper, notice that tables are not be split, headings are not detached from their descriptions, and page sequence is maintained.
31. Adding unnecessary information: Do not add unnecessary information, like, I have used MS Excel to draw graph. Do not add irrelevant and inappropriate material. These all will create superfluous. Foreign terminology and phrases are not apropos. One should NEVER take a broad view. Analogy in script is like feathers on a snake. Not at all use a large word when a very small one would be sufficient. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grunt readers. Amplification is a billion times of inferior quality than sarcasm.
32. Never oversimplify everything: To add material in your research paper, never go for oversimplification. This will definitely irritate the evaluator. Be more or less specific. Also too, by no means, ever use rhythmic redundancies. Contractions aren't essential and shouldn't be there used. Comparisons are as terrible as clichés. Give up ampersands and abbreviations, and so on. Remove commas, that are, not necessary. Parenthetical words however should be together with this in commas. Understatement is all the time the complete best way to put onward earth-shaking thoughts. Give a detailed literary review.
33. Report concluded results: Use concluded results. From raw data, filter the results and then conclude your studies based on measurements and observations taken. Significant figures and appropriate number of decimal places should be used. Parenthetical remarks are prohibitive. Proofread carefully at final stage. In the end give outline to your arguments. Spot out perspectives of further study of this subject. Justify your conclusion by at the bottom of them with sufficient justifications and examples.
34. After conclusion: Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium though which your research is going to be in print to the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects in your research.

Informal Guidelines of Research Paper Writing

Key points to remember:

- Submit all work in its final form.
- Write your paper in the form, which is presented in the guidelines using the template.
- Please note the criterion for grading the final paper by peer-reviewers.

Final Points:

A purpose of organizing a research paper is to let people to interpret your effort selectively. The journal requires the following sections, submitted in the order listed, each section to start on a new page.

The introduction will be compiled from reference matter and will reflect the design processes or outline of basis that direct you to make study. As you will carry out the process of study, the method and process section will be constructed as like that. The result segment will show related statistics in nearly sequential order and will direct the reviewers next to the similar intellectual paths throughout the data that you took to carry out your study. The discussion section will provide understanding of the data and projections as to the implication of the results. The use of good quality references all through the paper will give the effort trustworthiness by representing an alertness of prior workings.

Writing a research paper is not an easy job no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record keeping are the only means to make straightforward the progression.

General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear

- Adhere to recommended page limits

Mistakes to evade

- Insertion a title at the foot of a page with the subsequent text on the next page
- Separating a table/chart or figure - impound each figure/table to a single page
- Submitting a manuscript with pages out of sequence

In every sections of your document

- Use standard writing style including articles ("a", "the," etc.)
- Keep on paying attention on the research topic of the paper
- Use paragraphs to split each significant point (excluding for the abstract)
- Align the primary line of each section
- Present your points in sound order
- Use present tense to report well accepted
- Use past tense to describe specific results
- Shun familiar wording, don't address the reviewer directly, and don't use slang, slang language, or superlatives
- Shun use of extra pictures - include only those figures essential to presenting results

Title Page:

Choose a revealing title. It should be short. It should not have non-standard acronyms or abbreviations. It should not exceed two printed lines. It should include the name(s) and address (es) of all authors.

Abstract:

The summary should be two hundred words or less. It should briefly and clearly explain the key findings reported in the manuscript-must have precise statistics. It should not have abnormal acronyms or abbreviations. It should be logical in itself. Shun citing references at this point.

An abstract is a brief distinct paragraph summary of finished work or work in development. In a minute or less a reviewer can be taught the foundation behind the study, common approach to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Yet, use comprehensive sentences and do not let go readability for briefness. You can maintain it succinct by phrasing sentences so that they provide more than lone rationale. The author can at this moment go straight to shortening the outcome. Sum up the study, with the subsequent elements in any summary. Try to maintain the initial two items to no more than one ruling each.

- Reason of the study - theory, overall issue, purpose
- Fundamental goal
- To the point depiction of the research
- Consequences, including definite statistics - if the consequences are quantitative in nature, account quantitative data; results of any numerical analysis should be reported
- Significant conclusions or questions that track from the research(es)

Approach:

- Single section, and succinct
- As a outline of job done, it is always written in past tense
- A conceptual should situate on its own, and not submit to any other part of the paper such as a form or table
- Center on shortening results - bound background information to a verdict or two, if completely necessary
- What you account in an conceptual must be regular with what you reported in the manuscript
- Exact spelling, clearness of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else

Introduction:

The Introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable to comprehend and calculate the purpose of your study without having to submit to other works. The basis for the study should be offered. Give most important references but shun difficult to make a comprehensive appraisal of the topic. In the introduction, describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will have no attention in your result. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here. Following approach can create a valuable beginning:

- Explain the value (significance) of the study
- Shield the model - why did you employ this particular system or method? What is its compensation? You strength remark on its appropriateness from a abstract point of vision as well as point out sensible reasons for using it.
- Present a justification. Status your particular theory (es) or aim(s), and describe the logic that led you to choose them.
- Very for a short time explain the tentative propose and how it skilled the declared objectives.

Approach:

- Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done.
- Sort out your thoughts; manufacture one key point with every section. If you make the four points listed above, you will need a least of four paragraphs.
- Present surroundings information only as desirable in order hold up a situation. The reviewer does not desire to read the whole thing you know about a topic.
- Shape the theory/purpose specifically - do not take a broad view.
- As always, give awareness to spelling, simplicity and correctness of sentences and phrases.

Procedures (Methods and Materials):

This part is supposed to be the easiest to carve if you have good skills. A sound written Procedures segment allows a capable scientist to replacement your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt for the least amount of information that would permit another capable scientist to spare your outcome but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section. When a technique is used that has been well described in another object, mention the specific item describing a way but draw the basic principle while stating the situation. The purpose is to text all particular resources and broad procedures, so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step by step report of the whole thing you did, nor is a methods section a set of orders.

Materials:

- Explain materials individually only if the study is so complex that it saves liberty this way.
- Embrace particular materials, and any tools or provisions that are not frequently found in laboratories.
- Do not take in frequently found.
- If use of a definite type of tools.
- Materials may be reported in a part section or else they may be recognized along with your measures.

Methods:

- Report the method (not particulars of each process that engaged the same methodology)
- Describe the method entirely
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures
- Simplify - details how procedures were completed not how they were exclusively performed on a particular day.
- If well known procedures were used, account the procedure by name, possibly with reference, and that's all.

Approach:

- It is embarrassed or not possible to use vigorous voice when documenting methods with no using first person, which would focus the reviewer's interest on the researcher rather than the job. As a result when script up the methods most authors use third person passive voice.
- Use standard style in this and in every other part of the paper - avoid familiar lists, and use full sentences.

What to keep away from

- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings - save it for the argument.
- Leave out information that is immaterial to a third party.

Results:

The principle of a results segment is to present and demonstrate your conclusion. Create this part a entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Carry on to be to the point, by means of statistics and tables, if suitable, to present consequences most efficiently.You must obviously differentiate material that would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matter should not be submitted at all except requested by the instructor.

- Sum up your conclusion in text and demonstrate them, if suitable, with figures and tables.
- In manuscript, explain each of your consequences, point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation an exacting study.
- Explain results of control experiments and comprise remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or in manuscript form. What to stay away from
- Do not discuss or infer your outcome, report surroundings information, or try to explain anything.
- Not at all, take in raw data or intermediate calculations in a research manuscript.
- Do not present the similar data more than once.
- Manuscript should complement any figures or tables, not duplicate the identical information.
- Never confuse figures with tables - there is a difference.

Approach

- As forever, use past tense when you submit to your results, and put the whole thing in a reasonable order.
- Put figures and tables, appropriately numbered, in order at the end of the report
- If you desire, you may place your figures and tables properly within the text of your results part.

Figures and tables

- If you put figures and tables at the end of the details, make certain that they are visibly distinguished from any attach appendix materials, such as raw facts
- Despite of position, each figure must be numbered one after the other and complete with subtitle
- In spite of position, each table must be titled, numbered one after the other and complete with heading
- All figure and table must be adequately complete that it could situate on its own, divide from text

Discussion:
The Discussion is expected the trickiest segment to write and describe. A lot of papers submitted for journal are discarded based on problems with the Discussion. There is no head of state for how long a argument should be. Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implication of the study. The purpose here is to offer an understanding of your results and hold up for all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of result should be visibly described. Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved with prospect, and let it drop at that.

- Make a decision if each premise is supported, discarded, or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."
- Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work
- You may propose future guidelines, such as how the experiment might be personalized to accomplish a new idea.
- Give details all of your remarks as much as possible, focus on mechanisms.
- Make a decision if the tentative design sufficiently addressed the theory, and whether or not it was correctly restricted.
- Try to present substitute explanations if sensible alternatives be present.
- One research will not counter an overall question, so maintain the large picture in mind, where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

Approach:

- When you refer to information, differentiate data generated by your own studies from available information
- Submit to work done by specific persons (including you) in past tense.
- Submit to generally acknowledged facts and main beliefs in present tense.

Administration Rules Listed Before Submitting Your Research Paper to Global Journals Inc. (US)

Please carefully note down following rules and regulation before submitting your Research Paper to Global Journals Inc. (US):

Segment Draft and Final Research Paper: You have to strictly follow the template of research paper. If it is not done your paper may get rejected.

- The major constraint is that you must independently make all content, tables, graphs, and facts that are offered in the paper. You must write each part of the paper wholly on your own. The Peer-reviewers need to identify your own perceptive of the concepts in your own terms. NEVER extract straight from any foundation, and never rephrase someone else's analysis.
- Do not give permission to anyone else to "PROOFREAD" your manuscript.
- Methods to avoid Plagiarism is applied by us on every paper, if found guilty, you will be blacklisted by all of our collaborated research groups, your institution will be informed for this and strict legal actions will be taken immediately.)
- To guard yourself and others from possible illegal use please do not permit anyone right to use to your paper and files.

Criterion for Grading a Research Paper (Compilation) by Global Journals Inc. (US)

Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals Inc. (US).

Topics	Grades		
Abstract	A-B	C-D	E-F
	Clear and concise with appropriate content, Correct format. 200 words or below	Unclear summary and no specific data, Incorrect form	No specific data with ambiguous information
		Above 200 words	Above 250 words
Introduction	Containing all background details with clear goal and appropriate details, flow specification, no grammar and spelling mistake, well organized sentence and paragraph, reference cited	Unclear and confusing data, appropriate format, grammar and spelling errors with unorganized matter	Out of place depth and content, hazy format
Methods and Procedures	Clear and to the point with well arranged paragraph, precision and accuracy of facts and figures, well organized subheads	Difficult to comprehend with embarrassed text, too much explanation but completed	Incorrect and unorganized structure with hazy meaning
Result	Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake	Complete and embarrassed text, difficult to comprehend	Irregular format with wrong facts and figures
Discussion	Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph reference cited	Wordy, unclear conclusion, spurious	Conclusion is not cited, unorganized, difficult to comprehend
References	Complete and correct format, well organized	Beside the point, Incomplete	Wrong format and structuring

INDEX

c

CESøRO - 120

D

Demonstrated • 102, 133, 146
Disquisitiones • 27

E

Epidemiology • 30, 46

G

Geodetic • 65, 66, 67, 68, 69, 70, 71, 73

H

Hypergeometric • 1, 3, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, $20,21,22,23,25,26,27,158,159,163,164,166,167$, I

0

Oscillator • 102, 104, 105, 107, 108, 114, 116, 118

P

Perturbation • 49, 50, 102, 105, 116, 118
Perturbation • 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, $62,63,102,116,118$

Q

Quasistationary • 30

T

Thermophoresis • 87

Global Journal of Science Frontier Research

Visit us on the Web at www.GlobalJournals.org | www.JournalofScience.org or email us at helpdesk@globaljournals.org

[^0]: Author α : Department of Mathematics, Sri Siddhartha Institute of Technology, Tumkur, Karnataka.
 e-mail: vmgouda@gmail.com
 Author o: Department of Mathematics Adichunchanagiri Institute of Technology, Chikmagalur, Karnataka.
 e-mail: ethinamane@gmail.com

[^1]: © 2014. Md. Ashraful Babu, Md. Abu Helal, Mohammad Sazzad Hasan \& Utpal Kanti Das. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons. org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^2]: Author a: Faculty, Department of Mathematics, IUBAT-International University of Business Agriculture and Technology Dhaka-1230, Bangladesh. e-mail: ashraful388@gmail.com
 Author σ : Department of Mathematics, IUBAT-International University of Business Agriculture and Technology, Dhaka-1230, Bangladesh. e-mail: abu.helal@iubat.edu
 Authorp: Lecturer, Department of Population Sciences, University of Dhaka, Dhaka-1000, Bangladesh. e-mail: shfuad2011@gmail.com
 Author ω : Department of Computer Science \& Engineering, IUBAT-International University of Business Agriculture and Technology, Dhaka-1230, Bangladesh, e-mail: ukd@iubat.edu

[^3]: Author α : Teegala Krishna Reddy College of Engineering and Technology, Meerpet, Hyderabad, A.P. India.
 e-mail: anilkumardaita@yahoo.in
 Author o: Teegala Krishna Reddy Engineering College, Meerpet, Hyderabad, A.P. India.
 e-mail: yangalav@gmail.com
 Author p: Professor of Mathematics, Director, Academic Staff College, University of Hyderabad, A.P., India.
 e-mail: yakkalan@uohyd.ernet.in

[^4]: Authors a v: Department of Mathematics, Abia State University P M B 2000, Uturu, Nigeria. e-mails: megaobrait@yahoo.com, megaobrait@gmail.com, Jonathan.egemba@gmail.com
 Author p: Department of Mathematics and Statistics,Federal Polytechnic Nekede, P. M. B. 1036, Owerri, Nigeria.
 e-mail: Uzomaphilip@gmail.com

[^5]: Author α : P.D.M College of Engineering, Bahadurgarh, Haryana, India e-mails: sludn@yahoo.com, vsludn@gmail.com
 Author $\sigma:$ International Scientific Research and Welfare Organization, New Delhi, India. e-mail: mpchaudhary 2000@yahoo.com
 Author p: Jawaharlal Nehru University, New Delhi, India

[^6]: Author α : Department of Mathematical Sciences Ekiti State University Ado Ekiti, Nigeria. e-mail: emmasfad2006@yahoo.com
 Author o: Department of Mathematics Federal University, Lokoja Kogi State, Nigeria. e-mail: helyna4christ@yahoo.com

[^7]: Author $\alpha:$ P.D.M College of Engineering, Bahadurgarh, Haryana, India. e-mails: sludn@yahoo.com, vsludn@gmail.com Author σ : International Scientific Research and Welfare Organization, New Delhi, India. e-mail: mpchaudhary 2000@yahoo.com Author p: Former Research Scholar, Department of Mathematics, University of Delhi, New Delhi, India.

[^8]: © 2014. T. K. Yasin Unlütürk \& Cumali Ekici. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^9]: Author α : Department of Mathematics Kirklareli University 39060, Kirklareli -Turkey. e-mail: yasinunluturk@klu.edu.tr Author o: Eskisehir Osmangazi University Department of Mathematics-Computer 26480, Eskisehir - Turkey. e-mail: cekici@ogu.edu.tr

[^10]: Authors a o: Department of Mathematics. e-mail: debasisdas100@gmail.com
 Author p: Department of Physics Ravenshaw University Cuttack-753003, Odisha (India).

[^11]: Author: Department of Bio statistics, SKIMS Srinagar, Kashmir (J\&K) India. e-mail: rayees_stats@yahoo.com

[^12]: Author α : Department of Mathematics Marwari College, Ranchi. e-mail: myid.anmol@gmail.com
 Author o: Department of Mathematics Ranchi University, Ranchi.

