

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: F MATHEMATICS AND DECISION SCIENCES Volume 15 Issue 5 Version 1.0 Year 2015 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Certain Sequences and its Integral Representations in Terms of Laguerre Polynomials

By Baghdadi Aloui

Abstract- In this paper, we introduce a connection formula between the monomial basis and the shifted Laguerre basis. As an application, some integral representations in terms of Laguerre polynomials for certain sequences are obtained.

Keywords: Laguerre polynomials, special functions, integral formulas. GJSFR-F Classification : MSC 2010: Primary 33C45; Secondary 42C05

Strictly as per the compliance and regulations of :

© 2015. Baghdadi Aloui. This is a research/review paper, distributed under the terms of the Creative Commons Attribution. Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Notes

Certain Sequences and its Integral Representations in Terms of Laguerre **Polynomials**

Baghdadi Aloui

Abstract- In this paper, we introduce a connection formula between the monomial basis and the shifted Laguerre basis. As an application, some integral representations in terms of Laguerre polynomials for certain sequences are obtained. Keywords: Laguerre polynomials, special functions, integral formulas.

I. INTRODUCTION AND MAIN RESULTS

By using some special functions and some particular integrals, we recall some integral representations for certain integer (or real) sequences.

a) Some special functions

The Gamma function is defined by the definite integral

$$\Gamma(z) = \int_0^{+\infty} x^{z-1} e^{-x} \, \mathrm{d}x, \quad \Re e(z) > 0.$$

We can see directly, that $\Gamma(1) = 1$, and using integration by parts, that $\Gamma(z+1) = z\Gamma(z)$. Notice that, for $z = n \in \mathbb{N} \setminus \{0\}$, the following formulas hold

-

$$n! = \Gamma(n+1)$$
$$= \int_0^{+\infty} x^n e^{-x} dx,$$

$$\frac{(2n)!}{2^{2n}n!}\sqrt{\pi} = \Gamma\left(n+\frac{1}{2}\right)$$

$$= \int_0^{+\infty} x^n \frac{e^{-x}}{\sqrt{x}} \, \mathrm{d}x. \tag{2}$$

The Bêta function is given in terms of the integral

$$B(s,t) = \int_0^1 x^{s-1} (1-x)^{t-1} \, \mathrm{d}x, \quad \Re e(s), \ \Re e(t) > 0.$$

Author: Faculté des Sciences de Gabès, Département de Mathématiques, Cité Erriadh, 6072 Gabès, Tunisie. e-mail: Baghdadi.Aloui@fsg.rnu.tn

(1)

which is symmetric in s and t, i.e., B(s,t) = B(t,s). Notice that, after a change of variable $x = \frac{1}{1+u}$, we get

$$B(s,t) = \int_0^{+\infty} \frac{x^{s-1}}{(1+x)^{s+t}} \, \mathrm{d}x.$$

This function also admits the following representation in terms of the Gamma function [3]

$$B(s,t) = \frac{\Gamma(s)\Gamma(t)}{\Gamma(s+t)}.$$
 R

In particular, if s and t are non-zero integers, then we have

$$\frac{n!p!}{(n+p+1)!} = B(n+1,p+1) = \int_{-1}^{1} x^n (1-x)^p \, \mathrm{d}x,$$
(3)

$$= \int_{0}^{\infty} x^{n} (1-x)^{p} dx, \qquad (3)$$

$$= \int_0^{\infty} \frac{x^n}{(1+x)^{n+p+2}} \, \mathrm{d}x, \quad n, \ p \ge 0.$$
 (4)

The monic Hermite polynomials $H_n(x)$ are orthogonal in the interval $(-\infty, +\infty)$ with respect to the weight function e^{-x^2} and fulfil the following orthogonality relation [2]

$$\int_{-\infty}^{+\infty} e^{-x^2} H_n(x) H_m(x) \, \mathrm{d}x = \frac{\sqrt{\pi}}{2^m} n! \delta_{n,m}, \quad n, \ m \ge 0,$$

where $\delta_{n,m}$ is the Kronecker delta.

The canonical moments, $(\mathcal{H})_{n\geq 0}$, of the Hermite polynomials have the representation [3]

$$\frac{(1+(-1)^n)n!}{2^{n+1}\Gamma(\frac{n}{2}+1)} = (\mathcal{H})_n$$

= $\int_{-\infty}^{+\infty} x^n e^{-x^2} \, \mathrm{d}x, \quad n \ge 0.$ (5)

b) Some other integrals

2015

Year

2

Global Journal of Science Frontier Research (F) Volume XV Issue V Version I

The Wallis integral is given by

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x, \quad n \ge 0.$$

By a simple integration by parts, we can obtain

$$I_{2n} = \frac{(2n)!\pi}{2^{2n+1}(n!)^2}, \quad I_{2n+1} = \frac{2^{2n}(n!)^2}{(2n+1)!}, \quad n \ge 0.$$

By the change of variable $t = \sin x$, this gives the following formulas

$$\frac{(2n)!\pi}{2^{2n+1}(n!)^2} = \int_0^1 \frac{x^{2n}}{\sqrt{1-x^2}} \,\mathrm{d}x, \quad n \ge 0, \tag{6}$$

$$\frac{2^{2n}(n!)^2}{(2n+1)!} = \int_0^1 \frac{x^{2n+1}}{\sqrt{1-x^2}} \, \mathrm{d}x, \quad n \ge 0.$$
(7)

Now, let consider the following integral

Jef

$$T_n = \int_0^{\frac{\pi}{4}} \tan^n x \, \mathrm{d}x, \quad n \ge 0.$$

It is easy to see that

Notes

$$T_{n+2} + T_n = \frac{1}{n+1}, \quad n \ge 0.$$

We get by iteration the two following formulas

$$T_{2n+1} = \sum_{k=1}^{n} \frac{(-1)^{n+k}}{2k} + (-1)^{n} T_{1}, \quad n \ge 0.$$

$$T_{2n+2} = \sum_{k=0}^{n} \frac{(-1)^{n+k}}{2k+1} + (-1)^{n+1} T_0, \quad n \ge 0.$$

Then, by the change of variable $t = \tan x$, we get

$$\frac{(-1)^n}{2} \left(\ln 2 + \sum_{k=1}^n \frac{(-1)^k}{k} \right) = \int_0^1 \frac{x^{2n+1}}{1+x^2} \, \mathrm{d}x, \quad n \ge 0,$$
(8)

$$(-1)^n \left(\frac{\pi}{4} + \sum_{k=0}^{n-1} \frac{(-1)^{k+1}}{2k+1}\right) = \int_0^1 \frac{x^{2n}}{1+x^2} \, \mathrm{d}x, \quad n \ge 0, \tag{9}$$

with the convention $\sum_{k=1}^{0} = \sum_{k=0}^{-1} = 0.$

We also consider the following integral

$$R_n = \int_0^1 \frac{x^n}{1+x} \, \mathrm{d}x, \quad n \ge 0.$$

It is easy to see that $R_n + R_{n+1} = \frac{1}{n}$, $n \ge 1$, and hence the following formula

$$(-1)^n \left(\ln 2 + \sum_{k=1}^n \frac{(-1)^k}{k} \right) = \int_0^1 \frac{x^n}{1+x} \, \mathrm{d}x, \quad n \ge 0.$$
 (10)

Finally, we consider the integral

$$B_n = \frac{1}{n!} \int_0^1 (1-x)^n e^x \, \mathrm{d}x, \quad n \ge 0.$$

For $n \ge 1$, integration by parts yields $B_n = B_{n-1} - \frac{1}{n!}$, and we obtain the formula

$$e - \sum_{k=0}^{n} \frac{1}{k!} = \frac{1}{n!} \int_{0}^{1} (1-x)^{n} e^{x} dx, \quad n \ge 0.$$

This gives, after a change of variable t = 1 - x, the following relation

$$n! \left(1 - \frac{1}{e} \sum_{k=0}^{n} \frac{1}{k!}\right) = \int_{0}^{1} x^{n} e^{-x} \, \mathrm{d}x, \quad n \ge 0.$$
(11)

In this paper, we introduce the following connection formula, between the monomial $\{x^n\}_{n\geq 0}$ and the shifted Laguerre polynomials,

$$x^{n} = \frac{1}{(n+m)!} \int_{0}^{+\infty} t^{m} e^{-t} L_{n}^{(m)} (t(x+1)) \, \mathrm{d}t, \quad n \ge 0, \ m \in \mathbb{N} \setminus \{0\}.$$

As an application of our formula, we give the integral representations in terms of Laguerre polynomials for the sequences given by the equations (1)-(11).

II. INTEGRAL REPRESENTATIONS IN TERMS OF LAGUERRE POLYNOMIALS

Let $\{L_n^{(m)}\}_{n\geq 0}$ be the monic Laguerre polynomial sequence, with parameter $m \in \mathbb{N} \setminus \{0\}, [4]$

$$L_n^{(m)}(x) = \sum_{\nu=0}^n (-1)^{n-\nu} \binom{n}{\nu} \frac{(n+m)!}{(\nu+m)!} x^{\nu}, \quad n \ge 0.$$
(12)

For any $c \in \mathbb{C}$ and any polynomial p, let introduce in the space of polynomials the linear isomorphism \mathfrak{S}_c , called intertwining operator, and given by [1]:

$$\mathfrak{S}_c(p)(x) = \int_0^{+\infty} t e^{-t} p\big(t(x-c) + c\big) \, \mathrm{d}t.$$

The operator \mathfrak{S}_c can be characterized taking into account its linearity as well as the fact

$$\mathfrak{S}_c((x-c)^n) = (n+1)!(x-c)^n, \quad n \ge 0.$$
 (13)

By (13) and (12), it is easy to prove that

$$\mathfrak{S}_0(x^{m-1}L_n^{(m)}(x)) = (n+m)!x^{m-1}(x-1)^n, \quad n \ge 0.$$

Hence, we can obtain the following result.

Theorem 2.1 For every integer $m \in \mathbb{N} \setminus \{0\}$, the following formula holds

$$x^{n} = \frac{1}{(n+m)!} \int_{0}^{+\infty} t^{m} e^{-t} L_{n}^{(m)} (t(x+1)) \, \mathrm{d}t, \quad n \ge 0.$$
(14)

Now, as an application of the above formula, we can express the sequences given by the equations (1)-(11) by integral representations in terms of Laguerre polynomials. Indeed, substituting expression (14) into (1)-(11), we can state the following theorem.

Theorem 2.2 For every integers $m \ge 1$, and $n, p \ge 0$, the following formulas hold

$$n!(n+m)! = \int_0^{+\infty} \int_0^{+\infty} t^m e^{-(x+t)} L_n^{(m)} \left(t(x+1) \right) dt dx$$
$$\frac{(2n)!m!\sqrt{\pi}}{4^n} \binom{n+m}{n} = \int_0^{+\infty} \int_0^{+\infty} \frac{t^m}{\sqrt{x}} e^{-(x+t)} L_n^{(m)} \left(t(x+1) \right) dt dx$$
$$\frac{n!p!(n+m)!}{(n+p+1)!} = \int_0^1 \int_0^{+\infty} (1-x)^p t^m e^{-t} L_n^{(m)} \left(t(x+1) \right) dt dx$$
$$\frac{n!p!(n+m)!}{(n+p+1)!} = \int_0^{+\infty} \int_0^{+\infty} \frac{t^m e^{-t}}{(1+x)^{n+p+2}} L_n^{(m)} \left(t(x+1) \right) dt dx$$

© 2015 Global Journals Inc. (US)

÷

H. Hochstadt, *The Functions of Mathematical Physics*. Dover Publications Inc. New York, 1971.

$$\begin{aligned} \frac{(1+(-1)^n)n!(n+m)!}{2^{n+1}\Gamma(\frac{n}{2}+1)} &= \int_{-\infty}^{+\infty} \int_{0}^{+\infty} t^m e^{-(x^2+t)} L_n^{(m)} \left(t(x+1)\right) \, \mathrm{d}t \mathrm{d}x \\ \frac{(2n)!(2n+m)!\pi}{(n!)^2 2^{2n+1}} &= \int_{0}^{1} \int_{0}^{+\infty} \frac{t^m e^{-t}}{\sqrt{1-x^2}} \, L_{2n}^{(m)} \left(t(x+1)\right) \, \mathrm{d}t \mathrm{d}x \\ \frac{(n!)^2 (2n+m+1)! 2^{2n}}{(2n+1)!} &= \int_{0}^{1} \int_{0}^{+\infty} \frac{t^m e^{-t}}{\sqrt{1-x^2}} \, L_{2n+1}^{(m)} \left(t(x+1)\right) \, \mathrm{d}t \mathrm{d}x \\ \frac{(2n+m+1)!(-1)^n}{2} \left(\ln 2 + \sum_{k=1}^n \frac{(-1)^k}{k}\right) &= \int_{0}^{1} \int_{0}^{+\infty} \frac{t^m e^{-t}}{1+x^2} \, L_{2n+1}^{(m)} \left(t(x+1)\right) \, \mathrm{d}t \mathrm{d}x \\ (2n+m)!(-1)^n \left(\frac{\pi}{4} + \sum_{k=0}^{n-1} \frac{(-1)^{k+1}}{2k+1}\right) &= \int_{0}^{1} \int_{0}^{+\infty} \frac{t^m e^{-t}}{1+x^2} \, L_{2n}^{(m)} \left(t(x+1)\right) \, \mathrm{d}t \mathrm{d}x \\ (n+m)!(-1)^n \left(\ln 2 + \sum_{k=1}^n \frac{(-1)^k}{k}\right) &= \int_{0}^{1} \int_{0}^{+\infty} \frac{t^m e^{-t}}{1+x} \, L_n^{(m)} \left(t(x+1)\right) \, \mathrm{d}t \mathrm{d}x \\ n!(n+m)! \left(1 - \frac{1}{e} \sum_{k=0}^n \frac{1}{k!}\right) &= \int_{0}^{1} \int_{0}^{+\infty} t^m e^{-(t+x)} L_n^{(m)} \left(t(x+1)\right) \, \mathrm{d}t \mathrm{d}x \end{aligned}$$

with the convention $\sum_{k=1}^{0} = \sum_{k=0}^{-1} = 0.$

 $N_{\rm otes}$

Corollary 2.3 For m = 1 and p = 0 we have, for every integer $n \ge 0$, the following special cases

$$\begin{split} n!(n+1)! &= \int_{0}^{+\infty} \int_{0}^{+\infty} t e^{-(x+t)} L_{n}^{(1)} \big(t(x+1) \big) \, \mathrm{d} t \mathrm{d} x \\ \frac{(2n)!(n+1)\sqrt{\pi}}{2^{2n}} &= \int_{0}^{+\infty} \int_{0}^{+\infty} \frac{t}{\sqrt{x}} \, e^{-(x+t)} L_{n}^{(1)} \big(t(x+1) \big) \, \mathrm{d} t \mathrm{d} x \\ n! &= \int_{0}^{1} \int_{0}^{+\infty} t e^{-t} L_{n}^{(1)} \big(t(x+1) \big) \, \mathrm{d} t \mathrm{d} x \\ n! &= \int_{0}^{+\infty} \int_{0}^{+\infty} \frac{t e^{-t}}{(1+x)^{n+2}} \, L_{n}^{(1)} \big(t(x+1) \big) \, \mathrm{d} t \mathrm{d} x \\ \frac{(1+(-1)^{n})n!(n+1)!}{2^{n+1}\Gamma\big(\frac{n}{2}+1\big)} &= \int_{-\infty}^{+\infty} \int_{0}^{+\infty} t e^{-(x^{2}+t)} L_{n}^{(1)} \big(t(x+1) \big) \, \mathrm{d} t \mathrm{d} x \\ \frac{(2n+1)!\pi}{2^{2n+1}} \binom{2n}{n} &= \int_{0}^{1} \int_{0}^{+\infty} \frac{t e^{-t}}{\sqrt{1-x^{2}}} \, L_{2n}^{(1)} \big(t(x+1) \big) \, \mathrm{d} t \mathrm{d} x \end{split}$$

Notes

$$n!(n+1)2^{2n+1} = \int_0^1 \int_0^{+\infty} \frac{te^{-t}}{\sqrt{1-x^2}} L_{2n+1}^{(1)}(t(x+1)) dtdx$$
$$\frac{(2n+2)!(-1)^n}{2} \left(\ln 2 + \sum_{k=1}^n \frac{(-1)^k}{k}\right) = \int_0^1 \int_0^{+\infty} \frac{te^{-t}}{1+x^2} L_{2n+1}^{(1)}(t(x+1)) dtdx$$

$$(2n+1)!(-1)^n \left(\frac{\pi}{4} + \sum_{k=0}^{n-1} \frac{(-1)^{k+1}}{2k+1}\right) = \int_0^1 \int_0^{+\infty} \frac{te^{-t}}{1+x^2} L_{2n}^{(1)}(t(x+1)) dt dx$$

$$(n+1)!(-1)^n \left(\ln 2 + \sum_{k=1}^n \frac{(-1)^k}{k}\right) = \int_0^1 \int_0^{+\infty} \frac{te^{-t}}{1+x} L_n^{(1)}(t(x+1)) \, \mathrm{d}t \mathrm{d}x$$

$$n!(n+1)!\left(1-\frac{1}{e}\sum_{k=0}^{n}\frac{1}{k!}\right) = \int_{0}^{1}\int_{0}^{+\infty}te^{-(t+x)}L_{n}^{(1)}(t(x+1)) \,\mathrm{d}t\mathrm{d}x$$

with the convention $\sum_{k=1}^{0} = \sum_{k=0}^{-1} = 0.$

Remark 2.1 Note that, if we take n even in the fifth formula, we obtain

$$\frac{(2n)!(2n+1)!}{2^{2n}n!} = \int_{-\infty}^{+\infty} \int_{0}^{+\infty} t e^{-(x^2+t)} L_{2n}^{(1)} \left(t(x+1) \right) \, \mathrm{d}t \mathrm{d}x.$$

III. Acknowledgements

Sincere thanks are due to the referee for his/her careful reading of the manuscript and for his/her valuable comments.

References Références Referencias

- H. Hochstadt, *The Functions of Mathematical Physics*. Dover Publications Inc. New York, 1971.
- 2. N. N. Lebedev, *Special Functions and their Applications*. Revised English Edition, Dover Publications, New York, 1972.
- P. Maroni, Fonctions Eulériennes, Polynômes Orthogonaux Classiques. Techniques de l'Ingénieur, Traité Généralités (Sciences Fondamentales) A 154 Paris, 1994. 1-30.
- 4. G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc., Providence, RI, 1975.