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Abstract- In previous papers, see the references, the author introduced methods for estimating effects 
directly in samples of individuals whose genomes had be sequenced for the cases of one and two or more 
quantitative traits. In these papers, no attention was given to developing procedures of testing the statistical 
significance of the estimated effects. This paper is devoted to the development of statistical tests of 
significance of estimated effects for the simple case of one autosomal locus with two alleles, using Monte 
Carlo simulation methods. Because no real data was available to the author, artificial data for the three 
genotypes was simulated by using a Monte Carlo simulation procedures with fixed sample size for each 
genotypes as well as expectations and variances. In all cases considered, the null hypothesis was 
described in detail so as to inform a reader on the basic concepts underlying the proposed tests of 
statistical significance. For class of statistical tests described in this paper, two types of -values may be
distinguished. One type of -values consists of those for each of the estimated effects. A second type of -
values consist concerns the joint statistical significance of two or more estimated effects. The consideration 
of the simple case of two autosomal loci is useful, because it provides insights into how the Monte Carlo 
simulation procedures used in this paper may be extended to cases of two or more autosomal loci with two 
or more alleles at each locus.

Author: Professor Emeritus, Department of Mathematics, Drexel University, Philadelphia, PA.
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As was suggested in previous papers, when an investigator is dealing with a

sample of individuals whose genomes have been sequenced and a set of regions

of the genome have been identified that a ect the expression of a quantitative

trait or traits, then it becomes possible to provide a working definition of set of

loci in each individual at the genomic level, see Mode [3] and [4]. Moreover, if it

is also possible to use makers in the of each individual to provide working

definitions of at least two alleles at each locus, then an investigator can develop

a concrete working definition of the set of loci with two alleles at each that have

shown to have an e ect on the expression of a quantitative trait of traits as
expressed in a numerical measurement or measurements on each individual in

the sample.
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In principle, a quantitative trait or traits may be analyzed statistically for

any combination of the set of loci under consideration, but because the number

of genotypes that can be identified increase at a fast rate as the number of loci
under consideration increase, the sample of individuals may not be su ciently

large to assure that the number of individuals of each genotype is large enough

to obtain statistically significant results as discussed in chapters 3 and 4. Such

a situation will usually arise whenever the number of loci under consideration is

greater than 5 or 6. Therefore, if an investigator has 6 loci or more loci under

consideration in a sample of data, it would be prudent to perform a preliminary

analysis of the data for each locus under consideration in order to develop an

understanding as to which combination of loci would be most informative and

fruitful to explore.

To execute such an experiment, an investigator would need software to es-

timate each e ect whose square is a component of the genetic variance for each

locus under consideration. In the papers presented in chapters 3 and 4, it was

assumed that any allele in a genotype could be identified as to whether it was

contributed by the father or mother of any individual in the sample. In many

data sets, however, this assumption is not valid so that an investigator could

identify only three genotypes per locus for the case of two alleles per locus.

These three genotypes consist of two homozygotes and a heterozygote for which

it was not possible to identify whether each allele was of maternal or paternal

in origin. The purpose of this chapter is to provide an overview of the software

necessary to carry out a preliminary exploration of a data set, such that the

genome of each individual in the set has been sequenced, for each locus under

consideration. The main focus of this chapter is to implement software to do

the necessary computations for the simplest case of one autosomal locus with

two alleles with a view towards extending the software to cases of two or more

autosomal loci. A mathematical description of this software is provided for

those investigators who write code using a programing language based on the

manipulation of arrays such as APL or MATLAB.

A Monte Carlo simulation procedure was used to provide data for illustrat-

ing how the software may be used to analyze real data when it is available.

Contained in this software are procedures of estimating the squares of e ects

and a description of a procedures to formulate null hypotheses to test the sta-

tistical significance of the estimated squares of e ects. After a null hypothesis

is defined, a Monte Carlo simulation procedure was used to estimate -values

to judge whether each estimated square of an e ect was statistically significant,

given some null hypothesis. Detailed technical descriptions of null hypothe-

ses that were used in tests of statistical significance are also provided for each

reported experiment.

In previous work on defining e ects in connection with components of vari-

ance models in quantitative genetics, it was assumed that two kinds of het-

erozygotes could be identified when working with a sample of individuals whose

genomes have been sequenced. For example, let the symbol 1 denote the pres-

ence of a marker on a haplotype with respect to some locus, and let the symbol

0 denote the absence of this marker. Then, if it is assumed that it is possible

to detect in each individual whether each of the two alleles in a genotype that

was contributed by the maternal or paternal parent, then a genotype could to
represented by the symbol ( ), where and denote, respectively, the ma-

ternal and paternal allele. Thus, if both and are assigned the symbols 1 or

0, then four genotypes in the set

G1 = {(1 1) (1 0) (0 1) (0 0)} (2.1)

II. Non-Identifiabilty of Heterozygotes in the Case of 
one  Autosomal Locus
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can be identified in a sample of individuals. But, if it is not possible to iden-

tify the maternal and paternal alleles in an individual, then the two possible

heterozygotes, (1 0) and (0 1) would be lumped into a single category called

heterozygotes.

But, in such samples, the two homozygotes, (1 1) and (0 0), could be iden-

tified unambiguously. In what follows, the genotypes in the three categories will

be denoted by the symbols (1 1) ( 6= ) and (0 0), where the symbol ( 6= )

stands for heterozygotes in the non-identifiable case. In this case,

G2 = {(1 1) ( 6= ) (0 0)} = { 1 2 3} (2.2)

is the set of genotypes of recognizable genotypes. To simplify the notation in this

case, the symbols 1 2 3 will stand for three genotypes under consideration

as indicated in (2 2)

For the case of non-identifible heterozygotes, let 1 denote the number

of individuals in a sample, and let (1 1), ( 6= ) and (0 0) denote, respec-

tively, the number of individuals of each of the three genotypes. To simply the

notation, the numbers of each of these three genotypes is indicated in the set

{ ( 1) ( 2) ( 3)} (2.3)

denote the set of genotypes and let , with or without subscripts, denote an

element in the set G2 as indicated on the right in (2 2). Then,

=
X

G2
( ) , (2.4)

is the number of individuals in the sample, and

=
( )

(2.5)

is the estimated frequency of genotype in the population for = 1 2 3 This

collection of estimates will be referred to as the estimated genotypic distribu-

tion.

To take into account the problem setting up a structure that incorporates

phenotypic variation among individuals of the same genotype in sample with

respect to some quantitative trait, let denote and random variable taking

values in the set of R of possible values of the phenotype. Usually, R is

a set of rational real numbers. Given genotype G2, let ( | ) denote
the conditional probability density function of the random phenotypic variable

, and suppose there are ( ) observed realizations of the random variable

denoted by the symbols for = 1 2 · · · ( ). The conditional expectation

of the random variable , given the genotype G, is

[ | ] =
Z
R

( | ) (2.6)

for every genotype G2.
Therefore, an estimator of the conditional expectation [ | ] is

( ) =
1

( )

X ( )

=1
(2.7)

for all G. In what follows, these estimates will be referred to as the genetic
values. Let denote the unconditional expectation of the genetic values. Then,

=
P

G2 ( ) ( ) (2.8)
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Observe that this formula of this type would also be valid if the set G1 of
genotypes were under consideration, in this case there would be 4 genotypes to

take into account.

One objectives of this chapter is to suggest ways of write software to im-

plement the formulas above, using a array manipulating programing language.

Included in the class of array manipulating programing languages are APL

and MATLAB. For such languages, a good starting point is to represent the

genotypic distribution in (2 5) and the set of estimated expectations in (2 7) in

matrix forms. To cast the genotypic distribution in matrix form, suppose the

set of genotypes under consideration is G2 . Then, the matrix of estimated of
genetic values will have the form

G2 =
( 1) ( 2)

0 ( 3)

¸
. (2.9)

If both of the genotypes (1 0) and (0 1) i.e., both maternal and paternal alleles

in a sample of individuals can be identified, then the set of genotypes under

consideration would be the set G1 as defined above. In this case, the matrix of
genetic values has the form

G1 =
(1 1) (1 0)

(0 1) (0 0)

¸
= [ ( )] , (2.10)

where in this case (0 1 ) may be positive.

Let the array

pG1 =
(1 1) (1 0)

(0 1) (0 0)

¸
= [ ( )] (2.11)

represent the matrix form of the genotypic distribution for case 1. For the case

the set of genotypes G1 is under consideration, let a matrix operation of element
by element multiplication be denoted by

p× = [ ( ) ( )] . (2.12)

The symbol on the left in (2 12) would be the format for doing the operation

of matrix of element by element implication in APL. Then, for case 1, the

unconditional expectation of the matrix of genetic values may be written in the

form

G1 =
P

( ) G1 [ ( ) ( )] . (2.13)

It is important to observe that if the set G2 of genotypes were under con-
sideration, then formula of type (2 13) could also be used to compute uncon-

ditional expectation G2 From the point of view of writing software with an

array processing programming language, it is important to observe that the

same program could be used for these cases, except case 2, were the matrix of

expected genetic values would have the form in (2 9) and the matrix form of the

genotypic distribution would be represented in the form

pG2 =
( 1) ( 2)

0 ( 3)

¸
. (2.14)

In what follows in this section, a general notation will be used to partition

the phenotypic variance of a trait into the genetic and environmental variances,

using a general notation that includes cases 1 and 2 described above. Let A
denote the set of alleles at some autosomal locus, let ( ) any genotype, where

A and A and let

G = {( ) | A and A} (2.15)
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be the set of genotypes under consideration. Given genotype ( ) G, a
set of genotypes under consideration let ( ) denote a realization of the

phenotypic random variable , given ( ). Then observe that the equation

( ) = ( ( ) ) + ( ( ) ( )) (2.16)

is valid for all genotypes ( ) G.
The phenotypic variance, genetic and environmental variances are defined

as

[ ] =
P
( ) ( ) ( ( ) )

2
(2.17)

[ ] =
P

( ) ( ) ( ( ) )
2

(2.18)

and

[ ] =
P

( ) ( ) ( ( ) ( ))
2

(2.19)

respectively.

By using a conditioning argument given ( ) and (2 16), it can be shown

that the equation

[ ] = [ ] + [ ] (2.20)

is valid. If a reader is interested in a detailed derivation of the formula in

(2 20), consult chapter 3, which contains a detailed account for the case of one

quantitative trait. Observe that if the variances on right of equation (2 20) are

estimates based on data, then the sum on the right in (2 20) is an estimator of

[ ] the phenotypic variance. By definition, , the heritability of a trait,

is

=
[ ]

[ ] + [ ]
=

[ ]

[ ]
. (2.21)

From this formula, it can be seen that to estimate , it su ces to compute

[ ] and [ ], and then use equation (2 20) to check the validity of

formula (2 20) numerically. Note that any estimate of will satisfy the con-

dition 0 1 It should also be observed that from formula (2 17) that the

phenotypic variance [ ] may also be computed directly.

The formulas just derived are theoretical and when a sample of data is

available to an investigator, the genotypic distribution may be estimated as

well as means and variances. For example, for each genotype ( ) G2, let
( ) for = 1 2 · ·· ( ) be a set of quantitative observations on some

trait. Then, for every genotype ( ) G2,

b ( ) =
1

( )

( )X
=1

( ) (2.22)

is an estimate of the expectation ( ), and an estimate of 2 ( ) is

c2 ( ) =
1

( ) 1

( )X
=1

( ( ) b ( ))
2

(2.23)

is an estimate of 2 ( ) for ( ) 1, and

b( ) =
( )

(2.24)

is an estimate of the genotypic distribution. In the sections that follow the sym-

bol b will be dropped to lighten the notation, but it will be tacitly understood
that when a set of data is under consideration, the symbols ( ) 2 ( ) and

( ) are estimates of parameters.
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In classical quantitative genetics, the variances in variance component mod-

els were usually estimated indirectly by using analysis of variance-covariance

procedures, but within this framework it was not possible to estimate the ef-

fects, because they were squared terms in the weighted sums that were, by

definition, variance components. See chapter 1 for a specific example of an

analysis of variance-covarince procedure applied to data. But, as will be shown

in this section, when the genotype of each individual in a sample is known at

the level, it is possible to estimate e ects directly from the data for cases

of at least two alleles at the locus as was suggested in chapters 3 and 4.

Suppose that the maternal and paternal alleles are not identified in a sample,

and let (1 1), (0 0) and ( ) denote, respectively, the total number of

individuals that were homozygous for the alleles 1 or 0 and heterozygous for

these alleles. Then, the total number of individuals in the sample is

= (1 1) + (0 0) + ( ) . (3.1)

Let (1 1 ) (0 0) and ( ) denote, respectively, the frequencies of the three

genotypes under consideration. Then, (1 1) = (1 1) , (0 0) = (0 0)

and ( ) = ( ) . are estimators of these frequencies. It is also essential

to have estimates of the frequencies of alleles in the sample. Let (1) and (0)

denote the estimated frequencies of alleles 1 and 0 in the sample. The number of

copies of allele 1 in individuals of genotype (1 1) is 2, and the number of copies

of this allele in each heterozygote is one. Therefore, the estimated frequency of

allele 1 in the sample is

(1) =
2 (1 1) + ( )

2
= (1 1) +

1

2
( ) . (3.2)

Similarly, the estimate of allele 0 in the sample is

(0) = (0 0) +
1

2
( ) (3.3)

Observe that

(1) + (0) = 1 (3.4)

as they should.

In order to define all e ects for the case of one autosomal locus, it will be

necessary to define conditional expectations of the estimated means defined in

equation (2 7) in section 2 with respect to the genotypic distribution defined

below. When programming in an array processing language, it is convenient

to represent the data and estimates in a matrix form. Let (1 0) = (0 1) =

0 5 ( ). Then, the matrix form of the genotypic distribution is

pG2 =
(1 1) (1 0)

(0 1) (0 0)

¸
. (3.5)

The subscript G2 denotes the set of genotypes defined in (2 2) in section 2.
Given this matrix, the frequency of allele 1 has the form

(1) = (1 1) + (1 0) . (3.6)

Similarly, the frequency of allele 0 has the form

(0) = (0 1) + (0 0) (3.7)

From the point of view of writing computer code in an array processing language,

one could use a single command to compute the sum of the rows of the matrix

pG2 that would result in an array with the elements (1) and (0).

III. Estimating Effects Directly for Case of One 
Autosomal Locus
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To expedite the writing of code in an array processing programing language,

let (1 1) (0 0) and ( ) denote the genetic means for three genotypes

under consideration, and, to cast these means in matrix form as in (3 5), let

(0 1) = (1 0) = ( ). Then, the matrix of these means may be repre-

sented in the form

G2 =
(1 1) (1 0)

(0 1) (0 0)

¸
. (3.8)

An essential step in defining the e ects in what follows is to estimate the mean

defined in (2 8) of section 2. To this end consider the matrix product

pG2 × G2 , (3.9)

where the symbol × stands for element by element multiplication. Then, in this
notation, the mean has the form

=
P
pG2 × G2 =

P
( ) G2 ( ) ( ) , (3.10)

see (2 8) of section 2. When writing code in an array processing programing

language, only a few symbols would be required to write the code to do the

operations defined in (3 10).

Another essential step in defining e ects is to define the conditional distrib-

utions based in terms of the elements of the matrix p
2
in (3 5). By definition,

the conditional distribution of the genotypic distribution, given allele 1, is

1

(1)
( (1 1) (1 0)) . (3.11)

Let (1) denote the conditional expectation of the means ( (1 1)) (1 0),

given allele 1. Then, by definition

(1) =
1

(1)
( (1 1) (1 1)) + (1 0) (1 0) . (3.12)

The conditional expectation (0) is defined similarly. Observe that if the sample

is in a Hardy-Weinberg equilibrium so that ( ) = ( ) ( ) for all genotypes

( ) G2 then (1) has the form

(1) =
1

(1)
2 (1) (1 1) + (1) (0) (1 0) = (1) (1 1) + (0) (1 0)

(3.13)

The conditional expectation (0) has a similar form when the sample is in a

Hardy-Weinberg equilibrium.

Given the above definitions, the e ect of allele 1 is defined by

(1) = (1) . (3.14)

Similarly, the e ect of allele 0 is defined by

(0) = (0) . (3.15)

In what follows, the e ects defined in (3 14) and (3 15) will be referred to as

first order e ects. Observe that the expectation of these e ects with respect to

the genotypic distribution is

G2 [ ] = (1) (1) + (0) (0) = 0 . (3.16)

It is clear that the e ects just defined can be estimated directly from the data,

given that the genotype of every individual in the sample can be identified.
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For reasons that will be made clear subsequently, the additive variance is

defined by

[ ] = (1) 2 (1) + (0) 2 (0) (3.17)

The symbol has been included in left the side of this equation as a reminder

that e ects on the right side of the equation have been estimated from data.

From a perspective of using an analysis of variance procedure to estimate the

additive variance in (3 17), it would be impossible to estimate the e ects defined

in (3 14) and 3 from an estimate of [ ]. This observation clearly di er-

entiates classical methods of estimating variance components, based on some

analysis of variance procedure, from the direct method of estimating e ects

from the data as outlined above.

Additional e ects can also be defined as measures of the presence of inter-

actions among the two alleles in the genotype of any individual in the sample.

For any genotype ( ), a second order e ect ( ) is defined as

( ) = ( ) ( ) ( ) (3.18)

for all genotypes ( ) G2. From this equation, it follows that

( ) = + ( ) + ( ) + ( ) (3.19)

for all genotypes ( ) G2. If there are no interactions among the alleles and

, then ( ) = 0 and equation (3 19) reduces to

( ) = + ( ) + ( ) (3.20)

If this equation holds, then it is said that the alleles and act additively, but

if ( ) 6= 0, then there is some interaction among the alleles and .

If a sample of individuals is in a Hardy-Weinberg equilibrium,see definition

below, then in the additive case, the genetic variance has the form

[ ] =
P

( ) G2
( ) ( ( ) )

2
= (1) 2 (1)+ (0) 2 (0) = [ ]

(3.21)

which justifies equation (3 17). By definition

[ ] =
P

( ) 2
( ) 2 ( ) (3.22)

is the intra-allelic interaction variance. If the sample is in a Hardy-Weinberg

equilibrium, then, by definition ( ) = ( ) ( ) for all alleles and , and it

can be shown that

[ ] = [ ] + [ ] . (3.23)

A proof of these results may be found in chapter 3.

If the population is not in a Hardy-Weinberg equilibrium, then from equation

it can be shown that [ ] would also contain covariance terms, but the

details will be omitted, but if a reader is interested in more details, chapter 3

may again be consulted. In classical quantitative genetics, the objective of an

experiment would be the estimation of the variance components on the left

side of equation (3 23), using some analysis of variance procedure. But, as was

shown above, when the genotype of every individual in the sample is known,

then all second order e ects defined above can be estimated directly from the

data.

For example, from equation (3 19), it follows that the formula for estimating

the second order e ect for genotype (1 1) is

(1 1) = (1 1) 2 (1) . (3.24)
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A similar formula for an estimator of the e ect (0 0) would also have the

form of equation (3 24) The formula for estimating the second order e ect for

genotype ( ) such that ( 6= ) directly has the form

(1 2) = (1 2) (1) (2) . (3.25)

As can be seen from the symmetric matrices in (3 5) and (3 8), it follows that

(2 1) = (1 2).

For the case in which maternal and paternal alleles can be identified in any

genotype, the set of genotypes G1 = {(1 1) (1 0) (0 1) (0 0)}, see section
2 for more detailed comments, would be under consideration. In this case the

2×2 matrix PG1 would not be symmetric, because the relation (1 2) 6= (2 1)

would hold except for rare coincidences. Similarly, the 2 × 2 matrix
1
ge-

netic values, conditional means, would also be non-symmetric. In this case it

would also be necessary to distinguish the frequencies of maternal and paternal

alleles. For example, if the rows of the matrix PG1 were summed, the result

would be the distribution of maternal alleles ( (1) (0)). Similarly, if

the columns of this matrix were summed, the result would be the distribution of

( (1) (0)) of paternal alleles. Given these allelic distributions, to write

the computer code to compute the e ects in this case would require only a few

changes in the code for the case in which the maternal and paternal cannot be

distinguished as outlined above.

A question that naturally arises at this point formulating the model under

consideration is how can we construct procedures to test the statistical signifi-

cance of the estimated e ects? Because the squares of the e ects are summed

when defining variance components, it seem fitting to use squared e ect in de-

signing tests of statistical significance. Another advantage of using squared

e ects is that their signs are always non-negative. For the case in which the

maternal and paternal alleles cannot be distinguished, let the 5 × 1 column
vector

E =

2 (1)
2 (0)
2 (1 1)
2 (0 0)
2 (1 0)

(3.26)

denote the squared e ects. For the case the maternal and paternal alleles can

be distinguished, this vector would contain 8 elements. In the next section,

procedures for testing the statistical significance of the elements in the vector

in (3 26) will be presented.

In this section, a class of tests of statistical significance based on com-

puter intensive methods will be discussed. In the statistical literature, this

class of tests described in this section are often referred to as permutation

tests. For example, consider the case in which the maternal and paternal alleles

cannot be distinguished. Then, the set of genotypes in the model would be

G2 = {(1 1) (0 0) (1 0)}, where the symbol (1 0) represents heterozygotes.
Let (1 1) (0 0) and (1 0) denote the number of individuals of the three

genotypes in a sample of

= (1 1) + (0 0) + (1 0) (4.1)

individuals whose genomes have been sequenced. For each genotype ( ) G2,
let W ( ) = { ( ) | = 1 2 · · · ( )} denote the the sample of ( )

realizations of the phenotypic random variable describing the variability in

IV. Permutation Tests for Statistical Significance 
of Estimated Effects
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the expression of some quantitative trait for individuals of genotype ( ).The

combined data set under consideration may be represented as

=W (1 1) W (0 0) W (1 0) (4.2)

and consists of observations.

The first step in setting up a permutation test of the data is to compute a

random permutation denoted by of the data set in (4 2). Given this

random permutation of the data, the next step consists of choosing the first

(1 1) elements of as a sample of the quasi observations of the (1 1)

individuals of genotype (1 1). Similarly, the next (0 0) elements of

would represent quasi observations on the (0 0) of genotype (0 0). Finally, the

last (1 0) elements of would represent the (1 0) quasi observations

on individuals of genotype (1 0). Then suppose these operations are repeated

times to generate a set of random mutations of the data in (4 2).

As is well known, the set S of all permutations of the data chosen in this
manner contains

=
!

(1 1)! (0 0)! (1 0)!
(4.3)

elements. For example, for the case (1 1) = 33 (0 0) = 33 and (1 0) = 34,

this number is

=
100!

33!33!34!
= 4 192 4× 1045, (4.4)

which is a very large number. Indeed it is so large that most current computers

would be unable compute this many permutations of the data in an acceptably

short time span. Consequently, when doing a permutation test of the data, an

investigator would need to compute some number of permutations that is

much less than Most programming languages contain programs to compute

random numbers, which can be used to write code for computing a sample of

random permutations of a data set.

When doing a permutation test, the null hypothesis 0 is that the observed

data set is a random sample from the set S of all possible permutations of the
data. To carry out such a test, a computer would need to be programmed in

such a way that some number of random permutations of the data would be

computed and for each permutation of the data estimates of the e ects of the

vector E in equation (3 26) of section 3 would be computed. Let SIM denote a

5× matrix of simulated estimates of the five e ects in the vector E such that

each column of this matrix is an estimated realization of the observed vector E

based on a random permutation of the data. Similarly, let ALPHA denote a

5× matrix such that each column is a copy of the vector E. Then consider

the relationship and a 5× matrix R defined by

R = SIM ALPHA . (4.5)

Let SIM ( ) denote the element from the -th row and -th column of the ma-

trix SIM , and define the element ALPHA ( ) analogously. Each elements

of the matrix R is 0 or 1. If the relation

SIM ( ) ALPHA ( ) (4.6)

is true, then the element R ( ) = 1, and if this relation is false, R ( ) = 0.

As will be demonstrated in what follows, by using the matrix R various types

of -values may used to judge statistical significance of each of the estimated

e ects.

For example, let the denote the array with 5 elements that

results from summing the rows of the matrix R, and let ( ) denote the -

element in this array, where = 1 2 · · · 5. For example, according the ordering
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used in defining the 5 × 1 vector E in section 3, the number ( ) denotes the

number of times among the sample values that the inequality

SIM (1 ) ALPHA (1 ) (4.7)

was satisfied for e ect 1.

Observe that for every = 1 2 · ·· 5 the value of ( ) will be a member of

the set { | = 0 1 2 · ·· } Consequently, ( ) = ( ) is the estimated

-value for the estimated e ect 2 ( ) for = 1 2 · · · 5, see the vector E in

(3 26) in section 3 for details. Note that according to the elements in this vector,

(1) is the -value for the estimated e ect 2 (1) of the marker allele 1. If for

any = 1 2 · · · 5, ( ) 0 05, then the null hypothesis 0 that the data are

a sample from the set S of all permutations of the data will be rejected and the
estimate of the e ect ( ) will be said to be statistically significant. In this

example, the probability 0 05 was chosen arbitrarily, but an investigator would

be free to choose any other small probability as a bench mark for declaring

statistical significance. Alternatively, an investigator may want to observe each

-value, and make a judgement a to whether an estimated e ect was statistically

significant. At this point in the discussion, note that each of the probabilities

estimated from the data, pertains to only the statistical significance of one of

the five estimated e ects under consideration. But, as will be demonstrated

below, it will also be possible, to obtain joint probabilities that some sets of

e ects are jointly significant that will be illustrated in the next paragraph.

This other set of interesting joint -values may be computed by summing the

columns of the matrix R. Let denote an array with ele-

ments that are sums of the columns ofR, and let ( ) denote the sum of column

. Then, the value of each ( ) is an integer in the set { | = 0 1 2 3 4 5} for
= 1 2 · · · . For example, if for some column , ( ) = 0, then all the num-

bers in column of R would be 0, indicating that for every row the inequality

(4 6) was not satisfied for column = . But, if ( ) = 5 for some column = ,

then the inequality in (4 6) would be satisfied for all rows = 1 2 3 4 5 Given

the array , it would be possible to estimate a distribution that

would provide insights into the joint statistical significance of the 5 estimated

e ects in the column E in (3 26) in section 3. For any fixed = 0 1 2 3 4 5, let

( ) be the number of elements of the array has the value

. Let ( ) = ( ) denote the estimated probability for the values

= 0 1 2 3 4 5 By viewing these joint probabilities, an investigator would be

in a position to judge whether all the five estimated e ects were jointly sta-

tistically significant. If, for example, this distribution were skewed to the left

so that the probabilities ( ) for = 0 1 were larger than the probabili-

ties ( ) for = 4 5, then an investigator could make a judgement as to

whether all estimates of the five e ects were jointly statistically significant.

Some investigators may wish to carry out a permutation test, but in this

chapter the focus of attention will be focused on another class of tests of sta-

tistical significance based on Monte Carlo simulation methods that will be for-

mulated in the next section. However, in practice, an investigator may want to

carry out statistical test of significance belonging to di erent classes of tests to

get some idea as to whether estimated e ects are statistically significant for at

least two classes of tests of statistical significance

There is also another approach to judging whether estimates of the five

e ects are statistically significant by using Monte Carlo simulation methods.

Suppose, for example, that there are ( ) non-negative simulated realizations

of the random variable W ( ) for every genotype ( ) G2 . The rationale

V. Testing the Statistical Significance of Estimated Effects 

 Monte Carlo Simulation MethodsBased on 
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under lying the choice of non-negative random variable is that most measures

with respect to some quantitative trait are non-negative numbers. One of the

simplest approaches to simulation realizations of non-negative random variables

is to use the absolute or folded normal distribution. Suppose a random ( )

has a normal distribution with an expectation ( ) and variance 2 ( )

for every genotype ( ) G2. Let denote a standard normal random

variable with expectation 0 and variance 1 Then, as is well known, if is

a simulated realization from a standard normal distribution, then ( ) =

( ) + ( ) is a simulated realization of the random variable ( ) for

every genotype ( ) G2. Given a simulated realization of a random variable

( ), ( ) =| ( ) | is a simulated realization of a random variable

( ) with an absolute normal distribution for every genotype ( ) G2. A
more detailed description of the folded normal distribution will be given in a

appendix.

The next step in setting up a Monte Carlo simulation experiment is to

formulate a procedure for testing a null hypothesis. Suppose, for example,

that the ( ) observations of the random variableW ( ) for every genotype

( ) G2 are a random sample from a folded normal distribution. Moreover,

suppose there are real data consisting of a sample of size ( ) for each geno-

type ( ) G2. To simplify the notation, from now on the symbols ( ) and
2 ( ) will denote estimates of the corresponding expectation and variance for

each genotype ( ) G2 based on the data. Given the data, an investigator
could also estimate the genotypic distribution { ( ) | ( ) G2} as well as
the 5 × 1 vector E of e ects. In this situation, an investigator may wish to

entertain the null hypothesis 0 of homogeneity and suppose that there are

positive numbers and 2 such that

( ) = and 2 ( ) = 2 (5.1)

for all genotypes ( ) G2, the subscript stands for unconditional.

At this point, to simulate samples from a normal distribution with expec-

tation and variance 2 , an investigator may decide to choose and 2

as

=
P

( ) G2
( ) ( ) (5.2)

and
2 =

P
( ) G2

( ) 2 ( ) (5.3)

as the parameters in the normal distribution to be used to simulate ( ) of

realizations of random variable the ( ) for every genotype ( ) G2. Given
this simulated sample of realizations of random variables with a homogeneous

distribution, the simulated ( ) realizations of the phenotypic random vari-

ables ( ) would be computed by using the formula ( ) =| ( ) | for
every genotype ( ) G2.
This choice of 2 , for example, would result in a simulated samples with

a variance that would be close to that in the original data so that unrealistic

outliers would occur with small probabilities in the simulated data. The choice

of , however, is less sensitive than that for 2 . For it is interesting to note

that if the hypothesis 0 were true, then all e ects in the vector E are 0 for

any choice of . For example, consider the first order e ect

(1) = (1) (5.4)

see (3 14) in section 3. By inspecting (3 13) in section 3, it can be seen that if

0 is true, then (1) = so that (1) = 0.

Similar arguments may be used to see that if 0 is true, then all the ef-

fects in the vector E would be 0. It is interesting to note that for any choice
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of in a simulation procedure, all the e ects in the vector E would be 0.

From the point of view of simulating ( ) realizations of the random vari-

ables ( ) =| ( ) | for every genotype ( ) G2, it can be seen that
if the expectations of the random variables ( ) are some constant , then

the expectations of the random variables ( ) would also be some constant.

Hence, the estimated e ects based on the means of folded normal distribution

would also be constant. If a reader is interested in further details regarding the

folded normal distribution, it is suggested that the appendix be consulted.

To carry out a test of statistical significance using the Monte Carlo simulation

procedure just outlined, an investigator would start with the array DATA in

(2 2) Then the first step in a Monte Carlo simulation procedure would be that

of simulating a quasi-data set, QUASIDATA, consisting of realizations

of a random W with a normal distribution with expectation and variance
2 as suggested as indicated above. Let SIMW (1 1) denote the first (1 1)

elements of the array , QUASIDATA and define the arrays SIMW (0 0)

and SIMW (1 0) similarly for the numbers of individuals (0 0) and (1 0)

of genotypes (0 0) and (1 0), respectively. Then, the simulated quasi array of

data for the three genotypes may be represented in the form

QUASIDATA = SIMW (1 1) SIMW (0 0) SIMW (1 0) (5.5)

just as the real data in (4 2).

Given the simulated data set in (5 5), the next step in the Monte Carlo

simulation procedure would be that of computing estimates of the five e ects

in the 5 × 1 vector E. By repeating this step just outlined 1 times, a

version of the 5× matrix R in (4 5) could be computed. Then, by using the

procedure outlined in section 4, a test statistical significance for any estimated

e ect the vector E could could be accomplished. Similarly, a test for the joint

statistical significance of the five estimated e ects could be carried out, by using

the procedure outlined in section 4 by summing the rows of the matrix R. In

such an experiment, an investigator would be testing the null hypothesis that

all the five e ects in the vector E are zero.

To simplify the notation, from now on the symbols ( ) and 2 ( ) will

denote estimates of the corresponding expectation and variance for each geno-

type ( ) G2. The rational for considering simulated non-negative random
variable is that the majority of measurements for some quantitative traits are

usually non-negative numbers as stated above. Given this information, an inves-

tigator could estimate the genotypic distribution { ( ) | ( ) G2} as well
as the 5 × 1 vector E of e ects. In setting up this Monte Carlo experiments

, an investigator may wish to entertain the null hypothesis 0 that there are

positive numbers and 2 such that

( ) = and 2 ( ) = 2 (5.6)

for all genotypes ( ) G2 see (5 2) and (5 3).
This choice of 2, for example, would result in a simulated samples with

a variance that would be close to that in the original data so that unrealistic

outliers would occur with small probabilities in the simulated data. The choice

of , however, is less sensitive than that for 2. For it is interesting to note that

if the hypothesis 0 were true, then all e ects in the vector E are 0 for any

choice of . For example, consider the first order e ect

(1) = (1) (5.7)

see (14) in section 3. By inspecting (3 16) in section 3, it can be seen that if

0 is true, then (1) = so that (1) = 0. Similar arguments may be used

to see that if 0 is true, then all the e ects in the vector E would be 0. It is
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interesting to note that for any choice of in a simulation procedure, all the

e ects in the vector E would be 0.

To carry out a test of statistical significance using the Monte Carlo simulation

procedure just outlined, an investigator would start with the array DATA in

(4 2) Then the first step in a Monte Carlo simulation procedure would be that

of simulation a quai-data set, QUASIDATA, consisting of ( ) realizations

of random variables X ( ) for every genotype ( ) G2 with a normal distri-
bution with expectation and variance 2 that would be transformed to ( )

folded normal random variables ( ) for every ( ) G2 . Let SIMW (1 1)

denote the first (1 1) elements of the array , QUASIDATA, and define the

arrays SIMW (0 0) and SIMW (1 0) similarly for the numbers of individ-

uals (0 0) and (1 0) of genotypes (0 0) and (1 0), respectively. Then, the

simulated quasi array of data for the three genotypes may be represented in the

form

QUASIDATA = SIMW (1 1) SIMW (0 0) SIMW (1 0) (5.8)

just as the real data in (4 2).

Given the simulated data set in (5 8), the next step in the Monte Carlo

simulation procedure would be that of computing estimates of the five e ects

in the 5 × 1 vector E. By continuing this step just outlined 1 times, a

version of the 5 × matrix R in (4 5) could be computed. Then, by using

the procedure outlined in section 4, a test of statistical significance for any

estimated e ect the vector E could could be accomplished. Similarly, a test

for the joint statistical significance of the five estimated e ects could be carried

out, by summing the rows of the matrix R and counting the numbers of each

of the values 0 1 2 3 4 5. In any computer experiment of the type under

consideration, an investigator would be testing the null hypothesis that all the

five e ects in the vector E are 0.

One of the principal goals of the type of Monte Carlo simulation under

consideration is that of computing p-values on which a judgment of statistical

significance for each of the five e ects that were estimated form the data can be

made. The 5× matrix R plays a fundamental role in estimating the p-values.

Consider, for example, an element by element representation of this matrix of

the form

R = [ ] (5.9)

and let 2 ( ) denote squared e ect estimated form the data in the vector E

for = 1 2 3 4 5. Similarly, let 2 ( ) be an estimate of the squared e ect

of replication of the Monte Carlo simulation experiment for = 1 2 · · · .

Then, for each = 1 2 · ·· 5 and = 1 2 · · · , may be interpreted as a

Bernoulli indicator such that = 1 if the event£
2 ( ) 2 ( )

¤
(5.10)

occurs and = 0 if event defined in (5 10) does not occur.

Given a null hypothesis 0 let

[ | 0] = 1 [ = 1 | 0]+0 [ = 0 | 0] = [ = 1 | 0] = ( | 0)

(5.11)

denote the conditional probability that the event in (5 10) occurs, given 0 for

= 1 2 ··· The technical details of the random number generator used in the

Monte Carlo simulation experiments reported in following sections will not be

discussed here. But, because the randomness in the properties of the sequences

of uniform random numbers taking values in the interval [0 1), the assumption

that the events denoted in (5 10) are independent for all = 1 2 · · · so

that for each = 1 2 · · · 5, it is highly plausible to assume that the sequence
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of Bernoulli indicator functions are independently distributed with a common

expectation ( | 0) defined in (5 11) Therefore, by invoking the law of large

numbers, it follows that

lim
1 X

1

= ( | 0) (5.12)

for every = 1 2 · · · 5 If the strong law of large numbers is invoked, then

the limit in (5 12) holds with probability one. In general the larger the choice

of the number the greater is the reliability of the estimate in (5 14) In the

experiments that will be reported in subsequent sections of this chapter, was

chosen as 10,000. With this choice of the computing run time of each of the

experiments reported in the sections to follow was in the range of 2 to 3 minutes,

which would be acceptable if a quantitative trait under consideration involved

repeating an experiments for 10 to 15 loci which were thought to be involved in

the expression of the trait.

At this point in the development of ideas making up the procedure for tests

of significance under consideration, it will be helpful to express the ideas in the

last paragraph of section 4 more formally. Let

=

5X
=1

(5.13)

denote the sum of the indicators in column or the matrix R for = 1 2 · · · .

Then the array defined in the last paragraph of section 4 has

the form

= ( 1 2 · · · ) . (5.14)

Let

[ | = ] (5.15)

for = 0 1 2 3 4 5. Then

( ) =
X
[ | = ]

(5.16)

for all and
5X
=0

( ) = . (5.17)

Then in terms of the formal system developed in this section

[ | 0] =
( )

(5.19)

for all is the conditional distribution for judging the joint statistically sig-

nificance of the 5 e ects under consideration. Observe that the conditional

distribution defined in (5 19) has the property

5X
=0

[ | 0] = 1 (5.21)

as it should. In any simulation experiment, it is useful to check that this equation

holds as part of tests for the correctness of the software. Equation (5 19) is

justified, because sets in the collection of sets in (5 15) are a disjoint partition

of the set in (5 14).
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There is a vast literature on Monte Carlo simulation procedures that have

been used in many fields of science. For example, the paper by Mode and

Gallop (2008) [1], as it turned out, provided the authors into a window on an

extensive literature on Monte Carlo simulation procedures as used in many fields

of science, see the internet link

: 8 ? = 2 20 8 6419 877

74198186 9 1 0 53 88 0 5587 0 302 72

Furthermore, the book cited in [2] and edited by the author, also contains an

extensive collection of papers on the application of Monte Carlo simulation

methods in various fields of biology and related sciences. In this section, the

random number generator with a very long period set forth in Mode and Gallop

(2008) [1] in section on Monte Carlo simulation methods will be used as well as

in all sections to follow, containing accounts of Monte Carlo simulation experi-

ments used to test various version of the null hypothesis. There is a caveat that

a reader should be aware of when reading the experimental results reported in

this and the following sections is that the random number generator used in

all experiments reported in this paper was designed for computers based on 32

bit words. The computers used to conduct Monte Carlo simulation experiments

reported in this paper, however, were based on 64 bit words. Algorithms for

random number generators for 64 bit words may be found in the papers cited

in Mode and Gallop (2008) [1], but to implement these algorithms for use on

computers based on 64 bit words would require an extensive period of develop-

ment, using array manipulating programming languages such as APL. It seems

plausible, however, that if the Monte Carlo simulation experiments reported

in this paper were based on a random number generator designed for a 64 bit

word computers rather than the 32 bit word generator, that the results and

conclusions would not be significantly di erent.

The first step in setting up a Monte Carlo experiment to test some null

hypothesis 0 is to simulate the data that will used to estimate all parameters

and e ects as functions of parameters. In the best of all worlds, data of the type

under consideration would be posted on the internet so it could be downloaded

by investigators and used to present concrete examples of the application of new

statistical procedures. But, unfortunately, getting permission to use such data

is often impossible, unless you are a member of the group that has assembled the

data. The parameter values used to simulate the data used in the experiments

discussed in the section are shown in Table 6.1 below.

Table 6.1 Parameter Values Used to Simulate Data

(1 1) 30

(1 1) 0 25 (1 1)

(0 0) 40

(0 0) 0 25 (0 0)

(1 0) 60

(1 0) 0 25 (1 0)

.

By way of interpreting the chosen values in Table 6.1, on some scale of

hypothetical units used to measure the expression of some quantitative trait

under consideration, the expected values for the three genotypes (1 1), (0 0) and

(1 0) were chosen as (1 1) = 30 (0 0) = 40 and (1 0) = 60. The rational

used in choosing these numbers was to assign di erent values to each of these
expected values so that the estimated genetic variance would be positive. The

rational for not choosing (1 0) = 50 but as (1 0) = 60 was to consider the

VI. Monte Carlo Simulation Experiments on Simulating 

Data and Testing the Null Hypotheses

Direct Estimation of Effects and Tests of their Statistical Significance for the Case of One Autosomal 
Locus with Two Alleles

Ref

1.
M

od
e, C

. J
. an

d
 G

a
llo

p
, R

. J
. (20

08) A
 R

ev
iew

 on
 M

on
te C

arlo S
im

u
lation

M
eth

od
s 

as T
h
ey

 A
p
p
ly

 to M
u
tation

 an
d
 S

election
 as F

orm
u
lated

 in
W

rig
h
t-

F
ish

er M
o
d
els 

of E
v
olu

tion
ary

 G
en

etics. M
ath

em
atical B

ioscien
ces 211: 205-225.



 
 

 
 

 
 
 
 
 
 
 
 
 
 

        

17

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
 I
ss
ue

  
  
  
er

sio
n 

I
V

IV
Y
ea

r
20

15

© 2015    Global Journals Inc.  (US)

  
 F
)

)

case there was a heterotic e ect for heterozygotes of genotype (1 0), i.e., it was

assumed that there was some interaction of alleles 1 and 0 in individuals, whose

genotype was the heterozygote. The reason for choosing the standard deviations

(1 1), (0 0) and (1 0) as a common fraction 0 25 of the expectation for

each genotype was that the estimates of the environmental valance for each

genotype seemed plausible as observed in preliminary experiments. The sample

sizes chosen for the genotypes were (1 1) = 100, (0 0) = 200 and (1 0) =

450. These sample sizes resulted in the allele frequencies (1) = 0 433 and

(0) = 0 567. The estimated heritability based on the simulated data for the

three genotypes was = 0 4280.

Two null hypotheses were considered in the illustrative examples on testing

the statistical significance of the squared e ects estimated from the simulated

data. Presented in table 6.2 are the assigned parameter values used in testing

the two null hypotheses under consideration.

Table 6.2 Parameter Valued Used in Testing Two Null Hypotheses

Based on Monte Carlo Simulation Methods

0 (1) 0 (2)

(1 1) 0

(1 1)

(0 0) 0

(0 0)

(1 0) 0

(1 0)

In table 6.2, the subscript stands for unconditional expectations and stan-

dard deviations as shown in (5 1). Moreover, the estimates of these parameters

were computed from the simulated data, using formulas (5 2) and (5 3). The

estimate was computed using the formula

=
¡

2
¢ 1
2 , (6.1)

see (5 2). Table 6.3 contains the symbolic form of the squares of the estimated

e ects, the estimates of these parameters based on the simulated data and the -

values computed in tests of statistical significance of the null hypotheses 0 (1)

and 0 (2) using Monte Carlo simulation methods under consideration.

Table 6.3. Statistical Test of Significance of the Estimates of the

Squared E ects Based on Monte Carlo Methods

0 (1) 0 (2)
2 (1) 0 03185 0 6124 0 3948
2 (0) 0 00557 0 7796 0 64411
2 (1 1) 376 7118 0 0
2 (0 0) 92 48211 0 0
2 (1 0) 106 8706 0 0

In the simulation experiment designed to test the null hypothesis 0 (1), the

squares of the estimated e ects were computed with 10,000 Monte Carlo repli-

cations, using the parameter assignments listed in the second column of table

6.2. Similarly, to test the null hypothesis 0 (2) 10,000 Monte Carlo replications

of the squared e ects were again computed. The -values listed in columns 3

and 4 of table 6.3 were computed using the 10,000 Monte Carlo replication as

set forth in equation (5 12) with = 10 000 for each null hypothesis being

tested. From rows 1 and 2 of table 6.2, it can be seen that if the null hypothesis
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Locus with Two Alleles
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0 (1) is true, then
2 (1) = 0 and 2 (0) = 0. The estimates of these two

squared e ects based on the simulated data are 0 03185 and 0 00557, with the

corresponding -values 0 6124 and 0 7796, respectively, under null hypothesis

0 (1), and are not su ciently small to reject the null hypothesis being tested.

An investigator may therefore conclude that the additive e ects of alleles 1 and

0 are not statistically di erent from 0. As can be seen from the second column of

table 6.3, the estimates of the squared e ects for interactions e ects 2 (1 1),
2 (0 0) and 2 (1 0) are 376 7118, 92 48211 and 106 8706, respectively, with

corresponding -values 0 0 0. The number 0 is the smallest possible -value;

consequently, the squared e ects for allelic interaction are highly significantly

di erent form zero under the null hypothesis 0 (1). It is interesting to note if

the null hypothesis 0 (2) were tested using the same methods, the statistical

conclusions just stated for the five squared e ects under consideration would

not change even though the -values for the additive e ects di er from those

that were computed under the null hypothesis 0 (1).

The last set of -values that will be presented in this section are those de-

scribed in (5 13) through (5 21), which were estimated by summing the columns

5 × 10 000 matrix R of realized Bernoulli indicator functions as described in

section 5. Presented in table 6.4 are the are estimates of these -values under

null hypotheses 0 (1) and 0 (2)

Table 6.4 Estimates of the Joint p-Values Under Each Null

Hypothesis

0 1 2 3 4 5

0 (1) 0 2204 0 1672 0 6124 0 0 0

0 (2) 0 3559 0 2403 0 3948 0 0 0

Observe that for each row in this table the listed -values are a distribution

satisfying equation (5 21). For example, for null hypothesis 0 (1)

0 2204 + 0 1672 + 0 6124 = 1. (6.2)

An equation of the same form would be also be valid for the row in table 6.4

corresponding to the null hypothesis 0 (2). By way of interpreting this table,

with an estimated probability 0 2204, the sum of a column of the indicator

matrix R would be zero under the null hypothesis 0 (1) Similarly, under

this null hypotheses, 0 6124 was the estimated probability that the sum of a

column of indicators was 2. Observe that, because this probability is largest

in the distribution under the null hypothesis 0 (1), the number 2 is the mode

of this distribution of joint -values. It is also interesting to note that the

estimated probability that a column sum of indicators in the matrix R had

the value 3 4 or 5 was 0 under both null hypotheses under consideration. It is

interesting to also note that the number 2 was also the mode of the distribution

of joint probabilities under null hypothesis 0 (2). Moreover, under both null

hypotheses, the events that two columns of the indicator matrix R were both

occurred more often and has a greater influence on the -values for judging the

statistical significance of each squared e ect that was estimated by summing

the rows of the indicator matrix R.

Software to test the statistical significance of the estimated heritability =

0 4280 was also developed so that -values of testing null hypotheses of the form

0: = 0 could be tested in Monte Carlo simulation experiments. For all the

null hypotheses tests described in this section, the -value was zero. Hence, the

estimate of heritability was, in a statistical sense, highly significantly di erent

from zero.
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In this section two sets of simulated data, for experiments A and B, will be

used in testing null hypotheses. Presented in Table 7.1 are the chosen parameter

values for simulation data used in experiments A and B reported in this section.

Table 7.1 Parameter Values Used for Simulation Data in

Experiments A and B

(1 1) 30 30

(1 1) 0 25 (1 1) (1 1)

(0 0) 40 40

(0 0) 0 25 (0 0) (0 0)

(1 0) 60 60

(1 0) 0 25 (1 0) (1 0)

(1 1) 10 100

(0 0) 1 000 200

(1 0) 15 450

From this table it can see seen that, with the exception of the sample sizes

(1 1) (0 0) and (1 0), the values of the parameters chosen for experiment

A in the second column of the table 7.1 are the same as those in Table 6.1. In

experiment A, it was assumed allele 1 was a rare mutation that arose in some

ancestral population from which the sample evolved. The number of individuals

of genotype (1 1) in the sample was chosen as (1 1) = 10, and the sample sizes

for genotypes (0 0) and (1 0) were chosen as (0 0) = 1 000 and (1 0) = 15.

The objective of experiment A was to provide some insights concerning what

impact the low frequency of allele 1 in the sample would have on the estimates

and test of statistical significance reported in section 6. With the exceptions of

the standard deviations, which were chosen as ( ) = ( ) for all genotypes

( ) G2, the sample sizes and expectations of a quantitative trait under
consideration were the same as those in table 6.1. The objective of experiment

B was to provide some insights into the e ects of higher environmental variances

would have on the estimates of parameters when compared with the experiments

and tests of statistical significance reported in section 6.

In experiment A, the estimated of the frequencies of alleles 1 and 0 were

about (1) = 0 01 and (0) = 0 9. The estimate of heritability in experiment

was = 0 0902. In experiment , the estimates of the frequencies of alleles

1 and 0 were (1) = 0 4333 and (0) = 0 5667, and the estimate of heritability

was = 0 0932

Contained in table 7.2 are the parameter values used to test the null hy-

potheses in experiments A and B.

Table 7.2 Parameter Values for Testing Null Hypotheses

(1 1) ( ) ( )

(1 1) ( ) ( )

(0 0) ( ) ( )

(0 0) ( ) ( )

(1 0) ( ) ( )

(1 0) ( ) ( )

In table 7.2 the same subscripts are used of the designated parameter values used

to test to define the null distributions for testing null hypotheses in experiments

A and B. The values of these parameters were chosen by using the formulas in

VII. Two Monte Carlo Simulation Experiments to Simulate 
Data and Test Null Hypotheses
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equations (5 2) and (5 3), but it is clear from the assigned parameter values in

table 7.1 that the estimated values of the parameters in table 2 would di er in

experiments A and B.

Table 7.3 contains estimates of the squares of e ects and -values estimated

by using 10 000 Monte Carlo replications in both experiments A and B.

Table 7.3 Estimated Squared E ects and P-Values for Experiments

A and B

2 (1) 101 5387 0 54 4873 0
2 (0) 99 4566 0 1525 56 0312 0
2 (1 1) 105 7899 0 1771 4965 0
2 (0 0) 403 1152 0 1043 0865 0
2 (1 0) 409 493 0 7 1615 0 0111

From table 7.3, the second column contains the estimates of the squared

e ect using the simulated data. With the exception of the estimate of additive

e ect 2 (0), which was 99 4566, the estimated squares of the remaining e ects

have zero -values, are highly statistically di erent from zero. By way of con-

trast, in table 6.3 all the squared additive e ects, are not statistically di erent

under either null hypotheses 0 (1) or 0 (2). From this example, it can be seen

that the small numbers of genotypes (1 1) and (1 0) had a significant e ect on

the reported -values in column 3 of the table. In column 5 of the table where

the -values for experiment are displayed, it can be seen from the estimated

-values that, with the exception that for estimate of the squared e ect 2 (1 0),

the estimates of the four other squared e ect are highly statistically di erent

from zero. It is also interesting to note from an estimated -value of 0 0111 it

may be concluded at about the one percent level, the estimate 7 1615 of 2 (1 0)

statistically di erent from zero. The results of this experiments suggest that,

even with a low estimate of heritability resulting from higher assigned values of

the environmental variances, there may be interesting cases using real data that

would lead to squared e ects that were statistically di erent from zero.

The next set of -values to be presented in this section are two joint distri-

butions for each of the null hypotheses under consideration as shown in table

7.4

Table 7.4 Estimates of the Joint p-Values Under Each Null

Hypothesis

0 1 2 3 4 5

0 ( ) 0 8475 0 1525 0 0 0 0

0 ( ) 0 9889 0 0111 0 0 0 0

From table 7.4, it can be seen that for both hypotheses the mode of the

distribution was 0. It is also interesting to note that for hypothesis 0 ( ) the

-value at the number 1 is the same as the -value in table 7.3 corresponding

to the estimate of the parameter 2 (0). Similarly, the -value for hypothesis

0 ( ) at the number 1 is the same as the -value corresponding to the estimate

of the parameter 2 (1 0) in table 7.3. From these observations, it follows that

for both null hypotheses there were no columns of the 5×10 000 matrix R with

ones for the values 2,3,4,5. It should also be mentioned that the estimates of

heritability for both hypotheses had zero -values even though both estimates

were small. Recall that = 0 0902 and = 0 0932.

By using various statistical and other methods, researchers have identified

a number regions in the human genome that are associated with diseases such
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as Altzheimer’s. A recent paper on such regions has been reported in Raj et al.

(2012) [5], in which, among other things, eleven regions of the human genome,

associated with susceptibility to Altzheimer’s disease, have been identified. Ev-

idence is also reported on the existence of a protein net work involving four of

these of these regions that is sustained in the human genome by natural selec-

tion. The number of individuals in this sample are about 5,000 that the

of each individual in the sample has been sequenced. In a related paper Rossin

et al. (2011) [6] report that proteins coded by identified regions of the human

genome associated with immune-mediated diseases, physically interact and sug-

gest some underlying basic biology. Altzheimer’s disease may also be viewed

as a quantitative trait whenever its expression is measured on some numerical

scale. Moreover, if for each of the 11 genomic regions may be identified in two

alternative forms, then from the point of view of quantitative genetics these 11

regions may be referred to as loci with two alleles at each locus.

When an investigator considers 11 loci and two alleles per locus, the number

of e ects that may be estimated directly will become very large even if only three

genotypes per locus may be identified as discussed in the published in chapters

3 and 4. For example for the case of four loci for which only three genotypes

may be identified per locus, the number of identifiable genotypes with respect

to 11 loci would be

311 = 1 771 5× 105 (8.1)

However, if only four loci were under consideration, then the number of identi-

fiable genotypes would be

34 = 81 . (8.2)

As expected this is a much smaller number than that in (8 1), but, nevertheless,

when an array with 81 cells is under consideration, a problem that may arise is

whether the number of individuals in each cell are large enough to draw statis-

tically reliable statistical inferences. Such problems suggest that an investigator

should explore the data to estimate the genotypic frequency of each genotypes

as well the frequencies of each allele at the four loci under consideration. Sim-

ilar questions will arise whenever an investigator wishes to explore the data to

determine whether there is a su cient number of observations in each cell to

draw reliable statistical inferences, when , the number of loci under consider-

ation, is such that 4. A step that should be included in any exploration

of the data would be that of determining if all loci under consideration were

autosomal, for if one or more sex linked loci are included in the sample, then

such loci would need to treated separately.

When all the loci are autosomal, one approach to determine the number of

loci that are such that each cell in a multidimensional would have a su ciently

large number of observations to draw reliable statistical inferences is to investi-

gate each locus under consideration. In this investigation one of the goals would

be to determine, among other things, whether the frequency of the two alleles

at each locus are su ciently large enough to be included in the construction

of arrays of data with respect to two or more loci that will contain a su cient

number of observations in each cell to draw reliable statistical inferences. For

the case of the data on Altzheimer’s disease mentioned above, an investigator

would need to do an exploratory experiment involving 11 loci with two alleles

at each locus. But, even in a sample of 5,000 individuals, the frequency of some

alleles at one locus or two or more loci may not be su ciently large to construct

multidimensional arrays that involve low frequency alleles.

These observations suggest that it would be expedient for the above case of

a sample of 5,000 individuals to estimate the frequency at each of the 11 loci to

obtain information as to whether each allele at each locus has a su ciently high

frequency to be included in multidimensional arrays with respect to two or more

loci. But, there are other criteria that could also be used to judge as to what loci

would be included in multidimensional arrays. For example, if an estimate of
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heritability at some locus is low, then including this locus in a multidimensional

array may not be fruitful. An investigator could also use estimates of the five

e ects that may be estimated when one autosomal locus is under consideration

and carry out statistical test significance on the squares of the e ects to judge

which ones are statistically significant for each of the 11 loci. If there were

loci for which none of squares of e ects were not statistically significant, then

an investigator may not want to include this locus in a multidimensional array

involving two or more loci.

With regard to further developments of the software, it would be possible

to create a front end to the APL programs to do the analyses reported in this

paper so that the existing APL software could be used to carry out the type

of exploratory experiment described above using any computer platform. But,

before data consisting on multiple arrays involving two or more autosomal loci

can be analyzed, an investigator would need to find either existing software or

write software to accommodate multidimensional arrays of data on two or more

autosomal loci. If APL were used to write this software, then the existing soft-

ware for the case of two alleles at one autosomal locus could become part of the

extended software when the additive e ects and intra-locus e ects are estimated

at each of the loci under consideration. But, to estimate e ects involving two

or more loci, new programs would need to be written. It seems very plausible

that an array manipulating programming language such as APL would be help-

ful writing succinct code designed to process multidimensional data on multiple

loci. If an investigator wanted to consider one or more quantitative traits, then

a modification of the ideas presented in chapter4 to accommodate the case in

which only three genotypes per locus can be recognized, then the APL software

used in this chapter for the case of one locus would need to be extended to

handle two or more traits with respect to each locus. For those cases in which

two or more loci and two or more traits are under consideration, an array ma-

nipulating programming such as APL would be very helpful in writing code to

do the required matrix operation described in chapter 4. Just as the ordering

of the three genotypes considered in this chapter which played a basic role in

writing the software, some expeditious ordering of the genotypes with respect

to two or more loci will also be a crucial step in developing computer code to

accommodate cases of multiple loci with three recognizable genotypes at each

locus.

As an aid to developing a deeper understanding as to the properties of the

absolute normal distribution that was used in Monte Carlo simulation experi-

ments described in previous sections, in this appendix formulas for the expec-

tation and variance of this distribution will be derived. In the literature on

probability and statistics, the absolute normal distribution is called the folded

normal and for the case = 0 and = 1 this distribution is known as the

half normal. The formulas the will be derived below may be found on the in-

ternet, and if a reader is interested in more details, it is suggested the web site:

en.wikipedia.org/wiki/Folded_normal_distribution be consulted, where some

references are also listed. Some proofs of the formulas derived below may also

be found on the internet, but many of these proof lack transparency. In what

follows, attempts will be made to included enough details with the hope that

the derivation of the formulas will be transparent.

The first distribution to be described is the half normal. Let denote a

normal random variable with expectation 0 and variance 1 In symbols

(0 1). The of is

( ) =
1

2
exp

1

2
2

¸
(A.1)

Appendix

Direct Estimation of Effects and Tests of their Statistical Significance for the Case of One Autosomal 
Locus with Two Alleles

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

        

23

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
 I
ss
ue

  
  
  
er

sio
n 

I
V

IV
Y
ea

r
20

15

© 2015    Global Journals Inc.  (US)

  
 F
)

)

for ( ) = R, the set of real numbers. The distribution function of
is, therefore,

( ) =
1

2

Z
exp

1

2
2

¸
(A.2)

for R. Let R and [0 ). Then, by definition, a random variable

= + has a normal distribution with expectation

[ ] = + [ ] = (A.3)

and variance

[ ] =
h
( )

2
i
= 2. (A.4)

The random variable =| |, the absolute value of , maps R into

[0 ),and has the distribution function

( ) = [ ] = [ ] =
1

2

Z
exp[

1

2
2]

=
2

2

Z
0

exp[
1

2
2] =

r
2
Z
0

exp[
1

2
2] (A.5)

Therefore, the of

( ) =
( )

=

r
2 1

2
2

(A.6)

for [0 ). By definition, the expectation of is

[ ] =

r
2
Z
0

1
2

2

. (A.7)

But, Z
0

1
2

2

= lim
1
2

2 ³
1
2
0
´
= 1 (A.8)

so that

[ ] =

r
2
. (A.9)

From the definition of , it follows that 2 = 2 so that£
2
¤
=

£
2
¤
= 1 (A.10)

because (0 1) As is well known, the variance of may be expressed in

the form

[ ] =
£

2
¤

( [ ])2 (A.11)

so that

[ ] = 1
2

1. (A.12)

The numerical value of this expression is

1
2
= 0 363 38 , (A.13)
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which will be helpful in the numerical evaluation of some formulas to follow.

When formulating a distribution so that it yields non-negative realizations of

random variables in Monte Carlo simulation experiments, one approach would

be to consider the random variable defined by

= + = + | | . (A.14)

From the above results, it can be seen that

[ ] = + [ ] = +

r
2
. (A.15)

Furthermore, the variance of has the formula

[ ] =
h
( [ ])

2
i

=

Ã
+

r
2
!2

= 2

Ã r
2
!2

= 2 [ ] = 2

µ
1

2
¶

2 . (A.16)

An advantage of this formulation is that the theoretical expectation and variance

are easy to evaluate numerically. Thus, if the random variable defined in 14

were used in testing a null hypothesis, as described in previous sections, the

formulas for the expectation and variance in 15 and 16 could be used to

estimate the expectation and variance of the random variable .

From now on attention will be devoted to the folded normal distribution. In

the Monte Carlo simulation experiments described in the forgoing sections of

this paper is a primary task was to compute realizations of a phenotypic random

variable defined by

=| | , (A.17)

where = +
¡

2
¢
Some authors call the distribution of the ran-

dom variable the folded normal distribution. As a first step in finding the

expectation of the random variable , is to recall the definition of the function

| | and observe that | |= if 0 and | |= if 0. Let denote

the set

= [ R | + 0] . (A.18)

Equivalently,

= [ R | + 0] = R |
¸
. (A.19)

Similarly, let denote the set

= [ R | + 0] = R |
¸
. (A.20)

Then, then the expectation of the random variable may be represented in

the form

[ ] = |
2

¸
|

2

¸
. (A.21)
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 F
)

)

Observe that

|
¸

=

Z
( + )

1

2

1
2

2

=

Z
1

2

1
2

2

+

Z
1

2

1
2

2

(A.22)

It can be seen that the coe cient of in 22

Z
1

2

1
2

2

= 1

µ ¶
. (A.23)

Next, observe that

Z
1

2

1
2

2

=

µ
1

2

1
2

2

2

¶
=

1

2

1
2

2

2 . (A.24)

Therefore

|
¸
=

³
1

³ ´´
+

1

2

1
2

2

2 . (A.25)

Next consider

|
¸
=

Z
1

2

1
2

2

+

Z
1

2

1
2

2

. (A.26)

By definition Z
1

2

1
2

2

=
³ ´

, (A.27)

and Z
1

2

1
2

2

=
1

2

2

2 2 . (A.28)

By applying 21 and doing the algebra, it follows that

= [ ] = (
³
1 2 2

³ ´´
+

r
2 2

2 2 . (A.29)

Because 2 = 2, it follows that£
2
¤
=

£
2
¤
= 2 + 2. (A.30)

The validity of this equation follows form the equation

[ 2] = [ ] + ( [ ])
2
. (A.31)

Therefore,

[ ] = 2 + 2 ( )
2
. (A.32)
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From this equation, it can be seen that if 0 and large, then for every

fixed 0 ³ ´
0 (A.33)

and
2

2 2 0 . (A.34)

Therefore,

= [ ] , (A.35)

and

[ ] 2 (A.36)

is valid. These results are of interest, but under the condition listed above, the

mean and variance of the folded normal distribution would be near that of the

original normal distribution.

In all Monte Carlo simulation experiments reported in the previous sections

on testing null hypotheses, was chosen as = , where 0 1. In such

cases ³ ´
=

µ
1
¶

(A.37)

If is small, then
³

1
´

0. For example, suppose = 1 4. Then

( 4) (A.38)

would be small, and if an algorithm were available to evaluated ( ) for any

R, then the number in 38 could be computed. Next observe that if =

then

exp
2

2 2 2

¸
= exp

1

2 2

¸
. (A.39)

In particular, if = 1 4, then

exp [ 8] = 3 354 6× 10 4 (A.40)

It seems plausible, therefore, that for values of such that 1 2 the approx-

imations in 35 and 36 would be near the actual values of and [ ].

There is another approach to approximating and [ ] by using Monte

Carlo methods and the law of large numbers. For example, let 1 2 · · ·
be independent realizations of the random variable . Then

b = lim
1 X

=1

= (A.41)

with probability one. Similarly,

b £ 2
¤
= lim

1 X
=1

2 =
£

2
¤

(A.42)

with probability one. Therefore, if is large, 10 000, then

b (A.43)

and b £ 2
¤ £

2
¤
. (A.44)

Hence, d [ ] = b £ 2
¤

(b )
2

[ ] . (A.45)
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)

)

When these approximations are compared with the numerical value of in

29 and that of [ ] in 31, then an investigator may judge how well the

approximations in 43 and 45 are acceptable.

Lastly observe that there is another check on the correctness of formulas

29 and 52 For if = 0 and = 1, then from 29 and 32, it follows that

[ ] =

r
2
. (A.46)

and

[ ] = 1
2
. (A.47)

By definition if = 0 and = 1, the random variable has a half normal

distribution with an expectation given by 46 and variance 47 which match

the formulas in 9 and 12. This demonstration shows that the half normal

distribution is a special case of the folded normal distribution as was expected.
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