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In this paper, we introduce a connection formula between the monomial basis and

 

the shifted Laguerre basis. 
As an application, some integral representations in terms

 

of Laguerre polynomials for certain sequences are obtained.
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a) Some special functions 

  

        

 

 

 
 

  

  

 

  
 

 
  

 
   

  
 

By using some special functions and some particular integrals, we recall some integral rep-
resentations for certain integer (or real) sequences.

The Gamma function is defined by the definite integral

Γ(z) =

∫ +∞

0

xz−1e−x dx, <e(z) > 0.

We can see directly, that Γ(1) = 1, and using integration by parts, that Γ(z + 1) = zΓ(z).
Notice that, for z = n ∈ N \ {0}, the following formulas hold

n! = Γ(n+ 1)

=

∫ +∞

0

xne−x dx, (1)

(2n)!

22nn!

√
π = Γ

(
n+

1

2

)
=

∫ +∞

0

xn
e−x√
x

dx. (2)
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I. Introduction and Main Results

The Bêta function is given in terms of the integral

B(s, t) =

∫ 1

0

xs−1(1− x)t−1 dx, <e(s), <e(t) > 0.



 
 

 
 

 
 
 
 
 
 
 
 
 
 

which is symmetric in s and t, i.e., B(s, t) = B(t, s). Notice that, after a change of variable
x = 1

1+y
, we get

B(s, t) =

∫ +∞

0

xs−1

(1 + x)s+t
dx.

This function also admits the following representation in terms of the Gamma function [3]

B(s, t) =
Γ(s)Γ(t)

Γ(s+ t)
.

In particular, if s and t are non-zero integers, then we have

n!p!

(n+ p+ 1)!
= B(n+ 1, p+ 1)

=

∫ 1

0

xn(1− x)p dx, (3)

=

∫ +∞

0

xn

(1 + x)n+p+2
dx, n, p ≥ 0. (4)

The monic Hermite polynomials Hn(x) are orthogonal in the interval (−∞,+∞) with
respect to the weight function e−x

2
and fulfil the following orthogonality relation [2]∫ +∞

−∞
e−x

2

Hn(x)Hm(x) dx =

√
π

2m
n!δn,m, n, m ≥ 0,

where δn,m is the Kronecker delta.
The canonical moments, (H)n≥0, of the Hermite polynomials have the representation [3](

1 + (−1)n
)
n!

2n+1Γ(n
2

+ 1)
= (H)n

=

∫ +∞

−∞
xne−x

2

dx, n ≥ 0. (5)

The Wallis integral is given by

In =

∫ π
2

0

sinn x dx, n ≥ 0.

By a simple integration by parts, we can obtain

I2n =
(2n)!π

22n+1(n!)2
, I2n+1 =

22n(n!)2

(2n+ 1)!
, n ≥ 0.

By the change of variable t = sinx, this gives the following formulas

(2n)!π

22n+1(n!)2
=

∫ 1

0

x2n

√
1− x2

dx, n ≥ 0, (6)

22n(n!)2

(2n+ 1)!
=

∫ 1

0

x2n+1

√
1− x2

dx, n ≥ 0. (7)

Now, let consider the following integral
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b) Some other integrals

3.
P

.  M
aron
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on
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n
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d
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ieu
r, T

raité
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cien
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on

d
am

en
tales) A

 154 P
aris, 1994. 1-30.

Ref



 
 

 
 

 
 
 
 
 
 
 
 
 
 

It is easy to see that

Tn+2 + Tn =
1

n+ 1
, n ≥ 0.

We get by iteration the two following formulas

T2n+1 =
n∑
k=1

(−1)n+k

2k
+ (−1)nT1, n ≥ 0.

T2n+2 =
n∑
k=0

(−1)n+k

2k + 1
+ (−1)n+1T0, n ≥ 0.

Then, by the change of variable t = tanx, we get

(−1)n

2

(
ln 2 +

n∑
k=1

(−1)k

k

)
=

∫ 1

0

x2n+1

1 + x2
dx, n ≥ 0, (8)

(−1)n
(π

4
+

n−1∑
k=0

(−1)k+1

2k + 1

)
=

∫ 1

0

x2n

1 + x2
dx, n ≥ 0, (9)

with the convention
∑0

k=1 =
∑−1

k=0 = 0.

We also consider the following integral

Rn =

∫ 1

0

xn

1 + x
dx, n ≥ 0.

It is easy to see that Rn +Rn+1 = 1
n
, n ≥ 1, and hence the following formula

(−1)n
(

ln 2 +
n∑
k=1

(−1)k

k

)
=

∫ 1

0

xn

1 + x
dx, n ≥ 0. (10)

Finally, we consider the integral

Bn =
1

n!

∫ 1

0

(1− x)nex dx, n ≥ 0.

For n ≥ 1, integration by parts yields Bn = Bn−1 − 1
n!

, and we obtain the formula

e−
n∑
k=0

1

k!
=

1

n!

∫ 1

0

(1− x)nex dx, n ≥ 0.

This gives, after a change of variable t = 1− x, the following relation

n!
(

1− 1

e

n∑
k=0

1

k!

)
=

∫ 1

0

xne−x dx, n ≥ 0. (11)

In this paper, we introduce the following connection formula, between the monomial
{xn}n≥0 and the shifted Laguerre polynomials,
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Tn =

∫ π
4

0

tann x dx, n ≥ 0.

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

xn =
1

(n+m)!

∫ +∞

0

tme−tL(m)
n

(
t(x+ 1)

)
dt, n ≥ 0, m ∈ N \ {0}.

As an application of our formula, we give the integral representations in terms of Laguerre
polynomials for the sequences given by the equations (1)−(11).

Let {L(m)
n }n≥0 be the monic Laguerre polynomial sequence, with parameter m ∈ N \ {0}, [4]

L(m)
n (x) =

n∑
ν=0

(−1)n−ν
(
n

ν

)
(n+m)!

(ν +m)!
xν , n ≥ 0. (12)

For any c ∈ C and any polynomial p, let introduce in the space of polynomials the linear
isomorphism Sc, called intertwining operator, and given by [1]:

Sc(p)(x) =

∫ +∞

0

te−tp
(
t(x− c) + c

)
dt.

The operator Sc can be characterized taking into account its linearity as well as the fact

Sc

(
(x− c)n

)
= (n+ 1)!(x− c)n, n ≥ 0. (13)

By (13) and (12), it is easy to prove that

S0

(
xm−1L(m)

n (x)
)

= (n+m)!xm−1(x− 1)n, n ≥ 0.

Hence, we can obtain the following result.

For every integer m ∈ N \ {0}, the following formula holds

xn =
1

(n+m)!

∫ +∞

0

tme−tL(m)
n

(
t(x+ 1)

)
dt, n ≥ 0. (14)

Now, as an application of the above formula, we can express the sequences given by the
equations (1)−(11) by integral representations in terms of Laguerre polynomials. Indeed,
substituting expression (14) into (1)−(11), we can state the following theorem.

For every integers m ≥ 1, and n, p ≥ 0, the following formulas hold
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II. Integral Representations in Terms of Laguerre Polynomials

Theorem 2.1 

Theorem 2.2 

n!(n+m)! =

∫ +∞

0

∫ +∞

0

tme−(x+t)L(m)
n

(
t(x+ 1)

)
dtdx

(2n)!m!
√
π

4n

(
n+m

n

)
=

∫ +∞

0

∫ +∞

0

tm√
x
e−(x+t)L(m)

n

(
t(x+ 1)

)
dtdx

n!p!(n+m)!

(n+ p+ 1)!
=

∫ 1

0

∫ +∞

0

(1− x)ptme−tL(m)
n

(
t(x+ 1)

)
dtdx

n!p!(n+m)!

(n+ p+ 1)!
=

∫ +∞

0

∫ +∞

0

tme−t

(1 + x)n+p+2
L(m)
n

(
t(x+ 1)

)
dtdx

1.
H

. H
och

stad
t, T

h
e F

u
n
ction

s of M
ath

em
atical P

h
ysics . D

ov
er P

u
b
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c. N

ew
Y

ork
, 1971.

Ref



 
 

 
 

 
 
 
 
 
 
 
 
 
 

(
1 + (−1)n

)
n!(n+m)!

2n+1Γ
(
n
2

+ 1
) =

∫ +∞

−∞

∫ +∞

0

tme−(x2+t)L(m)
n

(
t(x+ 1)

)
dtdx

(2n)!(2n+m)!π

(n!)222n+1
=

∫ 1

0

∫ +∞

0

tme−t√
1− x2

L
(m)
2n

(
t(x+ 1)

)
dtdx

(n!)2(2n+m+ 1)!22n

(2n+ 1)!
=

∫ 1

0

∫ +∞

0

tme−t√
1− x2

L
(m)
2n+1

(
t(x+ 1)

)
dtdx

(2n+m+ 1)!(−1)n

2

(
ln 2 +

n∑
k=1

(−1)k

k

)
=

∫ 1

0

∫ +∞

0

tme−t

1 + x2
L

(m)
2n+1

(
t(x+ 1)

)
dtdx

(2n+m)!(−1)n
(π

4
+

n−1∑
k=0

(−1)k+1

2k + 1

)
=

∫ 1

0

∫ +∞

0

tme−t

1 + x2
L

(m)
2n

(
t(x+ 1)

)
dtdx

(n+m)!(−1)n
(

ln 2 +
n∑
k=1

(−1)k

k

)
=

∫ 1

0

∫ +∞

0

tme−t

1 + x
L(m)
n

(
t(x+ 1)

)
dtdx

n!(n+m)!
(

1− 1

e

n∑
k=0

1

k!

)
=

∫ 1

0

∫ +∞

0

tme−(t+x)L(m)
n

(
t(x+ 1)

)
dtdx

with the convention
∑0

k=1 =
∑−1

k=0 = 0.

For m = 1 and p = 0 we have, for every integer n ≥ 0, the following special
cases

n!(n+ 1)! =

∫ +∞

0

∫ +∞

0

te−(x+t)L(1)
n

(
t(x+ 1)

)
dtdx

(2n)!(n+ 1)
√
π

22n
=

∫ +∞

0

∫ +∞

0

t√
x
e−(x+t)L(1)

n

(
t(x+ 1)

)
dtdx

n! =

∫ 1

0

∫ +∞

0

te−tL(1)
n

(
t(x+ 1)

)
dtdx
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Corollary 2.3 

(
1 + (−1)n

)
n!(n+ 1)!

2n+1Γ
(
n
2

+ 1
) =

∫ +∞

−∞

∫ +∞

0

te−(x2+t)L(1)
n

(
t(x+ 1)

)
dtdx

(2n+ 1)!π

22n+1

(
2n

n

)
=

∫ 1

0

∫ +∞

0

te−t√
1− x2

L
(1)
2n

(
t(x+ 1)

)
dtdx

Notes

n! =

∫ +∞

0

∫ +∞

0

te−t

(1 + x)n+2
L(1)
n

(
t(x+ 1)

)
dtdx
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n!(n+ 1)22n+1 =

∫ 1

0

∫ +∞

0

te−t√
1− x2

L
(1)
2n+1

(
t(x+ 1)

)
dtdx

(2n+ 2)!(−1)n

2

(
ln 2 +

n∑
k=1

(−1)k

k

)
=

∫ 1

0

∫ +∞

0

te−t

1 + x2
L

(1)
2n+1

(
t(x+ 1)

)
dtdx

(2n+ 1)!(−1)n
(π

4
+

n−1∑
k=0

(−1)k+1

2k + 1

)
=

∫ 1

0

∫ +∞

0

te−t

1 + x2
L

(1)
2n

(
t(x+ 1)

)
dtdx

(n+ 1)!(−1)n
(

ln 2 +
n∑
k=1

(−1)k

k

)
=

∫ 1

0

∫ +∞

0

te−t

1 + x
L(1)
n

(
t(x+ 1)

)
dtdx

n!(n+ 1)!
(

1− 1

e

n∑
k=0

1

k!

)
=

∫ 1

0

∫ +∞

0

te−(t+x)L(1)
n

(
t(x+ 1)

)
dtdx

with the convention
∑0

k=1 =
∑−1

k=0 = 0.

(2n)!(2n+ 1)!

22nn!
=

∫ +∞

−∞

∫ +∞

0

te−(x2+t)L
(1)
2n

(
t(x+ 1)

)
dtdx.
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Notes

ö

Note that, if we take n even in the fifth formula, we obtain
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