Global JOURNAL

OF SCIENCE FRONTIER RESEARCH: F

Mathematics and Decision Sciences

Keller Segel Model
Variable Thermal Conductivity

Complexity of Trajectorries
Estimators of Finite Population

Discovering Thoughts, Inventing Future

Global Journal of Science Frontier Research: F mathematics \& Decision Sciences

Global Journal of Science Frontier Research: F Mathematics \& Decision Sciences

Volume 14 Issue 2 (Ver. 1.0)
© Global Journal of Science Frontier Research. 2014.

All rights reserved.
This is a special issue published in version 1.0 of "Global Journal of Science Frontier Research." By Global Journals Inc.

All articles are open access articles distributed under "Global Journal of Science Frontier Research"

Reading License, which permits restricted use. Entire contents are copyright by of "Global Journal of Science Frontier Research" unless otherwise noted on specific articles.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without written permission.

The opinions and statements made in this book are those of the authors concerned. Ultraculture has not verified and neither confirms nor denies any of the foregoing and no warranty or fitness is implied.

Engage with the contents herein at your own risk.

The use of this journal, and the terms and conditions for our providing information, is governed by our Disclaimer, Terms and Conditions and Privacy Policy given on our website http://globaljournals.us/terms-and-condition/ menu-id-1463/

By referring / using / reading / any type of association / referencing this journal, this signifies and you acknowledge that you have read them and that you accept and will be bound by the terms thereof.

All information, journals, this journal, activities undertaken, materials, services and our website, terms and conditions, privacy policy, and this journal is subject to change anytime without any prior notice.

Incorporation No.: 0423089
License No.: 42125/022010/1186
Registration No.: 430374 Import-Export Code: 1109007027 Employer Identification Number (EIN): USA Tax ID: 98-0673427

Global Journals Inc.

(A Delaware USA Incorporation with "Good Standing"; Reg. Number: 0423089)
Sponsors: Open Association of Research Society Open Scientific Standards

Publisher's Headquarters office

Global Journals Headquarters

301st Edgewater Place Suite, 100 Edgewater Dr.-Pl, Wakefield MASSACHUSETTS, Pin: 01880, United States of America
USA Toll Free: +001-888-839-7392
USA Toll Free Fax: +001-888-839-7392

Offset Typesetting

Global Journals Incorporated 2nd, Lansdowne, Lansdowne Rd., Croydon-Surrey, Pin: CR9 2ER, United Kingdom

Packaging \& Continental Dispatching

Global Journals
E-3130 Sudama Nagar, Near Gopur Square, Indore, M.P., Pin:452009, India

Find a correspondence nodal officer near you
To find nodal officer of your country, please email us at local@globaljournals.org
eContacts
Press Inquiries: press@globaljournals.org Investor Inquiries: investors@globaljournals.org Technical Support: technology@globaljournals.org Media \& Releases: media@globaljournals.org

Pricing (Including by Air Parcel Charges):
For Authors:
22 USD (B/W) \& 50 USD (Color)
Yearly Subscription (Personal \& Institutional): 200 USD (B/W) \& 250 USD (Color)

John A. Hamilton,"Drew" Jr., Ph.D., Professor, Management Computer Science and Software Engineering
Director, Information Assurance Laboratory
Auburn University

Dr. Henry Hexmoor

IEEE senior member since 2004
Ph.D. Computer Science, University at
Buffalo
Department of Computer Science Southern Illinois University at Carbondale

Dr. Osman Balci, Professor

Department of Computer Science Virginia Tech, Virginia University Ph.D.and M.S.Syracuse University, Syracuse, New York
M.S. and B.S. Bogazici University, Istanbul, Turkey

Yogita Bajpai
M.Sc. (Computer Science), FICCT
U.S.A.Email:
yogita@computerresearch.org

Dr. T. David A. Forbes

Associate Professor and Range Nutritionist
Ph.D. Edinburgh University - Animal
Nutrition
M.S. Aberdeen University - Animal Nutrition
B.A. University of Dublin- Zoology

Dr. Wenying Feng

Professor, Department of Computing \&
Information Systems
Department of Mathematics
Trent University, Peterborough,
ON Canada K9J 7B8

Dr. Thomas Wischgoll

Computer Science and Engineering,
Wright State University, Dayton, Ohio
B.S., M.S., Ph.D.
(University of Kaiserslautern)

Dr. Abdurrahman Arslanyilmaz

Computer Science \& Information Systems
Department
Youngstown State University
Ph.D., Texas A\&M University
University of Missouri, Columbia
Gazi University, Turkey

Dr. Xiaohong He

Professor of International Business
University of Quinnipiac
BS, Jilin Institute of Technology; MA, MS, PhD,. (University of Texas-Dallas)

Burcin Becerik-Gerber

University of Southern California
Ph.D. in Civil Engineering
DDes from Harvard University
M.S. from University of California, Berkeley \& Istanbul University

Dr. Bart Lambrecht

Director of Research in Accounting and FinanceProfessor of Finance Lancaster University Management School BA (Antwerp); MPhil, MA, PhD (Cambridge)

Dr. Carlos García Pont

Associate Professor of Marketing
IESE Business School, University of
Navarra
Doctor of Philosophy (Management),
Massachusetts Institute of Technology
(MIT)
Master in Business Administration, IESE, University of Navarra
Degree in Industrial Engineering, Universitat Politècnica de Catalunya

Dr. Fotini Labropulu

Mathematics - Luther College
University of ReginaPh.D., M.Sc. in
Mathematics
B.A. (Honors) in Mathematics University of Windso

Dr. Lynn Lim

Reader in Business and Marketing Roehampton University, London BCom, PGDip, MBA (Distinction), PhD, FHEA

Dr. Mihaly Mezei

ASSOCIATE PROFESSOR
Department of Structural and Chemical
Biology, Mount Sinai School of Medical Center
Ph.D., Etvs Lornd University
Postdoctoral Training, New York University

Dr. Söhnke M. Bartram

Department of Accounting and
FinanceLancaster University Management
SchoolPh.D. (WHU Koblenz)
MBA/BBA (University of Saarbrücken)

Dr. Miguel Angel Ariño

Professor of Decision Sciences
IESE Business School
Barcelona, Spain (Universidad de Navarra)
CEIBS (China Europe International Business School).
Beijing, Shanghai and Shenzhen
Ph.D. in Mathematics
University of Barcelona
BA in Mathematics (Licenciatura)
University of Barcelona

Philip G. Moscoso

Technology and Operations Management IESE Business School, University of Navarra
Ph.D in Industrial Engineering and
Management, ETH Zurich
M.Sc. in Chemical Engineering, ETH Zurich

Dr. Sanjay Dixit, M.D.
Director, EP Laboratories, Philadelphia VA
Medical Center
Cardiovascular Medicine - Cardiac
Arrhythmia
Univ of Penn School of Medicine

Dr. Han-Xiang Deng

MD., Ph.D

Associate Professor and Research
Department Division of Neuromuscular

Medicine

Davee Department of Neurology and Clinical
NeuroscienceNorthwestern University
Feinberg School of Medicine

Dr. Pina C. Sanelli
Associate Professor of Public Health
Weill Cornell Medical College
Associate Attending Radiologist
NewYork-Presbyterian Hospital
MRI, MRA, CT, and CTA
Neuroradiology and Diagnostic Radiology
M.D., State University of New York at

Buffalo,School of Medicine and Biomedical Sciences

Dr. Roberto Sanchez

Associate Professor
Department of Structural and Chemical
Biology
Mount Sinai School of Medicine
Ph.D., The Rockefeller University

Dr. Wen-Yih Sun

Professor of Earth and Atmospheric
SciencesPurdue University Director
National Center for Typhoon and
Flooding Research, Taiwan
University Chair Professor
Department of Atmospheric Sciences, National Central University, Chung-Li, TaiwanUniversity Chair Professor Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan.Ph.D., MS The University of Chicago, Geophysical Sciences
BS National Taiwan University, Atmospheric Sciences
Associate Professor of Radiology

Dr. Michael R. Rudnick
M.D., FACP

Associate Professor of Medicine
Chief, Renal Electrolyte and
Hypertension Division (PMC)
Penn Medicine, University of
Pennsylvania
Presbyterian Medical Center, Philadelphia
Nephrology and Internal Medicine Certified by the American Board of Internal Medicine

Dr. Bassey Benjamin Esu

B.Sc. Marketing; MBA Marketing; Ph.D Marketing
Lecturer, Department of Marketing, University of Calabar Tourism Consultant, Cross River State Tourism Development Department Co-ordinator, Sustainable Tourism Initiative, Calabar, Nigeria

Dr. Aziz M. Barbar, Ph.D.

IEEE Senior Member
Chairperson, Department of Computer Science
AUST - American University of Science \& Technology
Alfred Naccash Avenue - Ashrafieh

President Editor (HON.)

Dr. George Perry, (Neuroscientist)

Dean and Professor, College of Sciences
Denham Harman Research Award (American Aging Association)
ISI Highly Cited Researcher, Iberoamerican Molecular Biology Organization
AAAS Fellow, Correspondent Member of Spanish Royal Academy of Sciences
University of Texas at San Antonio
Postdoctoral Fellow (Department of Cell Biology)
Baylor College of Medicine
Houston, Texas, United States

Chief Author (HON.)

Dr. R.K. Dixit
M.Sc., Ph.D., FICCT

Chief Author, India
Email: authorind@computerresearch.org

DEAN \& EDITOR-IN-Chief (HON.)

Vivek Dubey(HON.)

MS (Industrial Engineering),
MS (Mechanical Engineering)
University of Wisconsin, FICCT
Editor-in-Chief, USA
editorusa@computerresearch.org

Sangita Dixit

M.Sc., FICCT

Dean \& Chancellor (Asia Pacific)
deanind@computerresearch.org

Suyash Dixit

(B.E., Computer Science Engineering), FICCTT President, Web Administration and Development, CEO at IOSRD
COO at GAOR \& OSS

Er. Suyog Dixit

(M. Tech), BE (HONS. in CSE), FICCT

SAP Certified Consultant
CEO at IOSRD, GAOR \& OSS
Technical Dean, Global Journals Inc. (US)
Website: www.suyogdixit.com
Email:suyog@suyogdixit.com

Pritesh Rajvaidya

(MS) Computer Science Department
California State University
BE (Computer Science), FICCT
Technical Dean, USA
Email: pritesh@computerresearch.org
Luis Galárraga
J!Research Project Leader
Saarbrücken, Germany

Contents of the Volume

i. Copyright Notice
ii. Editorial Board Members
iii. Chief Author and Dean
iv. Table of Contents
v. From the Chief Editor's Desk
vi. Research and Review Papers

1. On some Properties of the Rising Sun Function. 1-12
2. Some Statistical Properties of Exponentiated Weighted Weibull Distribution. 13-22
3. A Summation Formula Involving Certain Special Functions. 23-35
4. Global Existence and Uniqueness of the Weak Solution in Keller Segel Model. 37-45
5. Effect of Variable Thermal Conductivity \& Heat Source/Sink Near a Stagnation Point on a Linearly Stretching Sheet using HPM. 47-53
6. Homeotopy Groups of 2-Dimensional Manifolds with One Boundary Component. 55-57
7. Improved Class of Ratio -Cum- Product Estimators of Finite Population Mean in two Phase Sampling. 59-71
vii. Auxiliary Memberships
viii. Process of Submission of Research Paper
ix. Preferred Author Guidelines
x. Index

Global Journal of Science Frontier Research: F MATHEMATICS AND DECISION SCIENCES
Volume 14 Issue 2 Version 1.0 Year 2014
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

On Some Properties of the Rising Sun Function

By Vajha Srinivasa Kumar

Abstract- This paper studies a few interesting properties of the rising sun function of a bounded real function defined on a closed and bounded interval on the real line. An operator on the space of all bounded real functions defined on a closed and bounded interval is introduced and its properties are investigated.

Keywords: rising sun function, semi-continuity, darboux continuity, lower (upper) semicontinuity, lower (upper) semi-quasicontinuity, symmetric continuity, cliquishness, quasicontinuity, differentiability.

GJSFR-F Classification : AMS : 26AXX, 26A48, 26A15, 49JXX

Strictly as per the compliance and regulations of :

$3 d$ virtual
journal

On Some Properties of the Rising Sun Function

Vajha Srinivasa Kumar

Abstract- This paper studies a few interesting properties of the rising sun function of a bounded real function defined on a closed and bounded interval on the real line. An operator on the space of all bounded real functions defined on a closed and bounded interval is introduced and its properties are investigated.
Keywords : rising sun function, semi-continuity, darboux continuity, lower (upper) semicontinuity, lower (upper) semi-quasicontinuity, symmetric continuity, cliquishness, quasicontinuity, differentiability.

I. Introduction

The rising sun function was used as a tool in the proof of the famous Lebesgue's theorem on the differentiability of a real valued monotone function without using the theory of integration [3]. In this paper, some properties of the rising sun function are presented and an operator on the space of all bounded real functions defined on a closed and bounded interval $[a, b]$ is introduced and its properties are investigated.

In what follows X, \mathbb{R} and \mathbb{N} stand for a topological space, the real line and the set of all positive integers respectively. Also \mathscr{B} stands for the Banach space of all bounded real functions defined on a closed and bounded interval $[a, b]$ where $a, b \in \mathbb{R}$ and $a<b$ under the supremum norm.

II. Preliminaries

1.1 Definition [6]: The rising sun function of a function $f \in \mathscr{B}$ is defined by

$$
f_{\odot}(x)=\sup \{f(y) / x \leq y \leq b\} .
$$

1.2 Definition: For $f \in \mathscr{B}$ we define the following.
(i) ${ }_{\odot} f(x)=\sup \{f(y) / a \leq y \leq x\}$
(ii) $f^{\odot}(x)=\inf \{f(y) / x \leq y \leq b\}$
(iii) ${ }^{\odot} f(x)=\inf \{f(y) / a \leq y \leq x\}$

[^0]1.3 Definition [5]: A function $f: X \rightarrow \mathbb{R}$ is said to be semi-continuous at a point $p \in X$ if for every $\varepsilon>0$ and every neighborhood U of p in X there exists a nonempty open set $W \subset U$ such that $|f(x)-f(p)|<\varepsilon \forall x \in W$. We say that a function f is semi-continuous on X if it is semi-continuous at every point of X.
1.4 Definition [6]: A function $f: X \rightarrow \mathbb{R}$ is said to be lower semicontinuous (lsc) at a point $x \in X$ if for every $\varepsilon>0$ there exists a neighborhood U of x such that
$$
f(y)-f(x)>-\varepsilon \forall y \in U .
$$

We say that a function f is $l s c$ on X if it is $l s c$ at every point of X.
1.5 Definition [6]: A function $f: X \rightarrow \mathbb{R}$ is said to be upper semicontinuous (usc) at a point $x \in X$ if for every $\varepsilon>0$ there exists a neighborhood G of x such that

$$
f(y)-f(x)<\varepsilon \quad \forall \quad y \in G .
$$

We say that a function f is usc on X if it is usc at every point of X.
1.6 Definition [4]: A function $f: X \rightarrow \mathbb{R}$ is said to be lower semi-quasicontinuous (lsqc) at a point $x \in X$ if for every $\varepsilon>0$ and every neighborhood U of x there exists a non-empty open set $W \subset U$ such that $f(y)-f(x)>-\mathcal{E} \forall y \in W$. We say that a function f is $l s q c$ on X if it is $l s q c$ at every point of X.
1.7 Definition [4]: A function $f: X \rightarrow \mathbb{R}$ is said to be upper semi-quasicontinuous (usqc) at a point $x \in X$ if for every $\varepsilon>0$ and every neighborhood U of x there exists a non-empty open set $W \subset U$ such that $f(y)-f(x)<\varepsilon \quad \forall y \in W$. We say that a function f is usqc on X if it is $u s q c$ at every point of X.
1.8 Definition [5]: A function $f: X \rightarrow \mathbb{R}$ is said to be cliquish at a point $x \in X$ if for every $\varepsilon>0$ and every neighborhood U of x there exists a non-empty open set $W \subset U$ such that $|f(y)-f(z)|<\varepsilon \quad \forall y, z \in W$
We say that a function f is cliquish on X if it is cliquish at every point of X.
1.9 Definition: Let $f:[a, b] \rightarrow \mathbb{R}$. We define $f(a-)=f(a)$ and $f(b+)=f(b)$. We say that $f(p+)$ exists at $p \in[a, b)$ and we write $f(p+)=L$, where $L \in \mathbb{R}$ if for every $\varepsilon>0$ there exists a $\delta>0$ such that $|f(x)-L|<\varepsilon \quad \forall x \in(p, p+\delta) \subset[a, b]$. Similarly for $p \in(a, b]$ we write
$f(p-)=l \in \mathbb{R}$ if for every $\varepsilon>0$ there exists a $\delta>0$ such that

$$
|f(x)-l|<\varepsilon \forall x \in(p-\delta, p) \subset[a, b] .
$$

1.10 Definition: A function $f:[a, b] \rightarrow \mathbb{R}$ is said to be quasicontinuous at a point $p \in[a, b]$ if $f(p+)$ and $f(p-)$ exist.
1.11 Definition: A function $f:[a, b] \rightarrow \mathbb{R}$ is said to be symmetrically continuous at a point $x \in[a, b]$ if $\lim _{h \rightarrow 0}[f(x+h)-f(x-h)]=0$.
1.12 Definition: A function $f:[a, b] \rightarrow \mathbb{R}$ is Darboux continuous if for all $p, q \in[a, b]$ and for each c between $f(p)$ and $f(q)$ there is an x between p and q such that $f(x)=c$.
1.13 Definition[2]: An operator P on a linear space L is said to be sublinear if (i) $P(x+y) \leq P(x)+p(y) \quad \forall x, y \in \mathrm{~L}$ and (ii) $P(\lambda x)=\lambda P(x)$ for any positive real number λ and every $x \in \mathrm{~L}$.
iII. Relations among $f_{\odot},{ }_{\odot} f, f^{\odot}$ and ${ }^{\circ} f$

In this section the relations between the rising sun function and its analogues that are introduced are presented in the following propositions.
2.1 Proposition: For $f \in \mathscr{B}$, (a) $f^{\odot}=-(-f)_{\odot}$ and $(b){ }^{\circ} f=-{ }_{\odot}(-f)$.
2.2 Proposition: For $f \in \mathscr{B},(a)\left(f_{\odot}\right)_{\odot}=f_{\odot}$
(b) ${ }_{\odot}\left({ }_{\odot} f\right)={ }_{\odot} f$

$$
\text { (c) }\left(f^{\odot}\right)^{\odot}=f^{\odot} \quad(d){ }^{\odot}\left({ }^{\odot} f\right)={ }^{\odot} f
$$

2.3 Proposition: For $f \in \mathscr{B}$ and $x \in[a, b]$,
(i) ${ }_{\odot}\left(f_{\odot}\right)(x)=f_{\odot}(a)$
(ii) $\left(f_{\odot}\right)^{\odot}(x)=f_{\odot}(b)$
(iii) ${ }^{\odot}\left(f_{\odot}\right)(x)=f_{\odot}(x)$
(iv) $\left({ }_{\odot} f\right)_{\odot}(x)={ }_{\odot} f(b)$
(v) $\left({ }_{\odot} f\right)^{\odot}(x)={ }_{\odot} f(x)$
(vi) ${ }^{\odot}\left({ }_{\odot} f\right)(x)={ }_{\odot} f(a)$
(vii) $\left(f^{\odot}\right)_{\odot}(x)=f^{\odot}(b)$
(viii) ${ }_{\odot}\left(f^{\odot}\right)(x)=f^{\odot}(x) \quad$ (ix) $\quad{ }^{\odot}\left(f^{\odot}\right)(x)=f^{\odot}(a)$
(x) $\quad\left({ }^{\ominus} f\right)_{\odot}(x)={ }^{\ominus} f(x)$
(xi) $\quad\left({ }^{\circ} f\right)(x)={ }^{\ominus} f(a)$
(xii) $\left({ }^{\odot} f\right)^{\odot}(x)={ }^{\circ} f(b)$
2.4 Remark: In view of the previous propositions it is enough to investigate the properties of the rising sun function and the properties of ${ }_{\odot} f, f^{\odot}$ and ${ }^{\odot} f$ follow analogously.
IV. Characterisations of $f_{\odot},{ }_{\odot} f, f^{\odot}$ and ${ }^{\circ} f$
3.1 proposition: For $f \in \mathscr{B}, f_{\odot}$ is the smallest decreasing function dominating f

More precisely,
(a) $f_{\odot}(x) \geq f(x) \forall x \in[a, b]$
(b) f_{\odot} is decreasing on $[a, b]$
(c) If g satisfies (a) and (b) above, then $f_{\odot}(x) \leq g(x) \forall x \in[a, b]$.
3.2 Proposition: For $f \in \mathscr{B},{ }_{\odot} f$ is the smallest increasing function dominating f. More precisely, $\quad(a){ }_{\odot} f(x) \geq f(x) \forall x \in[a, b]$
(b) ${ }_{\odot} f$ is increasing on $[a, b]$
(c) If g satisfies (a) and (b) above, then ${ }_{\odot} f(x) \leq g(x) \forall x \in[a, b]$.
3.3 Proposition: For $f \in \mathscr{B}$,
(a) f^{\odot} is the largest increasing function such that $f^{\odot}(x) \leq f(x) \forall x \in[a, b]$
(b) ${ }^{\ominus} f$ is the largest decreasing function such that ${ }^{\ominus} f(x) \leq f(x) \forall x \in[a, b]$

V. The Rising Sun Operator

4.1 Definition: Define $T: \mathscr{B} \rightarrow \mathscr{B}$ by $T f=f_{\odot}$. We call this operator T, the rising sun operator on \mathscr{B}.
4.2 Proposition: The rising sun operator T is sublinear on \mathscr{B}. More precisely,
(a) $T(f+g) \leq T f+T g \quad \forall f, g \in \mathscr{B}$
(b) $T(\lambda f)=\lambda T f$ for every real number $\lambda>0$ and every $f \in \mathscr{B}$.

Proof: Let $f, g \in \mathscr{B}$ and $x \in[a, b]$.
(a) For $y \in[x, b],(f+g)(y)=f(y)+g(y) \leq f_{\odot}(x)+g_{\odot}(x)=\left(f_{\odot}+g_{\odot}\right)(x)$

$$
\begin{aligned}
& \Rightarrow(f+g)(y) \leq\left(f_{\odot}+g_{\odot}\right)(x) \forall y \in[x, b] \\
& \Rightarrow(f+g)_{\odot}(x) \leq\left(f_{\odot}+g_{\odot}\right)(x) \forall x \in[a, b]
\end{aligned}
$$

Hence $T(f+g) \leq T f+T g \quad \forall f, g \in \mathscr{B}$.
(b) Suppose that λ is a positive real number and $f \in \mathscr{B}$

Then

$$
\begin{aligned}
& (\lambda f)_{\odot}(x)=\sup \{(\lambda f)(y) / x \leq y \leq b\} \\
& =\lambda \sup \{f(y) / x \leq y \leq b\} \\
& =\lambda f_{\odot}(x) \\
& T \lambda f=\lambda T f
\end{aligned}
$$

4.3 Remark: From the following example, it is clear that $T(f+g) \neq T f+T g$.
4.4 Example: Define $f:[0,1] \rightarrow \mathbb{R}$ and $g:[0,1] \rightarrow \mathbb{R}$ by $f(x)=x$ and

$$
g(x)=1-x \quad \forall x \in[0,1] \quad \Rightarrow(f+g)(x)=1 . \forall x \in[0,1]
$$

Then

$$
(f+g)_{\odot}(x)=1 \text { and }\left(f_{\odot}+g_{\odot}\right)(x)=2-x \forall x \in[0,1] .
$$

Hence $\quad T(f+g) \neq T f+T g$.
4.5 Proposition: For $f \in \mathscr{B}$ and $k \in \mathbb{R}, T(f+k)=T f+k$.
4.6 Proposition: For $f, g \in \mathscr{B}$, (a) $f \leq g \Rightarrow T f \leq T g \quad$ (b) $T(f \vee g)=T f \vee t g$ where $(f \vee g)(x)=\max \{f(x), g(x)\}$.
4.7 Proposition: If $\left\{f_{\alpha} / \alpha \in \Delta\right\}$ is a collection of functions in \mathscr{B} and if $\underset{\alpha \in \Delta}{\vee} f_{\alpha}=\sup \left\{f_{\alpha} / \alpha \in \Delta\right\}$ exists in \mathscr{B} then $T\left(\underset{\alpha \in \Delta}{\vee} f_{\alpha}\right)=\underset{\alpha \in \Delta}{\vee} T\left(f_{\alpha}\right)$.
4.8 Remark: From the following example it can be observed that

$$
T(f \wedge g) \neq T f \wedge T g, \text { where }(f \wedge g)(x)=\min \{f(x), g(x)\} .
$$

4.9 Example: Define $f:[0,1] \rightarrow \mathbb{R}$ and $g:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)=\left\{\begin{array}{l}
1-2 x \text { if } 0 \leq x \leq \frac{1}{2} \\
2 x-1 \text { if } \frac{1}{2} \leq x \leq 1
\end{array} \quad \text { and } \quad g(x)= \begin{cases}2 x & \text { if } 0 \leq x \leq \frac{1}{2} \\
-2 x+2 & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}\right.
$$

Then $\quad f_{\odot}(x)=1 \forall x \in[0,1]$ and $g_{\odot}(x)= \begin{cases}1 & \text { if } 0 \leq x \leq \frac{1}{2} \\ -2 x+2 & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}$ $\Rightarrow\left(f_{\odot} \wedge g_{\odot}\right)(x)=g_{\odot}(x) \forall x \in[0,1]$

Also $\quad(f \wedge g)(x)= \begin{cases}2 x & \text { if } 0 \leq x \leq \frac{1}{4} \\ -2 x+1 & \text { if } \frac{1}{4} \leq x \leq \frac{1}{4} \\ 2 x-1 & \text { if } \frac{1}{2} \leq x \leq \frac{3}{4} \\ -2 x+2 & \text { if } \frac{3}{4} \leq x \leq 1\end{cases}$

$$
\Rightarrow\left(f_{\odot} \wedge g_{\odot}\right)(x)=g_{\odot}(x) \forall x \in[0,1]
$$

$$
\Rightarrow(f \wedge g)_{\odot}(x)=\left\{\begin{array}{lll}
\frac{1}{2} & \text { if } & 0 \leq x \leq \frac{3}{4} \\
-2 x+2 & \text { if } & \frac{3}{4} \leq x \leq 1
\end{array}\right.
$$

Hence $\quad(f \wedge g)_{\odot}(x) \neq\left(f_{\odot} \wedge g_{\odot}\right)(x)$.
4.10 Proposition: T is continuous on \mathscr{B}.

Proof: Let $f_{n} \in \mathscr{B}$ for $n \in \mathbb{N}$ and $f_{n} \rightarrow f$ uniformly on $[a, b]$. Then $f \in \mathscr{B}$.
Let $\varepsilon>0$ be given. Then there exists a positive integer N such that

$$
n \geq N \Rightarrow\left|f_{n}(x)-f(x)\right|<\varepsilon \forall x \in[a, b]
$$

$$
\begin{aligned}
& \Rightarrow-\varepsilon<f_{n}(x)-f(x)<\varepsilon \forall x \in[a, b] \\
& \Rightarrow f(x)-\varepsilon<f_{n}(x)<f(x)+\varepsilon \quad \forall x \in[a, b] .
\end{aligned}
$$

Let $x \in[a, b]$ and choose $y \in[x, b]$. Then $y \in[a, b]$.

$$
\begin{aligned}
& \Rightarrow f(y)-\varepsilon<f_{n}(y)<f(y)+\varepsilon \forall n \geq N \\
& n \geq N \Rightarrow f_{n}(y)<f(y)+\varepsilon \leq f_{\odot}(x)+\varepsilon \\
& \quad \Rightarrow f_{n}(y)<f_{\odot}(x)+\varepsilon \forall y \in[x, b] \\
& \Rightarrow\left(f_{n}\right)_{\odot}(x) \leq f_{\odot}(x)+\varepsilon .
\end{aligned}
$$

Similarly $f_{\odot}(x)-\varepsilon<\left(f_{n}\right)_{\odot}(x)$.
Hence $\left|\left(f_{n}\right)_{\odot}(x)-f_{\odot}(x)\right| \leq \mathcal{E} \forall n \geq N$ and for every $x \in[a, b]$.
Hence $\left(f_{n}\right)_{\odot} \rightarrow f_{\odot}$ uniformly on $[a, b]$.
Hence $f_{n} \rightarrow f$ in $\mathscr{B} \Rightarrow T f_{n} \rightarrow T f$ in \mathscr{B}.
$\Rightarrow T$ is continuous on \mathscr{B}.
4.11Proposition: (a) $T^{n} f=f_{\odot} \forall f \in \mathscr{B}$ and for every $n \in \mathbb{N}$
(b) For $f \in \mathscr{B}$, the cycle of T is the set $\left\{f, f_{\odot}\right\}$.
4.12 Proposition: If $f \in \mathscr{B}$ and f is monotonically decreasing then f is a fixed point of T.
4.13 Remark: The set of all fixed points of T is the set of all monotonically decreasing functions on $[a, b]$. Let F denote the set of all fixed points of T Then $F=\{f \in \mathscr{B} / T f=f\}=\{f \in \mathscr{B} / f$ is decreasing $\}$.
4.14 Proposition: The set F of all fixed points of the rising sun operator T is closed in \mathscr{B}.
4.15 Proposition: Fix $f \in F$. Let $F^{*}=\{f \in \mathscr{B} / T f=f\}$.

Then (a) F^{*} is closed in \mathscr{B}.
(b) $\left(F^{*}, \leq\right)$ is a \vee-semilattice under the relation \leq defined on F^{*} by

$$
f \leq g \Leftrightarrow f(x) \leq g(x) \forall x \in[a, b]
$$

4.16 Proposition: The operator T is bounded. More precisely,
(i) $\|T f\| \leq\|f\| \forall f \in \mathscr{B} \quad$ and
(ii) $\|T\|=1$

VI. Invariant Properties

5.1 Proposition: Let $f \in \mathscr{B}$. If f is usc at a point $x \in[a, b]$ then so is $T f=f_{\odot}$.

Proof: Let $\varepsilon>0$ be given and $x \in[a, b]$. Since f is usc at $x \in[a, b]$, there exists a $\delta>0$ such that $f(t)-f(x)<\varepsilon \forall t \in(x-\delta, x+\delta) \cap[a, b]=U$.
$\Rightarrow f_{\odot}(x)+\varepsilon \geq f(x)+\varepsilon>f(t) \forall t \in U$
$\Rightarrow f_{\odot}(x)+\varepsilon>f(t) \forall t \in U$
Suppose that $x<y$.

$$
\begin{aligned}
& \Rightarrow f_{\odot}(x)+\varepsilon>f_{\odot}(x) \geq f_{\odot}(y) \geq f(y) \\
& \Rightarrow f_{\odot}(x)+\varepsilon>f(y) .
\end{aligned}
$$

If $x<t$ and $y \in[t, b] \Rightarrow x<y$

$$
\begin{aligned}
& \Rightarrow f_{\odot}(x)+\varepsilon>f(y) \\
& \Rightarrow f_{\odot}(x)+\varepsilon \geq f_{\odot}(t)
\end{aligned}
$$

Suppose that $t \leq x$. Then $y \in[t, b] \Rightarrow t \leq y \leq x$ or $x<y<b$.
If $t \leq y \leq x$ then $y \in U \Rightarrow f_{\odot}(x)+\varepsilon>f(y) \Rightarrow f_{\odot}(x)+\varepsilon>f_{\odot}(t)$.
If $x<y \leq b$ then $f_{\odot}(x)+\varepsilon>f_{\odot}(t)$. Hence $f_{\odot}(x)+\varepsilon>f_{\odot}(t) \forall t \in U$.

$$
\Rightarrow f_{\odot} \text { is } u s c \text { at } x .
$$

5.2 Proposition: Let $f \in \mathscr{B}$. If f is $l s c$ at a point $x \in[a, b]$ then so is $T f=f_{\odot}$.

Proof: Let $\varepsilon>0$ be given and $x \in[a, b]$. Since f is $l s c$ at $x \in[a, b]$, there exists a $\delta_{1}>0$ such that $f(t)-f(x)>\frac{-\varepsilon}{2} \forall t \in\left(x-\delta_{1}, x+\delta_{1}\right) \cap[a, b]=U$

$$
\begin{aligned}
& \Rightarrow f_{\odot}(t)+\frac{\varepsilon}{2} \geq f(t)+\frac{\varepsilon}{2}>f(x) \forall t \in U \\
& \Rightarrow f_{\odot}(t)+\frac{\varepsilon}{2}>f(x) \forall t \in U
\end{aligned}
$$

Since $f_{\odot}(x)-\frac{\varepsilon}{2}$ is not an upper bound of the set $\{f(y) / x \leq y \leq b\}$, there exists a point $y \in[x, b]$ such that $f(y)>f_{\odot}(x)-\frac{\varepsilon}{2}$.

If $y=x$ then $f_{\odot}(t)+\frac{\varepsilon}{2}>f(x)>f_{\odot}(x)-\frac{\varepsilon}{2} \forall t \in U$

$$
\Rightarrow f_{\odot}(t)+\varepsilon>f_{\odot}(x) \forall t \in U .
$$

$y \neq x$. If $x<z<y$ then $f_{\odot}(z) \geq f_{\odot}(y) \geq f(y)>f_{\odot}(x)-\frac{\varepsilon}{2}$

$$
\Rightarrow f_{\odot}(z)>f_{\odot}(x)-\frac{\varepsilon}{2}>f_{\odot}(x)-\varepsilon
$$

If $z \leq x$ then $f_{\odot}(z) \geq f_{\odot}(x)>f_{\odot}(x)-\varepsilon$.
Choose $\delta>0$ such that $a \leq x-\delta<x<x+\delta \leq y$.
Then $f_{\odot}(z)>f_{\odot}(x)-\mathcal{E} \forall z \in(x-\delta, x+\delta) \cap[a, b]$. Hence f_{\odot} is $l s c$ at x.
5.3 Corollary: Let $f \in \mathscr{B}$. If f is continuous at a point $x \in[a, b]$, then $T f=f_{\odot}$ is continuous at x.
5.4 Proposition: For any $f \in \mathscr{B}, T f=f_{\odot}$ is $l s q c$ at every $x \in(a, b]$.

Proof: Let $f \in \mathscr{B}$ and $x \in(a, b]$. Let $\varepsilon>0$ be given and let U be a neighborhood of x in $[a, b]$. Then there exists a $\delta>0$ such that $(x-\delta, x+\delta) \cap[a, b] \subset U$. Choose $W=(x-\delta, x) \cap[a, b]$.
W is a non-empty open subset of U.

$$
\begin{aligned}
& y \in W \Rightarrow x-\delta<y<x \\
& \Rightarrow f_{\odot}(y) \geq f_{\odot}(x) \\
& \Rightarrow f_{\odot}(y)+\varepsilon>f_{\odot}(y) \geq f_{\odot}(x)
\end{aligned}
$$

Hence $f_{\odot}(y)+\varepsilon>f_{\odot}(x) \forall y \in W$.
Thus for every $\varepsilon>0$ and every neighborhood U of x there exists a nonempty open set $W \subset U$ such that $f_{\odot}(y)+\varepsilon>f_{\odot}(x) \forall y \in W$.
5.5 Proposition: Let $f \in \mathscr{B}$. If $f:[a, b] \rightarrow \mathbb{R}$ is $l s q c$ at the point a then $T f=f_{\odot}$ is lsqc at a.
Proof: Let $f \in \mathscr{B}$ and $\varepsilon>0$ be given. Let U be a neighborhood of a in [a,b]. Since f is $l s q c$ at a, there exists a non-empty open set $W \subset U$ such that $f(t)-f(x)>-\mathcal{E} \quad \forall t \in W$.

$$
\begin{aligned}
& \Rightarrow f_{\odot}(t) \geq f(t)>f(a)-\varepsilon \forall t \in W \\
& \Rightarrow f_{\odot}(t)>f(a)-\varepsilon \forall t \in W
\end{aligned}
$$

Since $f_{\odot}(a)-\mathcal{E}$ is not an upper bound of $\{f(y) / a \leq y \leq b\}$, there exists a point $y \in[a, b]$ such that $f_{\odot}(a)-\varepsilon<f(y)$.

If $y=a$ then $f_{\odot}(t)+\varepsilon>f(a)>f_{\odot}(a)-\varepsilon \forall t \in W$.
Suppose that $y \neq a$.
Since $a \in U$ and U is open in [a,b], there exists a $\delta_{1}>0$ such that $\left[a, a+\delta_{1}\right) \subset U$. Choose $\delta_{2}>0$ such that $a<a+\delta_{2}<y$.

Put $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ and $W_{1}=(a, a+\delta)$. Clearly, W_{1} is a non-empty open set such that $W_{1} \subset U$.

Then $z \in W_{1} \Rightarrow z<y$

$$
\Rightarrow f_{\odot}(z) \geq f_{\odot}(y) \geq f(y)>f_{\odot}(a)-\varepsilon
$$

Hence $f_{\odot}(z)+\varepsilon>f_{\odot}(a) \forall z \in W_{1}$

$$
\Rightarrow f_{\odot} \text { is } l s q c \text { at } a
$$

5.6 Proposition: Let $f \in \mathscr{B}$. Then
(a) f_{\odot} is $u s q c$ at every $x \in[a, b)$.
(b) If $f:[a, b] \rightarrow \mathbb{R}$ is usqc at b then so is f_{\odot}.
5.7 Proposition [5]: Let $f:[a, b] \rightarrow \mathbb{R}$ and $p \in[a, b]$. If $f(p+)$ exists then f is cliquish at p.
5.8 Corollary: For any $f \in \mathscr{B}, T f=f_{\odot}$ is cliquish on $[a, b]$.
5.9 Proposition: For any $f \in \mathscr{B}, T f=f_{\odot}$ is quasicontinuous on [a, b].

Vil. Variant Properties

6.1 Symmetric continuity: It is not necessary that the rising sun function of a symmetrically continuous function is symmetrically continuous. For example, define $f:[-1,1] \rightarrow \mathbb{R}$ by

$$
f(x)=\left\{\begin{array}{lll}
x^{2} & \text { if } & x \neq 0 \\
0 & \text { if } & x=0
\end{array}\right.
$$

Then

$$
f_{\odot}(x)=\left\{\begin{array}{lll}
x^{2} & \text { if } & -1 \leq x \leq 0 \\
1 & \text { if } & 0<x \leq 1
\end{array}\right.
$$

Clearly f is symmetrically continuous on $[-1,1]$, but f_{\odot} is not.
6.2 Semi-continuity: The semi-continuity of f need not imply the semicontinuity of f_{\odot} as is evident from the following example.

Define $f:[-1,1] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ (x+1) 2^{\frac{-2}{x}} & \text { if } 0<x \leq 1 \\ x+1 & \text { if }-1 \leq x<0\end{cases}
$$

Then

$$
f_{\odot}(x)=\left\{\begin{array}{lll}
1 & \text { if } & -1 \leq x \leq 0 \\
\frac{1}{2} & \text { if } & 0<x \leq 1
\end{array}\right.
$$

Clearly f is semi-continuous on $[-1,1]$. But f_{\odot} is not semi-continuous at $x=0$.
6.3 Darboux continuity: It is not necessary that the rising sun function of a Darboux continuous function is Darboux continuous. The function $f:[-1,1] \rightarrow \mathbb{R}$ defined in the above example is Dourbox continuous on $[-1,1]$ but its rising sun function is not Dourbox continuous.
6.4 Differentiability: The rising sun function of a differentiable function is not necessarily differentiable as can be observed from the following example.

Define $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}+\sqrt{\frac{2 x}{5}-x^{2}} & \text { if } 0 \leq x \leq \frac{2}{5} \\ -\sqrt{\frac{6 x}{5}-\frac{8}{25}-x^{2}} & \text { if } \frac{2}{5} \leq x \leq \frac{4}{5} \\ +\sqrt{\frac{9 x}{5}-\frac{4}{5}-x^{2}} & \text { if } \frac{4}{5} \leq x \leq 1\end{cases}
$$

Then $\quad f_{\odot}(x)= \begin{cases}\frac{1}{5} & \text { if } 0 \leq x \leq \frac{1}{5} \\ f(x) & \text { if } \frac{1}{5} \leq x \leq \frac{9}{10} \\ \frac{1}{10} & \text { if } \frac{2}{5} \leq x \leq \frac{9}{10} \\ f(x) & \text { if } \frac{9}{10} \leq x \leq 1\end{cases}$
Clearly f is differentiable at $a=0.3732$, but f_{\odot} is not differentiable at this point.
6.5 Pointwise Convergence: If $\left\{f_{n}\right\}$ converges pointwise to f on $[a, b]$, it is not necessary that $\left\{T f_{n}\right\}$ converges to $T f$ as can be seen from the following example. Define $f_{n}:[0,1] \rightarrow \mathbb{R}$ by

$$
f_{n}(x)=\left\{\begin{array}{lll}
1 & \text { if } & x \in\left\{\frac{1}{n} / n \in \mathbb{N}\right\} \\
0 & \text { if } & x \notin\left\{\frac{1}{n} / n \in \mathbb{N}\right\}
\end{array}\right.
$$

Then $\left\{f_{n}\right\}$ converges pointwise to 0 .
But $\quad\left(f_{n}\right)_{\odot}(x)=\left\{\begin{array}{lll}1 & \text { if } & x=0 \\ 0 & \text { if } & 0<x \leq 1\end{array}\right.$ does not converge to 0 .

References Références Referencias

1. Bruckner, A. M., Differentiation of Real functions, Lecture Notes in Mathematics 659, Springer-Verlag, New York-Heidelberg - Berlin, 1978.
2. Kreyszig, E., Introductory Functional Analysis with Applications, John Willey and Sons, New York, 1978.
3. Riesz, F. And B.Sz. Nagy, Functional Analysis, Frederick Ungar Publishing Co., New York, 1995.
4. Srinivasa kumar, V. On Lower and Upper Semi-Quasicontinuous, Functions, International Journal of Mathematical Archive, Vol-3(6), pp-2249-2257, 2012.
5. Srinivasa kumar, V. On Some Properties of Cliquish Functions, International Journal of Mathematical Archive, Vol-3(7), pp-2777-2783, 2012.
6. Van Rooij, A. C. M. and Schikhof, W. H., A second Course on Real functions, Cambridge University Press, Cambridge, 1982.

Global Journal of Science Frontier Research: F
MATHEMATICS AND DECISION SCIENCES
Volume 14 Issue 2 Version 1.0 Year 2014
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Some Statistical Properties of Exponentiated Weighted Weibull Distribution

By Badmus, N. Idowu \& Bamiduro, T. Adebayo

Abraham Adesanya Polytechnic, Nigeria
Abstract- This article basically focused on some statistical properties of exponentiated-weighted weibull model which of course numerous authors have written one thing or the other on exponential weibull distribution and not on exponential weighted weibull. This model is established with a view to obtaining a model that is better than both weighted weibull and weibull distribution in terms of the estimate of their characteristics and their parameters using the logit of Beta by Jones (2004). The weighted weibull distribution is proposed by Mahdy (2013) with an additional parameter called "sensitive skewness parameter". Some basic properties of the proposed model including moments and moment generating function (first and second moments about the origin even with standard deviation are derive), survival rate function, hazard rate function, asymptotic behaviours, and the estimation of parameters have been studied. The result from the new model is better representativeness in data and its flexibility and shape.

Keywords: exponentiated-weighted weibull, hazard rate, moments, weighted-weibull, survival rate. GJSFR-F Classification : MSC 2010: 97K80, 35B40

Strictly as per the compliance and regulations of :

© 2014. Badmus, N. Idowu \& Bamiduro, T. Adebayo. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Some Statistical Properties of Exponentiated Weighted Weibull Distribution

Badmus, N. Idowu ${ }^{\alpha}$ \& Bamiduro, T. Adebayo ${ }^{\circ}$

Abstract

This article basically focused on some statistical properties of exponentiated-weighted weibull model which of course numerous authors have written one thing or the other on exponential weibull distribution and not on exponentialweighted weibull. This model is established with a view to obtaining a model that is better than both weighted weibull and weibull distribution in terms of the estimate of their characteristics and their parameters using the logit of Beta by Jones (2004). The weighted weibull distribution is proposed by Mahdy (2013) with an additional parameter called "sensitive skewness parameter". Some basic properties of the proposed model including moments and moment generating function (first and second moments about the origin even with standard deviation are derive), survival rate function, hazard rate function, asymptotic behaviours, and the estimation of parameters have been studied. The result from the new model is better representativeness in data and its flexibility and shape.

Keywords: exponentiated-weighted weibull, hazard rate, moments, weighted-weibull, survival rate.

I. Introduction

In recent time, numerous researchers had used weibull distribution as an alternative to some distribution e.g Gamma and Log-normal distribution in reliability engineering and life testing. The weibull distribution is a well known common distribution and has been a powerful probability distribution in reliability analysis, while weighted distributions are used to adjust the probabilities of the events as observed and recorded. Mahdy applied Azzalini's method to the weibull distribution that produced a new class of weighted weibull distribution as $W W(\lambda, \beta, \alpha)$ distribution with an additional parameter called "Sensitive Skewness Parameter" and the sensitive skewness parameter governs essentially the shape of the probability density function of the $W W(\lambda, \beta, \alpha)$ distribution.

The probability density and the cumulative density function (pdf and cdf) of the new class of weighted weibull distribution by Mahdy (2013) is given by

$$
\begin{equation*}
f_{y|\{\lambda, \beta, \alpha\}|}(y)=\frac{\lambda \beta\left(1+\alpha^{\beta}\right) y^{\beta-1} e^{-\lambda y^{\beta}}\left(1-e^{-\lambda(\alpha y)^{\beta}}\right)}{\alpha^{\beta}} \text {, for } \mathrm{y}>0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{y|\{\lambda, \beta, \alpha\}|}(y)=\frac{\left[\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y^{\beta}}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right)}-1\right]}{\alpha^{\beta}} \tag{2}
\end{equation*}
$$

[^1]

Figure 1 : The Probability Density Function of Weghted Weibull Distribution with a=1,

$$
\mathrm{b}=1, \lambda=0.5, \beta=3.5, \alpha=2
$$

Authors on exponenetiated-weighted weibull are very few. The aim of this article is to introduce and investigate this distribution on its statistical properties. The paper is divided as follows: In section 2, we present the proposed distribution exponentiatedweighted weibull distribution. Moments, and moment generating function is studied in section 3, section 4, discussed on the estimation of parameters mathematically and in section 5 we preset the real application to data set and section 6 concluded the research.

iI. The Proposed Exponentiated-Weighted Weibull Distribution

Recently, many authors have studied the properties of exponentiated distributions. For instance, Gupta et al (2001) for exponential pareto, Nadarajah and Gupta (2007) for exponential gamma distribution, Mudholkar et al (1995) studied on exponentiated weibull distribution, Salem and Abo-Kasem (2011) based their research on estimation for the parameters of the exponentiated weibull distribution, Gupta and Kundu (2001) they put up a paper on exponentiated exponential etc. Azzalini (1985) first proposed a method of obtaining weighted and the method has been used extensively for several symmetric and non-symmetric distributions. Mahdy (2013) applied the method to study a new class of weighted weibull distribution with an additional parameter called "sensitive skewness parameter". More so, various extensions of weibull and exponential distribution have been proposed in literature. An extension of exponential distribution has been provided by Nadarajah and Kotz (2005) using the logit of Beta distribution and the logit of Beta distribution (the link function of the Beta generalized distribution) is introduced by Jones (2004). Since then extensive work has been done using the logit of beta distribution in literature. For instance, Gupta and Kundu (1999) proposed a generalized exponential distribution which provides an alternative to exponential and weibull distributions. Famoye et al (2005) also introduced the Beta-weibull distribution alongside its major properties and Cordeiro et al (2011) among others.

Now, letting y be a random variable form of the distribution with parameters and defined (1) and (2) using the logit of beta by Jones (2004), we then have

$$
\begin{equation*}
f_{E W W}^{(y)}=\frac{1}{B(a, b)}[F(y)]^{a-1}[1-F(y)]^{b-1} f(y) \tag{3}
\end{equation*}
$$

by setting $\mathrm{b}=1$, we get

$$
\begin{equation*}
f_{E W W}{ }^{(y)}=a[F(y)]^{a-1} \quad f(y) \tag{4}
\end{equation*}
$$

Putting expressions (1) and (2) in (4) to obtain the probability density function of Exponenetiated-weighted weibull distribution

$$
\begin{equation*}
f_{E W W}{ }^{(y)}=a\left[\frac{\left[\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y^{\beta}}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right)}-1\right]}{\alpha^{\beta}}\right]^{a-1} \frac{\lambda \beta\left(1+\alpha^{\beta}\right) y^{\beta-1} e^{-\lambda y^{\beta}}\left(1-e^{-\lambda(\alpha y)^{\beta}}\right)}{\alpha^{\beta}} \tag{5}
\end{equation*}
$$

Figure 2 : The PDF of Exponentiated Weighted Weibull Distribution with values of the parameters $(a=1.5, b=1, c=\lambda=1.5, d=\alpha=3.5, e=\beta=2$. $)$ and is rightly skewed

Where $a>0, \lambda>0, \beta>0, \alpha>0$ and $y>0$ such that $Y \sim E W W(a, \lambda, \beta, \alpha)$. Equation (5) is the pdf of Exponenetiated-weighted weibull distribution.

$$
\begin{gather*}
\operatorname{set} u(x)=\frac{\left[\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y^{\beta}}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right)}-1\right]}{\alpha^{\beta}} \\
\frac{d u}{d y}=\frac{\lambda \beta\left(1+\alpha^{\beta}\right) y^{\beta-1} e^{-\lambda y^{\beta}}\left(1-e^{-\lambda(\alpha y)^{\beta}}\right)}{\alpha^{\beta}}\left[\frac{1}{\alpha^{\beta}}\left\{\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y^{\beta}}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right)}-1\right]\right. \tag{6}
\end{gather*}
$$

substituting $d y$ into (5), we obtain

$$
\begin{gather*}
f_{E W W}^{(y)}=a\left[\frac{1}{\alpha^{\beta}}\left\{\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y^{\beta}}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right)}-1\right]^{a-1} d u\right. \tag{7}\\
u=\frac{1}{\alpha^{\beta}}\left\{\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y^{\beta}}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right)}-1\right.
\end{gather*}
$$

Now, (5) can becomes

$$
\begin{equation*}
f_{E W W}{ }^{(y)}=a[U]^{a-1} \frac{d u}{d y} \tag{8}
\end{equation*}
$$

a) Cumulative Density Function (cdf)

The probability density function (pdf) of $\operatorname{EWW}(a, \lambda, \beta, \alpha)$ given in (7), then expression (7) can be written as

$$
\begin{gather*}
F_{E W W}{ }^{(y)}=P(Y \leq y)=\int_{0}^{y} f(u) d u \\
=\int_{0}^{y} a\left[\frac{1}{\alpha^{\beta}}\left\{\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y^{\beta}}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right)}-1\right]^{a-1} \frac{\lambda \beta\left(1+\alpha^{\beta}\right) y^{\beta-1} e^{-\lambda y^{\beta}}\left(1-e^{\left.-\lambda(\alpha y)^{\beta}\right)}\right.}{\alpha^{\beta}} d u\right. \tag{9}
\end{gather*}
$$

$$
F_{E W W}{ }^{(y)}=P(Y \leq y)=\int_{0}^{y} a[U]^{a-1} d u
$$

$=a \int_{0}^{y}[U]^{a-1} d u$ and the cdf is obtained as

$$
\begin{equation*}
F_{E W W}{ }^{(y)}=-(y)^{a} \tag{10}
\end{equation*}
$$

b) The Survival Rate Function

The survival rate function of the Exponentiated-weighted weibull distribution is given by $\quad S_{E W W}(y)=1-F_{E W W}(y)=1-\int_{0}^{y} f(u) d u$

$$
\begin{gather*}
=1-a \int_{0}^{y}[U]^{a-1} d u=1-\left[-(y)^{a}\right] \\
S_{E W W}(y)=1+(y)^{a} \tag{11}
\end{gather*}
$$

c) The Hazard Rate Function

The hazard rate function of a random variable y with the pdf and cdf is defined by

$$
h_{E W W}(y)=\frac{f_{E W W}(y)}{1-F_{E W W}(y)}
$$

Hence, the $\operatorname{EWW}(a, \lambda, \beta, \alpha)$ with $f_{E W W}(y)$ and $F_{E W W}(y)$ respectively defined in (4) and (10), the hazard rate function can be expressed as:

$$
\begin{equation*}
=\frac{a(u)^{a-1} u^{\prime}}{S_{E W W}(y)} \tag{12}
\end{equation*}
$$

where U is expression in (5)
To show that $\mathrm{y} \rightarrow \infty h_{E W W}(y)=0$ and $y \xrightarrow{\lim } 0 h_{E W W}(y)=0$, we have the following

$$
\lim _{\mathrm{y} \rightarrow} \infty h_{E W W}(y)=\mathrm{y} \xrightarrow{\lim } \infty \frac{a(u)^{a-1} u^{\prime}}{1-(1+y)^{a}}
$$

where, $u^{\prime}=\frac{1}{\alpha^{\beta}}\left\{\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y^{\beta}}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right)}-1\right.$

$$
=y \rightarrow \infty \frac{a\left[\frac{1}{\alpha^{\beta}}\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y^{\beta}}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right)}-1\right]^{a-1} \frac{\lambda \beta\left(1+\alpha^{\beta}\right) y^{\beta-1} e^{-\lambda y^{\beta}}\left(1-e^{\left.-\lambda(\alpha y)^{\beta}\right)}\right.}{\alpha^{\beta}}}{1-(1+x)^{a}}
$$

For simplification on the rigorous mathematics, we take the limit of the following:
When $y \rightarrow \infty=0$ and $y \rightarrow 0=0$

$$
\begin{aligned}
=\mathrm{y} \rightarrow \infty & \frac{\lambda \beta\left(1+\alpha^{\beta}\right) y^{\beta-1} e^{-\lambda y^{\beta}}\left(1-e^{-\lambda(\alpha y)^{\beta}}\right)}{\alpha^{\beta}}
\end{aligned}=\mathrm{y} \xrightarrow{\lim } \infty \frac{\lambda \beta\left(1+\alpha^{\beta}\right) \infty^{\beta-1} e^{-\lambda \infty^{\beta}}\left(1-e^{-\lambda(\alpha \infty)^{\beta}}\right)}{\alpha^{\beta}}
$$

$$
=\mathrm{y} \xrightarrow{\lim } 0 \frac{\lambda \beta\left(1+\alpha^{\beta}\right) 0^{\beta-1} e^{-\lambda 0^{\beta}}\left(1-e^{-\lambda(\alpha 0)^{\beta}}\right)}{\alpha^{\beta}}=0
$$

As $y \rightarrow \infty=0$ and $y \rightarrow 0=0$, expression (12) above tends to ∞ and 0 and equal to zero.

d) Asymptotic Behaviours

Following the steps in hazard function above taken $\mathrm{y} \rightarrow \infty f_{E W W}(y)$ and $y \xrightarrow{\lim } 0 f_{E W W}(y)$ of the $E W W(a, \lambda, \beta, \alpha)$ distribution is investigated as follows. Now from expression (5), we have

$$
\mathrm{y} \xrightarrow{\lim } \infty f_{E W W}(y)=a\left[\frac{\left[\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y^{\beta}}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right)}\right.}{\alpha^{\beta}}\right]^{a-1} \frac{\lambda \beta\left(1+\alpha^{\beta}\right) y^{\beta-1} e^{-\lambda y^{\beta}}\left(1-e^{-\lambda(\alpha y)^{\beta}}\right)}{\alpha^{\beta}}
$$

taking the limit

$$
\begin{gathered}
=\mathrm{y} \xrightarrow{\lim } \infty \frac{\lambda \beta\left(1+\alpha^{\beta}\right) y^{\beta-1} e^{-\lambda y^{\beta}}\left(1-e^{-\lambda(\alpha y)^{\beta}}\right)}{\alpha^{\beta}}=\mathrm{y} \xrightarrow{\lim } \infty \frac{\lambda \beta\left(1+\alpha^{\beta}\right) \infty^{\beta-1} e^{-\lambda \infty \beta}\left(1-e^{-\lambda(\alpha \infty)^{\beta}}\right)}{\alpha^{\beta}} \\
=0 \\
=\mathrm{y} \xrightarrow{\lim } 0 \frac{\lambda \beta\left(1+\alpha^{\beta}\right) 0^{\beta-1} e^{-\lambda 0^{\beta}}\left(1-e^{-\lambda(\alpha 0)^{\beta}}\right)}{\alpha^{\beta}}=0
\end{gathered}
$$

From the above results as $y \rightarrow \infty=0$ and $y \rightarrow 0=0$, this shows that the distribution has at least a mode.

iii. Moments and Moment Generating Function

Hosking (1990) described in their paper that when a random variable following a generalized beta generated distribution i.e $y \sim G B G(f, a, c)$ then $\mu_{r}^{\prime}=E\left[F^{-1} K^{\frac{1}{c}}\right]^{r}$ where $K \sim B(a, 1), c$ is a constant and $F^{-1}(y)$ is the inverse of CDF of the weighted weibull distribution, since $\operatorname{EWW}(a, \lambda, \beta, \alpha)$ distribution is a special form when $\mathrm{a}=\mathrm{c}=1$.We then derive the moment generating function (mgf) of the proposed distribution $m(t)=$ $E\left(e^{t y}\right)$ and the general rth moment of a beta generated distribution is defined by

$$
\begin{equation*}
\mu_{r}^{\prime}=\frac{1}{B(a, 1)} \int_{0}^{1}\left[F^{-1}(y)\right]^{r}[y]^{a-1} d u \tag{13}
\end{equation*}
$$

Also, using the taylor series expansion around the point $E\left(y_{f}\right)=\mu_{f}$ to obtain

$$
\begin{equation*}
\mu_{r}^{\prime}=\sum_{u=0}^{r}\binom{r}{k}\left[F^{-1}(\mu)\right]^{r-k}\left[F^{-1(1)}\left(\mu_{f}\right)\right]^{k} \sum_{k=0}^{n}(-1)^{i}\binom{r}{i} \tag{14}
\end{equation*}
$$

Cordeiro et al (2011) gave an alternative series expansion for μ_{r}^{\prime} in terms of $r(r, U)=E\left(U^{r} F(U)^{Y}\right)$ where k follows the parent distribution then for $\mathrm{u}=0,1, \ldots$

$$
\mu_{r}^{\prime}=\frac{1}{B(a, 1)} \sum_{i=0}^{\infty}(-1)^{i}\binom{b-1}{i} r(r, i-1)
$$

They further described another mgf of y for generated beta distribution as

Where,

$$
\begin{align*}
& M(t)=\frac{1}{B(a, 1)} \sum_{i=0}^{\infty}(-1)^{i}\binom{a-1}{i} \rho(t, i-1) \tag{15}\\
& \quad \rho(t, r)=\int_{-\infty}^{\infty} e^{t y}[F(y)]^{m} f(y) d y
\end{align*}
$$

Therefore,

$$
\begin{equation*}
M_{y}{ }^{(t)}=\frac{1}{B(a, 1)} \sum_{i=0}^{\infty}(-1)^{i}\binom{a-1}{i} \int_{-\infty}^{\infty} e^{t y}[F(y)]^{(i+1)-1} f(y) d y \tag{16}
\end{equation*}
$$

Substituting both probability density and cumulative density function of the weighted weibull distribution into (16), we obtain

$$
M_{E W W(y)}{ }^{(t)}=a \sum_{i=0}^{\infty}(-1)^{i}\binom{a-1}{i} \int \begin{gather*}
e^{t y}\left[\frac{1}{\alpha^{\beta}}\left\{\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y^{\beta}}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right)}-1\right]^{(i+1)-1}\right. \tag{17}\\
\frac{\lambda \beta\left(1+\alpha^{\beta}\right) y^{\beta-1} e^{-\lambda y^{\beta}}\left(1-e^{\left.-\lambda(\alpha y)^{\beta}\right)}\right.}{\alpha^{\beta}} d y
\end{gather*}
$$

Equation (17) becomes the mgf of Exponentiated-weighted weibull distribution. Then, setting $\mathrm{a}=1$ and $\mathrm{i}=0$, the same expression (17) is reduced to becomes the parent distribution. To obtain the rth moment of $\operatorname{EWW}(a, \lambda, \beta, \alpha)$, the weighted weibull distribution by Mahdy (2013) and is given by

$$
\begin{align*}
& M_{(y)}{ }^{(t)}=\int_{0}^{\infty} e^{t y} \frac{\lambda \beta\left(1+\alpha^{\beta}\right) y^{\beta-1} e^{-\lambda y^{\beta}}\left(1-e^{-\lambda(\alpha y)^{\beta}}\right)}{\alpha^{\beta}} d y \\
& =\sum_{j=0}^{\infty} \frac{t^{j}}{j!\alpha^{\beta}}\left\{\lambda^{-\frac{j}{\beta}}\left(1+\alpha^{\beta}\right) \Gamma\left(\frac{j+\beta}{\beta}\right)\left(1-\left(1+\alpha^{\beta}\right)\right)^{-\left(\frac{j+\beta}{\beta}\right)}\right\} \tag{18}
\end{align*}
$$

Equation (17) can be re-written as

$$
\begin{equation*}
M_{E W W(y)}{ }^{(t)}=a \sum_{i=0}^{\infty} \sum_{j=0}^{\infty}(-1)^{i}\binom{a-1}{i} \frac{t^{j}}{j!\alpha^{\beta}}\left\{\lambda^{-\frac{j}{\beta}}\left(1+\alpha^{\beta}\right) \Gamma\left(\frac{j+\beta}{\beta}\right)\left(1-\left(1+\alpha^{\beta}\right)\right)^{-\left(\frac{j+\beta}{\beta}\right)}\right\} \tag{19}
\end{equation*}
$$

The rth moment of the $\operatorname{EWW}(a, \lambda, \beta, \alpha)$ distribution can also be written from equation (19) as

$$
\begin{equation*}
\mu_{r}^{\prime}=E\left(Y^{r}\right)=a \sum_{i=0}^{\infty}(-1)^{i}\binom{a-1}{i} \frac{t^{r}}{r!\alpha^{\beta}}\left\{\lambda^{-\frac{r}{\beta}}\left(1+\alpha^{\beta}\right) \Gamma\left(\frac{r+\beta}{\beta}\right)\left(1-\left(1+\alpha^{\beta}\right)\right)^{-\left(\frac{r+\beta}{\beta}\right)}\right\} \tag{20}
\end{equation*}
$$

Again, putting $\mathrm{a}=1$ in expression (20) leads to the rth moment of the weighted weibull model by Mahdy (2013) and is given by

$$
\begin{gather*}
\mu_{r}^{\prime}=E\left(Y^{r}\right)=\frac{1}{\alpha^{\beta}}\left\{\lambda^{-\frac{r}{\beta}}\left(1+\alpha^{\beta}\right) \Gamma\left(\frac{r+\beta}{\beta}\right)\left(1-\left(1+\alpha^{\beta}\right)\right)^{-\left(\frac{r+\beta}{\beta}\right)}\right\} \tag{21}\\
\mu_{E W W(r)}^{\prime}=a \sum_{i=0}^{\infty}(-1)^{i}\binom{a-1}{i} \frac{r}{\alpha^{\beta}}\left\{\lambda^{-\frac{1}{\beta}}\left(1+\alpha^{\beta}\right) \Gamma\left(\frac{r+\beta}{\beta}\right)\left(1-\left(1+\alpha^{\beta}\right)\right)^{-\left(\frac{r+\beta}{\beta}\right)}\right\} \tag{22}
\end{gather*}
$$

From (22), it is easy to obtain the first and the second mean about the origin e.g when $\mathrm{r}=1$ and the second moment when $\mathrm{r}=2$, etc.
The first moment of $\operatorname{EWW}(a, \lambda, \beta, \alpha)$ is obtain

$$
\begin{equation*}
\mu_{E W W(1)}^{\prime}=a \sum_{i=0}^{\infty}(-1)^{i}\binom{a-1}{i} \frac{1}{\alpha^{\beta}}\left\{\lambda^{-\frac{1}{\beta}}\left(1+\alpha^{\beta}\right) \Gamma\left(\frac{1+\beta}{\beta}\right)\left(1-\left(1+\alpha^{\beta}\right)\right)^{-\left(\frac{1+\beta}{\beta}\right)}\right\} \tag{23}
\end{equation*}
$$

The second moment can also be obtained as follows:

$$
\begin{equation*}
\mu_{2}^{\prime}=V(a, 1, \lambda, \beta, \alpha)^{(y)}=V_{1}-V_{2} \tag{24}
\end{equation*}
$$

where,

$$
\begin{aligned}
& V_{1}=E(a, \lambda, \beta, \alpha)^{\left(Y^{2}\right)}=a \sum_{i=0}^{\infty}(-1)^{i}\binom{a-1}{i} \frac{1}{\alpha^{\beta}}\left\{\lambda^{-\frac{2}{\beta}}\left(1+\alpha^{\beta}\right) \Gamma\left(\frac{2+\beta}{\beta}\right)\left(1-\left(1+\alpha^{\beta}\right)\right)^{-\left(\frac{2+\beta}{\beta}\right)}\right\} \\
& V_{2}=E(a, \lambda, \beta, \alpha)^{(Y)}=\left(a \sum_{i=0}^{\infty}(-1)^{i}\binom{a-1}{i} \frac{1}{\alpha^{\beta}}\left\{\lambda^{-\frac{2}{\beta}}\left(1+\alpha^{\beta}\right) \Gamma\left(\frac{1+\beta}{\beta}\right)\left(1-\left(1+\alpha^{\beta}\right)\right)^{-\left(\frac{1+\beta}{\beta}\right)}\right\}\right)^{2}
\end{aligned}
$$

Likewise, the standard deviation is given by

$$
S D_{E W W} \cdot(a, \lambda, \beta, \alpha)^{(Y)}=\sqrt{V_{1}-V_{2}}
$$

IV. Estimation of Parameter

We show the maximum likelihood estimate (MLEs) of the parameter of $E W W(a, \lambda, \beta, \alpha)$ distribution mathematically following Cordeiro et al (2011) and Shittu and Adepoju (2013) studied on the log-likelihood function for $\omega=(a, c, \varphi)$, where $\varphi=(\lambda, \beta, \alpha)$ and setting ω to be a vector of parameter and is given by

$$
\begin{equation*}
L(\omega)=n \log c-n \log [B(a, 1)]+\sum_{i=1}^{n} \log [f(y ; \varphi)]+(a-1) \sum_{i=1}^{n} \log [F(y ; \varphi)] \tag{25}
\end{equation*}
$$

$$
\begin{gather*}
\text { Note that, } \mathrm{b}=\mathrm{c}=1(24) \text { becomes } \theta=(a, \varphi) \\
L(\omega)=-n \log (a, 1)+\sum_{i=1}^{n} \log [f(y ; \varphi)]+(a-1) \sum_{i=1}^{n} \log [F(y ; \varphi)] \tag{26}
\end{gather*}
$$

where,

$$
\begin{gathered}
f(y ; \varphi)=\frac{\lambda \beta\left(1+\alpha^{\beta}\right) y^{\beta-1} e^{-\lambda y^{\beta}}\left(1-e^{\left.-\lambda(\alpha y)^{\beta}\right)}\right.}{\alpha^{\beta}} \text { and } \\
F(y ; \varphi)=\frac{1}{\alpha^{\beta}}\left\{\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y^{\beta}}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right)}-1\right.
\end{gathered}
$$

$L_{E W W}{ }^{(\omega)}=-n \log (a, 1)+\sum_{i=1}^{n} \log \left[\frac{\lambda \beta\left(1+\alpha^{\beta}\right) y^{\beta-1} e^{-\lambda y}{ }^{\beta}\left(1-e^{\left.-\lambda(\alpha y)^{\beta}\right)}\right.}{\alpha^{\beta}}\right]+(a-1) \sum_{i=1}^{n} \log \left[\frac{1}{\alpha^{\beta}}\{(1+\right.$ $\left.\left.\alpha^{\beta}\right)\left(1-e^{-\lambda y^{\beta}}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right)}-1\right]$

For determining the MLE of $a, \lambda, \beta, \alpha$, we take the partial derivative of the (27) with respect to ($a, \lambda, \beta, \alpha$) as follows:

$$
\begin{equation*}
\frac{L_{E W W}^{(\omega)}}{\partial a}=-n \log (a, 1)+(a-1) \sum_{y=1}^{n} \log \left[\frac{1}{\alpha \beta}\left\{\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y^{\beta}}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right)}-1\right]\right. \tag{28}
\end{equation*}
$$

$$
\begin{align*}
& \frac{L_{E W W}{ }^{(\omega)}}{\partial \lambda}=\sum_{y=1}^{n} \log \left[\frac{\left.\frac{\partial \lambda \beta\left(1+\alpha^{\beta}\right) y^{\beta-1} e^{-\lambda y^{\beta}}\left(1-e^{\left.-\lambda(\alpha y)^{\beta}\right)}\right.}{\frac{\partial \lambda}{\partial \lambda}}\right]}{\frac{\lambda \beta\left(1+\alpha^{\beta}\right) y^{\beta-1} e^{-\lambda y^{\beta}}\left(1-e^{\left.-\lambda(\alpha y)^{\beta}\right)}\right.}{\alpha^{\beta}}}\right]+ \\
& (\mathrm{a}-1) \sum_{y=1}^{n} \log \left[\frac{\frac{\partial}{\partial \lambda}\left(\frac { 1 } { \alpha ^ { \beta } } \left\{\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y^{\beta}}\right)+e^{-\lambda y \beta}\left(1+\alpha^{\beta}\right)_{-1}\right.\right.}{\frac{1}{\alpha^{\beta}}\left\{\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right.}\right)_{-1}}\right] \\
& \frac{L_{E W W}^{(\omega)}}{\partial \beta}=\sum_{y=1}^{n} \log \left[\frac{\frac{\partial \lambda \beta\left(1+\alpha^{\beta}\right) y e^{-\lambda y^{\beta}}\left(1-e^{\left.-\lambda(\alpha y)^{\beta}\right)}\right.}{\left.\alpha^{\beta}{ }^{(\beta \beta}\left(1+\alpha^{\beta}\right) y^{\beta-1} e^{-\lambda y^{\beta}}\left(1-e^{-\lambda(\alpha y)}\right)^{\beta}\right)}}{\alpha^{\beta}}\right]+ \\
& \text { (a-1) } \sum_{y=1}^{n} \log \left[\frac{\frac{\partial}{\partial \beta}\left(1-\frac{1}{\alpha^{\beta}}\left\{\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right)}-1\right)\right.}{\left.\frac{1}{\alpha^{\beta}}\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y^{\beta}}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right)_{-1}}\right]}\right. \tag{30}\\
& \frac{L_{E W W}{ }^{(\omega)}}{\partial \alpha}=\sum_{y=1}^{n} \log \left[\frac{\left.\frac{\left.\partial \lambda \beta\left(1+\alpha^{\beta}\right) y^{\beta-1} e^{-\lambda y^{\beta}}\left(1-e^{-\lambda(\alpha y)}\right)^{\beta}\right)}{\alpha^{\beta}}{ }^{\frac{\left.\lambda \beta\left(1+\alpha^{\beta}\right) y^{\beta-1} e^{-\lambda y^{\beta}}\left(1-e^{-\lambda(\alpha y)}\right)^{\beta}\right)}{\alpha^{\beta}}}\right]}{\frac{1}{}}+\right. \\
& (\mathrm{a}-1) \sum_{y=1}^{n} \log \left[\frac{\left.\frac{\partial}{\partial \alpha}\left(1-\frac{1}{\alpha^{\beta}}\right\}\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y^{\beta}}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right.}\right)_{-1)}}{\frac{1}{\alpha \beta}\left\{\left(1+\alpha^{\beta}\right)\left(1-e^{-\lambda y^{\beta}}\right)+e^{-\lambda y^{\beta}\left(1+\alpha^{\beta}\right)_{-1}}\right.}\right] \tag{31}
\end{align*}
$$

The equations derive above can also be solved using iteration method (Newton Raphson) to obtain the $\widehat{a}, \widehat{\lambda}, \widehat{\beta}, \hat{\alpha}$ the MLE of $(a, \lambda, \beta, \alpha)$ respectively.

Taking second derivatives of the said equations $28,29,30$ and 31 with respect to the parameters above, it is possible to derive the interval estimate and hypothesis tests on the model parameter. This may be shown in further research.

V. Real Data Set

The data used in this section was studied by Lemonte in his BJPS Accepted Manuscript on the remission times (in months) of a random sample of 128 bladder cancer patients reported in Lee and Wang (2003) to compare and contrast the Exponentiated Weighted Weibull and Weighted Weibull distribution.
R (code) software is used to determine the maximum likelihood estimates and the log-likelihood for the Exponentiated Weighted Weibull distribution are: $\hat{a}=$ 8.95941, $\hat{\lambda}=8.17089, \hat{\beta}=8.36111, \hat{\alpha}=7.91621$ and $\log _{E W W}=448.5781$ while the maximum likelihood estimates and the log-likelihood for the Weighted Weibull distribution are: $\hat{\lambda}=7.90434, \hat{\beta}=8.44282, \hat{\alpha}=8.70033$ and $\log _{W W}=448.4913$, where $l g_{L W W}$ and $l g_{W W}$ denote log-likelihood of both Exponentiated Weighted Weibull distribution and Weighted Weibull distribution.

$$
\left(\begin{array}{cccc}
0.802169648 & -0.02880174 & 0.002221849 & -0.02674447 \\
-0.028801742 & 0.65433442 & -0.025345533 & -0.02069611 \\
0.002221849 & -0.02534553 & 0.705642669 & -0.02353514 \\
-0.026744474 & -0.02069611 & -0.023535137 & 0.60907454
\end{array}\right)
$$

VI. Conclusion

We investigated on the statistical properties of the proposed distribution e.g moments, moment generating function, estimation of parameters using R (Code) software for data analysis presented in this article. We also upgraded with an additional parameter to the existing three parameters in the weighted weibull distribution and the results from the estimated parameters show that the Exponentiated Weighted Weibull distribution has a better representation of data than weighted weibull distribution.

References Références Referencias

1. Artur, J. Lemonte : The Beta log-logistic distribution. BJPS Accepted Manuscript.
2. Azzalini, A. (1985). A class of distribution which includes the normal ones. Scandinavian Journal of Statistics, 12, 171-178.
3. Cordeiro, G. M., Alexandra \& de Castro, M. (2011). Generalized Beta Generated distributions. ICMA Centre. Discussion Papers in Finance DP 2011-05.
4. Famoye, F., Lee, C. \& Olugbenga, O. (2005). The beta-weibull distribution. Journal of Statistical Theory and Applications, 4(2), 121-138.
5. Gupta, R. D. \& Kundu, D.. (2001). Exponentiated exponential family: an alternative to gamma and weibull distributions. Biometrical Journal, 43, 117-130.
6. Hosking, J. R. M. (1990). L-moments analysis and estimation of distributions using linear combinations of order statistics. Journal Royal Statistical Society B, 52, 105124.
7. Jones, M. C. (2004). Families of distributions arising from distributions of order statistics test 13, 1-43.
8. Lee, E. T \& Wang, J. W. (2003).Statistical methods for survival Data Analysis, 3rd ed. Wiley: New York.
9. Mahdy, M. R. (2013). A class of weighted weibull distributions and its properties. Studies in Mathematical Sciences 6(1), pp 35-45.
10. Mudholkar, G. S., Srivastava, D. K. \& Friemer, M. (1995). The Exponentiated Weibull family: A reanalysis of the bus-motor-failure data. Technometrics, 37, 436445.
11. Nadarajah, S. \& Kotz, S. (2005). On the moments of the exponentiated Weibull distribution. Communication in Statistics. Theory and Methods, 35, 253-256.
12. Nadarajah, S. \& Gupta, A. K. (2007). The exponentiated gamma distribution with application to drought data. Calcutta Statistical Association Bulletin, 59, 29-54.
13. Salem, A. M \& Abo-Kasem, O. E. (2011). Estimation for the Parameters of the Exponentiated Weibull Distribution Based on Progressive Hybrid Censored Samples. Int. J. Contemp. Math. Sciences, Vol. 6, No. 35, 1713-1724.
14. Shittu, O. I \& Adepoju, A. K. (2013). On the Beta-Nakagami Distribution. Progress in Applied Mathematics, Vol. 5, No. 1, pp 49-58.

Global Journal of Science Frontier Research: F

A Summation Formula Involving Certain Special Functions

By Salahuddin \& Intazar Husain

P.D.M College of Engineering, India

Abstract- The main aim of the present paper is to compute a summation formula involving Recurrence relation and Contiguous relation.

Keywords: gauss second summation theorem, recurrence relation, prudnikov.
GJSFR-F Classification : MSC 2010: 33C05, 33C20, 33C45 ,33D50 ,33D60

Strictly as per the compliance and regulations of :

A Summation Formula Involving Certain Special Functions

Salahuddin ${ }^{\alpha}$ \& Intazar Husain ${ }^{\sigma}$

Abstract- The main aim of the present paper is to compute a summation formula involving Recurrence relation and Contiguous relation.
Keywords : gauss second summation theorem, recurrence relation, prudnikov.

I. Introduction

Generalized Gaussian Hypergeometric function of one variable is defined by

$$
{ }_{A} F_{B}\left[\begin{array}{ccc}
a_{1}, a_{2}, \cdots, a_{A} & ; & \tag{1}\\
b_{1}, b_{2}, \cdots, b_{B} & ; & z
\end{array}\right]=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{A}\right)_{k} z^{k}}{\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \cdots\left(b_{B}\right)_{k} k!}
$$

where the parameters $b_{1}, b_{2}, \cdots, b_{B}$ are neither zero nor negative integers and A, B are nonnegative integers and $|z|=1$

Contiguous Relation is defined by

[Andrews p.363(9.16), E. D. p.51(10)]

$$
(a-b){ }_{2} F_{1}\left[\begin{array}{ccc}
a, & b ; & z \tag{2}\\
c & ; & z
\end{array}\right]=a_{2} F_{1}\left[\begin{array}{ccc}
a+1, & b ; & z \\
c & ; & \left.z-b_{2} F_{1}\left[\begin{array}{ll}
a, b+1 ; & z \\
c ; &
\end{array}\right] . \begin{array}{ll}
\end{array}\right]
\end{array}\right.
$$

Gauss second summation theorem is defined by [Prudnikov., 491(7.3.7.5)]

$$
\begin{gather*}
{ }_{2} F_{1}\left[\begin{array}{cc}
a, b ; & \frac{1}{2} \\
\frac{a+b+1}{2} ; & \frac{2}{2}
\end{array}\right]=\frac{\Gamma\left(\frac{a+b+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{a+1}{2}\right) \Gamma\left(\frac{b+1}{2}\right)} \tag{3}\\
\quad=\frac{2^{(b-1)} \Gamma\left(\frac{b}{2}\right) \Gamma\left(\frac{a+b+1}{2}\right)}{\Gamma(b) \Gamma\left(\frac{a+1}{2}\right)} \tag{4}
\end{gather*}
$$

In a monograph of Prudnikov et al., a summation theorem is given in the form [Prudnikov., p.491(7.3.7.8)]

$$
{ }_{2} F_{1}\left[\begin{array}{ll}
a, b \tag{5}\\
\frac{a+b-1}{2} ; & \frac{1}{2}
\end{array}\right]=\sqrt{\pi}\left[\frac{\Gamma\left(\frac{a+b+1}{2}\right)}{\Gamma\left(\frac{a+1}{2}\right) \Gamma\left(\frac{b+1}{2}\right)}+\frac{2 \Gamma\left(\frac{a+b-1}{2}\right)}{\Gamma(a) \Gamma(b)}\right]
$$

[^2]Now using Legendre's duplication formula and Recurrence relation for Gamma function, the above theorem can be written in the form

$$
{ }_{2} F_{1}\left[\begin{array}{lll}
a, b & ; & 1 \tag{6}\\
\frac{a+b-1}{2} ; & \frac{1}{2}
\end{array}\right]=\frac{2^{(b-1)} \Gamma\left(\frac{a+b-1}{2}\right)}{\Gamma(b)}\left[\frac{\Gamma\left(\frac{b}{2}\right)}{\Gamma\left(\frac{a-1}{2}\right)}+\frac{2^{(a-b+1)} \Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{a+1}{2}\right)}{\{\Gamma(a)\}^{2}}+\frac{\Gamma\left(\frac{b+2}{2}\right)}{\Gamma\left(\frac{a+1}{2}\right)}\right]
$$

Recurrence relation is defined by

$$
\begin{equation*}
\Gamma(\zeta+1)=\zeta \Gamma(\zeta) \tag{7}
\end{equation*}
$$

$$
\begin{aligned}
& \text { II. Main Summation Formula } \\
& { }_{2} F_{1}\left[\begin{array}{ll}
a, b ; & \frac{1}{2} \\
\frac{a+b+45}{2} ; & \frac{1}{2}
\end{array}\right]= \\
& =\frac{2^{b} \Gamma\left(\frac{a+b+45}{2}\right)}{(a-b) \Gamma(b)}\left[\frac { \Gamma (\frac { b } { 2 }) } { \Gamma (\frac { a + 1 } { 2 }) } \left\{\frac{1}{\left[\prod_{\zeta=1}^{21}\{a-b-(2 \zeta-1)\}\right]\left[\prod_{\eta=1}^{22}\{a-b+(2 \eta-1)\}\right]} \times\right.\right. \\
& \times(2097152 a(-13113070457687988603440625+32835960506324395192397625 a \\
& -33100902479081461753011150 a^{2}+18852771841456100048901630 a^{3} \\
& -6998152417792503243516261 a^{4}+1830981648088050432124941 a^{5} \\
& -354501246907809948405480 a^{6}+52462262753503539155240 a^{7}-6068045552614043865426 a^{8} \\
& +557078686778195952226 a^{9}-41014337504927410260 a^{10}+2436777594647459700 a^{11} \\
& -117140064945846306 a^{12}+4552422878866226 a^{13}-142380641710440 a^{14}+3551773672360 a^{15} \\
& -69638530941 a^{16}+1048818981 a^{17}-11702670 a^{18}+91070 a^{19}-441 a^{20}+a^{21} \\
& +53745962882620608893167875 b-45053743668222224004344100 a b \\
& +113826458136107026075141710 a^{2} b-32581896347358559999317420 a^{3} b \\
& +22213537883171068151439531 a^{4} b-3437881821120782582829456 a^{5} b \\
& +1069513403791665845357128 a^{6} b-102017962030642073210480 a^{7} b \\
& +17605238308074264053574 a^{8} b-1094032303287108057912 a^{9} b+114934366191849037236 a^{10} b \\
& -4742709531308534760 a^{11} b+317038686494337262 a^{12} b-8612153544899408 a^{13} b \\
& +370669544999304 a^{14} b-6357587526960 a^{15} b+172733256855 a^{16} b-1689533124 a^{17} b+27096622 a^{18} b \\
& -114380 a^{19} b+903 a^{20} b+3418740929846540363004450 b^{2}+152628207170808204647275770 a b^{2} \\
& -29662057538012999895338574 a^{2} b^{2}+73924679489058918046015938 a^{3} b^{2} \\
& -9095261732430392323657176 a^{4} b^{2}+6475045382105375335889480 a^{5} b^{2} \\
& -523071699408050859929016 a^{6} b^{2}+171242942351303632910536 a^{7} b^{2}
\end{aligned}
$$

$-9336842670271654008484 a^{8} b^{2}+1689474770765990596076 a^{9} b^{2}-62588562419040481252 a^{10} b^{2}$ $+6843044908448608444 a^{11} b^{2}-169609751776172344 a^{12} b^{2}+11684556963374568 a^{13} b^{2}$ $-185095028637272 a^{14} b^{2}+8105951624872 a^{15} b^{2}-73945230446 a^{16} b^{2}+2006403306 a^{17} b^{2}$ $-7972286 a^{18} b^{2}+123410 a^{19} b^{2}+49302844553810665888575930 b^{3}+5196235439832751151572788 a b^{3}$ $+91735804724807821121609526 a^{2} b^{3}-6747725269089701729734368 a^{3} b^{3}$ $+16438427349229328982545896 a^{4} b^{3}-1038876114726270005445776 a^{5} b^{3}$ $+735240415476876038312632 a^{6} b^{3}-34241820697597088722848 a^{7} b^{3}$
$+11226186945118492939852 a^{8} b^{3}-371078402291905961224 a^{9} b^{3}+67240314521518855860 a^{10} b^{3}$ $-1526743180734652192 a^{11} b^{3}+166445736776215624 a^{12} b^{3}-2459287660143888 a^{13} b^{3}$ $+167607787407128 a^{14} b^{3}-1445744454752 a^{15} b^{3}+61843300298 a^{16} b^{3}-235148940 a^{17} b^{3}$ $+6096454 a^{18} b^{3}+6523406582853698567485227 b^{4}+43689757687398414790547553 a b^{4}$ $+1858191737565276546672360 a^{2} b^{4}+19566549200385431103972216 a^{3} b^{4}$ $-673581690360746582755756 a^{4} b^{4}+1596002262124887064872892 a^{5} b^{4}$ $-56864612882774626831720 a^{6} b^{4}+39096473046294723020936 a^{7} b^{4}-1099649665242617000798 a^{8} b^{4}$ $+352022359346404662630 a^{9} b^{4}-7157179769538448936 a^{10} b^{4}+1266877992724507592 a^{11} b^{4}$ $-17271058034689004 a^{12} b^{4}+1832663509135228 a^{13} b^{4}-14882731838680 a^{14} b^{4}+979484169144 a^{15} b^{4}$ $-3560764597 a^{16} b^{4}+145008513 a^{17} b^{4}+6412982275781442369534447 b^{5}$ $+3020391903873160874624880 a b^{5}+11072544506717425040943320 a^{2} b^{5}$ $+251409502832929940580848 a^{3} b^{5}+1850900598832213039588308 a^{4} b^{5}$ $-33362183528683696143184 a^{5} b^{5}+76635144078132798484872 a^{6} b^{5}-1614107103242780383952 a^{7} b^{5}$ $+1064600574662833613834 a^{8} b^{5}-18285405023328014000 a^{9} b^{5}+5631584078513951272 a^{10} b^{5}$ $-68669517587706672 a^{11} b^{5}+11692563911936180 a^{12} b^{5}-87796234586480 a^{13} b^{5}+8925930851320 a^{14} b^{5}$
$-30677356528 a^{15} b^{5}+1917334783 a^{16} b^{5}+604573745934401191005912 b^{6}$
$+2761535361221837965136664 a b^{6}+446409836411046907751368 a^{2} b^{6}$
$+1155941471891438860601896 a^{3} b^{6}+15624214876016679739352 a^{4} b^{6}$
$+87313680148565150111832 a^{5} b^{6}-874649607643712372472 a^{6} b^{6}+1943115716512939776808 a^{7} b^{6}$
$-24520882366446890424 a^{8} b^{6}+15396021766853800072 a^{9} b^{6}-157355447527654376 a^{10} b^{6}$ $+46179770718580408 a^{11} b^{6}-309271965286648 a^{12} b^{6}+50125620668424 a^{13} b^{6}-159286274280 a^{14} b^{6}$ $+15338678264 a^{15} b^{6}+231724339078175706150136 b^{7}+153811376527605888117264 a b^{7}$ $+374921775760059309890200 a^{2} b^{7}+28831347254232216398432 a^{3} b^{7}$ $+58118545317700335413400 a^{4} b^{7}+490468210861184892336 a^{5} b^{7}+2185851421255096595000 a^{6} b^{7}$ $-12438236313336433600 a^{7} b^{7}+26672527585599011688 a^{8} b^{7}-196990298922392976 a^{9} b^{7}$

$$
\begin{aligned}
& +117137843987075912 a^{10} b^{7}-652631982303392 a^{11} b^{7}+181277011099912 a^{12} b^{7}-512075874352 a^{13} b^{7} \\
& +78378960360 a^{14} b^{7}+15128932813380875312110 b^{8}+56881481026993911310578 a b^{8} \\
& +13039358045721374943420 a^{2} b^{8}+22139104917821671572676 a^{3} b^{8}+921471943096864139266 a^{4} b^{8} \\
& +1520878767836758616286 a^{5} b^{8}+8095043487442343432 a^{6} b^{8}+29720901376476436984 a^{7} b^{8} \\
& -94427080896983406 a^{8} b^{8}+195113449113625614 a^{9} b^{8}-774287072717444 a^{10} b^{8} \\
& +434411052282116 a^{11} b^{8}-1013931747010 a^{12} b^{8}+265182149218 a^{13} b^{8}+3024008960876320420246 b^{9} \\
& +2332408473401733698504 a b^{9}+4569477008635213654148 a^{2} b^{9}+492678254183696354488 a^{3} b^{9} \\
& +645945537218444676642 a^{4} b^{9}+15329149883995675728 a^{5} b^{9}+21357540300644860312 a^{6} b^{9} \\
& +69758491996612848 a^{7} b^{9}+215842089833789562 a^{8} b^{9}-353214178214040 a^{9} b^{9} \\
& +702101231167908 a^{10} b^{9}-1152680301864 a^{11} b^{9}+608359048206 a^{12} b^{9}+137104871154095942604 b^{10} \\
& +454222013907202843900 a b^{10}+120615054891875887772 a^{2} b^{10}+161949836634482706524 a^{3} b^{10} \\
& +9180121926490903960 a^{4} b^{10}+9807216639522886584 a^{5} b^{10}+132405723186144408 a^{6} b^{10} \\
& +158910354362756568 a^{7} b^{10}+291326223911580 a^{8} b^{10}+772341543530700 a^{9} b^{10} \\
& -503154100020 a^{10} b^{10}+960566918220 a^{11} b^{10}+16116280063842269532 b^{11} \\
& +13266524009934170456 a b^{11}+22468630494292536788 a^{2} b^{11}+2744654110430536928 a^{3} b^{11} \\
& +2812829209563463896 a^{4} b^{11}+85999358210064208 a^{5} b^{11}+77331167721172456 a^{6} b^{11} \\
& +552383916933472 a^{7} b^{11}+579276741224844 a^{8} b^{11}+457412818200 a^{9} b^{11}+1052049481860 a^{10} b^{11} \\
& +504464808447965118 b^{12}+1520074513892383306 a b^{12}+422390481555014024 a^{2} b^{12} \\
& +483431815242444952 a^{3} b^{12}+29546096072985492 a^{4} b^{12}+24458385708121820 a^{5} b^{12} \\
& +381004267695688 a^{6} b^{12}+294616546783832 a^{7} b^{12}+864510226398 a^{8} b^{12}+800472431850 a^{9} b^{12} \\
& +36842919196739110 b^{13}+30556991340393392 a b^{13}+46327319945209016 a^{2} b^{13} \\
& +5648934122340208 a^{3} b^{13}+4881179381635732 a^{4} b^{13}+144878605202576 a^{5} b^{13} \\
& +100261443987096 a^{6} b^{13}+623957998160 a^{7} b^{13}+421171648758 a^{8} b^{13}+777692306266456 b^{14} \\
& +2164283489573848 a b^{14}+578915870956584 a^{2} b^{14}+585771144020552 a^{3} b^{14}+32252520795880 a^{4} b^{14} \\
& +22313057280808 a^{5} b^{14}+256037937176 a^{6} b^{14}+151532656696 a^{7} b^{14}+35857948972408 b^{15} \\
& +28280942023504 a b^{1} 5+39037774410808 a^{2} b^{15}+4143128700320 a^{3} b^{15}+3132630060840 a^{4} b^{15} \\
& +63714509712 a^{5} b^{15}+36576848168 a^{6} b^{15}+484185248451 b^{16}+1250881854197 a b^{16} \\
& +288251667106 a^{2} b^{16}+262400960302 a^{3} b^{16}+9586673915 a^{4} b^{16}+5752004349 a^{5} b^{16}+13811946279 b^{17} \\
& +9489432124 a b^{17}+11986499486 a^{2} b^{17}+837826964 a^{3} b^{17}+563921995 a^{4} b^{17}+106564578 b^{18} \\
& +254376218 a b^{18}+39191490 a^{2} b^{18}+32224114 a^{3} b^{18}+1743994 b^{19}+839188 a b^{19}+962598 a^{2} b^{19} \\
& \left.\left.+5719 b^{20}+12341 a b^{20}+43 b^{21}\right)\right)+\frac{1}{\left[\prod_{\mu=1}^{22}\{a-b-(2 \mu-1)\}\right]\left[\prod_{\xi=1}^{21}\{a-b+(2 \xi-1)\}\right]} \times
\end{aligned}
$$

(2097152b (-13113070457687988603440625 + 53745962882620608893167875a $+3418740929846540363004450 a^{2}+49302844553810665888575930 a^{3}$ $+6523406582853698567485227 a^{4}+6412982275781442369534447 a^{5}+604573745934401191005912 a^{6}$ $+231724339078175706150136 a^{7}+15128932813380875312110 a^{8}+3024008960876320420246 a^{9}$ $+137104871154095942604 a^{10}+16116280063842269532 a^{11}+504464808447965118 a^{12}$ $+36842919196739110 a^{13}+777692306266456 a^{14}+35857948972408 a^{15}+484185248451 a^{16}$ $+13811946279 a^{17}+106564578 a^{18}+1743994 a^{19}+5719 a^{20}+43 a^{21}+32835960506324395192397625 b$
$-45053743668222224004344100 a b+152628207170808204647275770 a^{2} b$
$+5196235439832751151572788 a^{3} b+43689757687398414790547553 a^{4} b$ $+3020391903873160874624880 a^{5} b+2761535361221837965136664 a^{6} b$ $+153811376527605888117264 a^{7} b+56881481026993911310578 a^{8} b+2332408473401733698504 a^{9} b$
$+454222013907202843900 a^{10} b+13266524009934170456 a^{11} b+1520074513892383306 a^{12} b$ $+30556991340393392 a^{13} b+2164283489573848 a^{14} b+28280942023504 a^{15} b+1250881854197 a^{16} b$ $+9489432124 a^{17} b+254376218 a^{18} b+839188 a^{19} b+12341 a^{20} b-33100902479081461753011150 b^{2}$ $+113826458136107026075141710 a b^{2}-29662057538012999895338574 a^{2} b^{2}$ $+91735804724807821121609526 a^{3} b^{2}+1858191737565276546672360 a^{4} b^{2}$ $+11072544506717425040943320 a^{5} b^{2}+446409836411046907751368 a^{6} b^{2}$ $+374921775760059309890200 a^{7} b^{2}+13039358045721374943420 a^{8} b^{2}+4569477008635213654148 a^{9} b^{2}$
$+120615054891875887772 a^{10} b^{2}+22468630494292536788 a^{11} b^{2}+422390481555014024 a^{12} b^{2}$ $+46327319945209016 a^{13} b^{2}+578915870956584 a^{14} b^{2}+39037774410808 a^{15} b^{2}+288251667106 a^{16} b^{2}$
$+11986499486 a^{17} b^{2}+39191490 a^{18} b^{2}+962598 a^{19} b^{2}+18852771841456100048901630 b^{3}$
$-32581896347358559999317420 a b^{3}+73924679489058918046015938 a^{2} b^{3}$
$-6747725269089701729734368 a^{3} b^{3}+19566549200385431103972216 a^{4} b^{3}$
$+251409502832929940580848 a^{5} b^{3}+1155941471891438860601896 a^{6} b^{3}$
$+28831347254232216398432 a^{7} b^{3}+22139104917821671572676 a^{8} b^{3}+492678254183696354488 a^{9} b^{3}$
$+161949836634482706524 a^{10} b^{3}+2744654110430536928 a^{11} b^{3}+483431815242444952 a^{12} b^{3}$ $+5648934122340208 a^{13} b^{3}+585771144020552 a^{14} b^{3}+4143128700320 a^{15} b^{3}+262400960302 a^{16} b^{3}$
$+837826964 a^{17} b^{3}+32224114 a^{18} b^{3}-6998152417792503243516261 b^{4}$ $+22213537883171068151439531 a b^{4}-9095261732430392323657176 a^{2} b^{4}$ $+16438427349229328982545896 a^{3} b^{4}-673581690360746582755756 a^{4} b^{4}$ $+1850900598832213039588308 a^{5} b^{4}+15624214876016679739352 a^{6} b^{4}$ $+58118545317700335413400 a^{7} b^{4}+921471943096864139266 a^{8} b^{4}+645945537218444676642 a^{9} b^{4}$
$+9180121926490903960 a^{10} b^{4}+2812829209563463896 a^{11} b^{4}+29546096072985492 a^{12} b^{4}$ $+4881179381635732 a^{13} b^{4}+32252520795880 a^{14} b^{4}+3132630060840 a^{15} b^{4}+9586673915 a^{16} b^{4}$
$+563921995 a^{17} b^{4}+1830981648088050432124941 b^{5}-3437881821120782582829456 a b^{5}$ $+6475045382105375335889480 a^{2} b^{5}-1038876114726270005445776 a^{3} b^{5}$ $+1596002262124887064872892 a^{4} b^{5}-33362183528683696143184 a^{5} b^{5}$
$+87313680148565150111832 a^{6} b^{5}+490468210861184892336 a^{7} b^{5}+1520878767836758616286 a^{8} b^{5}$
$+15329149883995675728 a^{9} b^{5}+9807216639522886584 a^{10} b^{5}+85999358210064208 a^{11} b^{5}$ $+24458385708121820 a^{12} b^{5}+144878605202576 a^{13} b^{5}+22313057280808 a^{14} b^{5}+63714509712 a^{15} b^{5}$ $+5752004349 a^{16} b^{5}-354501246907809948405480 b^{6}+1069513403791665845357128 a b^{6}$ $-523071699408050859929016 a^{2} b^{6}+735240415476876038312632 a^{3} b^{6}$
$-56864612882774626831720 a^{4} b^{6}+76635144078132798484872 a^{5} b^{6}-874649607643712372472 a^{6} b^{6}$ $+2185851421255096595000 a^{7} b^{6}+8095043487442343432 a^{8} b^{6}+21357540300644860312 a^{9} b^{6}$
$+132405723186144408 a^{10} b^{6}+77331167721172456 a^{11} b^{6}+381004267695688 a^{12} b^{6}$ $+100261443987096 a^{13} b^{6}+256037937176 a^{14} b^{6}+36576848168 a^{15} b^{6}+52462262753503539155240 b^{7}$ $-102017962030642073210480 a b^{7}+171242942351303632910536 a^{2} b^{7}$ $-34241820697597088722848 a^{3} b^{7}+39096473046294723020936 a^{4} b^{7}-1614107103242780383952 a^{5} b^{7}$ $+1943115716512939776808 a^{6} b^{7}-12438236313336433600 a^{7} b^{7}+29720901376476436984 a^{8} b^{7}$
$+69758491996612848 a^{9} b^{7}+158910354362756568 a^{10} b^{7}+552383916933472 a^{11} b^{7}$ $+294616546783832 a^{12} b^{7}+623957998160 a^{13} b^{7}+151532656696 a^{14} b^{7}-6068045552614043865426 b^{8}$ $+17605238308074264053574 a b^{8}-9336842670271654008484 a^{2} b^{8}+11226186945118492939852 a^{3} b^{8}$ $-1099649665242617000798 a^{4} b^{8}+1064600574662833613834 a^{5} b^{8}-24520882366446890424 a^{6} b^{8}$ $+26672527585599011688 a^{7} b^{8}-94427080896983406 a^{8} b^{8}+215842089833789562 a^{9} b^{8}$ $+291326223911580 a^{10} b^{8}+579276741224844 a^{11} b^{8}+864510226398 a^{12} b^{8}+421171648758 a^{13} b^{8}$ $+557078686778195952226 b^{9}-1094032303287108057912 a b^{9}+1689474770765990596076 a^{2} b^{9}$ $-371078402291905961224 a^{3} b^{9}+352022359346404662630 a^{4} b^{9}-18285405023328014000 a^{5} b^{9}$
$+15396021766853800072 a^{6} b^{9}-196990298922392976 a^{7} b^{9}+195113449113625614 a^{8} b^{9}$ $-353214178214040 a^{9} b^{9}+772341543530700 a^{10} b^{9}+457412818200 a^{11} b^{9}+800472431850 a^{12} b^{9}$ $-41014337504927410260 b^{10}+114934366191849037236 a b^{10}-62588562419040481252 a^{2} b^{10}$ $+67240314521518855860 a^{3} b^{10}-7157179769538448936 a^{4} b^{10}+5631584078513951272 a^{5} b^{10}$ $-157355447527654376 a^{6} b^{10}+117137843987075912 a^{7} b^{10}-774287072717444 a^{8} b^{10}$ $+702101231167908 a^{9} b^{10}-503154100020 a^{1} 0 b^{10}+1052049481860 a^{11} b^{10}+2436777594647459700 b^{11}$ $-4742709531308534760 a b^{11}+6843044908448608444 a^{2} b^{11}-1526743180734652192 a^{3} b^{11}$

$$
\begin{aligned}
& +1266877992724507592 a^{4} b^{11}-68669517587706672 a^{5} b^{11}+46179770718580408 a^{6} b^{11} \\
& -652631982303392 a^{7} b^{11}+434411052282116 a^{8} b^{11}-1152680301864 a^{9} b^{11}+960566918220 a^{10} b^{11} \\
& -117140064945846306 b^{12}+317038686494337262 a b^{12}-169609751776172344 a^{2} b^{12} \\
& +166445736776215624 a^{3} b^{12}-17271058034689004 a^{4} b^{12}+11692563911936180 a^{5} b^{12} \\
& -309271965286648 a^{6} b^{12}+181277011099912 a^{7} b^{12}-1013931747010 a^{8} b^{12}+608359048206 a^{9} b^{12} \\
& +4552422878866226 b^{13}-8612153544899408 a b^{13}+11684556963374568 a^{2} b^{13} \\
& -2459287660143888 a^{3} b^{13}+1832663509135228 a^{4} b^{13}-87796234586480 a^{5} b^{13}+50125620668424 a^{6} b^{13} \\
& -512075874352 a^{7} b^{13}+265182149218 a^{8} b^{13}-142380641710440 b^{14}+370669544999304 a b^{14} \\
& -185095028637272 a^{2} b^{14}+167607787407128 a^{3} b^{14}-14882731838680 a^{4} b^{14}+8925930851320 a^{5} b^{14} \\
& -159286274280 a^{6} b^{14}+78378960360 a^{7} b^{14}+3551773672360 b^{15}-6357587526960 a b^{15} \\
& +8105951624872 a^{2} b^{15}-1445744454752 a^{3} b^{15}+979484169144 a^{4} b^{15}-30677356528 a^{5} b^{15} \\
& +15338678264 a^{6} b^{15}-69638530941 b^{16}+172733256855 a b^{16}-73945230446 a^{2} b^{16}+61843300298 a^{3} b^{16} \\
& -3560764597 a^{4} b^{16}+1917334783 a^{5} b^{16}+1048818981 b^{17}-1689533124 a b^{17}+2006403306 a^{2} b^{17} \\
& -235148940 a^{3} b^{17}+145008513 a^{4} b^{17}-11702670 b^{18}+27096622 a b^{18}-7972286 a^{2} b^{18}+6096454 a^{3} b^{18} \\
& \left.\left.\left.+91070 b^{19}-114380 a b^{19}+123410 a^{2} b^{19}-441 b^{20}+903 a b^{20}+b^{21}\right)\right)\right\}- \\
& -\frac{\Gamma\left(\frac{b+1}{2}\right)}{\Gamma\left(\frac{a}{2}\right)}\left\{\frac{4194304}{\left[\prod_{\zeta=1}^{21}\{a-b-(2 \zeta-1)\}\right]\left[\prod_{\eta=1}^{22}\{a-b+(2 \eta-1)\}\right]}(13113070457687988603440625\right. \\
& +53745962882620608893167875 a-3418740929846540363004450 a^{2} \\
& +49302844553810665888575930 a^{3}-6523406582853698567485227 a^{4} \\
& +6412982275781442369534447 a^{5}-604573745934401191005912 a^{6}+231724339078175706150136 a^{7} \\
& -15128932813380875312110 a^{8}+3024008960876320420246 a^{9}-137104871154095942604 a^{10} \\
& +16116280063842269532 a^{11}-504464808447965118 a^{12}+36842919196739110 a^{13} \\
& -777692306266456 a^{14}+35857948972408 a^{15}-484185248451 a^{16}+13811946279 a^{17}-106564578 a^{18} \\
& +1743994 a^{19}-5719 a^{20}+43 a^{21}+32835960506324395192397625 b+45053743668222224004344100 a b \\
& +152628207170808204647275770 a^{2} b-5196235439832751151572788 a^{3} b \\
& +43689757687398414790547553 a^{4} b-3020391903873160874624880 a^{5} b \\
& +2761535361221837965136664 a^{6} b-153811376527605888117264 a^{7} b \\
& +56881481026993911310578 a^{8} b-2332408473401733698504 a^{9} b+454222013907202843900 a^{10} b \\
& +2164283489573848 a^{14} b-28280942023504 a^{15} b+1250881854197 a^{16} b-9489432124 a^{17} b \\
& +254376218 a^{18} b-839188 a^{19} b+12341 a^{20} b+33100902479081461753011150 b^{2}
\end{aligned}
$$

$$
\begin{gathered}
+113826458136107026075141710 a b^{2}+29662057538012999895338574 a^{2} b^{2} \\
+ \\
+91735804724807821121609526 a^{3} b^{2}-1858191737565276546672360 a^{4} b^{2} \\
+11072544506717425040943320 a^{5} b^{2}-446409836411046907751368 a^{6} b^{2} \\
\\
+374921775760059309890200 a^{7} b^{2}-13039358045721374943420 a^{8} b^{2} \\
+4569477008635213654148 a^{9} b^{2}-120615054891875887772 a^{10} b^{2}+22468630494292536788 a^{11} b^{2} \\
-422390481555014024 a^{12} b^{2}+46327319945209016 a^{13} b^{2}-578915870956584 a^{14} b^{2} \\
+39037774410808 a^{15} b^{2}-288251667106 a^{16} b^{2}+11986499486 a^{17} b^{2}-39191490 a^{18} b^{2}+962598 a^{19} b^{2} \\
+ \\
+18852771841456100048901630 b^{3}+32581896347358559999317420 a b^{3} \\
+ \\
+73924679489058918046015938 a^{2} b^{3}+6747725269089701729734368 a^{3} b^{3} \\
+ \\
+19566549200385431103972216 a^{4} b^{3}-251409502832929940580848 a^{5} b^{3} \\
+ \\
+1155941471891438860601896 a^{6} b^{3}-28831347254232216398432 a^{7} b^{3} \\
+22139104917821671572676 a^{8} b^{3}-492678254183696354488 a^{9} b^{3}+161949836634482706524 a^{10} b^{3} \\
-2744654110430536928 a^{11} b^{3}+483431815242444952 a^{12} b^{3}-5648934122340208 a^{13} b^{3} \\
+585771144020552 a^{14} b^{3}-4143128700320 a^{15} b^{3}+262400960302 a^{16} b^{3}-837826964 a^{17} b^{3} \\
+32224114 a^{18} b^{3}+6998152417792503243516261 b^{4}+22213537883171068151439531 a b^{4} \\
\\
+9095261732430392323657176 a^{2} b^{4}+16438427349229328982545896 a^{3} b^{4} \\
\\
+673581690360746582755756 a^{4} b^{4}+1850900598832213039588308 a^{5} b^{4} \\
+77331167721172456 a^{11} b^{6}-381004267695688 a^{12} b^{6}+100261443987096 a^{13} b^{6}-256037937176 a^{14} b^{6}
\end{gathered}
$$

Abstract

$+36576848168 a^{1} 5 b^{6}+52462262753503539155240 b^{7}+102017962030642073210480 a b^{7}$ $+171242942351303632910536 a^{2} b^{7}+34241820697597088722848 a^{3} b^{7}$ $+39096473046294723020936 a^{4} b^{7}+1614107103242780383952 a^{5} b^{7}+1943115716512939776808 a^{6} b^{7}$ $+12438236313336433600 a^{7} b^{7}+29720901376476436984 a^{8} b^{7}-69758491996612848 a^{9} b^{7}$ $+158910354362756568 a^{10} b^{7}-552383916933472 a^{11} b^{7}+294616546783832 a^{12} b^{7}$ $-623957998160 a^{13} b^{7}+151532656696 a^{14} b^{7}+6068045552614043865426 b^{8}$ $+17605238308074264053574 a b^{8}+9336842670271654008484 a^{2} b^{8}+11226186945118492939852 a^{3} b^{8}$ $+1099649665242617000798 a^{4} b^{8}+1064600574662833613834 a^{5} b^{8}+24520882366446890424 a^{6} b^{8}$ $+26672527585599011688 a^{7} b^{8}+94427080896983406 a^{8} b^{8}+215842089833789562 a^{9} b^{8}$ $-291326223911580 a^{10} b^{8}+579276741224844 a^{11} b^{8}-864510226398 a^{12} b^{8}+421171648758 a^{13} b^{8}$ $+557078686778195952226 b^{9}+1094032303287108057912 a b^{9}+1689474770765990596076 a^{2} b^{9}$ $+371078402291905961224 a^{3} b^{9}+352022359346404662630 a^{4} b^{9}+18285405023328014000 a^{5} b^{9}$ $+15396021766853800072 a^{6} b^{9}+196990298922392976 a^{7} b^{9}+195113449113625614 a^{8} b^{9}$ $+353214178214040 a^{9} b^{9}+772341543530700 a^{10} b^{9}-457412818200 a^{11} b^{9}+800472431850 a^{12} b^{9}$ $+41014337504927410260 b^{10}+114934366191849037236 a b^{10}+62588562419040481252 a^{2} b^{10}$ $+67240314521518855860 a^{3} b^{10}+7157179769538448936 a^{4} b^{10}+5631584078513951272 a^{5} b^{10}$ $+157355447527654376 a^{6} b^{10}+117137843987075912 a^{7} b^{10}+774287072717444 a^{8} b^{10}$ $+702101231167908 a^{9} b^{10}+503154100020 a^{1} 0 b^{10}+1052049481860 a^{11} b^{10}+2436777594647459700 b^{11}$ $+4742709531308534760 a b^{11}+6843044908448608444 a^{2} b^{11}+1526743180734652192 a^{3} b^{11}$ $+1266877992724507592 a^{4} b^{11}+68669517587706672 a^{5} b^{11}+46179770718580408 a^{6} b^{11}$ $+652631982303392 a^{7} b^{11}+434411052282116 a^{8} b^{1} 1+1152680301864 a^{9} b^{11}+960566918220 a^{10} b^{11}$ $+117140064945846306 b^{12}+317038686494337262 a b^{12}+169609751776172344 a^{2} b^{12}$ $+166445736776215624 a^{3} b^{12}+17271058034689004 a^{4} b^{12}+11692563911936180 a^{5} b^{12}$ $+309271965286648 a^{6} b^{12}+181277011099912 a^{7} b^{12}+1013931747010 a^{8} b^{12}+608359048206 a^{9} b^{12}$ $+4552422878866226 b^{13}+8612153544899408 a b^{13}+11684556963374568 a^{2} b^{13}$ $+2459287660143888 a^{3} b^{13}+1832663509135228 a^{4} b^{13}+87796234586480 a^{5} b^{13}$ $+50125620668424 a^{6} b^{13}+512075874352 a^{7} b^{13}+265182149218 a^{8} b^{13}+142380641710440 b^{14}$ $+370669544999304 a b^{14}+185095028637272 a^{2} b^{14}+167607787407128 a^{3} b^{14}+14882731838680 a^{4} b^{14}$ $+8925930851320 a^{5} b^{14}+159286274280 a^{6} b^{14}+78378960360 a^{7} b^{14}+3551773672360 b^{15}$ $+6357587526960 a b^{15}+8105951624872 a^{2} b^{15}+1445744454752 a^{3} b^{15}+979484169144 a^{4} b^{15}$ $+30677356528 a^{5} b^{15}+15338678264 a^{6} b^{15}+69638530941 b^{16}+172733256855 a b^{16}$ $+73945230446 a^{2} b^{16}+61843300298 a^{3} b^{16}+3560764597 a^{4} b^{16}+1917334783 a^{5} b^{16}+1048818981 b^{17}$

$$
\begin{aligned}
& +1689533124 a b^{17}+2006403306 a^{2} b^{17}+235148940 a^{3} b^{17}+145008513 a^{4} b^{17}+11702670 b^{18} \\
& +27096622 a b^{18}+7972286 a^{2} b^{18}+6096454 a^{3} b^{18}+91070 b^{19}+114380 a b^{19}+123410 a^{2} b^{19}+441 b^{20} \\
& \left.+903 a b^{20}+b^{21}\right)+\frac{4194304}{\left[\prod_{\mu=1}^{22}\{a-b-(2 \mu-1)\}\right]\left[\prod_{\xi=1}^{21}\{a-b+(2 \xi-1)\}\right]} \times \\
& \times(13113070457687988603440625+32835960506324395192397625 a \\
& +33100902479081461753011150 a^{2}+18852771841456100048901630 a^{3} \\
& +6998152417792503243516261 a^{4}+1830981648088050432124941 a^{5} \\
& +354501246907809948405480 a^{6}+52462262753503539155240 a^{7}+6068045552614043865426 a^{8} \\
& +557078686778195952226 a^{9}+41014337504927410260 a^{10}+2436777594647459700 a^{11} \\
& +117140064945846306 a^{12}+4552422878866226 a^{13}+142380641710440 a^{14}+3551773672360 a^{15} \\
& +69638530941 a^{16}+1048818981 a^{17}+11702670 a^{18}+91070 a^{19}+441 a^{20}+a^{21} \\
& +53745962882620608893167875 b+45053743668222224004344100 a b \\
& +113826458136107026075141710 a^{2} b+32581896347358559999317420 a^{3} b \\
& +22213537883171068151439531 a^{4} b+3437881821120782582829456 a^{5} b \\
& +1069513403791665845357128 a^{6} b+102017962030642073210480 a^{7} b \\
& +17605238308074264053574 a^{8} b+1094032303287108057912 a^{9} b+114934366191849037236 a^{10} b \\
& +4742709531308534760 a^{11} b+317038686494337262 a^{12} b+8612153544899408 a^{13} b \\
& +370669544999304 a^{14} b+6357587526960 a^{15} b+172733256855 a^{16} b+1689533124 a^{17} b \\
& +27096622 a^{18} b+114380 a^{19} b+903 a^{20} b-3418740929846540363004450 b^{2} \\
& +152628207170808204647275770 a b^{2}+29662057538012999895338574 a^{2} b^{2} \\
& +73924679489058918046015938 a^{3} b^{2}+9095261732430392323657176 a^{4} b^{2} \\
& +6475045382105375335889480 a^{5} b^{2}+523071699408050859929016 a^{6} b^{2} \\
& +171242942351303632910536 a^{7} b^{2}+9336842670271654008484 a^{8} b^{2} \\
& +1689474770765990596076 a^{9} b^{2}+62588562419040481252 a^{10} b^{2}+6843044908448608444 a^{11} b^{2} \\
& +169609751776172344 a^{12} b^{2}+11684556963374568 a^{13} b^{2}+185095028637272 a^{14} b^{2} \\
& +8105951624872 a^{15} b^{2}+73945230446 a^{16} b^{2}+2006403306 a^{17} b^{2}+7972286 a^{18} b^{2}+123410 a^{19} b^{2} \\
& +49302844553810665888575930 b^{3}-5196235439832751151572788 a b^{3} \\
& +91735804724807821121609526 a^{2} b^{3}+6747725269089701729734368 a^{3} b^{3} \\
& +16438427349229328982545896 a^{4} b^{3}+1038876114726270005445776 a^{5} b^{3} \\
& +735240415476876038312632 a^{6} b^{3}+34241820697597088722848 a^{7} b^{3} \\
& +11226186945118492939852 a^{8} b^{3}+371078402291905961224 a^{9} b^{3}+67240314521518855860 a^{10} b^{3}
\end{aligned}
$$

$$
\begin{gathered}
+1526743180734652192 a^{11} b^{3}+166445736776215624 a^{12} b^{3}+2459287660143888 a^{13} b^{3} \\
+167607787407128 a^{14} b^{3}+1445744454752 a^{15} b^{3}+61843300298 a^{16} b^{3}+235148940 a^{17} b^{3} \\
+6096454 a^{18} b^{3}-6523406582853698567485227 b^{4}+43689757687398414790547553 a b^{4} \\
-1858191737565276546672360 a^{2} b^{4}+19566549200385431103972216 a^{3} b^{4} \\
+673581690360746582755756 a^{4} b^{4}+1596002262124887064872892 a^{5} b^{4} \\
+56864612882774626831720 a^{6} b^{4}+39096473046294723020936 a^{7} b^{4} \\
+1099649665242617000798 a^{8} b^{4}+352022359346404662630 a^{9} b^{4}+7157179769538448936 a^{10} b^{4} \\
+1266877992724507592 a^{11} b^{4}+17271058034689004 a^{12} b^{4}+1832663509135228 a^{13} b^{4} \\
+14882731838680 a^{14} b^{4}+979484169144 a^{15} b^{4}+3560764597 a^{16} b^{4}+145008513 a^{17} b^{4} \\
+6412982275781442369534447 b^{5}-3020391903873160874624880 a b^{5} \\
+11072544506717425040943320 a^{2} b^{5}-251409502832929940580848 a^{3} b^{5} \\
+1850900598832213039588308 a^{4} b^{5}+33362183528683696143184 a^{5} b^{5} \\
+76635144078132798484872 a^{6} b^{5}+1614107103242780383952 a^{7} b^{5}+1064600574662833613834 a^{8} b^{5} \\
+18285405023328014000 a^{9} b^{5}+5631584078513951272 a^{10} b^{5}+68669517587706672 a^{11} b^{5} \\
+11692563911936180 a^{12} b^{5}+87796234586480 a^{13} b^{5}+8925930851320 a^{14} b^{5}+30677356528 a^{15} b^{5} \\
+1917334783 a^{16} b^{5}-604573745934401191005912 b^{6}+2761535361221837965136664 a b^{6} \\
-446409836411046907751368 a^{2} b^{6}+1155941471891438860601896 a^{3} b^{6} \\
+492578254183696354488 a^{3} b^{9}+645945537218444676642 a^{4} b^{9}-15329149883995675728 a^{5} b^{9}
\end{gathered}
$$

$$
\begin{gather*}
+21357540300644860312 a^{6} b^{9}-69758491996612848 a^{7} b^{9}+215842089833789562 a^{8} b^{9} \\
+353214178214040 a^{9} b^{9}+702101231167908 a^{10} b^{9}+1152680301864 a^{11} b^{9}+608359048206 a^{12} b^{9} \\
-137104871154095942604 b^{10}+454222013907202843900 a b^{10}-120615054891875887772 a^{2} b^{10} \\
+161949836634482706524 a^{3} b^{10}-9180121926490903960 a^{4} b^{10}+9807216639522886584 a^{5} b^{10} \\
\quad-132405723186144408 a^{6} b^{10}+158910354362756568 a^{7} b^{10}-291326223911580 a^{8} b^{10} \\
+772341543530700 a^{9} b^{10}+503154100020 a^{1} 0 b^{10}+960566918220 a^{11} b^{10}+16116280063842269532 b^{11} \\
-13266524009934170456 a b^{11}+22468630494292536788 a^{2} b^{11}-2744654110430536928 a^{3} b^{11} \\
\quad+2812829209563463896 a^{4} b^{11}-85999358210064208 a^{5} b^{11}+77331167721172456 a^{6} b^{11} \\
-552383916933472 a^{7} b^{11}+579276741224844 a^{8} b^{11}-457412818200 a^{9} b^{11}+1052049481860 a^{1} 0 b^{11} \\
\quad-504464808447965118 b^{12}+1520074513892383306 a b^{12}-422390481555014024 a^{2} b^{12} \\
\quad+483431815242444952 a^{3} b^{12}-29546096072985492 a^{4} b^{12}+24458385708121820 a^{5} b^{12} \\
-381004267695688 a^{6} b^{12}+294616546783832 a^{7} b^{12}-864510226398 a^{8} b^{12}+800472431850 a^{9} b^{12} \\
\quad+36842919196739110 b^{13}-30556991340393392 a b^{13}+46327319945209016 a^{2} b^{13} \\
\quad-5648934122340208 a^{3} b^{13}+4881179381635732 a^{4} b^{13}-144878605202576 a^{5} b^{13} \\
+100261443987096 a^{6} b^{13}-623957998160 a^{7} b^{13}+421171648758 a^{8} b^{13}-777692306266456 b^{14} \\
\quad+2164283489573848 a b^{14}-578915870956584 a^{2} b^{14}+585771144020552 a^{3} b^{14} \\
-32252520795880 a^{4} b^{14}+22313057280808 a^{5} b^{14}-256037937176 a^{6} b^{14}+151532656696 a^{7} b^{14} \\
+35857948972408 b^{15}-28280942023504 a b^{15}+39037774410808 a^{2} b^{15}-4143128700320 a^{3} b^{15} \\
\quad+3132630060840 a^{4} b^{15}-63714509712 a^{5} b^{15}+36576848168 a^{6} b^{15}-484185248451 b^{16}
\end{gather*}
$$

iII. Derivation of the Summation Formula

Substituting $c=\frac{a+b+45}{2}$ and $z=\frac{1}{2}$ in equation (2), we get

$$
(a-b){ }_{2} F_{1}\left[\begin{array}{ll}
a, b ; & \frac{1}{a, b+45} ;
\end{array}\right]=a_{2} F_{1}\left[\begin{array}{ll}
a+1, b ; & \frac{1}{2} \\
\frac{a+b+45}{2} ; & ;
\end{array}\right]-{ }_{2} F_{1}\left[\begin{array}{ll}
a, b+1 ; & \frac{1}{2} \\
\frac{a+b+45}{2} ; & \frac{1}{2}
\end{array}\right]
$$

Now involving the formula [Salahuddin et. al. p.12-41(8)], the summation formula is obtained.

References Références Referencias

1. Andrews, L.C.(1992) ; Special Function of Mathematics for Engineers,second Edition, McGraw-Hill Co Inc., New York.
2. Arora, Asish, Singh, Rahul, Salahuddin. ; Development of a family of summation formulae of half argument using Gauss and Bailey theorems, Journal of Rajasthan Academy of Physical Sciences., 7(2008), 335-342.
3. Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O.I.; Integrals and Series Vol. 3: More Special Functions. Nauka, Moscow, 1986. Translated from the Russian by G.G. Gould, Gordon and Breach Science Publishers, New York, Philadelphia, London, Paris, Montreux, Tokyo, Melbourne, 1990.
4. Rainville, E. D.; The contiguous function relations for ${ }_{p} F_{q}$ with applications to Bateman's $J_{n}^{u, v}$ and Rice's $H_{n}(\zeta, p, \nu)$, Bull. Amer. Math. Soc., 51(1945), 714-723.
5. Salahuddin ,Chaudhary, M. P.,Kumar,Vinesh ; A summation formula of half argument collocated with contiguous relation , Global Journal of Science Frontier Research, 1(2012),1141.

This page is intentionally left blank

Global Journal of Science Frontier Research: F
Mathematics and Decision Sciences
Volume 14 Issue 2 Version 1.0 Year 2014
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Global Existence and Uniqueness of the Weak Solution in Keller Segel Model

By C. Messikh, A. Guesmia \& S. Saadi
University of Badji Moktar, Algeria

Abstract- This paper deals with the global existence, uniqueness and boundedness of the weak solution for the chemotaxis system (P) defined as

$$
\left\{\begin{array}{lr}
u_{t}-\Delta u+\operatorname{div}(u \nabla c)=0 & (t, x) \in \mathbb{R}^{+} \times \Omega \tag{P}\\
-\Delta c+\tau c=0 & x \in \Omega \\
u=0, c=g & \Gamma \\
u(0, x)=u_{0} & x \in \Omega
\end{array}\right.
$$

The system (P) is under homogeneous Dirichlet boundary conditions in a convex smooth bounded domain $\Omega \in \mathbb{R}^{n}$ with smooth boundary Γ ($\in H^{\frac{3}{2}}(\Gamma)$ and $u_{0} \in H^{\frac{1}{2}}(\Omega)$ Based on Galerkin's method, Lax -Milgran's and maximum principle, a prove of the existence and uniqueness of a global solution for the system (P) is determined. Moreover we show that the unique solution is positive.

Keywords and Phrases: chemotaxis, global existence, boundedness, positive solution.
GJSFR-F Classification : MSC 2010: 35K58, 45G05, 65C35, 82C22, 82C31,82C80, 92C17

Strictly as per the compliance and regulations of

© 2014. C. Messikh, A. Guesmia \& S. Saadi. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Global Existence and Uniqueness of the Weak Solution in Keller Segel Model

C. Messikh ${ }^{\alpha}$, A. Guesmia ${ }^{\circ}$ \& S. Saadi ${ }^{\rho}$

Abstract- This paper deals with the global existence, uniqueness and boundedness of the weak solution for the
chemotaxis system ($\mathbf{(P)}$ defined as

$$
\left\{\begin{array}{lr}
u_{t}-\Delta u+\operatorname{div}(u \nabla c)=0 & (t, x) \in \mathbb{R}^{+} \times \Omega \\
-\Delta c+\tau c=0 & x \in \Omega \\
u=0, c=g & \Gamma \\
u(0, x)=u_{0} & x \in \Omega
\end{array}\right.
$$

The system (\mathbf{P}) is under homogeneous Dirichlet boundary conditions in a convex smooth bounded domain $\Omega \in \mathbb{R}^{n}$ with smooth boundary $\Gamma\left(\in H^{\frac{3}{2}}(\Gamma)\right.$ and $u_{0} \in H^{\frac{1}{2}}(\Omega)$ Based on Galerkin's method, Lax-Milgran's Theorem and maximum principle, a prove of the existence and uniqueness of a global solution for the system ($\mathbf{(P)}$ is determined. Moreover we show that the unique solution is positive.
Keywords and Phrases: chemotaxis, global existence, boundedness, positive solution.

I. Introduction

Chemotaxis is an important means for cellular communication. It is the influence of chemical substances in the environment on the movement of mobile species. This can lead to strictly oriented movement or to partially oriented and partially tumbling movement. The movement towards a higher concentration of the chemical substance is called positive chemotaxis whereas the movement towards regions of lower chemical concentration is called negative chemotactical movement.

The classical chemotaxis model - the so-called Keller-Segel model - system defined in (0.1) was first introduced by Paltak [11] (1953), E. Keller and L. Segel [9] (1970)

$$
\begin{array}{rrr}
u_{t}-\nabla(a \nabla u)+\nabla(\chi u \nabla c)=0 & (t, x) \in \mathbb{R}^{+} & \times \mathbb{R}^{d} \\
\alpha c_{t}-\Delta c+\tau c+\beta u=0 & x \in \mathbb{R}^{d} \tag{0.1}
\end{array}
$$

where $u(t, x)$ denotes the density of bacteria in the position $x \in \mathbb{R}^{d}$ and at time t, c the concentration of chemical signal substance, $\alpha \geq 0$ the relaxation time, the parameter χ the sensitivity of cells to the chemoattractant and a, τ, β are given smooth functions. As it can be seen, when $\alpha \neq 0$ the model is

[^3]called Parabolic-Parabolic while it is an Elliptic-Parabolic model when $\alpha=0$. This modelling is very simple, it exhibits a profound mathematical structure and mostly only dimension 2 is understood, especially chemotactic collapse. The proposed model has been extensively studied in the last few years (see ([7]-[8],[12], [13]) for a recent survey articles).

The Parabolic-Parabolic model has been investigated by many authers (see for examples Refs [8] and [13]), I. Fatkullin [10] had developed numerical method (a composite particle-grid) with adaptive time stepping which allows us to resolve and propagates singular solutions when with Neumann boundary condition.

The Elliptic-Parabolic model has been investigated by many authers (see for examples Refs [3] and [4]). This model have been carried out where the main concern is whether the solution of model is bounded or blow-up. It has been proved that the solution strongly depends on the spatial dimension. It does not occur in one-dimensional problems, and it occurs conditionally in higher dimensional situations. More precisley, see [2] in case higher dimensions ($n \geq 3$), if the norm of initial condition u_{0} is small in space $L^{\frac{n}{2}}\left(\mathbb{R}^{n}\right)$, then there are global weak solutions and if $\left(\int x^{2} u_{0}\right)^{d-2} \leq C\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}^{n}$ with C is small , then there is blow up in a finite time T^{*}. But in two dimension, (see [5]), if $\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{2}\right)}$ $<\frac{8 \pi}{\chi}$, there are smooth solutions, and if $\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{2}\right)}>\frac{8 \pi}{\chi}$, there is creation of a singular measure (blow-up) in finite time.

In this paper we demonstrate the global existence and uniqueness of weak positive solution for the elliptic-parabolic model's problem defined as

$$
(P)\left\{\begin{array}{cr}
u_{t}-\Delta u+\operatorname{div}(u \nabla c)=0 & (t, x) \in \mathbb{R}^{+} \times \Omega \\
u=0 & \Gamma \\
\left.u(0, x)=u_{0}\right) & x \in \Omega \\
\left(P_{2}\right)\left\{\begin{array}{lr}
-\Delta c+\tau c=0 \\
c=g & x \in \Omega
\end{array}\right. & \Gamma
\end{array}\right.
$$

Where $u(t, x)$ is a function denotes the density of bacteria in the position $x \in \Omega \subset \mathbb{R}^{2}$ or \mathbb{R}^{3}, Ω is a bounded convex domain with smooth boundary Γ, c denotes the concentration of chemical signal that stimulates the bacteria. The parameter τ is a time constant and it is expressed on the one hand the movement of bacteria (representing a random distribution side and a deterministic drift in the direction of high concentrations) and secondly the diffusion degradation of c.

To simplify the solution of the system (P), a decomposition of (P) into two subsystems $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$ are adopted. Lax-Milgram's Theorem is very important theorem which we help us to demonstrate the existence and uniqueness of a weak solution for the system $\left(\mathrm{P}_{2}\right)$. However this theorem can not be applied directly because it is a nonhomogenous system. For this raison an adoptation of Trace Theorem is used to simplify the system $\left(\mathrm{P}_{2}\right)$, and together with Galerking method we can demonstrate the existence and uniquness of a weak solution for the system $\left(\mathrm{P}_{1}\right)$. Therefore we have the existence and uniquness for the problem (P). Moreover we show that the solution is positive. The following initial-boundary conditions on u_{0} and g assumptions are used to prove the proposed solution of (P)

H_{1}	$g \in L^{\frac{1}{2}}(\Gamma)$
H_{2}	$g \in L^{\frac{3}{2}}(\Gamma)$
H_{3}	$u_{0} \in L^{2}(\Omega)$
H_{4}	$u_{0} \geq 0$ and $g \geq 0$.

If the hypothesis H_{1} is satisfies and using the theorem of trace, one can find a lifting of this trace which we denote $R(g) \in H_{0}^{1}(\Omega)$. Thus by definition it verifies $\gamma_{0}(R(g))=g$. Now looking for c having the form $c=\widetilde{c}+R(g)$ reduces the problem $\left(\mathrm{P}_{2}\right)$ to \widetilde{c}.

$$
\left(\widetilde{P}_{2}\right)\left\{\begin{array}{lr}
-\Delta \widetilde{c}+\tau \widetilde{c}-\Delta R(g)+\tau R(g)=0 & \text { in } x \in \Omega \\
\widetilde{c}=0 & \text { on } \Gamma
\end{array}\right.
$$

Definition 1 We say $(u, \widetilde{c}) \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \times H_{0}^{1}(\Omega)$ with $u_{t} \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)$ is a weak solution of the problem (P) if and only if

$$
\begin{gather*}
\left\langle u_{t}, v\right\rangle+B(u, v, t)=0 \tag{0.2}\\
a(\widetilde{c}, q, t)=l(q) \tag{0.3}
\end{gather*}
$$

where

$$
\left\{\begin{array}{c}
B(u, v, t)=\int_{\Omega}(\nabla u \nabla v+\nabla c \nabla u v+\tau c u v) d x \\
a(\widetilde{c}, q)=\int_{\Omega}(\nabla \widetilde{c} \nabla q+\tau \widetilde{c} q) d x \\
l(q)=-\int_{\Omega}(\nabla R(g) \nabla q+\tau R(g) q) d x
\end{array}\right.
$$

for all $(v, q) \in\left(H_{0}^{1}(\Omega)\right)^{2}, 0 \leq t \leq T$, and

$$
\begin{equation*}
u(0, x)=u_{0} \in L^{2}(\Omega) \tag{0.4}
\end{equation*}
$$

Remark 2 Note that $u \in C\left([0, T] ; L^{2}(\Omega)\right)$ as $u \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ and $u_{t} \in$ $L^{2}\left(0, T ; H^{-1}(\Omega)\right)$. Then equality (0.4) makes sense.

iI. Existence of Weak Solution of the Problem (P)

In this section, use the Theorem of Lax- Milgran to study the existence and uniqueness of weak solution of problem $\left(\mathrm{P}_{2}\right)$, which its variational formulat is given by equation (0.3) and use the method of Galerking to study the existence and uniqueness of weak solution of problem $\left(\mathrm{P}_{1}\right)$, which its variational formulat is given by equation (0.2). So we have the existence and uniqueness of weak solution of problem (P).

a) Existence of weak solution of the problem (P2)

Theorem 3 If the hypothesis H_{1} holds. Then the problem (P_{2}) has only one solution $c \in H^{1}(\Omega)$ for any $q \in H^{1}(\Omega)$.

By applying the Theorem of Lax-Milgran, the solution \widetilde{c} of the problem (0.3) exists and it is unique. So $\left(\mathrm{P}_{2}\right)$ has unique solution.

Remark 4 Elliptic regularity Theorem remains valid provided that the boundary condition g is in the space $L^{\frac{3}{2}}(\Gamma)$ which is the image by the operator trace space $H^{2}(\Omega)$.

Remark 5 [6] If $c \in H^{2}(\Omega)$ and (c is a solution of problem $\left(P_{2}\right)$) this implies that $c \in W^{1, q}(\Omega)\left(H^{2}(\Omega) \hookrightarrow W^{1, q}(\Omega)\right.$ for $\left.1 \leq q \leq 2^{*}\right)$.

Using the Maximum Principle one can show that the solution of the problem $\left(\mathrm{P}_{2}\right)$ is positive as follows. Multiplying the first equation of $\left(\mathrm{P}_{2}\right)$ by $q \in H_{0}^{1}(\Omega)$, we obtain other variational formulat for problem $\left(\mathrm{P}_{2}\right)$

$$
\left(\widetilde{\mathrm{P}}_{3}\right) \int_{\Omega}(\nabla c \nabla q+\tau c q) d x=0
$$

Proposition 6 [1] If $g \in L^{\frac{3}{2}}(\Gamma)$ and $c \in H^{1}(\Omega) \cap C(\bar{\Omega})$ then the problem $\left(\widetilde{P}_{3}\right)$ have a positive solution c.

Proof. As Γ is smooth enough and $g \in L^{\frac{3}{2}}(\Gamma)$ then $c \in H^{2}(\Omega)$. And as $\Omega \subset \mathbb{R}^{2}$ or \mathbb{R}^{3}, by embedding of Sobolev spaces $\left(H^{2}(\bar{\Omega}) \hookrightarrow C(\bar{\Omega})\right)$ this implies that $c \in C(\bar{\Omega})$. If $c=g \geq 0$ on Γ, then $c^{-}=\min (c, 0) \in H_{0}^{1}(\Omega)$. So, we have

$$
\begin{aligned}
\int_{\Omega} c c^{-} d x & =\int_{\Omega}\left(c^{-}\right)^{2} d x \\
\int_{\Omega} \nabla c \nabla c^{-} d x & =\int_{\Omega}\left(\nabla c^{-}\right)^{2} d x
\end{aligned}
$$

Since the support of functions c^{-}and $c^{+}=\max (c, 0)$ is set $A(x)=\{x / u(x)=0\}$. This implies that $\nabla u=0$ on $A(x)$. As $c=c^{+}+c^{-}$, thus we have

$$
0=\int\left(\nabla c^{-}\right)^{2}+\tau\left(c^{-}\right)^{2} d x \geq \min (1, \tau)\left\|c^{-}\right\|_{H_{0}^{1}(\Omega)}^{2}
$$

Finally, we find $c^{-}=0$.

b) Existence of a weak solution of the problem (P1)

Before proving the existence and uniqueness of weak solution of problem $\left(\mathrm{P}_{1}\right)$, we need the following lemma
Lemma 7 i) For all $v \in H_{0}^{1}(\Omega)$ then $B(., ., t)$ is continuous in $H_{0}^{1}(\Omega) \times$ $H_{0}^{1}(\Omega)$, there exists a constant positive C such that

$$
\begin{equation*}
|B(u, v, t)| \leq C\|u\|_{H^{1}(\Omega)}\|v\|_{H^{1}(\Omega)} \tag{1.1}
\end{equation*}
$$

ii) For any $u \in H_{0}^{1}(\Omega)$ and H_{2} is hold. Then there exists a constant positive β such that

$$
\beta\|u\|_{H_{0}^{1}(\Omega)}^{2} \leq B(u, u, t)
$$

Proof. i) We use the Cauchy-Shwarz inequality and $c \in H^{2}(\Omega) \hookrightarrow L^{q}(\Omega)$ for any $q \in\left[1, \frac{2 n}{n-2}[\right.$ with $n=2$ or $n=3$, we obtain i) as follows

$$
\begin{aligned}
B(u, v, t) \leq & \|\nabla u\|_{L^{2}(\Omega)}\|\nabla v\|_{L^{2}(\Omega)}+\|\nabla c\|_{L^{4}(\Omega)}\|u\|_{L^{2}(\Omega)}\|v\|_{L^{4}(\Omega)} \\
& +\tau\|c\|_{L^{4}(\Omega)}\|u\|_{L^{2}(\Omega)}\|v\|_{L^{4}(\Omega)} \\
\leq & C\|u\|_{H^{1}(\Omega)}\|v\|_{H^{1}(\Omega)}
\end{aligned}
$$

ii) Making use of $-\Delta c+\tau c=0$ the expression of $B(u, u, t)$ becomes

$$
\begin{aligned}
B(u, u, t) & =\int(\nabla u)^{2}+\frac{\nabla c}{2} \nabla u^{2}+\tau c u^{2} d x \\
& =\int(\nabla u)^{2}+\left(\tau c-\frac{\Delta c}{2}\right) u^{2} d x \\
& =\int(\nabla u)^{2}+\frac{1}{2} \tau c u^{2} d x \geq\|\nabla u\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

Finally, by Poincarre inequality yields

$$
B(u, u, t) \geq \beta\|u\|_{H_{0}^{1}(\Omega)}^{2} .
$$

To demonstrate the existence of weak solution of $\left(\mathrm{P}_{1}\right)$ via the method of Galerking, we assume $w_{k}=w_{k}(x)$ are smooth functions verifying

$$
\begin{equation*}
\left\{w_{k}\right\}_{k=1}^{\infty} \text { is an orthogonal basis of } H_{0}^{1}(\Omega) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{w_{k}\right\}_{k=1}^{\infty} \text { is an orthonormal basis of } L^{2}(\Omega) . \tag{1.3}
\end{equation*}
$$

Consider a positive integer m. We will look for a function $u_{m}:[0 T] \rightarrow H_{0}^{1}(\Omega)$ of the form

$$
\begin{equation*}
u_{m}(t):=\sum_{k=1}^{m} d_{m}^{k}(t) w_{k} \tag{1.4}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
d_{m}^{k}(0)=\left(u_{0}, w_{k}\right) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle u_{m}^{\prime}, w_{k}\right\rangle+B\left(u_{m}, w_{k}, t\right)=0, \quad 0 \leq t \leq T \text { and } \quad k=1, \ldots, m \tag{1.6}
\end{equation*}
$$

where $u^{\prime}=u_{t}$ and here (.,.) denotes the scalar product in $L^{2}(\Omega)$.
Theorem 8 (construction of the approximate solution) For each integer m, there exists a unique function u_{m} of the form (1.4) satisfying (1.5) and (1.6).

Proof. Assuming u_{m} has the structure (1.4). Substituting (1.4) into (1.5) and using (1.3) we obtained

$$
\begin{equation*}
d_{m}^{\prime k}(t)+\sum_{l=1}^{m} d_{m}^{l} B\left(w_{l}, w_{k}, t\right)=0 \quad 0 \leq t \leq T \quad \text { and } k=1, \ldots, m \tag{1.7}
\end{equation*}
$$

According to standard existence theory for ordinary differential equations, there exists a unique absolutely continuous functions $d_{m}(t)=\left(d_{m}^{1}, d_{m}^{2}, \ldots, d_{m}^{m}\right)$ satisfying (1.5) and (1.7). So u_{m} of the form (1.4) satisfies (1.5) and (1.6) for all $t \in[0 T]$.

c) Energy estimates

We propose now to send m to infinity and show a subsequence of our solutions u_{m} of the approximation problems (1.5) and (1.6) converges to a weak solution of $\left(\mathrm{P}_{1}\right)$. For this we will need some uniform estimates.

Theorem 9 (Energy estimates) [6]. There exists a constant C, depending only on Ω, T and c, such that

$$
\begin{equation*}
\max _{0 \leq t \leq T}\left\|u_{m}\right\|_{L^{2}(\Omega)}+\left\|u_{m}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)}+\left\|u_{m}^{\prime}\right\|_{L^{2}\left(0, T ; H^{-1}(\Omega)\right)} \leq C\left\|u_{0}\right\|_{L^{2}(\Omega)} \tag{1.8}
\end{equation*}
$$

for $m=1,2, \ldots$
Proof. 1. Multiplying equation (1.6) by $d_{m}^{k}(t)$, summing for $k=1, \ldots, m$, and then recalling (1.4) we find

$$
\begin{equation*}
\left(\hat{u}_{m}, u_{m}\right)+B\left(u_{m}, u_{m}, t\right)=0 \tag{1.9}
\end{equation*}
$$

for all $0 \leq t \leq T$. From Lemma 7, there exists constant $\beta>0$ such that

$$
\begin{equation*}
\beta\left\|u_{m}\right\|_{H_{0}^{1}(\Omega)}^{2} \leq B\left(u_{m}, u_{m}, t\right) \tag{1.10}
\end{equation*}
$$

for all $0 \leq t \leq T$. Consequently (1.10) yields the inequality

$$
\begin{equation*}
\frac{d}{d t}\left(\left\|u_{m}\right\|_{L^{2}(\Omega)}^{2}\right)+\beta\left\|u_{m}\right\|_{H_{0}^{1}(\Omega)}^{2} \leq 0 \text { for all } 0 \leq t \leq T \tag{1.11}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\left\|u_{m}\right\|_{L^{2}(\Omega)}^{2} \leq\left\|u_{m}(0)\right\|_{L^{2}(\Omega)}^{2} \leq\left\|u_{0}\right\|_{L^{2}(\Omega)}^{2} \text { for all } 0 \leq t \leq T \tag{1.12}
\end{equation*}
$$

So we have

$$
\begin{equation*}
\max _{0 \leq t \leq T}\left\|u_{m}\right\|_{L^{2}(\Omega)} \leq\left\|u_{0}\right\|_{L^{2}(\Omega)} \tag{1.13}
\end{equation*}
$$

2. Integrate inequality (1.11) from 0 to T and we employ the inequality (1.13) to find

$$
\left\|u_{m}\right\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)}^{2}=\int_{0}^{T}\left\|u_{m}\right\|_{H_{0}^{1}(\Omega)}^{2} d t \leq C\left\|u_{0}\right\|_{L^{2}(\Omega)}^{2}
$$

3. Fix any $v \in H_{0}^{1}(\Omega)$, with $\|v\|_{H_{0}^{1}(\Omega)}^{2} \leq 1$, and write $v=v^{1}+v^{2}$, where $v^{1} \in \operatorname{span}\left(w_{k}\right)_{k=1}^{k=m}$, and $\left(v^{2}, w_{k}\right)=0(k=1, \ldots, m)$. We use (1.6), we deduce for all $0 \leq t \leq T$ that

$$
\left(u_{m}^{\prime}, v^{1}\right)+B\left(u_{m}, v^{1}, t\right)=0
$$

Then (1.4) implies

$$
\left\langle u_{m}^{\prime}, v\right\rangle=\left(u_{m}^{\prime}, v\right)=\left(u_{m}^{\prime}, v^{1}\right)=-B\left(u_{m}, v^{1}, t\right),
$$

consequently

$$
\left|\left\langle u_{m}^{\prime}, v\right\rangle\right| \leq C\left\|u_{m}\right\|_{H_{0}^{1}(\Omega)}
$$

Since $\left\|v^{1}\right\|_{H_{0}^{1}(\Omega)}^{2} \leq\|v\|_{H_{0}^{1}(\Omega)}^{2} \leq 1$. Thus

$$
\left\|u_{m}^{\prime}\right\|_{H^{-1}(\Omega)} \leq C\left\|u_{m}\right\|_{H_{0}^{1}(\Omega)}
$$

and therefore
$\left\|u_{m}^{\prime}\right\|_{L^{2}\left(0, T ; H^{-1}(\Omega)\right)}^{2}=\int_{0}^{T}\left\|u_{m}^{\prime}\right\|_{H^{-1}(\Omega)}^{2} d t \leq C \int_{0}^{T}\left\|u_{m}\right\|_{H_{0}^{1}(\Omega)}^{2} d t \leq C\left\|u_{0}\right\|_{L^{2}(\Omega)}^{2}$.

d) Existence and uniqueness

Next we pass to limits as $m \rightarrow \infty$, to build a weak solution of our initial boundary-value problem $\left(\mathrm{P}_{1}\right)$.

Theorem 10 (Existence of weak solution). Under hypothesis H_{2} and H_{3}, there exists a weak solution of $\left(P_{1}\right)$.
Proof. 1. According to the energy estimates (1.8), we see that the sequence $\left\{u_{m}\right\}_{m=1}^{\infty}$ is bounded in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ and $\left\{u_{m}^{\prime}\right\}_{m=1}^{\infty}$ is bounded in
$L^{2}\left(0, T ; H^{-1}(\Omega)\right)$. Consequently there exists a subsequence which is also noted by $\left\{u_{m}\right\}_{m=1}^{\infty}$ and a function $u \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$, with $u^{\prime} \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)$, such that

$$
\begin{array}{lll}
u_{m} & \rightharpoonup & u \tag{1.14}
\end{array} \quad \text { weakly in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)
$$

2. Next fix an integer N and choose a function $v \in C^{1}\left(0, T ; H_{0}^{1}(\Omega)\right)$ having the form

$$
\begin{equation*}
v(t)=\sum_{k=1}^{N} d^{k}(t) w_{k} \tag{1.15}
\end{equation*}
$$

where $\left\{d^{k}\right\}_{k=1}^{N}$ are given smooth functions. We choose $m \geq N$, multiply equation (1.6) by $d^{k}(t)$, sum for $k=1, \ldots, N$, and then integrate with respect to t to find

$$
\begin{equation*}
\int_{0}^{T}\left\langle u_{m}^{\prime}, v\right\rangle+B\left(u_{m}, v, t\right) d t=0 \tag{1.16}
\end{equation*}
$$

We recall (1.14) to find upon passing to weak limits that

$$
\begin{equation*}
\int_{0}^{T}\left\langle u^{\prime}, v\right\rangle+B(u, v, t) d t=0 \quad \forall v \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \tag{1.17}
\end{equation*}
$$

As functions of the form (1.15) are dense in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$. Hence in particular

$$
\begin{equation*}
\left\langle u^{\prime}, v\right\rangle+B(u, v, t) d t=0 \quad \forall v \in H_{0}^{1}(\Omega) \text { and } \forall t \in[0 T], \tag{1.18}
\end{equation*}
$$

and from Remark 2 we have $u \in C\left(0, T ; L^{2}(\Omega)\right)$.
3. In order to prove $u(0)=u_{0}$, we first note from (1.17) that

$$
\begin{equation*}
\int_{0}^{T}-\left\langle u, v^{\prime}\right\rangle+B(u, v, t) d t=(u(0), v(0)) \tag{1.19}
\end{equation*}
$$

for each $v \in C^{1}\left(0, T ; H_{0}^{1}(\Omega)\right)$ with $v(T)=0$. Similary, from (1.16) we deduce

$$
\begin{equation*}
\int_{0}^{T}-\left\langle u_{m}, v^{\prime}\right\rangle+B\left(u_{m}, v, t\right) d t=\left(u_{m}(0), v(0)\right) \tag{1.20}
\end{equation*}
$$

We use again (1.14), we obtain

$$
\begin{equation*}
\int_{0}^{T}-\left\langle u, v^{\prime}\right\rangle+B(u, v, t) d t=\left(u_{0}, v(0)\right) \tag{1.21}
\end{equation*}
$$

since $u_{m}(0) \rightarrow u_{0}$ in $L^{2}(\Omega)$. Comparing (1.19) and (1.21), we conclude $u(0)=$ u_{0}.

Theorem 11 (Uniqueness of weak solutions) A weak solution of $\left(P_{1}\right)$ is unique. Proof. We suppose there exists two weak solution u_{1} and u_{2}. We put

$$
U=u_{2}-u_{1}
$$

then U is also a solution of $\left(P_{1}\right)$ with $U_{0}=\left(u_{2}-u_{1}\right)(0) \equiv 0$. Setting $v=U$ in identity (1.18) we have

$$
\frac{d}{d t}\left(\frac{1}{2}\|U\|_{L^{2}(U)}^{2}\right)+B(U, U, t)=0
$$

From Lemma 7 we have $B(U, U, t) \geq \beta\|U\|_{H_{0}^{1}(U)}^{2} \geq 0$, so $\frac{d}{d t}\left(\frac{1}{2}\|U\|_{L^{2}(U)}^{2}\right) \leq 0$, then integrate with respect to t to find

$$
\|U\|_{L^{2}(\Omega)}^{2} \leq\left\|U_{0}\right\|_{L^{2}(\Omega)}^{2}=0
$$

thus $U \equiv 0$.

e) Global solution of problem (P)

Our main results in this paper are stated as follows.
Theorem 12 i) if $c \geq c_{0}>0$. Then la solution (u, c) of problem (P) is global
ii) if $c \geq c_{0}>0$. Then la solution (u, c) of problem (P) is global. Furthermore there exists $\tau_{0}>0$ such that $\|u\|_{L^{2}} \leq e^{-\tau_{0} t}\left\|u_{0}\right\|_{L^{2}}$.

Proof. We put

$$
\begin{equation*}
E(t)=\frac{1}{2} \int_{\Omega} u^{2} d x \tag{1.22}
\end{equation*}
$$

$$
\frac{d E}{d t}=-B(u, u, t) \leq 0
$$

therefore

$$
E(t) \leq E(0)
$$

ii) We have

$$
\frac{d E}{d t}=-B(u, u, b, t)=-\int\left((\nabla u)^{2}+\frac{1}{2} \tau c u^{2}\right) d x \leq \frac{-1}{2} \tau c_{0}\|u\|_{L^{2}(\Omega)}^{2}=-\tau_{0} E(t)
$$

This implies that

$$
E(t) \leq E(0) e^{-\tau_{0} t}
$$

Proposition $13[1]$ Let $u_{0} \in L^{2}(\Omega)$ and $u \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ is the unique weak solution of $\left(P_{1}\right)$. If $u_{0} \geq 0$ in Ω, then $u \geq 0$ in $] 0, T[\times \Omega$.
Proof. If $u_{0} \geq 0$ on Γ. Therefore $u^{-}=\min (u, 0) \in L^{2}(] 0, T\left[; H_{0}^{1}(\Omega)\right)$. A reasoning similar to the Proposition 6, we obtain for all $0 \leq t \leq T$

$$
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(u^{-}\right)^{2} d x+\int_{\Omega} B\left(u^{-}, u^{-}, t\right) d x=0
$$

Using the Lemma 7 and integrating with respect to τ from 0 to t, we get

$$
\frac{1}{2} \int_{\Omega}\left(u^{-}\right)^{2} d x+\beta \int_{0}^{t}\|u(s)\|_{H_{0}^{1}(U)}^{2} d s \leq \frac{1}{2} \int_{\Omega}\left(u^{-}(0)\right)^{2} d x=0
$$

Since $u^{-}(0)=\left(u_{0}\right)^{-}=0$. So $u^{-}=0$.

References Références Referencias

[1] G. Allaire. Analyse numérique et optimisation. Editions de l'ecole polytechniques.
[2] A. Blanchet, J. A. Carrillo, P Laurençot. Critical mass for a Patlak-KellerSegel model with degenerate diffusion in higher dimensions. CVP D 35 (2) 2009 133-168.
[3] M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel, S.C. Venkataromani, Diffussion, attraction and collape. Nonlinearity 12(4),1999 10711098.
[4] M. P. Brenner, L.S. Levitov, E.O. Budrene. Physical mechanisms for chemotactic pattern formation by bacteria. Biophys. j., 74(1998) 1677-1693.
[5] J. Dolbeault and C. Schmeiser. The two-dimensional Keller-Segel model after blow-up, Discrete and Continuous Dynamical Systems, 25 (2009) 109121.
[6] L.C. Evans. Partial differential Equation. AMS Press.
[7] M. A. Herrero, J. J. L. Velazquez. A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997) 633-683.
[8] T. Hillen, K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26 (2001) 280-301.
[9] E. F. Keller and L. A. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biology. 26 (1970) 399-415.
[10] I. Fatkullin. A study of blow-ups in the Keller-Segel model of chemotaxis. Nonlinearity 26 (2013) 81-94.
[11] C. S. Patlak. Random walk with persistence and external bias. Bull. Math. Biophys 15 (1953) 311-338.
[12] M. Winkler. Aggregation vs. Global diffusive behavior in the higherdimensional Keller-Segel model. J. Differential Equations 248 (2010) 28892905.
[13] M. Winkler. Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity. Math. Nachr. 283 (2010) 1664-1673.

This page is intentionally left blank

Global Journal of Science Frontier Research: F
MATHEMATICS AND DECISION SCIENCES
Volume 14 Issue 2 Version 1.0 Year 2014
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Effect of Variable Thermal Conductivity \& Heat Source/Sink Near a Stagnation Point on a Linearly Stretching Sheet using HPM

By Vivek Kumar Sharma \& Aisha Rafi

Abstract- Aim of the paper is to investigate effects of variable thermal conductivity on flow of a viscous incompressible fluid in variable free stream near a stagnation point on a non-conducting stretching sheet. The equations of continuity, momentum and energy are transformed into ordinary differential equations and solved numerically using Similarity transformation and Homotopy Perturbation Method. The velocity and temperature distributions are discussed numerically and presented through graphs. Skin-friction coefficient and the Nusselt number at the sheet are derived, discussed numerically and their numerical values for various values of physical parameter are presented through Tables.

Keywords: homotopy perturbation method, similarity transformation method, steady, boundary layer, variable thermal conductivity, stretching sheet, skin-friction coefficient and nusselt number.

GJSFR-F Classification : MSC 2010: 00A69

Strictly as per the compliance and regulations of :

© 2014. Vivek Kumar Sharma \& Aisha Rafi. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Effect of Variable Thermal Conductivity \& Heat Source/Sink Near a Stagnation Point on a Linearly Stretching Sheet using HPM

Vivek Kumar Sharma ${ }^{\alpha}$ \& Aisha Rafi ${ }^{\text {o }}$

Abstract

Aim of the paper is to investigate effects of variable thermal conductivity on flow of a viscous incompressible fluid in variable free stream near a stagnation point on a non-conducting stretching sheet. The equations of continuity, momentum and energy are transformed into ordinary differential equations and solved numerically using Similarity transformation and Homotopy Perturbation Method. The velocity and temperature distributions are discussed numerically and presented through graphs. Skin-friction coefficient and the Nusselt number at the sheet are derived, discussed numerically and their numerical values for various values of physical parameter are presented through Tables. Keywords: homotopy perturbation method, similarity transformation method, steady, boundary layer, variable thermal conductivity, stretching sheet, skin-friction coefficient and nusselt number.

I. Introduction

Study of heat transfer in boundary layer find applications in extrusion of plastic sheets, polymer, spinning of fibers, cooling of elastic sheets etc. The quality of final product depends on the rate of heat transfer and therefore cooling procedure has to be controlled effectively. Liquid metals have small Prandtl number of order 0.01~ 0.1(e.g. $\operatorname{Pr}=0.01$ is for Bismuth, $\operatorname{Pr}=0.023$ for Mercury etc.) and are generally used as coolants because of very large thermal conductivity.

Aim of the present paper is to investigate effects of variable thermal conductivity, heat source/sink and variable free stream on flow of a viscous incompressible electrically conducting fluid and heat transfer on a non-conducting stretching sheet. Linear stretching of the sheet is considered because of its simplicity in modelling of the flow and heat transfer over stretching surface and further it permits the similarity solution, which are useful in understanding the interaction of flow field with temperature field. The heat source and sink is included in the work to understand the effect of internal heat generation and absorption [Chaim (1998)].

The Homotopy Perturbation Method is a combination of the classical perturbation technique and homotopy technique, which has eliminated the limitations of the traditional perturbation methods. This technique can have full advantage of the traditional perturbation techniques. J. H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media. J. H. He, A coupling method of homotopy technique and perturbation technique for nonlinear problems. To illustrate the basic idea of the Homotopy Perturbation Method for solving nonlinear differential equations, we consider the following nonlinear differential equation:

$$
\begin{equation*}
\mathrm{A}(\mathrm{u})-\mathrm{f}(\mathrm{r})=0 \tag{1}
\end{equation*}
$$

[^4]Subject to boundary condition

$$
\begin{equation*}
\mathrm{B}\left(\mathrm{u}, \frac{\partial \mathrm{u}}{\partial \mathrm{n}}\right)=0 \tag{2}
\end{equation*}
$$

Where A is a general differential operator, B is a boundary operator, $\mathrm{f}(\mathrm{r})$ is a known analytic function, and Γ is the boundary of the domain Ω.

The operator A can, generally speaking, be divided into two parts: a linear part L and a nonlinear part N. Equation can be rewritten as follows:

$$
\begin{equation*}
\mathrm{L}(\mathrm{u})+\mathrm{N}(\mathrm{u})-\mathrm{f}(\mathrm{r})=0 \tag{3}
\end{equation*}
$$

By the homotopy technique, we construct a homotopy $\mathrm{V}(\mathrm{r}, \mathrm{p}): \Omega *(0,1) \rightarrow \mathrm{R}$ which satisfy

$$
\begin{gather*}
\mathrm{H}(\mathrm{~V}, \mathrm{p})=(1-\mathrm{p})\left[\mathrm{L}(\mathrm{v})-\mathrm{L}\left(\mathrm{u}_{0}\right)\right]+\mathrm{p}[\mathrm{~A}(\mathrm{v})-\mathrm{f}(\mathrm{r})]=0 \tag{4}\\
\mathrm{H}(\mathrm{~V}, \mathrm{p})=\mathrm{L}(\mathrm{v})-\mathrm{L}\left(\mathrm{u}_{0}\right)+\mathrm{pL}\left(\mathrm{u}_{0}\right)+\mathrm{p}[\mathrm{~N}(\mathrm{v})-\mathrm{f}(\mathrm{r})]=0 \tag{5}
\end{gather*}
$$

Where $p \in[0,1]$ is an embedding parameter and u_{0} is an initial approximation of which satisfies the boundary conditions.

$$
\begin{align*}
& H(\mathrm{~V}, 0)=\mathrm{L}(\mathrm{v})-\mathrm{L}\left(\mathrm{u}_{0}\right) \\
& \mathrm{H}(\mathrm{~V}, 1)=\mathrm{A}(\mathrm{v})-\mathrm{f}(\mathrm{r})] \tag{6}
\end{align*}
$$

Thus, the changing process of p from zero to unity is just that of $v(r, p)$ from $u_{0}(r)$ to $u(r)$. In Topology, this is called deformation and $\mathrm{L}(\mathrm{v})-\mathrm{L}\left(\mathrm{u}_{0}\right), \mathrm{A}(\mathrm{v})-\mathrm{f}(\mathrm{r})$ are called homotopic. According to the HPM, we can first use the embedding parameter p as a "small parameter," and assume that the solution of can be written as a power series in p :

$$
\begin{equation*}
V=\quad V_{0}+p V_{1}+\mathrm{p}^{2} \mathrm{~V}_{2}+\ldots \ldots \ldots \ldots \ldots \tag{7}
\end{equation*}
$$

Setting $p=1$ results in the approximate solution of

$$
\begin{align*}
& u=\lim V=V_{0}+V_{1}+\ldots \ldots \ldots \ldots \ldots \ldots \tag{8}\\
& \mathrm{p} \rightarrow 1
\end{align*}
$$

The series is convergent for most cases; however, the convergent rate depends upon the Nonlinear operator $A(V)$. The second derivative of $N(V)$ with respect to V must be small because the parameter may be relatively large; that is, $p \rightarrow 1$.

In this paper is to investigate effects of variable thermal conductivity on flow of a viscous incompressible fluid in variable free stream near a stagnation point on a nonconducting stretching sheet.

iI. Formulation of the Problem

Consider steady two-dimensional flow of a viscous incompressible electrically conducting fluid of variable thermal conductivity in the vicinity of a stagnation point on a non-conducting stretching sheet It is assumed that external field is zero, the electric field owing to polarization of charges and Hall Effect are neglected. Stretching sheet is placed in the plane $y=0$ and x-axis is taken along the sheet The fluid occupies the upper half plane i.e. $y>0$. The governing equations are:

$$
\begin{gather*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{9}\\
\mathrm{u} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\mathrm{v} \frac{\partial \mathrm{u}}{\partial \mathrm{y}}=-\frac{1}{\rho} \frac{\partial \mathrm{p}}{\partial \mathrm{x}}+\mathrm{v} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{y}^{2}} \tag{10}\\
\rho C_{p}\left(u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}\right)=\frac{\partial}{\partial y}\left(k^{*} \frac{\partial T}{\partial y}\right)+Q\left(T-T_{\infty}\right), \tag{11}
\end{gather*}
$$

where ε-perturbation parameter, η-similarity parameter $\left\{=(c / v)^{1 / 2} y\right\}, \eta_{\infty}$-value of η at which boundary conditions is achived, κ-uniform thermal conductivity, κ^{*}-variable thermal conductivity, v-kinematic viscosity, ρ-density of fluid, ψ-stream function, σ-electrical conductivity, θ-dimensionless temperature $\left\{=\left(T-T_{\infty}\right) /\left(T_{w}-T_{\infty}\right)\right\}, \tau_{w}$-shear stress, S-heat source/sink parameter $\left\{=Q / \rho C_{p} c\right\}$, T-fluid temperature.

The second derivatives of u and T with respect to x have been eliminated on the basis of magnitude analysis considering that Reynolds number is high. Hence the Navier-Stokes equation modifies into Prandtl's boundary layer equation.
The boundary conditions are.

$$
\left.\begin{array}{l}
y=0: \quad u=u_{w}(x)=c \quad v=0, \quad T=T_{w} \tag{12}\\
y \rightarrow \infty: \quad u=U(x)=b x, \quad T=T_{\infty}
\end{array}\right\}
$$

Introducing the stream function $\psi(x, y)$ as defined by

$$
\begin{equation*}
u=\frac{\partial \psi}{\partial y}, \quad v=-\frac{\partial \psi}{\partial x}, \tag{13}
\end{equation*}
$$

the similarity variable $\eta=(c / v)^{1 / 2} y$ and

$$
\begin{equation*}
\Psi(x, y)=(c v)^{1 / 2} \quad x f(\eta) \tag{14}
\end{equation*}
$$

into the equations (3) and (5), we get

$$
\begin{equation*}
f^{\prime \prime \prime}+f f^{\prime \prime}-\left(f^{\prime}\right)^{2}+\lambda^{2}=0 \tag{15}
\end{equation*}
$$

And

$$
(1+\varepsilon) \theta^{\prime \prime}+\varepsilon\left(\theta^{\prime}\right)^{2}+\operatorname{Pr} \theta^{\prime} f+\operatorname{Pr} S \theta=0 .
$$

The governing boundary layer and thermal boundary layer equations (15) and (16) with the boundary conditions (17) are solved using Homotopy Perturbation Method.

Equations (15) and (16) are non-linear coupled differential equation. To solve these equations, we introduce the following Homotopy.

$$
\begin{align*}
& D(f, p)=(1-p)\left[\left(\frac{d^{3} f}{d \eta^{3}}\right)-\left(\frac{d^{3} f_{I}}{d \eta^{3}}\right)\right]+p\left[\frac{d^{3} f}{d \eta^{3}}+f \frac{d^{2} f}{d \eta^{2}}-\left(\frac{d f}{d n}\right)^{2}+\lambda^{2}\right]=0 \tag{16}\\
& \quad D(\theta, p)=(1-p)\left[\left(\frac{\partial^{2} \theta}{\partial \eta^{2}}+P_{r} S \theta\right)-\left(\frac{\partial^{2} \theta_{I}}{\partial \eta^{2}}+P_{r} S \theta_{I}\right)\right] \\
& \quad+P\left[(1+\varepsilon \theta) \frac{\partial^{2} \theta}{\partial n^{2}}+\varepsilon\left(\frac{\partial \theta}{d n}\right)^{2}+P_{r} \frac{\partial \theta}{\partial n} f+P_{r} S \theta=0\right. \tag{17}
\end{align*}
$$

With the following assumption

$$
\begin{gather*}
f=f_{0}+p f_{1}+p^{2} f_{2}+\cdots \tag{18}\\
\theta=\theta_{0}+p \theta_{1}+p^{2} \theta_{2} \tag{19}
\end{gather*}
$$

Using equation (18),(19) into equation (10) and (11) and on comparing the like powers of p , we get the zeoth order equation,

$$
\begin{gather*}
{\left[\left(\frac{d^{3} f_{0}}{d \eta^{3}}\right)-\left(\frac{d^{3} f_{I}}{d \eta^{3}}\right)\right]+\left[\frac{d^{3} f_{0}}{d \eta^{3}}+f_{0} \frac{d^{2} f_{0}}{d \eta^{2}}-\left(\frac{d f_{0}}{d n}\right)^{2}+\lambda^{2}\right]=0} \tag{21}\\
{\left[\left(\frac{\partial^{2} \theta_{0}}{\partial \eta^{2}}+P_{r} S \theta_{0}\right)-\left(\frac{\partial^{2} \theta_{I}}{\partial \eta^{2}}+P_{r} S \theta_{I}\right)\right]+\left[\left(1+\varepsilon \theta_{0}\right) \frac{\partial^{2} \theta_{0}}{\partial n^{2}}+\varepsilon\left(\frac{\partial \theta_{0}}{d n}\right)^{2}+P_{r} \frac{\partial \theta_{0}}{\partial n} f+P_{r} S \theta_{0}\right]} \\
=0 \tag{21}
\end{gather*}
$$

with the corresponding boundary conditions are of zeroth order equations are:

$$
\begin{gather*}
\eta=0: \mathrm{f}_{0}=0, \mathrm{f}_{0}^{\prime}=1, \theta_{0}=1 \tag{22}\\
\eta=\infty: \quad \mathrm{f}_{0}^{\prime}=\lambda, \quad \theta_{0}=0 \tag{23}\\
\frac{d^{3} f_{1}}{d \eta^{3}}+\left(e^{-n}-\lambda e^{-\eta}\right)+\left(\lambda \eta-e^{-n}+\lambda e^{-n}-\lambda+1\right)\left(\lambda e^{-\eta}-e^{-\eta}\right)-\left(\lambda+e^{-n}-\lambda e^{-n}\right)(\lambda+ \\
\left.e^{-n}-\lambda e^{-n}\right)+\lambda^{2}=0 \tag{24}\\
\frac{\partial^{2} \theta_{I}}{\partial \eta^{2}}+P_{r} S \theta_{I}+e^{-\eta}\left(1+\varepsilon e^{-\eta}\right)+\epsilon e^{-2 \eta}-P_{r} e^{-\eta}\left(\lambda \eta-e^{-\eta}+\lambda e^{-\eta}-\lambda+1\right)-P_{r} S e^{-\eta} \\
=0 \tag{25}
\end{gather*}
$$

With the corresponding boundary conditions are of first order equations are:

$$
\left.\begin{array}{l}
\boldsymbol{\eta}=0: \boldsymbol{f}_{\mathbf{0}}=0, \boldsymbol{f}_{0}^{\prime}=0, \boldsymbol{\theta}_{0}=0 \tag{26}\\
\boldsymbol{\eta}=\infty: \quad \boldsymbol{f}_{\mathbf{0}}^{\prime}=0, \quad \boldsymbol{\theta}_{0}=0 ;
\end{array}\right\}
$$

Solving equations with corresponding boundary conditions, the following functions can be obtained successively, by summing up the results, and $p \rightarrow 1$ we write the $\mathrm{f}(\boldsymbol{\eta}), \boldsymbol{\theta}(\boldsymbol{\eta})$, profile as:

$$
\begin{equation*}
f(\eta)=\lambda \eta-e^{-\eta}+\lambda e^{-\eta}-\lambda+1+\left(\eta e^{-\eta}+4 e^{-\eta}+3 \eta-4\right) \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
\theta(\eta)=e^{-\eta}+\frac{A_{2} e^{-\eta}}{\left(A_{1}\right)^{2}+1}+\frac{A_{3} e^{-2 \eta}}{\left(A_{1}\right)^{2}+4}+\frac{A_{4} e^{-\eta}}{\left(A_{1}\right)^{2}}\left(\eta-\frac{\eta-2}{\left(A_{1}\right)^{2}}\right)-\left(\frac{2 A_{4}}{\left(A_{1}\right)^{4}}+\frac{A_{3}}{\left(A_{1}\right)^{2}+4}+\frac{A_{2}}{\left(A_{1}\right)^{2}+1}\right) e^{-\eta} \tag{28}
\end{equation*}
$$

where $A_{1}=\sqrt{P_{r} S}: A_{2}=P_{r} S+P_{r}-\lambda P_{r}-1: A_{3}=\lambda P_{r}-P_{r}-2: A_{4}=\lambda P_{r}$

Skin-Friction: Skin-friction coefficient at the sheet is given by

$$
\begin{equation*}
C_{f}=x f^{\prime \prime}(0) \tag{30}
\end{equation*}
$$

Nusselt Number: The rate of heat transfer in terms of the Nusselt number at the sheet is given by

$$
\begin{equation*}
N u=-\theta^{\prime}(0) \tag{31}
\end{equation*}
$$

III. Conclusion

It is observed from Table 1 as L increases, the numerical values of $f^{\prime \prime}(0)$ also increase. It is noted from Table 2 that the numerical values of $-\theta^{\prime}(0)$ increase when λ increases and $-\theta$ ' (0) decreases when ε increases. The skin-friction coefficient and Nusselt number are presented by equations (30) and (31) and they are directly proportional to $f^{\prime \prime}(0)$ and $-\theta^{\prime}(0)$ respectively. The effects of $\varepsilon, \operatorname{Pr}$ and S on Nusselt number have been presented through Table 3 respectively.

Table 1

λ	$\mathrm{f}^{\prime \prime}(0)$	λ	$\mathrm{f}^{\prime}(0)$
0.0	-1	0.1	-1.0800
0.01	-1.0098	1.0	0.0004
0.05	-1.0450	2.0	2.0175

Table 2

λ	$-\theta^{\prime}(0)$	ε	$-\theta^{\prime}(0)$
0.1	.81235	0.0	0.223558
0.5	.13629	0.05	0.215792
2.0	.24133	0.1	0.204672

Table 3

ε	S	P_{r}	Nu
0	0	0.5	2.010357
0.1	0	0.5	3.542315
0	-0.1	1	2.565423
0.1	-0.1	1	2.845633

Figure 1

Figure 3

Figure 2

Figure 4

Figure 5

From figure 1, we observe that as λ increases, value of f' also increases. From figure 2 it is observed that when λ increase simultaneously θ also increases. In figure3, λ, S and Pr are constant but when ε increases θ will also increased.It is observed in figure $4, \mathrm{~s}, \varepsilon$ and λ are constant, when Pr increases, θ will also increase. Figure 5 is a physical model which becomes clearer from figure, 6 and 7 .

References Références Referencias

1. Arunachalam, M. and N.R. Rajappa (1978). Forced convection in liquid metals with variable thermal conductivity and capacity. Acta Mechanica 31, 25-31.
2. Bansal, J.L. (1977). Viscous Fluid Dynamics. Oxford \& IBH Pub. Co., New Delhi.
3. Chakrabarti, A. and A.S. Gupta (1979). Hydromagnetic flow and heat transfer over a stretching sheet. Quarterly Journal of Applied Mathematics 37, 73-78.
4. Bansal, J.L. (1994). Magnetofluiddynamics of Viscous Fluids. Jaipur Pub. House, Jaipur, India.
5. Chen, C.H. (1998). Laminar mixed convection adjacent to vertical, continuously stretching sheet. Heat and Mass Transfer 33, 471-476.
6. J.H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Method Appl. Mech. Engrg., 167 (1998) 5768.
7. J.H. He, A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int. J. Nonlinear Mech., 35 (2000) 37- 43.
8. Chamka, A.J. and A.R.A. Khaled (2000). Similarity solution for hydromagnetic mixed convection and mass transfer for Hiemenz flow though porous media. Int. Journal of Numerical Methods for Heat and Fluid Flow 10, 94-115.
9. Sharma, P.R and U. Mishra (2001). Steady MHD flow through horizontal channel: lower being a stretching sheet and upper being a permeable plate bounded by porous medium. Bull. Pure Appl. Sciences, India 20E, 175-181.

This page is intentionally left blank

Global Journal of Science Frontier Research: F
MATHEMATICS AND DECISION SCIENCES
Volume 14 Issue 2 Version 1.0 Year 2014
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Homeotopy Groups of 2-Dimensional Manifolds with One Boundary Component

Abstract

By David J. Sprows Villanova University, United States Introduction- Let Y be a compact, connected 2—dimensional manifold with boundary. The homeotopy group of Y , denoted $\mathrm{H}(\mathrm{Y})$, is defined to be the group of isotopy classes in the space of all homeomorphisms of Yonto Y . This group (also known as the mapping class group) has been studied for various manifolds (see, for example, [2] and [3]). It is also possible to consider "subhomeotopy groups" where there are restrictions placed on the action of the homeomorphisms on the boundary of Y (see, for example, [7] and [8]). In this note we will consider the special case of a compact, connected manifold with exactly on boundary component. For the remainder of this paper we will assume Y represents a compact, connected manifold with exactly one boundary component and we willlet X denote the closed 2-manifold obtained by sewing a disk to the boundary of Y . Let Aut $\pi_{1}\left(\mathrm{X}, \mathrm{X}_{0}\right)$ denote the group of automorphisms of $\pi_{1}\left(\mathrm{X}, \mathrm{x}_{0}\right)$ where $\mathrm{x}_{0} \varepsilon-\mathrm{Bd}(\mathrm{Y})$. In this paper we establish the following result. Theorem. If Y is not aMoebius band or a disk, then $\mathrm{H}(\mathrm{Y})=$ Aut $\pi_{1}(\mathrm{X}, \mathrm{x} 0)$.

GJSFR-F Classification : MSC 2010: 57Q05, 57Q91

Strictly as per the compliance and regulations of :

© 2014. David J. Sprows. This is a research/review paper, distributed under the terms of the Creative Commons AttributionNoncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Homeotopy Groups of 2—Dimensional Manifolds with One Boundary Component

David J. Sprows

I. Introduction

Let Y be a compact, connected 2-dimensional manifold with boundary. The homeotopy group of Y , denoted $\mathrm{H}(\mathrm{Y})$, is defined to be the group of isotopy classes in the space of all homeomorphisms of Y onto Y. This group (also known as the mapping class group) has been studied for various manifolds (see, for example, [2] and [3]). It is also possible to consider "subhomeotopy groups" where there are restrictions placed on the action of the homeomorphisms on the boundary of Y (see, for example, [7] and [8]). In this note we will consider the special case of a compact, connected manifold with exactly on boundary component. For the remainder of this paper we will assume Y represents a compact, connected manifold with exactly one boundary component and we willet X denote the closed $2-$ manifold obtained by sewing a disk to the boundary of Y. Let Aut $\pi_{1}\left(\mathrm{X}, \mathrm{x}_{0}\right)$ denote the group of automorphisms of $\pi_{1}\left(\mathrm{X}, \mathrm{x}_{0}\right)$ where $\mathrm{x}_{0} \varepsilon \mathrm{X}$ $\mathrm{Bd}(\mathrm{Y})$. In this paper we establish the following result.

Theorem. If Y is not aMoebius band or a disk, then $\mathrm{H}(\mathrm{Y})=$ Aut $\pi_{1}\left(\mathrm{X}, \mathrm{x}_{0}\right)$

II. Proof of the Theorem

Let $\left[\left(X, x_{0}\right),\left(X, x_{0}\right)\right]$ denote the set of homotopy classes (rel x_{0}) of maps from ($\mathrm{X}, \mathrm{x}_{0}$) to ($\mathrm{X}, \mathrm{x}_{0}$) and let [f$]$ denote the homotopy class (rel x_{0}) of a mapping f from ($\mathrm{X}, \mathrm{x}_{0}$) to ($\mathrm{X}, \mathrm{x}_{0}$). Let End $\pi_{1}\left(\mathrm{X}, \mathrm{x}_{0}\right)$ denote the set of endomorphisms of $\pi_{1}\left(\mathrm{X}, \mathrm{x}_{0}\right)$ with the operation of composition.

Lemma 1. If X is a closed 2-manifo1d with $\pi_{2}\left(\mathrm{X}, \mathrm{x}_{0}\right)=0$ and $\phi:\left[\left(\mathrm{X}, \mathrm{x}_{0}\right),\left(\mathrm{X}, \mathrm{x}_{0}\right)\right] \rightarrow$ End $\pi_{1}\left(\mathrm{X}, \mathrm{x}_{0}\right)$ is given by $\phi([\mathrm{f}])=\mathrm{f}_{*}$, then ϕ is a bijection which preserves the operation of composition.
Proof of lemma 1.

1. Clearly ϕ is well defined and $\phi([f \circ g])=\phi([f]) \circ \phi([g])$
2. Claim ϕ is a surjection.

Let F in END $\pi_{1}\left(\mathrm{X}, \mathrm{x}_{0}\right)$. We define $\mathrm{f}:\left(\mathrm{X}, \mathrm{x}_{0}\right) \rightarrow\left(\mathrm{X}, \mathrm{x}_{0}\right)$ as follows:

Take x_{0} to be vertex of the triangulation of X and let T be a maximal tree in X . If $\mathrm{x} \in \mathrm{T}$, we let $f(x)=x_{0}$. Now, suppose s is a $1 —$ simplex not in T with $h:[0,1]=s$. Let Γ_{i}, be a path in T from x_{0} to $h(i), i=0$, Define the loop α_{s} at x_{0} by letting $\alpha_{s}(t)=\Gamma_{0}(t)$ if $-1 \leq t \leq 0, \alpha_{s}(t)=h(t)$ if $0 \leq t \leq 1$, and $\alpha_{s}(t)=\Gamma_{0}^{-1}(t)$ if $1 \leq t \leq 2$. If $F\left[\alpha_{s}\right]=[\beta]$, we let $f / s=\beta \circ h^{-1} s$. This defines f on the 1 -skeleton of X .

Finally, if Δ is a 2 -simplex with edges s1, s2, and s3, then $\left[\alpha_{\mathrm{S} 1} * \alpha_{\mathrm{S} 2} * \alpha_{\mathrm{S} 3}\right]=1$. This means $\mathrm{f} / \delta \Delta$ is null homotopic, i.e., f extends to Δ. Hence, the mapping of f defined on the 1 -skeleton as above, extends to a mapping defined on all of the 2-dimensional manifold X. Note that by construction, $f_{*}\left[\alpha_{s}\right]=F\left[\alpha_{s}\right]$ and since $\left\{\left[\alpha_{s}\right]\right.$: S is a 1 -simplex of $\mathrm{X}^{\prime \prime}$ generates $\pi_{1}\left(\mathrm{X}, \mathrm{x}_{0}\right)$ we have $\mathrm{f}_{*}=\mathrm{F}$.

iII. Claim ϕ is an Injection

Suppose $\mathrm{f}_{*}=\mathrm{g}_{*}$. As in Part 2), let T be a maximal tree. f / T is homotopic ($\mathrm{rel} \mathrm{x}_{0}$) to a map which sends T to x_{0} (just use the retraction of T to x_{0}). Hence, by the homotopy extension property, f is homotopic (rel x_{0}) to a map f^{\prime} with $f^{\prime}(T)=x_{0}$. Therefore, we can assume $f(T)=g(T)=x_{0}$. In particular, for each 1 -simplex $\mathrm{s}, \mathrm{f} / \mathrm{s}$ and g / s are loops at x_{0}. Since $\mathrm{f}_{*}=\mathrm{g}_{*}$ this means f / s is homotopic to $\mathrm{g} / \mathrm{s}\left(\mathrm{rel}_{0}\right)$. Thus, for each 2simplex Δ we have a map $\mathrm{H}: \delta(\Delta \mathrm{xI}) \rightarrow \mathrm{X}$ where $\mathrm{H} / \Delta \mathrm{x} 0=\mathrm{f} / \Delta, \mathrm{H} / \Delta \mathrm{xl}=\mathrm{f} / \Delta$ and for each 1simplex s in $\delta \Delta, \mathrm{H} / \mathrm{SxI}$ is a homotopy from f / s to g / s. Since $\pi 2\left(\mathrm{X}, \mathrm{x}_{0}\right)=0$ and $\delta(\Delta \mathrm{xI})=\mathrm{S}^{2}$, this map H can be extended to all of $\Delta x I$. Fitting together each of these H's we get a homotopy (rel x_{0}) from f to g , i.e., $[\mathrm{f}]=[\mathrm{g}]$.

Lemma 2 : If X is a closed 2-manifold and $\mathrm{h}:\left(\mathrm{X}, \mathrm{x}_{0}\right) \rightarrow\left(\mathrm{X}, \mathrm{x}_{0}\right)$ is a homeomorphism which is homotopic to the identity $\left(\mathrm{rel}_{\mathrm{x}}\right.$) then h is isotopic to the identity $\left(\mathrm{rel}_{\mathrm{x}}\right.$).

Proof. This is a special case of Theorem 6.3 of [1].
Lemma 3. If X is a closed 2-manifold with $\mathrm{x}_{0} \in \mathrm{X}$ and G is an automorphism of $\pi 1\left(\mathrm{X}, \mathrm{x}_{0}\right)$, then there exists a homeomorphism $\mathrm{h}:\left(\mathrm{X}, \mathrm{x}_{0}\right)+\left(\mathrm{X}, \mathrm{x}_{0}\right)$ with $\mathrm{h}_{*}=\mathrm{G}$.

Proof. This result is proved in [4].
Let $\mathrm{H}\left(\mathrm{X}, \mathrm{x}_{0}\right)$ denote the group of isotopy classes (rel x_{0}) in the space of all homeomorphisms of ($\mathrm{X}, \mathrm{x}_{0}$) onto ($\mathrm{X}, \mathrm{x}_{0}$).

By Lemma 2 the function from $\mathrm{H}\left(\mathrm{X}, \mathrm{x}_{0}\right)$ to $\left[\left(\mathrm{X}, \mathrm{x}_{0}\right)\right.$] which sends the isotopy class (rel x_{0}) of a homeomorphism to its homotopy class ($\mathrm{rel} \mathrm{x}_{0}$) is an injection. By Lemma 1 the composition $\mathrm{H}\left(\mathrm{X}, \mathrm{x}_{0}\right) \rightarrow\left[\left(\mathrm{X}, \mathrm{x}_{0}\right),\left(\mathrm{X}, \mathrm{x}_{0}\right)\right] \rightarrow$ End $\pi 1\left(\mathrm{X}, \mathrm{x}_{0}\right)$ is a monomorphism of the group $H\left(X, x_{0}\right)$ onto a subgroup of Aut $\pi 1\left(X, x_{0}\right)$. Finally Lemma 3 shows that this monomorphism is an isomorphism onto Aut $\pi_{1}\left(\mathrm{X}, \mathrm{x}_{0}\right)$. Thus the proof of the theorem reduces to showing that $H(Y)$ is isomorphic to $H\left(X, x_{0}\right)$. This is done by the following lemma.

Lemma 4. If Y is a compact, connected 2-dimensional manifold with one boundary component and X is the closed $2-$ manifold obtained by sewing a disk to the boundary of Y and $x_{0} \in X-B d(Y)$ then $H\left(X, x_{0}\right)=H(Y)$.

Proof. This result is a special case of Theorem 6 of [6].
Remark 3. If Y is a Moebius band or disk, then $\mathrm{H}(\mathrm{Y})$ is not isomorphic to Aut $\pi 1(\mathrm{X}, \mathrm{x} 0)$. In the case Y is a disk, so that $X=S^{2}$, we have Aut $\pi 1\left(X, x_{0}\right)=1$ while $H(Y)=Z_{2}($ see Theorem 4.2 of [4]). In the case Y is a Moebius band, so that $X=P^{2}$, we have Aut $\pi 1$, $\left(X, x_{0}\right)=1$ while $H(Y)=Z_{2}$ (see Theorem 8.1 of[4]).

References Références Referencias

1. D. B. A. Epstein, "Curves on 2-manifolds and isotopies", Acta. Math., 115(1966), 83-107.S. Gervas, "affine presentations of the mapping class group of a punctured surface", Topology. 40, (2001) 703-725.
2. Hatcher and W. Thurston, "A presentation for the mapping class group of closed orientable. "surfaces", Topology 19 (1980), 221-237.
3. J. Nielsen, "Untersuchungen zur Topologie der geschlossene Zweiseitigen Flachen", Acta. Math. 50 (1927), 189-358.
4. L.V. Quintas, "On the space of homeomorphisms of a multiply punctured surface". Illinois J. Math. 9, 4(1965), 721-725.
5. L.V. Quintas, "Solved and unsolved problems in the computation of homeotopy groups of 2-manifolds", Trans. N.Y. Academy of Sciences, Series 11, 30, 7 (1968), 919-938.
6. D. Sprows, "Homeotopy groups of compact 2-manifolds", Fundamenta Mathematicae 90, (1975), 99-103.
7. D. Sprows, "Local sub homotopy groups of bounded surfaces" International Journal of Math \& Math Sci. 24 (2000), 251-255.
8. D. Sprows, "Boundary fixed homeomorphisms of 2-manilfolds with boundary", Global Journal of Science Frontier Research, 11 (2011) 13-15.

Global Journal of Science Frontier Research: F
MATHEMATICS AND DECISION SCIENCES
Volume 14 Issue 2 Version 1.0 Year 2014
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 2249-4626 \& Print ISSN: 0975-5896

Improved Class of Ratio -Cum- Product Estimators of Finite Population Mean in two Phase Sampling

Abstract

By Waikhom Warseen Chanu \& B. K. Singh North Eastern Regional Institute of Science and Technology, India Abstract- In the present study, we have proposed a class of ratio-cum-product estimators for estimating finite population mean of the study variable in two phase sampling. The bias and mean square error of the proposed estimator have been obtained. The asymptotically optimum estimator (AOE) in this class has also been identified along with its approximate bias and mean square error. Comparison of the proposed class of estimators with other estimators is also worked out theoretically to demonstrate the superiority of the proposed estimator over the other estimators.

Keywords: ratio-cum-product, mean, two phase sampling, asymptotically optimum estimator, bias, mean square error.

GJSFR-F Classification : 62D05

Strictly as per the compliance and regulations of:

© 2014. Waikhom Warseen Chanu \& B. K. Singh. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Improved Class of Ratio -Cum- Product Estimators of Finite Population Mean in two Phase Sampling

Waikhom Warseen Chanu ${ }^{\alpha}$ \& B. K. Singh ${ }^{\text {o }}$

Abstract

In the present study, we have proposed a class of ratio-cum-product estimators for estimating finite population mean \bar{Y} of the study variable y in two phase sampling. The bias and mean square error of the proposed estimator have been obtained. The asymtotically optimum estimator (AOE) in this class has also been identified along with its approximate bias and mean square error. Comparison of the proposed class of estimators with other estimators is also worked out theoretically to demonstrate the superiority of the proposed estimator over the other estimators. Keywords: ratio-cum-product, mean, two phase sampling, asymptotically optimum estimator, bias, mean square error.

I. Introduction

The literature on survey sampling describes a great variety of techniques for using auxiliary information in order to obtain improved estimators for estimating some most common population parameter such as population total, population mean, population proportion, population ratio etc. More often we are interested in the estimation of the mean of a certain characteristic of a finite population on the basis of a sample taken from the population following a specified sampling procedure.

Use of auxiliary information has shown its significance in improving the efficiency of estimators of unknown population parameters. Cochran (1940) used auxiliary information in the form of population mean of auxiliary variate at estimation stage for the estimation of population parameters when study and auxiliary variate are positively correlated. In case of negative correlation between study variate and auxiliary variate, Robson (1957) defined product estimator for the estimation of population mean which was revisited by Murthy (1967). Ratio estimator performs better than simple mean estimator in case of positive correlation between study variate and auxiliary variate.

[^5]For further discussion on ratio cum product estimator, the reader is referred to Singh (1967), Shah and Shah (1978), Singh and Tailor (2005), Tailor and Sharma (2009), Tailor and Sharma (2009), Sharma and Tailor (2010), Choudhury and Singh (2011) etc.

When the population mean \bar{X} of the auxiliary variable x is unknown before start of the survey, it is estimated from a preliminary large sample on which only the auxiliary characteristic x is observed. The value of X in the estimator is then replaced by its estimate. After then a smaller second-phase sample of the variate of interest (study variate) y is then taken. This technique is known as double sampling or two-phase sampling. Neyman (1938) was the first to give the concept of double sampling in connection with collecting information on the strata sizes in a stratified sampling Consider a finite population $U=\left(u_{1}, u_{2}, u_{3}, \ldots, u_{N}\right)$ of size N units, y and x are the study and auxiliary variate respectively. When the population mean \bar{X} of x is not known, a first phase sample of size n_{1} is drawn from the population on which only the x characteristic is measured in order to furnish a good estimate of \bar{X}. After then a second-phase sample of size $n\left(n<n_{1}\right)$ is drawn on which both the variates y and x are measured.

The usual ratio and product estimators in double sampling are:

$$
\bar{Y}_{R}{ }^{d}=\bar{y} \frac{\overline{x_{1}}}{\bar{x}}
$$

and

$$
\bar{Y}_{P}{ }^{d}=\bar{y} \frac{\bar{z}}{\overline{z_{1}}}
$$

where \bar{x}, \bar{y} and \bar{z} are the sample mean of x, y and z respectively based on the sample of size n out of the population N units and $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}, \overline{x_{1}}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} x_{i}$ and $\bar{z}_{1}=\frac{1}{n_{1}} \sum_{i=1}^{n_{1}} z_{i}$ denote the sample mean of x and z based on the first- phase sample of the size n_{1}.

Singh (1967) improved the ratio and the product methods of estimation by studying the ratio cum product estimator for estimating \bar{Y} as

$$
\bar{Y}_{R P}=\bar{y}\left(\frac{\bar{X}}{\bar{x}} \frac{\bar{z}}{\bar{Z}}\right)
$$

Motivated by Singh (1967), Choudhury and Singh (2011) proposed a modified class of ratio cum product type of estimator for estimating population mean \bar{Y} as

$$
\bar{Y}_{R P}^{(\alpha)}=\bar{y}\left(\frac{\bar{X}}{\bar{x}} \frac{\bar{z}}{\bar{Z}}\right)^{\alpha}
$$

Motivated by ?) and as an extension to the work of Choudhury and Singh (2011), we have developed an improved class of ratio-cum-product estimators in double sampling to estimate the population mean \bar{Y} theoretically and studied the properties of the proposed estimator.

II. The Proposed Estimator

The proposed improved class of ratio-cum-product estimators of population mean \bar{Y} in two-phase sampling is given as

$$
\begin{equation*}
\bar{Y}_{R P}^{w(d)}=\bar{y}\left(\frac{\overline{x_{1}}}{\bar{x}} \cdot \frac{\bar{z}}{\bar{z}_{1}}\right)^{\alpha} . \tag{1}
\end{equation*}
$$

where α is a suitably chosen constant.
To obtain the bias and MSE of $\bar{Y}_{R P}^{w(d)}$ to the first degree of approximation, we write

$$
\begin{aligned}
& e_{0}=(\bar{y}-\bar{Y}) / \bar{Y}, \quad e_{1}=(\bar{x}-\bar{Y}) / \bar{X}, \quad e_{2}=\left(\bar{x}_{1}-\bar{X}\right) / \bar{X}, \quad e_{3}=(\bar{z}-\bar{Z}) / \bar{Z} \\
& e_{4}=\left(\overline{z_{1}}-\bar{Z}\right) / \bar{Z}
\end{aligned}
$$

Expressing $Y_{R P}^{\bar{w}(d)}$ in terms of e 's and neglecting higher power of e 's, we have
$Y_{R P}^{\bar{w}(d)}=\bar{Y}\left(1+e_{0}\right)\left\{\left(1+e_{2}\right)\left(1+e_{1}\right)^{-1}\left(1+e_{3}\right)\left(1+e_{4}\right)^{-1}\right\}^{\alpha}$.
Assuming the sample size to be large enough so that $\left|e_{1}\right|<1,\left|e_{4}\right|<1$ and expanding $\left(1+e_{1}\right)^{-1},\left(1+e_{4}\right)^{-1}$ in powers of e_{1}, e_{4}, multiplying out and neglecting higher powers of $e^{\prime} s$, we have

$$
\begin{align*}
Y_{R P}^{\bar{w}(d)}= & \bar{Y}\left(1+e_{0}\right)\left[1-\left\{e_{1}-e_{2}-e_{3}+e_{4}-e_{1}^{2}-e_{4}^{2}+e_{1} e_{2}-e_{1} e_{4}\right.\right. \\
& \left.\left.+e_{2} e_{4}+e_{1} e_{3}-e_{2} e_{3}+e_{3} e_{4}\right\}\right]^{\alpha} \\
\bar{Y}_{R P}^{w(d)}-\bar{Y}= & \bar{Y}
\end{align*} e_{0}-\alpha\left(e_{1}-e_{2}-e_{3}+e_{4}-\frac{e_{1}^{2}}{2}+\frac{e_{2}^{2}}{2}+\frac{e_{3}^{2}}{2}-\frac{e_{4}^{2}}{2}+e_{0} e_{1}\right)
$$

The following two cases will be considered separately.
Case I: When the second phase sample of size n is subsample of the first phase of size n_{1}.

Case II: when the second phase sample of size n is drawn independently of the first phase sample of size n_{1}.

CASE I

iII. Bias, mse and Optimum Value of $\bar{Y} \underset{R P}{w d}$ in Case I

In this case, we have

$$
\begin{align*}
& E\left(e_{0}\right)=E\left(e_{1}\right)=E\left(e_{2}\right)=E\left(e_{3}\right)=E\left(e_{4}\right)=0 ; \\
& E\left(e_{0}^{2}\right)=\left(\frac{1-f}{n}\right) C_{Y}^{2} ; \quad E\left(e_{1}^{2}\right)=\left(\frac{1-f}{n}\right) C_{X}^{2} ; \quad E\left(e_{3}^{2}\right)=\left(\frac{1-f}{n}\right) C_{Z}^{2} ; \\
& E\left(e_{2}^{2}\right)=E\left(e_{1} e_{2}\right)=\left(\frac{1-f^{*}}{n}\right) C_{X}^{2} ; \quad E\left(e_{4}^{2}\right)=E\left(e_{3} e_{4}\right)=\left(\frac{1-f^{*}}{n}\right) C_{Z}^{2} ; \\
& E\left(e_{0} e_{1}\right)=\left(\frac{1-f}{n}\right) \rho_{Y X} C_{Y} C_{X} ; \quad E\left(e_{0} e_{2}\right)=\left(\frac{1-f^{*}}{n}\right) \rho_{Y X} C_{Y} C_{X} ; \\
& E\left(e_{0} e_{3}\right)=\left(\frac{1-f}{n}\right) \rho_{Y Z} C_{Y} C_{Z} ; \quad E\left(e_{0} e_{4}\right)=\left(\frac{1-f^{*}}{n}\right) \rho_{Y Z} C_{Y} C_{Z} ; \\
& E\left(e_{1} e_{3}\right)=\left(\frac{1-f}{n}\right) \rho_{X Z} C_{X} C_{Z} ; \\
& E\left(e_{1} e_{4}\right)=E\left(e_{2} e_{3}\right)=E\left(e_{2} e_{4}\right)=\left(\frac{1-f^{*}}{n}\right) \rho_{X Z} C_{X} C_{Z} \tag{3}
\end{align*}
$$

where $f=\frac{n}{N}$ is the sampling fraction, $f^{*}=\frac{n_{1}}{N}, \quad C_{X}^{2}=\frac{S_{X}^{2}}{X^{2}}$,

$$
C_{Y}^{2}=\frac{S_{Y}^{2}}{Y^{2}}, \quad C_{Z}^{2}=\frac{S_{Z}^{2}}{Z^{2}} .
$$

Taking expectations on both the sides and using the results of (3) in (2), we get the bias of $\bar{Y}_{R P}^{w(d)}$ as

$$
\begin{align*}
B\left(\bar{Y}_{R P}^{w(d)}\right)_{I}= & \bar{Y} \tag{4}\\
& \left(\frac{1-f_{1}}{2 n}\right)\left[\alpha^{2}\left\{C_{X}^{2}+C_{Z}^{2}\left(1-2 K_{X Z}\right)\right\}+\alpha\left\{C_{X}^{2}\left(1-2 K_{Y X}\right)\right.\right. \\
& \left.\left.-C_{Z}^{2}\left(1-2 K_{Y Z}\right)\right\}\right] \tag{5}\\
& =\bar{Y}\left(\frac{1-f_{1}}{2 n}\right)\left[\alpha^{2} K_{3}+\alpha\left(K_{1}-K_{2}\right)\right]
\end{align*}
$$

where $f_{1}=\frac{n}{n_{1}}, \quad K_{Y X}=\rho_{Y X} \frac{C_{Y}}{C_{X}}, \quad K_{1}=C_{X}^{2}\left(1-2 K_{Y X}\right), \quad K_{2}=C_{Z}^{2}\left(1-2 K_{Y Z}\right)$, $K_{3}=C_{X}^{2}+C_{Z}^{2}\left(1-2 K_{X Z}\right)$.

Now from equation (2), we have

$$
\bar{Y}_{R P}^{w(d)}-\bar{Y}=\bar{Y}\left[e_{0}-\alpha\left(e_{1}-e_{2}-e_{3}+e_{4}\right)\right]
$$

Squaring both the sides and taking expectations in the above equation and using the results of (3), we get the mean square error of $\bar{Y}_{R P}^{w(d)}$ to the first degree of approximation as

$$
\begin{align*}
M\left(\bar{Y}_{R P}^{w(d)}\right)_{I} & =\bar{Y}^{2}\left(\frac{1-f}{n}\right) C_{Y}^{2}+\bar{Y}^{2}\left(\frac{1-f_{1}}{n}\right)\left[\alpha^{2}\left\{C_{X}^{2}+C_{Z}^{2}\left(1-2 K_{X Z}\right)\right\}-2 \alpha\left(C_{Y X}-C_{Y Z}\right)\right] \\
& =\bar{Y}^{2}\left(\frac{1-f}{n}\right) C_{Y}^{2}+\bar{Y}^{2}\left(\frac{1-f_{1}}{n}\right)\left[\alpha^{2} K_{3}-2 \alpha S_{1}\right] \tag{6}
\end{align*}
$$

where $S_{1}=C_{Y X}-C_{Y Z}, C_{Y Z}=\rho_{Y Z} C_{Y} C_{Z}, C_{Y X}=\rho_{Y X} C_{Y} C_{X}$

Differentiating $M\left(\bar{Y}_{R P}^{w(d)}\right)$ w.r.t α and equating to zero, we get

$$
\begin{equation*}
\alpha=\frac{S_{1}}{K_{3}} . \tag{7}
\end{equation*}
$$

Now putting the optimum value of α from (7) in the proposed estimator (1), we get the asymptotically optimum estimator(AOE) as

$$
\left(\bar{Y}_{R P}^{w(d)}\right)_{I(o p t)}=\bar{y}\left(\frac{\overline{x_{1}}}{\bar{x}} \frac{\bar{z}}{\bar{z}_{1}}\right)^{I \alpha(o p t)} .
$$

Therefore, after putting the value of α in (4) and (6), we obtain the optimum bias and MSE of $\bar{Y}_{R P}^{w(d)}$ respectively as

$$
B\left(\bar{Y}_{R P}^{w(d)}\right)_{I \alpha(o p t)}=\bar{Y}\left(\frac{1-f_{1}}{2 n}\right) \frac{S_{1}}{K_{3}}\left[K_{1}^{\prime}-K_{2}^{\prime}\right]
$$

where

$$
\begin{gather*}
K_{1}^{\prime}=C_{X}^{2}\left(1-K_{Y X}\right), \quad K_{2}^{\prime}=C_{Z}^{2}\left(1-K_{Y Z}\right) \\
M\left(\bar{Y}_{R P}^{w(d)}\right)_{I \alpha(o p t)}=\bar{Y}^{2}\left(\frac{1-f}{n}\right) C_{Y}^{2}-\bar{Y}^{2}\left(\frac{1-f_{1}}{n}\right) \frac{S_{1}^{2}}{K_{3}} . \tag{8}
\end{gather*}
$$

Remark 1 For $\alpha=1$, the estimator reduces to ratio cum product estimator in double sampling. The bias and MSE of $\bar{Y}_{R P}^{(d)}$ are obtained by putting $\alpha=1$ in relation (4) and (6) as follows

$$
\begin{gather*}
B\left(\bar{Y}_{R P}^{(d)}\right)_{I}=\bar{Y}\left(\frac{1-f}{n}\right)\left[K_{1}^{\prime}-C_{X Z}+C_{Y Z}\right] \tag{9}\\
K_{1}^{\prime}=C_{X}^{2}\left(1-K_{Y X}\right) \\
\text { and } \quad M S E\left(\bar{Y}_{R P}^{(d)}\right)_{I}=\left(\frac{1-f}{n}\right) S_{Y}^{2}+\bar{Y}^{2}\left(\frac{1-f_{1}}{n}\right)\left(K_{1}+K_{4}\right) \tag{10}
\end{gather*}
$$

where

$$
K_{4}=C_{Z}^{2}\left(1-2 K_{X Z}+2 K_{Y Z}\right)
$$

Remark 2 For $\alpha=1$ and when the auxiliary variate z is not used, i.e if z is nonzero constant, the proposed estimator reduces to the usual ratio estimator in two phase sampling. The bias and mean square error of \bar{Y}_{R}^{d} can be obtained by putting $\alpha=1$ and omitting the terms of z in equation (4) and (6), respectively as

$$
B\left(\bar{Y}_{R}^{d}\right)_{I}=\bar{Y}\left(\frac{1-f_{1}}{n}\right) K_{1}^{\prime}
$$

and

$$
\begin{equation*}
\operatorname{MSE}\left(\bar{Y}_{R}^{d}\right)_{I}=\bar{Y}\left(\frac{1-f}{n}\right) C_{Y}^{2}+\bar{Y}\left(\frac{1-f_{1}}{n}\right) K_{1} \tag{11}
\end{equation*}
$$

Remark 3 For $\alpha=1$ and when the auxiliary variate x is not used, i.e if x is non-zero, the proposed estimator reduces to the usual product estimator in two phase sampling. The bias and mean square error of \bar{Y}_{P}^{d} can be obtained by putting $\alpha=1$ and omitting

$\mathrm{N}_{\text {otes }}$

 the terms of x in equation (4) and (6), respectively as$$
\begin{gather*}
B\left(\bar{Y}_{P}^{d}\right)_{I}=\bar{Y}\left(\frac{1-f_{1}}{n}\right) C_{Y Z} \\
\text { and } M\left(\bar{Y}_{P}^{d}\right)_{I}=\bar{Y}^{2}\left(\frac{1-f}{n}\right) C_{Y}^{2}+\bar{Y}^{2}\left(\frac{1-f_{1}}{n}\right) K_{5} \tag{12}
\end{gather*}
$$

where $K_{5}=C_{X}^{2}\left(1+2 K_{Y X}\right)$.

IV. Efficiency Comparisons

Compairison of the optimum proposed estimator $\left(\bar{Y}_{R P}^{w(d)}\right)_{I \alpha(o p t)}$
a) with sample mean per unit estimator \bar{y}

The MSE of sample mean \bar{y} under SRSWOR sampling scheme is given by

$$
\begin{equation*}
V(\bar{y})=\left(\frac{1-f}{n}\right) S_{Y}^{2} \tag{13}
\end{equation*}
$$

From equation (13) and (8), we observed

$$
\begin{equation*}
V(\bar{y})-M\left(\bar{Y}_{R P}^{w(d)}\right)_{I \alpha I(o p t)}=\frac{S_{1}^{2}}{K_{3}}>0 \tag{14}
\end{equation*}
$$

if $K_{3}>0$ i.e $K_{X Z}<1 / 2$.
b) with ratio estimator in double sampling

From equation (11) and (8), we observed

$$
\begin{equation*}
M\left(\bar{Y}_{R}^{d}\right)-M\left[\bar{Y}_{R P}^{w(d)}\right]_{I \alpha(o p t)}=\bar{Y}^{2}\left(\frac{1-f_{1}}{n}\right)\left(K_{1}+\frac{S_{1}^{2}}{K_{3}}\right)>0 . \tag{15}
\end{equation*}
$$

if $\quad K_{1}>0, K_{3}>0$ i.e. $K_{Y X}<1 / 2, K_{X Z}<1 / 2$.
c) with product estimator in double sampling

From (12) and (8), we observed

$$
\begin{equation*}
M\left(\bar{Y}_{P}^{d}\right)-M S E\left[\bar{Y}_{R P}^{w(d)}\right]_{I \alpha(o p t)}=\bar{Y}^{2}\left(\frac{1-f_{1}}{n}\right)\left[K_{5}+\frac{S_{1}^{2}}{K_{3}}\right]>0 \tag{16}
\end{equation*}
$$

if $\quad K_{3}>0, K_{5}>0$ i.e. $K_{X Z}<1 / 2$.
d) with ratio cum product estimators in double sampling

From (10) and (8), we observed

$$
\begin{equation*}
M\left(\bar{Y}_{R P}^{d}\right)-M\left[\bar{Y}_{R P}^{w(d)}\right]_{I \alpha(o p t)}=\bar{Y}^{2}\left[K_{1}+K_{5}+\frac{S_{1}^{2}}{K_{3}}\right]>0 \tag{17}
\end{equation*}
$$

if $\quad K_{1}>0, K_{3}>0, K_{5}>0$ i.e. $K_{Y X}<1 / 2, K_{X Z}<1 / 2, K_{X Z}-K_{Y Z}<1 / 2$.

Now we state the theorem

Theorem 4 To the first degree of approximation, the proposed class of estimators $\bar{Y}_{R d}^{w(d)}$ under the optimality (7) is consider to be more efficient than $\bar{Y}_{R}^{d}, \quad \bar{Y}_{P}^{d}, \quad \bar{Y}_{R P}^{d}$ and \bar{y} under the given conditions K_{1}, K_{3}, K_{4}, and $K_{5}>0$, where $K_{1}=$ $C_{X}^{2}\left(1-2 K_{Y X}\right), \quad K_{3}=C_{X}^{2}+C_{Z}^{2}\left(1-2 K_{X Z}\right), \quad K_{4}=C_{Z}^{2}\left(1-2 K_{X Z}+2 K_{Y Z}\right) \quad$ and $K_{5}=C_{X}^{2}\left(1+2 K_{Y X}\right)$.
V. Bias, mse and Optimum Value of $\bar{Y}_{R P}^{w(d)}$ in Case II

In this case, we have

$$
\begin{align*}
& E\left(e_{0}\right)=E\left(e_{1}\right)=E\left(e_{2}\right)=E\left(e_{3}\right)=E\left(e_{4}\right)=0 ; \\
& E\left(e_{0}^{2}\right)=\left(\frac{1-f}{n}\right) C_{Y}^{2} ; \quad E\left(e_{1}^{2}\right)=\left(\frac{1-f}{n}\right) C_{X}^{2} ; \quad E\left(e_{3}^{2}\right)=\left(\frac{1-f}{n}\right) C_{Z}^{2} \\
& E\left(e_{2}^{2}\right)=E\left(e_{1} e_{2}\right)=\left(\frac{1-f^{*}}{n}\right) C_{X}^{2} ; \quad E\left(e_{4}^{2}\right)=E\left(e_{3} e_{4}\right)=\left(\frac{1-f^{*}}{n}\right) C_{Z}^{2} ; \\
& E\left(e_{0} e_{1}\right)=\left(\frac{1-f}{n}\right) \rho_{Y X} C_{Y} C_{X} ; \quad E\left(e_{0} e_{3}\right)=\left(\frac{1-f}{n}\right) \rho_{Y Z} C_{Y} C_{Z} \\
& E\left(e_{1} e_{3}\right)=\left(\frac{1-f}{n}\right) \rho_{X Z} C_{X} C_{Z} ; \quad E\left(e_{2} e_{4}\right)=\left(\frac{1-f^{*}}{n}\right) \rho_{X Z} C_{X} C_{Z} ; \\
& E\left(e_{0} e_{2}\right)=E\left(e_{0} e_{4}\right)=E\left(e_{1} e_{2}\right)=E\left(e_{1} e_{4}\right)=E\left(e_{3} e_{2}\right)=E\left(e_{3} e_{4}\right)=0 . \tag{18}
\end{align*}
$$

Taking expectations in (2) and using the results of (18), we get the bias of $\bar{Y}_{R P}^{w(d)}$ to the first degree of approximation as

$$
B\left(\bar{Y}_{R P}^{w(d)}\right)_{I I}=\bar{Y}\left[\alpha^{2} N_{1} K_{3}+\alpha\left\{f^{\prime \prime}\left(C_{X}^{2}-C_{Z}^{2}\right)-f^{\prime} S_{1}\right\}\right]
$$

where

$$
f^{\prime}=\frac{1-f}{n}, \quad f^{\prime \prime}=\frac{1-f_{1}}{2 n}, \quad N_{1}=\frac{1}{2}\left(\frac{1}{n}+\frac{1}{n_{1}}-\frac{2}{N}\right) .
$$

Squaring and taking expectations in both the sides of (2) and using the results of (18), we obtain the MSE of $\left(\bar{Y}_{R P}^{w(d)}\right)$ to the first degree of approximation as

$$
\begin{equation*}
M\left(\bar{Y}_{R P}^{w(d)}\right)_{I I}=\bar{Y}^{2} f^{\prime} C_{Y}^{2}+\bar{Y}^{2} 2\left[\alpha^{2} N_{1} K_{3}-\alpha f^{\prime} S_{1}\right] \tag{19}
\end{equation*}
$$

Minimization of (19) is obtained with optimum value of α as

$$
\begin{equation*}
\alpha=\frac{f^{\prime} S_{1}}{2 N_{1} K_{3}}=\alpha_{I I(o p t)} \tag{20}
\end{equation*}
$$

Substituting the value of α from (20) in (1) gives the AOE of (1) as

$$
\begin{equation*}
\left\{\bar{Y}_{R P}^{w(d)}\right\}_{I I(o p t)}=\bar{y}\left(\frac{\overline{x_{1}}}{\bar{x}} \cdot \frac{\bar{z}}{\overline{z_{1}}}\right)^{\alpha_{I I(o p t)}} \tag{21}
\end{equation*}
$$

Thus, the resulting bias and MSE of (21) are, respectively given as

$$
B\left(\bar{Y}_{R P}^{w(d)}\right)_{I I \alpha(o p t)}=\bar{Y} \frac{f^{\prime} S_{1}}{2 N_{1} K_{3}}\left[f^{\prime \prime} C_{1}-\frac{f^{\prime} S_{1}}{2 N_{1} K_{1}}\right]
$$

where

$$
C_{1}=C_{X}^{2}-C_{Z}^{2} \text { and }
$$

$$
M\left(\bar{Y}_{R P}^{w(d)}\right)_{I I \alpha(o p t)}=\bar{Y}^{2} f^{\prime} C_{Y}^{2}-\bar{Y}^{2} \frac{f^{\prime 2} S_{1}^{2}}{2 N_{1} K_{3}}
$$

For simplicity, we assume that the population size N is large enough as compared to the sample sizes n and n_{1} so that the finite population correction (FPC) terms $1 / N$ and $2 / N$ are ignored.

Ignoring the FPC in (19), the MSE of $\left(\bar{Y}_{R P}^{w(d)}\right)_{I I}$ reduces to

$$
M\left(\bar{Y}_{R P}^{w(d)}\right)_{I I}=\bar{Y} \frac{C_{Y}^{2}}{n}+\bar{Y}^{2}\left[\alpha^{2} \frac{1}{2}\left(\frac{1}{n}+\frac{1}{n_{1}}\right) K_{3}-\alpha \frac{S_{1}}{n}\right]
$$

which is minimized for

$$
\begin{equation*}
\alpha=\frac{n_{1} S_{1}}{\left(n+n_{1}\right) K_{3}}=\alpha_{I I(o p t)}^{*} \quad(\text { say }) \tag{22}
\end{equation*}
$$

Substituting the value of α from (22) in (1), we obtained AOE of (1) as

$$
\left(\bar{Y}_{R P}^{w(d)}\right)^{*}=\bar{Y}\left[\frac{x}{x_{1}} \cdot \frac{z_{1}}{z}\right]^{\alpha_{I I(o p t)}^{*}}
$$

Therefore, the resulting MSE of $\left(\bar{Y}_{R P}^{w(d)}\right)^{*}$ is

$$
\begin{equation*}
M\left(\bar{Y}_{R P}^{w(d)}\right)_{I I \alpha(o p t)}^{*}=\bar{Y}^{2} \frac{C_{Y}^{2}}{n}-\bar{Y}^{2} \frac{n_{1} S_{1}^{2}}{n\left(n+n_{1}\right) K_{3}} \tag{23}
\end{equation*}
$$

Remark 5 For $\alpha=1$, the proposed estimator reduces to ratio cum product estimator in double sampling and MSE is given as

$$
\begin{equation*}
M\left(\bar{Y}_{R P}^{w(d)}\right)_{I I \alpha(o p t)}^{*}=\bar{Y}^{2} \frac{C_{Y}^{2}}{n}+\bar{Y}^{2} 2\left[\frac{1}{2}\left(\frac{1}{n}+\frac{1}{n_{1}}\right) K_{3}-\frac{S_{1}}{n}\right] . \tag{24}
\end{equation*}
$$

Ignoring the FPC, the variance of \bar{y} under SRSWOR is given by

$$
\begin{equation*}
V(y)_{I I}=\bar{Y}^{2} \frac{C_{Y}^{2}}{n} \tag{25}
\end{equation*}
$$

and the MSE of $\left(\bar{Y}_{R d}\right)_{I I}$ and $\left(\bar{Y}_{P d}\right)_{I I}$ are given by

$$
\begin{equation*}
M\left(\bar{Y}_{R d}\right)_{I I}=\bar{Y}^{2} \frac{C_{Y}^{2}}{n}+\bar{Y}^{2}\left[C_{X}^{2}\left(\frac{2}{n}-\frac{1}{n_{1}}-\frac{2}{n} K_{Y X}\right)\right] \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\bar{Y}_{P d}\right)_{I I}=\bar{Y}^{2} \frac{C_{Y}^{2}}{n}+\bar{Y}^{2}\left[\frac{C_{X}^{2}}{n}+\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n_{1}}\right) C_{Z}^{2}+\frac{2 C_{Y Z}}{n}\right] \tag{27}
\end{equation*}
$$

respectively.

VI. Efficiency Copmparisons

Compairison of the optimum proposed estimator $\left(\bar{Y}_{R P}^{w(d)}\right)_{I I \alpha(o p t)}^{*}$
a) with sample mean per unit estimator

From (25) and (23), we observed that

$$
\begin{equation*}
V(\bar{y})_{I I}-M\left(\bar{Y}_{R P}^{w(d)}\right)_{I I \alpha(o p t)}^{*}=\bar{Y}^{2} \frac{n_{1} S_{1}^{2}}{n\left(n+n_{1}\right) K_{3}}>0 \tag{28}
\end{equation*}
$$

if

$$
K_{3}>0 \text { i.e } K_{X Z}<1 / 2 .
$$

b) with ratio estimator in double sampling

From (26) and (23), we observed that

$$
\begin{equation*}
M\left(\bar{Y}_{R d}\right)_{I I}-M\left(\bar{Y}_{R P}^{w(d)}\right)_{I I \alpha(o p t)}^{*}=\bar{Y}^{2}\left[\frac{n_{1} S_{1}^{2}}{n\left(n+n_{1}\right) K_{3}}+C_{X}^{2} P\right]>0 \tag{29}
\end{equation*}
$$

if

$$
K_{3}>0, P>0 \text { i.e } K_{X Z}<1 / 2, K_{Y X}<1-\frac{n}{2 n_{1}}
$$

where

$$
P=\frac{2}{n}\left(1-K_{Y X}\right)-\frac{1}{n_{1}} .
$$

c) with product estimator in double sampling

From (27) and (23), we observed that

$$
\begin{equation*}
M\left(\bar{Y}_{P d}\right)_{I I}-M\left(\bar{Y}_{R P}^{w(d)}\right)_{I I \alpha(o p t)}^{*}=\bar{Y}^{2}\left[Q-\frac{C_{Z}^{2}}{2 n_{1}}+\frac{n_{1} S_{1}^{2}}{n\left(n+n_{1}\right) K_{3}}\right]>0 \tag{30}
\end{equation*}
$$

if

$$
K_{3}>0 \text { i.e } K_{X Z}<1 / 2, \text { where } Q=C_{X}^{2}+\frac{C_{Z}^{2}}{2}+3 C_{Y X} .
$$

d) with ratio cum product estimator in double sampling

From (24) and (23), we observed that

$$
M\left(\bar{Y}_{R P d}\right)_{I I}-M\left(\bar{Y}_{R P}^{w(d)}\right)_{I I \alpha(o p t)}^{*}=\bar{Y}^{2}\left[\left(\frac{1}{n}+\frac{1}{n_{1}}\right) K_{3}-\frac{S_{1}}{2 n}+\frac{n_{1} S_{1}^{2}}{n\left(n+n_{1}\right) K_{3}}\right]>0
$$

if

$$
\begin{equation*}
K_{3}>0 \text { i.e } K_{X Z}<1 / 2 . \tag{31}
\end{equation*}
$$

VII. Conclusion

We have developed an efficient class of ratio-cum-product estimators in two phase sampling. The comparative study shows that the proposed estimator $\bar{Y}_{R P}^{w(d)}$ established their superiority over sample mean \bar{Y}, ratio estimator \bar{Y}_{R}^{d}, product estimator \bar{Y}_{P}^{d} and ratio-cum-product estimator $\overline{Y_{R P}}$ in two-phase sampling under the given conditions. Hence from the resulting equation (14), (15), (16) and (17), we conclude that under the given conditions the proposed estimator is consider to be the best estimator.

References Références Referencias

Choudhury, S. and Singh, B. (2011). An improved class of ratio-cum-product estimator of finite population mean in simple random sampling. International Journal of Statistics and Analysis, 1(4):393-403.

Cochran, W. (1940). The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce. Journal of Agricultural Science, 30:262-275.

Murthy, M. (1967). Sampling: theory and methods. Series in probability and statistics. Statistical Publishing Society.

Neyman, J. (1938). Contribution to the theory of sampling human populations. Journal of the American Statistical Association, 33(201):101-116.

Robson, D. (1957). Applications of multivariate polykays to the theory of unbiased ratio-type estimation. Journal of American Statistical Association, 52(280):511-522.

Shah, S. and Shah, D. (1978). Ratio cum product estimators for estimating ratio (product) of two population parameters. Sankhya, 40:156-166.

Sharma, B. and Tailor, R. (2010). A new ratio-cum-dual to ratio estimator of finite population mean in simple random sampling. Global Journal of Science Frontier Research, 10(1):27-31.

Singh, H. P. and Tailor, R. (2005). Estimation of finite population mean using known correlation. Statistica, Anno LXV, 65:407-418.

Singh, M. (1967). Ratio cum product method of estimation. Metrika, 12(1):34-42.
Tailor, R. and Sharma, B. (2009). A modified ratio-cum-product estimator of finite population mean using known coefficient of variation and coefficient of kurtosis. Statistics in Transition-new series, Jul-09, 10(1):15-24.

Global Journals Inc. (US) Guidelines Handbook 2014 WWW.GLOBALJOURNALS.ORG

FELLOWS

FELLOW OF ASSOCIATION OF RESEARCH SOCIETY IN SCIENCE (FARSS)

Global Journals Incorporate (USA) is accredited by Open Association of Research Society (OARS), U.S.A and in turn, awards "FARSS" title to individuals. The 'FARSS' title is accorded to a selected professional after the approval of the Editor-inChief/Editorial Board Members/Dean.

The "FARSS" is a dignified title which is accorded to a person's name viz. Dr. John E. Hall, Ph.D., FARSS or William Walldroff, M.S., FARSS.

FARSS accrediting is an honor. It authenticates your research activities. After recognition as FARSB, you can add 'FARSS' title with your name as you use this recognition as additional suffix to your status. This will definitely enhance and add more value and repute to your name. You may use it on your professional Counseling Materials such as CV, Resume, and Visiting Card etc.
The following benefits can be availed by you only for next three years from the date of certification:

FARSS designated members are entitled to avail a 40% discount while publishing their research papers (of a single author) with Global Journals Incorporation (USA), if the same is accepted by Editorial Board/Peer Reviewers. If you are a main author or coauthor in case of multiple authors, you will be entitled to avail discount of 10%.

Once FARSB title is accorded, the Fellow is authorized to organize a symposium/seminar/conference on behalf of Global Journal Incorporation (USA). The Fellow can also participate in conference/seminar/symposium organized by another institution as representative of Global Journal. In both the cases, it is mandatory for
 him to discuss with us and obtain our consent.

You may join as member of the Editorial Board of Global Journals Incorporation (USA) after successful completion of three years as Fellow and as Peer Reviewer. In addition, it is also desirable that you should organize seminar/symposium/conference at least once.

We shall provide you intimation regarding launching of e-version of journal of your stream time to time.This may be utilized in your library for the enrichment of knowledge of your students as well as it can also be helpful for the concerned faculty members.

Journals Research

The FARSS can go through standards of OARS. You can also play vital role if you have any suggestions so that proper amendment can take place to improve the same for the benefit of entire research community.

As FARSS, you will be given a renowned, secure and free professional email address with 100 GB of space e.g. johnhall@globaljournals.org. This will include Webmail,
 Spam Assassin, Email Forwarders,Auto-Responders, Email Delivery Route tracing, etc.

The FARSS will be eligible for a free application of standardization of their researches.
 Standardization of research will be subject to acceptability within stipulated norms as the next step after publishing in a journal. We shall depute a team of specialized research professionals who will render their services for elevating your researches to next higher level, which is worldwide open standardization.

The FARSS member can apply for grading and certification of standards of their educational and Institutional Degrees to Open Association of Research, Society U.S.A. Once you are designated as FARSS, you may send us a scanned copy of all of your credentials. OARS will verify, grade and certify them. This will be based on your academic records, quality of research papers published by you, and some more criteria. After certification of all your credentials by OARS, they will be published on your Fellow Profile link on website https://associationofresearch.org which will be helpful to upgrade the dignity.

The FARSS members can avail the benefits of free research podcasting in Global Research Radio with their research documents. After publishing the work, (including published elsewhere worldwide with proper authorization) you can upload your research paper with your recorded voice or you can utilize chargeable services of our professional RJs to record your paper in their voice on request.

The FARSS member also entitled to get the benefits of free research podcasting of
 their research documents through video clips. We can also streamline your conference videos and display your slides/ online slides and online research video clips at reasonable charges, on request.

The FARSS is eligible to earn from sales proceeds of his/her researches/reference/review Books or literature, while publishing with Global Journals. The FARSS can decide whether he/she would like to publish his/her research in a closed manner. In this case, whenever readers purchase that individual research paper for reading, maximum 60% of its profit earned as royalty by Global Journals, will be credited to his/her bank account. The entire entitled amount will be credited to his/her bank account exceeding limit of minimum fixed balance. There is no minimum time limit for collection. The FARSS member can decide its price and we can help in making the right decision.

The FARSS member is eligible to join as a paid peer reviewer at Global Journals Incorporation (USA) and can get remuneration of 15% of author fees, taken from the author of a respective paper. After reviewing 5 or more papers you can request to transfer the amount to your bank account.

MEMBER OF ASSOCIATION OF RESEARCH SOCIETY IN SCIENCE (MARSS)

The ' MARSS ' title is accorded to a selected professional after the approval of the Editor-in-Chief / Editorial Board Members/Dean.

The "MARSS" is a dignified ornament which is accorded to a person's name viz. Dr. John E. Hall, Ph.D., MARSS or William Walldroff, M.S., MARSS.

MARSS accrediting is an honor. It authenticates your research activities. After becoming MARSS, you can add 'MARSS' title with your name as you use this recognition as additional suffix to your status. This will definitely enhance and add more value and repute to your name. You may use it on your professional Counseling Materials such as CV, Resume, Visiting Card and Name Plate etc.

The following benefitscan be availed by you only for next three years from the date of certification.

MARSS designated members are entitled to avail a 25% discount while publishing their research papers (of a single author) in Global Journals Inc., if the same is accepted by our Editorial Board and Peer Reviewers. If you are a main author or coauthor of a group of authors, you will get discount of 10%.

As MARSS, you will be given a renowned, secure and free professional email address with 30 GB of space e.g. johnhall@globaljournals.org. This will include Webmail, Spam Assassin, Email Forwarders,Auto-Responders, Email Delivery Route tracing, etc.

We shall provide you intimation regarding launching of e-version of journal of your stream time to time.This may be utilized in your library for the enrichment of knowledge of your students as well as it can also be helpful for the concerned faculty members.

The MARSS member can apply for approval, grading and certification of standards of their educational and Institutional Degrees to Open Association of Research, Society U.S.A.

Once you are designated as MARSS, you may send us a scanned copy of all of your credentials. OARS will verify, grade and certify them. This will be based on your academic records, quality of research papers published by you, and some more criteria.

It is mandatory to read all terms and conditions carefully.

AUXILIARY MEMBERSHIPS

Institutional Fellow of Global Journals Incorporation (USA)-OARS (USA)

Global Journals Incorporation (USA) is accredited by Open Association of Research Society, U.S.A (OARS) and in turn, affiliates research institutions as "Institutional Fellow of Open Association of Research Society" (IFOARS).
The "FARSC" is a dignified title which is accorded to a person's name viz. Dr. John E.
 Hall, Ph.D., FARSC or William Walldroff, M.S., FARSC.
The IFOARS institution is entitled to form a Board comprised of one Chairperson and three to five board members preferably from different streams. The Board will be recognized as "Institutional Board of Open Association of Research Society"-(IBOARS).
The Institute will be entitled to following benefits:

The IBOARS can initially review research papers of their institute and recommend them to publish with respective journal of Global Journals. It can also review the papers of other institutions after obtaining our consent. The second review will be done by peer reviewer of Global Journals Incorporation (USA) The Board is at liberty to appoint a peer reviewer with the approval of chairperson after consulting us.
The author fees of such paper may be waived off up to 40%.
The Global Journals Incorporation (USA) at its discretion can also refer double blind peer reviewed paper at their end to the board for the verification and to get recommendation for final stage of acceptance of publication.

The IBOARS can organize symposium/seminar/conference in their couniuy urnerian un Global Journals Incorporation (USA)-OARS (USA). The terms and conditions can be discussed separately.

The Board can also play vital role by exploring and giving valuable suggestions regarding the Standards of "Open Association of Research Society, U.S.A (OARS)" so that proper amendment can take place for the benefit of entire research community. We shall provide details of particular standard only on receipt of request from the
 Board.

The board members can also join us as Individual Fellow with 40% discount on total fees applicable to Individual Fellow. They will be entitled to avail all the benefits as declared. Please visit Individual Fellow-sub menu of GlobalJournals.org to have more relevant details.

We shall provide you intimation regarding launching of e-version of journal of your stream time to time. This may be utilized in your library for the enrichment of knowledge of your students as well as it can also be helpful for the concerned faculty members.

After nomination of your institution as "Institutional Fellow" and constantly functioning successfully for one year, we can consider giving recognition to your institute to function as Regional/Zonal office on our behalf.
The board can also take up the additional allied activities for betterment after our consultation.

The following entitlements are applicable to individual Fellows:

Open Association of Research Society, U.S.A (OARS) By-laws states that an individual Fellow may use the designations as applicable, or the corresponding initials. The Credentials of individual Fellow and Associate designations signify that the individual has gained knowledge of the fundamental concepts. One is magnanimous and proficient in an expertise course covering the professional code of conduct, and
 follows recognized standards of practice.

Open Association of Research Society (US)/ Global Journals Incorporation (USA), as described in Corporate Statements, are educational, research publishing and professional membership organizations. Achieving our individual Fellow or Associate status is based mainly on meeting stated educational research requirements.

Disbursement of 40\% Royalty earned through Global Journals : Researcher $=50 \%$, Peer Reviewer $=37.50 \%$, Institution $=12.50 \%$ E.g. Out of 40%, the 20% benefit should be passed on to researcher, 15 \% benefit towards remuneration should be given to a reviewer and remaining 5% is to be retained by the institution.

We shall provide print version of 12 issues of any three journals [as per your requirement] out of our 38 journals worth \$ 2376 USD.

Other:

The individual Fellow and Associate designations accredited by Open Association of Research Society (US) credentials signify guarantees following achievements:
> The professional accredited with Fellow honor, is entitled to various benefits viz. name, fame, honor, regular flow of income, secured bright future, social status etc.
$>$ In addition to above, if one is single author, then entitled to 40% discount on publishing research paper and can get 10% discount if one is co-author or main author among group of authors.
> The Fellow can organize symposium/seminar/conference on behalf of Global Journals Incorporation (USA) and he/she can also attend the same organized by other institutes on behalf of Global Journals.
> The Fellow can become member of Editorial Board Member after completing 3yrs.
> The Fellow can earn 60% of sales proceeds from the sale of reference/review books/literature/publishing of research paper.
> Fellow can also join as paid peer reviewer and earn 15% remuneration of author charges and can also get an opportunity to join as member of the Editorial Board of Global Journals Incorporation (USA)

- This individual has learned the basic methods of applying those concepts and techniques to common challenging situations. This individual has further demonstrated an in-depth understanding of the application of suitable techniques to a particular area of research practice.

Note :

```
"
```

> In future, if the board feels the necessity to change any board member, the same can be done with the consent of the chairperson along with anyone board member without our approval.
$>$ In case, the chairperson needs to be replaced then consent of $2 / 3$ rd board members are required and they are also required to jointly pass the resolution copy of which should be sent to us. In such case, it will be compulsory to obtain our approval before replacement.
> In case of "Difference of Opinion [if any]" among the Board members, our decision will be final and binding to everyone.

Process of submission of Research Paper

The Area or field of specialization may or may not be of any category as mentioned in 'Scope of Journal' menu of the GlobalJournals.org website. There are 37 Research Journal categorized with Six parental Journals GJCST, GJMR, GJRE, GJMBR, GJSFR, GJHSS. For Authors should prefer the mentioned categories. There are three widely used systems UDC, DDC and LCC. The details are available as 'Knowledge Abstract' at Home page. The major advantage of this coding is that, the research work will be exposed to and shared with all over the world as we are being abstracted and indexed worldwide.

The paper should be in proper format. The format can be downloaded from first page of 'Author Guideline' Menu. The Author is expected to follow the general rules as mentioned in this menu. The paper should be written in MS-Word Format (*.DOC,*.DOCX).

The Author can submit the paper either online or offline. The authors should prefer online submission. Online Submission: There are three ways to submit your paper:
(A) (I) First, register yourself using top right corner of Home page then Login. If you are already registered, then login using your username and password.
(II) Choose corresponding Journal.
(III) Click 'Submit Manuscript’. Fill required information and Upload the paper.
(B) If you are using Internet Explorer, then Direct Submission through Homepage is also available.
(C) If these two are not conveninet, and then email the paper directly to dean@globaljournals.org.

Offline Submission: Author can send the typed form of paper by Post. However, online submission should be preferred.
© Copyright by Global Journals Inc.(US)| Guidelines Handbook

Preferred Author Guidelines

MANUSCRIPT STYLE INSTRUCTION (Must be strictly followed)

Page Size: 8.27" X 11"

- Left Margin: 0.65
- Right Margin: 0.65
- Top Margin: 0.75
- Bottom Margin: 0.75
- Font type of all text should be Swis 721 Lt BT.
- Paper Title should be of Font Size 24 with one Column section.
- Author Name in Font Size of 11 with one column as of Title.
- Abstract Font size of 9 Bold, "Abstract" word in Italic Bold.
- Main Text: Font size 10 with justified two columns section
- Two Column with Equal Column with of 3.38 and Gaping of . 2
- First Character must be three lines Drop capped.
- Paragraph before Spacing of 1 pt and After of 0 pt .
- Line Spacing of 1 pt
- Large Images must be in One Column
- Numbering of First Main Headings (Heading 1) must be in Roman Letters, Capital Letter, and Font Size of 10.
- Numbering of Second Main Headings (Heading 2) must be in Alphabets, Italic, and Font Size of 10.

You can use your own standard format also.

Author Guidelines:

1. General,
2. Ethical Guidelines,
3. Submission of Manuscripts,
4. Manuscript's Category,
5. Structure and Format of Manuscript,
6. After Acceptance.

1. GENERAL

Before submitting your research paper, one is advised to go through the details as mentioned in following heads. It will be beneficial, while peer reviewer justify your paper for publication.

Scope

The Global Journals Inc. (US) welcome the submission of original paper, review paper, survey article relevant to the all the streams of Philosophy and knowledge. The Global Journals Inc. (US) is parental platform for Global Journal of Computer Science and Technology, Researches in Engineering, Medical Research, Science Frontier Research, Human Social Science, Management, and Business organization. The choice of specific field can be done otherwise as following in Abstracting and Indexing Page on this Website. As the all Global

Journals Inc. (US) are being abstracted and indexed (in process) by most of the reputed organizations. Topics of only narrow interest will not be accepted unless they have wider potential or consequences.

2. ETHICAL GUIDELINES

Authors should follow the ethical guidelines as mentioned below for publication of research paper and research activities.

Papers are accepted on strict understanding that the material in whole or in part has not been, nor is being, considered for publication elsewhere. If the paper once accepted by Global Journals Inc. (US) and Editorial Board, will become the copyright of the Global Journals Inc. (US).

Authorship: The authors and coauthors should have active contribution to conception design, analysis and interpretation of findings. They should critically review the contents and drafting of the paper. All should approve the final version of the paper before submission

The Global Journals Inc. (US) follows the definition of authorship set up by the Global Academy of Research and Development. According to the Global Academy of R\&D authorship, criteria must be based on:

1) Substantial contributions to conception and acquisition of data, analysis and interpretation of the findings.
2) Drafting the paper and revising it critically regarding important academic content.
3) Final approval of the version of the paper to be published.

All authors should have been credited according to their appropriate contribution in research activity and preparing paper. Contributors who do not match the criteria as authors may be mentioned under Acknowledgement.

Acknowledgements: Contributors to the research other than authors credited should be mentioned under acknowledgement. The specifications of the source of funding for the research if appropriate can be included. Suppliers of resources may be mentioned along with address.

Appeal of Decision: The Editorial Board's decision on publication of the paper is final and cannot be appealed elsewhere.

Permissions: It is the author's responsibility to have prior permission if all or parts of earlier published illustrations are used in this paper.

Please mention proper reference and appropriate acknowledgements wherever expected.
If all or parts of previously published illustrations are used, permission must be taken from the copyright holder concerned. It is the author's responsibility to take these in writing.

Approval for reproduction/modification of any information (including figures and tables) published elsewhere must be obtained by the authors/copyright holders before submission of the manuscript. Contributors (Authors) are responsible for any copyright fee involved.

3. SUBMISSION OF MANUSCRIPTS

Manuscripts should be uploaded via this online submission page. The online submission is most efficient method for submission of papers, as it enables rapid distribution of manuscripts and consequently speeds up the review procedure. It also enables authors to know the status of their own manuscripts by emailing us. Complete instructions for submitting a paper is available below.

Manuscript submission is a systematic procedure and little preparation is required beyond having all parts of your manuscript in a given format and a computer with an Internet connection and a Web browser. Full help and instructions are provided on-screen. As an author, you will be prompted for login and manuscript details as Field of Paper and then to upload your manuscript file(s) according to the instructions.

To avoid postal delays, all transaction is preferred by e-mail. A finished manuscript submission is confirmed by e-mail immediately and your paper enters the editorial process with no postal delays. When a conclusion is made about the publication of your paper by our Editorial Board, revisions can be submitted online with the same procedure, with an occasion to view and respond to all comments.

Complete support for both authors and co-author is provided.

4. MANUSCRIPT'S CATEGORY

Based on potential and nature, the manuscript can be categorized under the following heads:
Original research paper: Such papers are reports of high-level significant original research work.
Review papers: These are concise, significant but helpful and decisive topics for young researchers.
Research articles: These are handled with small investigation and applications
Research letters: The letters are small and concise comments on previously published matters.

5.STRUCTURE AND FORMAT OF MANUSCRIPT

The recommended size of original research paper is less than seven thousand words, review papers fewer than seven thousands words also. Preparation of research paper or how to write research paper, are major hurdle, while writing manuscript. The research articles and research letters should be fewer than three thousand words, the structure original research paper; sometime review paper should be as follows:

Papers: These are reports of significant research (typically less than 7000 words equivalent, including tables, figures, references), and comprise:
(a)Title should be relevant and commensurate with the theme of the paper.
(b) A brief Summary, "Abstract" (less than 150 words) containing the major results and conclusions.
(c) Up to ten keywords, that precisely identifies the paper's subject, purpose, and focus.
(d) An Introduction, giving necessary background excluding subheadings; objectives must be clearly declared.
(e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition; sources of information must be given and numerical methods must be specified by reference, unless non-standard.
(f) Results should be presented concisely, by well-designed tables and/or figures; the same data may not be used in both; suitable statistical data should be given. All data must be obtained with attention to numerical detail in the planning stage. As reproduced design has been recognized to be important to experiments for a considerable time, the Editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned un-refereed;
(g) Discussion should cover the implications and consequences, not just recapitulating the results; conclusions should be summarizing.
(h) Brief Acknowledgements.
(i) References in the proper form.

Authors should very cautiously consider the preparation of papers to ensure that they communicate efficiently. Papers are much more likely to be accepted, if they are cautiously designed and laid out, contain few or no errors, are summarizing, and be conventional to the approach and instructions. They will in addition, be published with much less delays than those that require much technical and editorial correction.

The Editorial Board reserves the right to make literary corrections and to make suggestions to improve briefness.

It is vital, that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

Format

Language: The language of publication is UK English. Authors, for whom English is a second language, must have their manuscript efficiently edited by an English-speaking person before submission to make sure that, the English is of high excellence. It is preferable, that manuscripts should be professionally edited.

Standard Usage, Abbreviations, and Units: Spelling and hyphenation should be conventional to The Concise Oxford English Dictionary. Statistics and measurements should at all times be given in figures, e.g. 16 min , except for when the number begins a sentence. When the number does not refer to a unit of measurement it should be spelt in full unless, it is 160 or greater.

Abbreviations supposed to be used carefully. The abbreviated name or expression is supposed to be cited in full at first usage, followed by the conventional abbreviation in parentheses.

Metric SI units are supposed to generally be used excluding where they conflict with current practice or are confusing. For illustration, 1.4 I rather than $1.4 \times 10-3 \mathrm{~m} 3$, or 4 mm somewhat than $4 \times 10-3 \mathrm{~m}$. Chemical formula and solutions must identify the form used, e.g. anhydrous or hydrated, and the concentration must be in clearly defined units. Common species names should be followed by underlines at the first mention. For following use the generic name should be constricted to a single letter, if it is clear.

Structure

All manuscripts submitted to Global Journals Inc. (US), ought to include:

Title: The title page must carry an instructive title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) wherever the work was carried out. The full postal address in addition with the email address of related author must be given. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining and indexing.

Abstract, used in Original Papers and Reviews:

Optimizing Abstract for Search Engines

Many researchers searching for information online will use search engines such as Google, Yahoo or similar. By optimizing your paper for search engines, you will amplify the chance of someone finding it. This in turn will make it more likely to be viewed and/or cited in a further work. Global Journals Inc. (US) have compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.

Key Words

A major linchpin in research work for the writing research paper is the keyword search, which one will employ to find both library and Internet resources.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy and planning a list of possible keywords and phrases to try.

Search engines for most searches, use Boolean searching, which is somewhat different from Internet searches. The Boolean search uses "operators," words (and, or, not, and near) that enable you to expand or narrow your affords. Tips for research paper while preparing research paper are very helpful guideline of research paper.

Choice of key words is first tool of tips to write research paper. Research paper writing is an art.A few tips for deciding as strategically as possible about keyword search:

© Copyright by Global Journals Inc.(US)| Guidelines Handbook

- One should start brainstorming lists of possible keywords before even begin searching. Think about the most important concepts related to research work. Ask, "What words would a source have to include to be truly valuable in research paper?" Then consider synonyms for the important words.
- It may take the discovery of only one relevant paper to let steer in the right keyword direction because in most databases, the keywords under which a research paper is abstracted are listed with the paper.
- One should avoid outdated words.

Keywords are the key that opens a door to research work sources. Keyword searching is an art in which researcher's skills are bound to improve with experience and time.

Numerical Methods: Numerical methods used should be clear and, where appropriate, supported by references.

Acknowledgements: Please make these as concise as possible.

References

References follow the Harvard scheme of referencing. References in the text should cite the authors' names followed by the time of their publication, unless there are three or more authors when simply the first author's name is quoted followed by et al. unpublished work has to only be cited where necessary, and only in the text. Copies of references in press in other journals have to be supplied with submitted typescripts. It is necessary that all citations and references be carefully checked before submission, as mistakes or omissions will cause delays.

References to information on the World Wide Web can be given, but only if the information is available without charge to readers on an official site. Wikipedia and Similar websites are not allowed where anyone can change the information. Authors will be asked to make available electronic copies of the cited information for inclusion on the Global Journals Inc. (US) homepage at the judgment of the Editorial Board.

The Editorial Board and Global Journals Inc. (US) recommend that, citation of online-published papers and other material should be done via a DOI (digital object identifier). If an author cites anything, which does not have a DOI, they run the risk of the cited material not being noticeable.

The Editorial Board and Global Journals Inc. (US) recommend the use of a tool such as Reference Manager for reference management and formatting.

Tables, Figures and Figure Legends

Tables: Tables should be few in number, cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g. Table 4, a self-explanatory caption and be on a separate sheet. Vertical lines should not be used.

Figures: Figures are supposed to be submitted as separate files. Always take in a citation in the text for each figure using Arabic numbers, e.g. Fig. 4. Artwork must be submitted online in electronic form by e-mailing them.

Preparation of Electronic Figures for Publication
Even though low quality images are sufficient for review purposes, print publication requires high quality images to prevent the final product being blurred or fuzzy. Submit (or e-mail) EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Do not use pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings) in relation to the imitation size. Please give the data for figures in black and white or submit a Color Work Agreement Form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution (at final image size) ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs) : >350 dpi; figures containing both halftone and line images: $>650 \mathrm{dpi}$.

Color Charges: It is the rule of the Global Journals Inc. (US) for authors to pay the full cost for the reproduction of their color artwork. Hence, please note that, if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a color work agreement form before your paper can be published.

Figure Legends: Self-explanatory legends of all figures should be incorporated separately under the heading 'Legends to Figures'. In the full-text online edition of the journal, figure legends may possibly be truncated in abbreviated links to the full screen version. Therefore, the first 100 characters of any legend should notify the reader, about the key aspects of the figure.

6. AFTER ACCEPTANCE

Upon approval of a paper for publication, the manuscript will be forwarded to the dean, who is responsible for the publication of the Global Journals Inc. (US).

6.1 Proof Corrections

The corresponding author will receive an e-mail alert containing a link to a website or will be attached. A working e-mail address must therefore be provided for the related author.

Acrobat Reader will be required in order to read this file. This software can be downloaded
(Free of charge) from the following website:
www.adobe.com/products/acrobat/readstep2.html. This will facilitate the file to be opened, read on screen, and printed out in order for any corrections to be added. Further instructions will be sent with the proof.

Proofs must be returned to the dean at dean@globaljournals.org within three days of receipt.
As changes to proofs are costly, we inquire that you only correct typesetting errors. All illustrations are retained by the publisher. Please note that the authors are responsible for all statements made in their work, including changes made by the copy editor.

6.2 Early View of Global Journals Inc. (US) (Publication Prior to Print)

The Global Journals Inc. (US) are enclosed by our publishing's Early View service. Early View articles are complete full-text articles sent in advance of their publication. Early View articles are absolute and final. They have been completely reviewed, revised and edited for publication, and the authors' final corrections have been incorporated. Because they are in final form, no changes can be made after sending them. The nature of Early View articles means that they do not yet have volume, issue or page numbers, so Early View articles cannot be cited in the conventional way.

6.3 Author Services

Online production tracking is available for your article through Author Services. Author Services enables authors to track their article once it has been accepted - through the production process to publication online and in print. Authors can check the status of their articles online and choose to receive automated e-mails at key stages of production. The authors will receive an e-mail with a unique link that enables them to register and have their article automatically added to the system. Please ensure that a complete e-mail address is provided when submitting the manuscript.

6.4 Author Material Archive Policy

Please note that if not specifically requested, publisher will dispose off hardcopy \& electronic information submitted, after the two months of publication. If you require the return of any information submitted, please inform the Editorial Board or dean as soon as possible.

6.5 Offprint and Extra Copies

A PDF offprint of the online-published article will be provided free of charge to the related author, and may be distributed according to the Publisher's terms and conditions. Additional paper offprint may be ordered by emailing us at: editor@globaljournals.org .

Before start writing a good quality Computer Science Research Paper, let us first understand what is Computer Science Research Paper? So, Computer Science Research Paper is the paper which is written by professionals or scientists who are associated to Computer Science and Information Technology, or doing research study in these areas. If you are novel to this field then you can consult about this field from your supervisor or guide.

TECHNIQUES FOR WRITING A GOOD QUALITY RESEARCH PAPER:

1. Choosing the topic: In most cases, the topic is searched by the interest of author but it can be also suggested by the guides. You can have several topics and then you can judge that in which topic or subject you are finding yourself most comfortable. This can be done by asking several questions to yourself, like Will I be able to carry our search in this area? Will I find all necessary recourses to accomplish the search? Will I be able to find all information in this field area? If the answer of these types of questions will be "Yes" then you can choose that topic. In most of the cases, you may have to conduct the surveys and have to visit several places because this field is related to Computer Science and Information Technology. Also, you may have to do a lot of work to find all rise and falls regarding the various data of that subject. Sometimes, detailed information plays a vital role, instead of short information.
2. Evaluators are human: First thing to remember that evaluators are also human being. They are not only meant for rejecting a paper. They are here to evaluate your paper. So, present your Best.
3. Think Like Evaluators: If you are in a confusion or getting demotivated that your paper will be accepted by evaluators or not, then think and try to evaluate your paper like an Evaluator. Try to understand that what an evaluator wants in your research paper and automatically you will have your answer.
4. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.
5. Ask your Guides: If you are having any difficulty in your research, then do not hesitate to share your difficulty to your guide (if you have any). They will surely help you out and resolve your doubts. If you can't clarify what exactly you require for your work then ask the supervisor to help you with the alternative. He might also provide you the list of essential readings.
6. Use of computer is recommended: As you are doing research in the field of Computer Science, then this point is quite obvious.
7. Use right software: Always use good quality software packages. If you are not capable to judge good software then you can lose quality of your paper unknowingly. There are various software programs available to help you, which you can get through Internet.
8. Use the Internet for help: An excellent start for your paper can be by using the Google. It is an excellent search engine, where you can have your doubts resolved. You may also read some answers for the frequent question how to write my research paper or find model research paper. From the internet library you can download books. If you have all required books make important reading selecting and analyzing the specified information. Then put together research paper sketch out.
9. Use and get big pictures: Always use encyclopedias, Wikipedia to get pictures so that you can go into the depth.
10. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right! It is a good habit, which helps to not to lose your continuity. You should always use bookmarks while searching on Internet also, which will make your search easier.
11. Revise what you wrote: When you write anything, always read it, summarize it and then finalize it.
12. Make all efforts: Make all efforts to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in introduction, that what is the need of a particular research paper. Polish your work by good skill of writing and always give an evaluator, what he wants.
13. Have backups: When you are going to do any important thing like making research paper, you should always have backup copies of it either in your computer or in paper. This will help you to not to lose any of your important.
14. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. Using several and unnecessary diagrams will degrade the quality of your paper by creating "hotchpotch." So always, try to make and include those diagrams, which are made by your own to improve readability and understandability of your paper.
15. Use of direct quotes: When you do research relevant to literature, history or current affairs then use of quotes become essential but if study is relevant to science then use of quotes is not preferable.
16. Use proper verb tense: Use proper verb tenses in your paper. Use past tense, to present those events that happened. Use present tense to indicate events that are going on. Use future tense to indicate future happening events. Use of improper and wrong tenses will confuse the evaluator. Avoid the sentences that are incomplete.
17. Never use online paper: If you are getting any paper on Internet, then never use it as your research paper because it might be possible that evaluator has already seen it or maybe it is outdated version.
18. Pick a good study spot: To do your research studies always try to pick a spot, which is quiet. Every spot is not for studies. Spot that suits you choose it and proceed further.
19. Know what you know: Always try to know, what you know by making objectives. Else, you will be confused and cannot achieve your target.
20. Use good quality grammar: Always use a good quality grammar and use words that will throw positive impact on evaluator. Use of good quality grammar does not mean to use tough words, that for each word the evaluator has to go through dictionary. Do not start sentence with a conjunction. Do not fragment sentences. Eliminate one-word sentences. Ignore passive voice. Do not ever use a big word when a diminutive one would suffice. Verbs have to be in agreement with their subjects. Prepositions are not expressions to finish sentences with. It is incorrect to ever divide an infinitive. Avoid clichés like the disease. Also, always shun irritating alliteration. Use language that is simple and straight forward. put together a neat summary.
21. Arrangement of information: Each section of the main body should start with an opening sentence and there should be a changeover at the end of the section. Give only valid and powerful arguments to your topic. You may also maintain your arguments with records.
22. Never start in last minute: Always start at right time and give enough time to research work. Leaving everything to the last minute will degrade your paper and spoil your work.
23. Multitasking in research is not good: Doing several things at the same time proves bad habit in case of research activity. Research is an area, where everything has a particular time slot. Divide your research work in parts and do particular part in particular time slot.
24. Never copy others' work: Never copy others' work and give it your name because if evaluator has seen it anywhere you will be in trouble.
25. Take proper rest and food: No matter how many hours you spend for your research activity, if you are not taking care of your health then all your efforts will be in vain. For a quality research, study is must, and this can be done by taking proper rest and food.
26. Go for seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources.

© Copyright by Global Journals Inc.(US)| Guidelines Handbook

27. Refresh your mind after intervals: Try to give rest to your mind by listening to soft music or by sleeping in intervals. This will also improve your memory.
28. Make colleagues: Always try to make colleagues. No matter how sharper or intelligent you are, if you make colleagues you can have several ideas, which will be helpful for your research.
29. Think technically: Always think technically. If anything happens, then search its reasons, its benefits, and demerits.
30. Think and then print: When you will go to print your paper, notice that tables are not be split, headings are not detached from their descriptions, and page sequence is maintained.
31. Adding unnecessary information: Do not add unnecessary information, like, I have used MS Excel to draw graph. Do not add irrelevant and inappropriate material. These all will create superfluous. Foreign terminology and phrases are not apropos. One should NEVER take a broad view. Analogy in script is like feathers on a snake. Not at all use a large word when a very small one would be sufficient. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grunt readers. Amplification is a billion times of inferior quality than sarcasm.
32. Never oversimplify everything: To add material in your research paper, never go for oversimplification. This will definitely irritate the evaluator. Be more or less specific. Also too, by no means, ever use rhythmic redundancies. Contractions aren't essential and shouldn't be there used. Comparisons are as terrible as clichés. Give up ampersands and abbreviations, and so on. Remove commas, that are, not necessary. Parenthetical words however should be together with this in commas. Understatement is all the time the complete best way to put onward earth-shaking thoughts. Give a detailed literary review.
33. Report concluded results: Use concluded results. From raw data, filter the results and then conclude your studies based on measurements and observations taken. Significant figures and appropriate number of decimal places should be used. Parenthetical remarks are prohibitive. Proofread carefully at final stage. In the end give outline to your arguments. Spot out perspectives of further study of this subject. Justify your conclusion by at the bottom of them with sufficient justifications and examples.
34. After conclusion: Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium though which your research is going to be in print to the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects in your research.

Informal Guidelines of Research Paper Writing

Key points to remember:

- Submit all work in its final form.
- Write your paper in the form, which is presented in the guidelines using the template.
- Please note the criterion for grading the final paper by peer-reviewers.

Final Points:

A purpose of organizing a research paper is to let people to interpret your effort selectively. The journal requires the following sections, submitted in the order listed, each section to start on a new page.

The introduction will be compiled from reference matter and will reflect the design processes or outline of basis that direct you to make study. As you will carry out the process of study, the method and process section will be constructed as like that. The result segment will show related statistics in nearly sequential order and will direct the reviewers next to the similar intellectual paths throughout the data that you took to carry out your study. The discussion section will provide understanding of the data and projections as to the implication of the results. The use of good quality references all through the paper will give the effort trustworthiness by representing an alertness of prior workings.

Writing a research paper is not an easy job no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record keeping are the only means to make straightforward the progression.

General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear

- Adhere to recommended page limits

Mistakes to evade

- Insertion a title at the foot of a page with the subsequent text on the next page
- Separating a table/chart or figure - impound each figure/table to a single page
- Submitting a manuscript with pages out of sequence

In every sections of your document

- Use standard writing style including articles ("a", "the," etc.)
- Keep on paying attention on the research topic of the paper
- Use paragraphs to split each significant point (excluding for the abstract)
- Align the primary line of each section
- Present your points in sound order
- Use present tense to report well accepted
- Use past tense to describe specific results
- Shun familiar wording, don't address the reviewer directly, and don't use slang, slang language, or superlatives
- Shun use of extra pictures - include only those figures essential to presenting results

Title Page:

Choose a revealing title. It should be short. It should not have non-standard acronyms or abbreviations. It should not exceed two printed lines. It should include the name(s) and address (es) of all authors.

Abstract:

The summary should be two hundred words or less. It should briefly and clearly explain the key findings reported in the manuscript-must have precise statistics. It should not have abnormal acronyms or abbreviations. It should be logical in itself. Shun citing references at this point.

An abstract is a brief distinct paragraph summary of finished work or work in development. In a minute or less a reviewer can be taught the foundation behind the study, common approach to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Yet, use comprehensive sentences and do not let go readability for briefness. You can maintain it succinct by phrasing sentences so that they provide more than lone rationale. The author can at this moment go straight to shortening the outcome. Sum up the study, with the subsequent elements in any summary. Try to maintain the initial two items to no more than one ruling each.

- Reason of the study - theory, overall issue, purpose
- Fundamental goal
- To the point depiction of the research
- Consequences, including definite statistics - if the consequences are quantitative in nature, account quantitative data; results of any numerical analysis should be reported
- Significant conclusions or questions that track from the research(es)

Approach:

- Single section, and succinct
- As a outline of job done, it is always written in past tense
- A conceptual should situate on its own, and not submit to any other part of the paper such as a form or table
- Center on shortening results - bound background information to a verdict or two, if completely necessary
- What you account in an conceptual must be regular with what you reported in the manuscript
- Exact spelling, clearness of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else

Introduction:

The Introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable to comprehend and calculate the purpose of your study without having to submit to other works. The basis for the study should be offered. Give most important references but shun difficult to make a comprehensive appraisal of the topic. In the introduction, describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will have no attention in your result. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here. Following approach can create a valuable beginning:

- Explain the value (significance) of the study
- Shield the model - why did you employ this particular system or method? What is its compensation? You strength remark on its appropriateness from a abstract point of vision as well as point out sensible reasons for using it.
- Present a justification. Status your particular theory (es) or aim(s), and describe the logic that led you to choose them.
- Very for a short time explain the tentative propose and how it skilled the declared objectives.

Approach:

- Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done.
- Sort out your thoughts; manufacture one key point with every section. If you make the four points listed above, you will need a least of four paragraphs.
- Present surroundings information only as desirable in order hold up a situation. The reviewer does not desire to read the whole thing you know about a topic.
- Shape the theory/purpose specifically - do not take a broad view.
- As always, give awareness to spelling, simplicity and correctness of sentences and phrases.

Procedures (Methods and Materials):

This part is supposed to be the easiest to carve if you have good skills. A sound written Procedures segment allows a capable scientist to replacement your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt for the least amount of information that would permit another capable scientist to spare your outcome but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section. When a technique is used that has been well described in another object, mention the specific item describing a way but draw the basic principle while stating the situation. The purpose is to text all particular resources and broad procedures, so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step by step report of the whole thing you did, nor is a methods section a set of orders.

Materials:

- Explain materials individually only if the study is so complex that it saves liberty this way.
- Embrace particular materials, and any tools or provisions that are not frequently found in laboratories.
- Do not take in frequently found.
- If use of a definite type of tools.
- Materials may be reported in a part section or else they may be recognized along with your measures.

Methods:

- Report the method (not particulars of each process that engaged the same methodology)
- Describe the method entirely
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures
- Simplify - details how procedures were completed not how they were exclusively performed on a particular day.
- If well known procedures were used, account the procedure by name, possibly with reference, and that's all.

Approach:

- It is embarrassed or not possible to use vigorous voice when documenting methods with no using first person, which would focus the reviewer's interest on the researcher rather than the job. As a result when script up the methods most authors use third person passive voice.
- Use standard style in this and in every other part of the paper - avoid familiar lists, and use full sentences.

What to keep away from

- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings - save it for the argument.
- Leave out information that is immaterial to a third party.

Results:

The principle of a results segment is to present and demonstrate your conclusion. Create this part a entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Carry on to be to the point, by means of statistics and tables, if suitable, to present consequences most efficiently.You must obviously differentiate material that would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matter should not be submitted at all except requested by the instructor.

- Sum up your conclusion in text and demonstrate them, if suitable, with figures and tables.
- In manuscript, explain each of your consequences, point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation an exacting study.
- Explain results of control experiments and comprise remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or in manuscript form. What to stay away from
- Do not discuss or infer your outcome, report surroundings information, or try to explain anything.
- Not at all, take in raw data or intermediate calculations in a research manuscript.
- Do not present the similar data more than once.
- Manuscript should complement any figures or tables, not duplicate the identical information.
- Never confuse figures with tables - there is a difference.

Approach

- As forever, use past tense when you submit to your results, and put the whole thing in a reasonable order.
- Put figures and tables, appropriately numbered, in order at the end of the report
- If you desire, you may place your figures and tables properly within the text of your results part.

Figures and tables

- If you put figures and tables at the end of the details, make certain that they are visibly distinguished from any attach appendix materials, such as raw facts
- Despite of position, each figure must be numbered one after the other and complete with subtitle
- In spite of position, each table must be titled, numbered one after the other and complete with heading
- All figure and table must be adequately complete that it could situate on its own, divide from text

Discussion:
The Discussion is expected the trickiest segment to write and describe. A lot of papers submitted for journal are discarded based on problems with the Discussion. There is no head of state for how long a argument should be. Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implication of the study. The purpose here is to offer an understanding of your results and hold up for all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of result should be visibly described. Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved with prospect, and let it drop at that.

- Make a decision if each premise is supported, discarded, or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."
- Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work
- You may propose future guidelines, such as how the experiment might be personalized to accomplish a new idea.
- Give details all of your remarks as much as possible, focus on mechanisms.
- Make a decision if the tentative design sufficiently addressed the theory, and whether or not it was correctly restricted.
- Try to present substitute explanations if sensible alternatives be present.
- One research will not counter an overall question, so maintain the large picture in mind, where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

Approach:

- When you refer to information, differentiate data generated by your own studies from available information
- Submit to work done by specific persons (including you) in past tense.
- Submit to generally acknowledged facts and main beliefs in present tense.

Administration Rules Listed Before Submitting Your Research Paper to Global Journals Inc. (US)

Please carefully note down following rules and regulation before submitting your Research Paper to Global Journals Inc. (US):

Segment Draft and Final Research Paper: You have to strictly follow the template of research paper. If it is not done your paper may get rejected.

- The major constraint is that you must independently make all content, tables, graphs, and facts that are offered in the paper. You must write each part of the paper wholly on your own. The Peer-reviewers need to identify your own perceptive of the concepts in your own terms. NEVER extract straight from any foundation, and never rephrase someone else's analysis.
- Do not give permission to anyone else to "PROOFREAD" your manuscript.
- Methods to avoid Plagiarism is applied by us on every paper, if found guilty, you will be blacklisted by all of our collaborated research groups, your institution will be informed for this and strict legal actions will be taken immediately.)
- To guard yourself and others from possible illegal use please do not permit anyone right to use to your paper and files.

Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals Inc. (US).

INDEX

\bar{D}

Disquisitiones • 27
Darboux Continuity - 19
Dynamical - 43, 51, 52

E

Epidemiology • 30, 46
Exponentiated • 1, 24, 26, 28, 30, 34, 39, 40, 41, 42

G

Geodetic • 65, 66, 67, 68, 69, 70, 71, 73

0

Oscillator • 102, 104, 105, 107, 108, 114, 116, 118
Quasicontinuous • 3, 5, 19
\bar{P}
Perturbation • 49, 50, 52, 53, 54, 55,56,57,58,59, 60, 61, 62, 63, 102, 116, 118

T

Thermophoresis - 87
Trajectorries 1, 43

Global Journal of Science Frontier Research

Visit us on the Web at www.GlobalJournals.org | www.JournalofScience.org or email us at helpdesk@globaljournals.org

[^0]: Author: Assistant Professor, Department of Mathematics, JNTUH College of Engineering, JNTU, Kukatpally, Hyderabad - 500085, A.P, India. e-mail: srinu vajha@yahoo.co.in

[^1]: Author α : Department of Statistics, Abraham Adesanya Polytechnic, ljebu-lgbo, Nigeria. e-mail: idowuolasunkanmi8169@yahoo.com Author σ : Department of Mathematical Sciences, Redeemer's University, Ogun State, Nigeria. e-mail: adebayobamiduro@yahoo.com

[^2]: Author α : P. D. M College of Engineering, Bahadurgarh, Haryana, India. e-mail: vs/udn@gmail.com Author α : Department of Applied Sciences \& Humanities, Jamia Millia Islamia, New Delhi, India.

[^3]: Author α : University of Badji Moktar, Laboratory LMA, Department of Mathematics, Faculty of Sciences, BP 12. 23000 EI Hadjer Algeria. e-mail: messikhc@yahoo.fr
 Author o: University of Skika 20 août 1955 Department of Mathematics, Faculty of Science. e-mail: Guesmiasaid@yahoo.fr Author p: University of Badji Moktar, Laboratory LANOS, Department of Mathematics, Faculty of Sciences, BP12. 23000 El Hadjer Algeria. e-mail: Signor 2000@yahoo.fr

[^4]: Author α o: Department of Mathematics, Jagan Nath University, Jaipur. e-mail: aisha.rafi@hotmail.com

[^5]: Author α o: North Eastern Regional Institute of Science and Technology. e-mail: warcn2013@gmail.com

